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Problem Description
The severe slugging multiphase flow regime, that occurs during the casing heading insta-
bility in gas lift systems, is undesired as it may be damaging to the equipment and reduces
the average production rate. Automatic control is a possible solution to prevent the in-
stability and to optimize the production. It has been successfully applied, with different
control structures, both in research and on full scale tests. A mathematical comparison
to investigate which control structure that is most suited for disturbance rejection and
stabilization of the casing heading was initiated in the project fall assignment. The goal
for this thesis is to complete that work through the following objectives:

Objectives
• Complete the development of the low order gas lift model. The model should be

able to sufficiently reproduce the system behavior during the casing heading phe-
nomenon.

• Learn how to use the advanced OLGA flow simulator and the OLGA gas lift case.
The OLGA simulator should be regarded as the real flow process in this assignment.

• Compare and adjust the low order model to fit the response of the OLGA flow
simulator.

• Perform an controllability analysis on the fitted low order model. The result of the
analysis should reveal the most promising control structures.

• Implement and test the most promising control structures in a simulation study.
Simulations should be performed on both the low order model and on the OLGA
simulator. Evaluate the robustness of the controllers against non-linearity and un-
certainty.

• Establish communication between the OLGA flow simulator and MATLAB. This
connection should be used to test controllers developed in Matlab on the OLGA
simulator.
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Abstract
Gas lift is an artificial lift technique which is intended to be used in oil and gas production
systems to enhance the oil recovery rate. The technique is used in production systems
which suffers from insufficient production rates because of inadequate reservoir pressure.
The principle is to inject extra gas, from an external source, into the fluid mixture flowing
out of the reservoir. This reduces the weight of the fluid column, which in turn enables
the reservoir pressure to lift the mixture of fluids up to the surface. Thus, the restriction
in production rate, resulting from insufficient reservoir pressure, is resolved.

The casing heading instability cycle is a phenomenon which may occur in such gas lift
systems at certain pressure and flow conditions. In such a case, a blocking constraint leads
to an accumulation of gas that is building up a high pressure in the container storing the
extra gas. Eventually the pressure is able to overcome the blocking constraint which
further leads to a production flow blow out at the surface. This process repeats itself over
a period of several hours. The resulting flow regime may be damaging to the receiving
surface equipment. It also leads to a decrease in the average production rate, which is
highly undesirable.

In this thesis a new low order mathematical model to describe the casing heading instabil-
ity is presented. The model is further compared and fitted to a gas lift case implemented
in the advanced OLGA flow simulator, which is regarded as the real flow process in this
thesis. A controllability analysis is performed on the newly fitted model, and the results
of the analysis are used to investigate which control structures that seems reasonable
for stabilizing the casing heading instability. The most promising control strategies are
further tested in simulations, both on the low order model and on the advanced flow
simulator. The results from the analysis, which is further confirmed in simulations, show
that out of the measurement candidates that were considered in this thesis, the bottom
hole pressure, i.e., the pressure measured in the well or near the depth of the produc-
ing formation, is the single best measurement to use for both disturbance rejection and
stabilization of the system. However, this measurement is known to be unreliable, if at
all available, because of its location in a harsh environment. Another control structure
which showed promising results both in analysis and simulations is therefore concluded as
the better choice. This is a cascaded control structure, which only relies on realistically
available top side pressure measurements. It proved successful in stabilizing the system.
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Sammendrag
Gass løft er en kunstig løfte metode som kan brukes i olje og gass produksjonssystemer
for å øke produksjonsraten. Teknikken brukes gjerne i produksjonssystemer som lider av
lave produksjonsrater som resultat av utilstrekkelig trykk i reservoaret. Prinsippet går
ut på å injisere ekstra gass, fra en ekstern kilde, inn i fluidblandingen som flyter ut av
reservoaret. På den måten vil vekten av fluidkolonnen som reservoartrykket skal løfte
opp til overflaten reduseres. Ved å injisere nok gass vil den gjennomsnittlig vekten av
fluidblandingen reduseres til et punkt der reservoartrykket igjen er tilstrekkelig til å løfte
fluidene opp til overflaten. Dermed er restriksjonen i produksjonraten, som konsekvens
av utilstrekkelig reservoartrykk, løst.

Casing heading ustabilitet syklusen er et fenomen som kan oppstå i slike gas løft systemer
under visse trykk og flytbetingelser. I et slikt tilfelle, vil en trykkrestriksjon føre til at
flyten fra annulus til tubing blir stoppet opp. Videre bygges det da opp et høyt trykk
i annulus ettersom at gass akkumuleres i dette volumet. Når trykket på et tidspunkt
blir høyt nok til å overkomme trykkrestriksjon som blokkerer flyten, så vil det resultere i
en utblåsning av olje og gass på overflaten, ettersom at et stort volum av gass flyter fra
annulus inn i tubingen og løfter ut hele fluidblandingen. Denne prosessen kan repetere
seg selv med en periodetid på flere timer. Det resulterende flytregimet kan virke øde-
leggende på utstyret som befinner seg på overflaten. Videre fører det også til en redusert
gjennomsnittlig produksjonsflyt, som er svært lite ønskelig.

I denne oppgaven blir det presentert en ny lavordens matematisk modell for å beskrive
denne ustabiliteten. Modellen blir så sammenliknet og tilpasset til en gass løft case som
er implementert i den mer avanserte OLGA flytsimulatoren, som anses for å være den
virkelige flytprosessen i denne oppgaven. En kontrollabilitetsanalyse blir videre utført
på den nye lav-ordensmodellen. Resultatene av analysen blir brukt til å undersøke hvilke
målinger som passer seg best i en kontrollstruktur som kan brukes til å stabilisere systemet.
De mest lovende resultatene fra analysen blir videre testet gjennom simulering av både
den nye modellen, samt i OLGA flytsimulatoren.

Resultatene fra analysen, som ble videre bekreftet gjennom simuleringer, viser at ved
bruk av en enkelt måling i en kontrolstruktur, er det trykket i bunnen av tubingen, nært
reservoaret, som er den beste kandidaten for stabilisering av systemet. Imidlertid er det
kjent at denne målingen er usikker, om i det hele tatt tilgjengelig, ettersom den befinner
seg i et tøft miljø med høyt trykk og temperatur. En annen kontrollstruktur som også viste
seg lovende i både analysen og gjennom simuleringer, er en kaskadestruktur av tilgjengelige
topptrykkene i annulus og tubing. Dette oppsettet klarte både å stabilisere systemet og
motvirke forstyrrelser. Det konkluderes derfor med å anbefale denne kontrollstrukturen,
med mindre en har bunntrykket tilgjengelig.
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Chapter 1

Introduction

The following chapter is inspired by my previous work with gas lift systems, conducted
during my project assignment in the fall of 2011 at NTNU, which is presented in [1].

1.1 Motivation

The dependency of energy for today’s society to function as normal is absolute. Avail-
ability of energy is so hardwired into our everyday living that it seems impossible to
imagine how the world would evolve without it. As the human population is increasing
rapidly, so is the energy demand. It is expected to be an 1.9% annual increase in the
worlds total energy demand up to the year 2030, and the majority of that demand, about
90%, is anticipated to be met by hydrocarbons, which is found naturally in crude oil1.
Unfortunately our oil reserves are limited, and the methods used to recover oil from the
reservoirs we do have, are not optimal. This may result in large portions of reservoirs that
is left untapped, as it is not economically profitable to produce the leftover oil from the
reservoir. The importance of optimizing reservoir production and enhancing oil recovery
to fully utilize our every oil reservoir is evident. Thus, we need to ensure that research
continue to emphasize on reducing the risk and lowering the costs that is associated with
hydrocarbon recovery.

One class of methods that is developed to enhance oil recovery from reservoirs is called
artificial lift techniques. In reservoirs which have inadequate pressure to push the oil
up to the surface on its own, these techniques are essential for extending the lifetime of
the oil well and boosting oil production rates, thereby increasing the utilization of the
reservoirs. These techniques are used on more than 90% of the approximately one million
currently producing oil wells in the world today, [2]. There are four different artificial lift
methods which are used in the oil industry: road pumping, electric submersible pumping,
subsurface hydraulic pumping and gas-lift, [3]. Out of these four techniques, gas-lift is the
most economic and widely used lift technique for mature offshore oil wells. It is currently
being used on approximately 30 thousand wells today, [2]. This is mainly because of its
minimal use of surface well equipment, justified by the fact that the gas that is used in
the lift process usually is available from high-pressure gas wells or a compression system

1Data taken from [2]
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already accessible on location, [3]. The gas-lift technique is explained in detail in section
(1.2).

Even though gas-lift has the advantageous that it may boost production and help to
retrieve more of the resources in the reservoirs, it may unfortunately also make the system
unstable under certain pressure and flow conditions. One of the instabilities that may
occur in gas-lift systems is called the casing heading instability, and this is the focus of
this report. The resulting unstable multiphase flow regime is called slug flow, or severe
slugging, and will be further explained in section (2.2), and is depicted in figure (2.2.2).
This flow regime lowers the average oil production rates and may be damaging to the
upstream receiving facilities. This is elaborated in section (2.6.2).

Needles to say, in the oil and gas industry, a major concern is to stabilize the transporta-
tion of oil and gas in pipelines, at operating points which optimizes production. The
mixture of oil and gas flowing through the pipes is called multiphase flow, as it consists
of several phases. In this project only two phases are considered, which is gas and liquid.
Stabilizing this multiphase flow in the pipe, and ensuring that the fluids flows as intended,
is referred to as flow assurance. There is rapid development in the field of flow assurance
and the discipline is progressing fast [4].

1.2 Explanation of The Gas Lift Technique
The extraction rate of oil from an offshore well is dependent on the pressure in the
reservoir. The reservoir pressure can be considered as the driving force of the system, as
it is the force which pushes the oil up through the pipeline. Higher pressure leads to higher
production rates. During the lifetime of an oil well the reservoir pressure will decrease as
the well matures and fluids are extracted from the reservoir. When the reservoir pressure
is decreased below a certain point, the well will no longer be able to produce oil on its
own. The gas lift technique may then be used to inject extra gas into the pipeline to
reduce the average density of the fluid mixture. This will reduce the average weight of
the fluids, thus enabling the reservoir pressure to once again push the oil up the pipe.
How this process works will now be explained in detail.

A reservoir is a subsurface body of rock which, because of sufficient porosity and perme-
ability, is able to store and transmit fluids, [5]. The reservoir pressure, also referred to
as the formation pressure, is the result of the natural forces that surround and trap the
fluids within the pores of the reservoir. It is these forces which prevents the fluids from
escaping. More information on reservoirs can be found in [6]. When a well, i.e., a hole,
is drilled into a reservoir, the fluids are presented with a flow path through which they
may escape. Provided that there is a positive pressure drop from the reservoir in the
bottom to the receiving end at the top, the fluids will start to flow into pipeline, up the
tubing, through the production choke and finally arrive at the receiving facilities, which
is usually a separator. See figure (1.2.1), which is a modification of the figure presented
in [7]. This means that to be able to produce oil, the pressure in the reservoir has to
overcome the back pressure from both the fluid column in the tubing and the surface
facilities. If, however, the reservoir pressure is too low, the oil will not be able to flow up
the tubing, so the system can not produce oil on its own. Applying gas lift to the system
however, may change the situation.
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Figure 1.2.1: The Gas Lift Riser Model

Introducing gas lift to a system is done by providing an extra gas source from which
lift-gas can be injected. The lift-gas is routed from the new gas source at the surface,
through a container, usually an annulus around the tubing in the riser, and into to tubing,
preferably near the bottom, again see figure (1.2.1). The supplied lift-gas will infiltrate
the fluid in the tubing and consequently reduce the average density of the fluid mixture.
Reduction of the mixture density causes the weight of the fluid column in the tubing
to decrease, which in turn decreases the pressure which the reservoir has to overcome
for the system to produce oil. By injecting a sufficient amount of lift-gas, the weight
of the mixture in the tubing will be reduced to the point where it is possible for the
formation pressure to lift the column of fluids. The system is then able to produce oil.
Gas lift is therefore an effective technique for boosting oil production in wells that have
inadequate natural reservoir pressure. It may also be used in systems which suffers from
low production rates, even though the reservoir pressure is sufficient to produces oil on
its own. Gas lift will then enhance the average production rate.

Even though the intention of applying the gas lift technique is to increase the production
rate, it may sometimes have the exact opposite effect. This is because of unfortunate
system constraints which may result in an unstable system at certain pressure and flow
conditions. Unstable flow causes severe pressure and flow oscillations that reduces the
average production rate and may also be damaging to the equipment. This is elaborated
in section (2.6.2). One type of instability that may occur in gas lift systems is named
the casing heading instability, and is explained in detail in chapter 2. Preventing and
stabilizing the casing heading instability, through the use of automatic control, is the
focus of this thesis.
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1.3 Scope and Emphasis

This master thesis is a direct continuation from my introductory study on gas lift systems,
performed in my project assignment, [1], on NTNU in the fall of 2011. In that project
the main part of a new low order model, designed to be able to reproduce the casing
heading instability in gas lift systems, was developed. The scope of this thesis has been
to complete the model by comparing it to a more advanced flow simulator, OLGA. The
reason for making a simplified model of the casing heading is that this low order model
can, in contrast to the OLGA model, be used as a basis for controller development,
analysis, estimators and design. With the new model at hand, the scope is further to use
it as a basis in a controllability analysis to compare how suitable different measurements
candidates are to be used for automatic control. An important objective has been to test
the most promising measurements candidates from the analysis, in simulations. These
simulations are performed on both the low order model and the OLGA flow simulator.
Several simplifications are made in this thesis which should be considered when selecting a
control structure for the real facilities. E.g., the different control structures are compared
and judged purely by their ability to stabilize the system, and performance in ease of
control. The different control structures are not considered from an economic point of
view in this assignment. The main simplification done in this thesis is that the OLGA
flow simulator is regarded as the real flow process. It is important to emphasize that
OLGA is also just a flawed model of the reality. As a consequence, even though results
show promising on the simulator, they may not be valid for the real systems.

1.4 Outline of Thesis

This thesis is outlined in the following way: Chapter 2 presents the nature of the casing
heading instability cycle and explains different ways to prevent it. Further it is motivated
for the use of automatic control to stabilize the system and it is justified as an effective
way to optimize the production costs. Chapter 3 further presents the advanced flow
simulator, OLGA, which is regarded at the real flow process in this thesis. In chapter 4
the new low order model for describing the casing heading phenomenon is presented. This
is mainly a rendering of the modeling work conducted in my fall project, [1]. However
some new changes is added to the model, including a new friction factor term. Chapter
5 uses the tuning parameters in the new model to fit its response to the more advanced
OLGA flow simulator. This serves as a validation of the low order model and justifies
it to be used as a basis for control design and simulation studies, regarding the casing
heading instability. A controllability analysis of the fitted new model is further performed
in chapter 6, to investigate which control structures that seems reasonable to implement.
Chapter 7 discusses the real life availability of the measurements in gas lift systems. It is
concluded that to use the most promising measurement candidate from the analysis, in
realistic simulation study, an estimator should be introduced to the system. The unscented
Kalman filter is chosen, and it is explained how it functions. In chapter 8, the controllers
used in this thesis are presented. Further, in chapter 9 and 10, the most promising
control structures are tested in simulations, both on the low order model and on the
OLGA simulator, respectively. Finally in chapter 11, a control structure is recommended
and the results are concluded. The appendices contains the constants used in the model
and estimator, calculated bounds from the controllability analysis, some of the MATLAB
implementations codes, as well as a conference paper based on some of the results from the
fall project and this thesis. The paper was accepted to the 2012 International Symposium
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on Advanced Control of Chemical Processes, (ADCHEM 2012).
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Chapter 2

The Casing Heading Instability

2.1 Description of The Instability Cycle

As early as in 1953 a paper, [8], was written in which there was mentioning of observed
instabilities in gas-lifted wells, under certain flow and pressure conditions. It was stated
that during these unsteady flow conditions, a sudden pressure drop in the tubing would
be followed by a sudden surge of gas flowing from the annulus into the tubing. It was also
noted that the inflow volume of gas was dependent on the pressure and volume of the
gas in the annulus. This resulted in a cyclic behavior, because when the pressure in the
annulus dropped below a certain point, the gas ceased to flow into the tubing, until the
pressure in the annulus was built back up. The worst consequence of this was that the well
would stop producing oil while the pressure in the annulus was building up, which because
of its volume, could take considerable time. These observations are the fundamentals of
the casing heading instability. Casing heading is basically a compressibility problem
resulting from the gas-density’s dependency on the pressure in the respective volumes.
The instability is caused by the accumulation of gas within the annulus. The reason for
the name casing heading is due to the fact that the pressure in the top of the annulus
often is referred to as the casing head pressure, which is oscillating during the instability.

The casing heading instability cycle is thoroughly explained and described in greater
detail in more present literature. The following description of the phenomenon is based
on what is presented in [7], [9] and [1].

In a gas-lift system with one production tubing within its casing volume, a single injection
point in which the lift gas can flow from the annulus to the tubing, a constant feed rate
of gas into the annulus, there is uncontrolled gas passage between the annulus and tubing
and there is a one-way flow restriction from the annulus to the tubing, the casing heading
instability cycle can be described in the following way:

1. The compressed gas which enters at the top of the annulus flows down the annulus,
through the single injection point near the bottom of the annulus, and into the
tubing. When the gas enters the tubing the pressure in the tubing will decrease
as a result of the reduction in mixture density of the oil and gas. The decrease of
pressure in the tubing acts as a reinforcing loop as it causes an acceleration of the
flow of gas from the annulus into the tubing.
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2. The gas which has entered the tubing from the annulus infiltrates the liquid and
reduces the average mixture density in the tubing. In this way the reservoir pressure
is able to push the oil out of the tubing, which is what is intended. However, the
accelerated inflow rate of injection-gas has led to an excessive amount of gas in the
tubing, more than what is necessary to produce oil in a stable manner. This causes a
rapid state change in the liquid-gas fraction in the tubing. The fluid mixture weight
is highly reduced, and the reservoir pressure is now more than adequate to push
the content content of the tubing. The result is a blowout through the production
choke in the top of tubing, caused by the gas pushing a major part of the liquid up
and out, to the receiving facility.

3. Immediately after the blowout, the annulus has practically no gas mass left, i.e.,
it was emptied during the blowout. Now there is a negative pressure difference
over the injection orifice from the annulus to the tubing, that is, the pressure in the
annulus is lower than the pressure in the tubing at the injection point. This blocking
constraint prevents the gas from flowing from the annulus into to the tubing. As
a consequence, the annulus is filling up with gas, and the tubing is filling up with
liquid.

4. At one point the annulus will once again contain an amount of gas corresponding
to a pressure, upstream the injection orifice, high enough for the gas to overcome
the blockage constraint. At this instant, the gas will once again start to flow from
the annulus into the tubing. A new cycle has begun.

2.2 Demonstrating the Casing Heading Instability

The results of the casing heading instability are highly oscillating flows and pressures in
the system. This is shown in figure (2.2.1), which is made with the advanced OLGA flow
simulator. The OLGA simulator is further presented in chapter (3).
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Figure 2.2.1: The Casing Heading Phenomenon

As can be seen in figure (2.2.1), the system behaves as the previously explained cycle, in
section (2.1). The pressure in the annulus is building up to the point where it overcomes
the pressure in the tubing at the injection point. Notice that the pressure in the annulus
drops when a surge of gas flows from the annulus into the tubing. The tubing pressure
decreases rapidly. This is immediately followed by a peak in the mass production flow,
representing the blowout, as seen in the plot. Oscillations in flows and pressures are slow
and can occur with a period time of several hours. The resulting unstable flow regime
is named severe-slugging and can be described as an alternating flow of gas pockets and
liquid slugs, see figure (2.2.2), taken from [4].

Figure 2.2.2: Vertical Slug Flow

Slug-flow is one of several different flow regimes which is possible in multiphase flow
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systems. An extensive description of slug flow and the other types of multiphase flow
regimes, as well at which conditions they may occur, is given in the book “Multiphase
Flow Assurance” by Ove Bratland, [4].

2.3 Consequences of Casing Heading

Severe-slugging may be damaging to the receiving equipment downstream the production
choke at the top of the tubing, i.e., the separator. Slug-flow is also a possible reason for
why deposits, like wax or hydrates, sometimes build up inside the pipe over time. To
understand why severe-slugging may cause deposit buildup, one must consider how long
periods of alternating gas pockets and liquid slugs affects a pipeline. Fast temperature
changes and pressure fluctuations, associated with the respective phases, is the founda-
tion of chemical reactions that occurs at specific temperature and pressure conditions,
[10]. Specifically, the combination of low temperature and high pressure, when water is in
contact with natural gas, will often lead to formation of hydrates. Also, initiated produc-
tion shutdown, to avoid the unstable flow regime, will contribute to hydrate formation.
Deposits buildup is unwanted as it may throttle the line and also cause complete blockage
[4]. This blockage which reduces or in the worst case stops the flow, is difficult to remove
without shutting down the pipe for several hours, consequently halting the production.
A more detailed presentation of the formation of deposits and its resulting pipe damage
is presented in chapter 18 in [4]. Another highly undesirable consequence of the unstable
flow-regime is that the average oil production rate is decreased, which is further shown
in section (2.6.2).

2.4 Requirements for Casing Heading

The casing heading instability only occurs during certain pressure and flow conditions in
the gas-lift systems. Necessary, but not sufficient conditions for casing heading to exist
in a gas-lift system can be formulated as a pressure drop criteria. Keeping in mind that
the pressure drop is what drives the flow, and that the pressure drop is a result of gravity
and friction forces in the system, the criteria is given as follows. The pressure drop over
the flow-path from the top of the annulus, down the annulus, over the injection-valve, to
the top of the tubing and over the production choke, has to be gravity dominated, [11],
[9]. That means the pressure drop due to gravity is higher than the pressure drop term
resulting from friction forces acting on the system.

2.5 Remedies for Casing Heading

The casing heading instability may be avoided without the use of automatic feedback-
control. One way to prevent the unstable flow regime is simply to choke back, i.e., reduce
the opening, of the production choke, which is located on the top of the tubing, see figure
(1.2.1). Even though choking back will cause the pressure in the tubing to increase,
resulting in a stabilizing effect, it will also decrease the average production rate. The
choking is often exaggerated to ensure a sufficient stability margin. Since control is not
applied, the opening will remain constant and the average production flow will remain
suboptimal. This is undesirable.
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Increasing the amount of gas injected into the annulus, i.e., the amount of lift gas, will also
have a stabilizing effect on the system. However, as will be shown in section (2.6.1), after
increasing the injection-gas rate up to a certain point, this will also result in a reduction
of the average production rate. In addition, the expense of compressing the extra amount
of injection-gas has to bee considered in the overall production costs.

Interestingly, in earlier literature covering instabilities in gas-lift systems, such as [9], the
recommended remedy to prevent the problem was to accurately fit the orifice geometry in
the gas-lift injection valve. It was stated that to manually adjust the the surface chokes
was probably the least efficient way to avoid the instability, as it resulted in either a
significantly higher injection rate of gas, or lower production rate then intended. Later
on however, the rise of automatic control to adjust the surface chokes was recognized
as the recommended solution [7], and has been applied to gas-lift systems for quite a
while. Apparently, sizing of the downhole injection-valve was for a while disregarded.
However, in most recent literature covering innovations in gas-lift system, [2], sizing of
the downhole orifice is once again praised as an actual solution. Where it is stated that
to use a venturi-flow geometry in the gas lift injection vale between the annulus and the
tubing, can significantly extend the maximum pressure limitations of gas-lift systems.

However, the approach investigated in this assignment is to apply automatic feedback
control, for adjusting the production choke, on top of the tubing, or alternatively the gas
lift choke, on top of the annulus, or a combination of the two.

2.6 The Benefits of Automatic Control

2.6.1 Optimal Production

As explained in section (2.5), the casing heading instability can be avoided without the
use of automatic control. To justify the need for control, one must therefore consider if
applying control may result in optimizing the production in some manner. To investigate
the possible benefits of control, a comprehensive simulation study was performed using a
gas lift setup in the advanced OLGA flow simulator. The OLGA model will be further
presented in chapter (3), and the constants used in the gas lift setup case study is presented
in appendix (B).

The simulation study was conducted in the following way: First a constant production
valve opening of 10 percent was selected. For the chosen valve opening, the OLGA model
was simulated with different gas injection flow rates, ranging from 0.4 [kg/s] to 3 [kg/s],
with an increment size of 0.1 [kg/s] between each simulation. When a gas injection rate
of 3 [kg/s] was reached, it was reset to 0.4 [kg/s], and the production valve opening
was incremented with 10 percent. With this new constant production valve opening, the
simulations were repeated trough the whole range of the chosen gas injection rates. This
process was repeated until the production valve opening reached 100 percent, i.e. a fully
open valve.

The simulations were performed with the steady state preprocessing option enabled in
OLGA. With this option enabled, the initial simulation outputs is set to the steady-state
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values at the operating point corresponding to the chosen inputs, regardless of whether
the system is stable or unstable at this point. If the system is unstable, it will not be
able to maintain the steady state production rate. However, by introducing automatic
feedback control, it may be possible to stabilize the system at this operating point. The
steady state value of the mass production flow rate was noted for each of the different
combinations of gas-injection rates and valve-openings. It was also noted if the system
was stable at the different operating points.

The result of the study is presented in figure (2.6.1). In the figure, the gas-injection rates
are on the horizontal axis, and the mass production flow rates are on the vertical axis.
Each of the continuous lines in the plot represent the response of a constant production
valve opening. The red X on the line represents the point where the system changes
from unstable to stable. This transition will occur when the gas injection rate becomes
high enough. The stability transition point will also vary with the production valve
opening, that is, increasing the opening of the production valve turns the system unstable.
Consequently more injection gas is needed to stabilize the system when the production
valve opening is increased.
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Figure 2.6.1: Production Rate subject to Gas Injection Rate

In the figure it can be seen that when increasing the gas injection rate, while maintaining
the production valve opening constant, the result is an increase in the mass production
rate. However, the figure also reveals that after the gas injection rate is increased up to a
certain point, the mass production flow rate is decreasing when the gas injection rate is
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further increased. With the objective to minimize the use of injection gas and maximizing
the mass production rate, it can be seen that the optimal production conditions lies in an
unstable operation region. For example, by examining the plotted line in the figure which
represents a production choke opening of 40 percent, there seems to be optimal to use a gas
injection rate of approximately 0.8 [kg/s]. The fact that this operating point is unstable
can bee seen in the figure by noting that the red X which marks the transition to stability,
is not yet reached, as it requires more injection gas to stabilize the system. Why this gas
injection rate is optimal for the given production valve opening is justified as follows.
Even though a further increase in the gas injection rate will lead to a small increase in
the production rate, the gain in production is small. It is therefore not very cost effective,
especially when considering the cost of retrieving and compressing the extra amount gas.
The conclusion is therefore that the optimal gas injection rate for a given production
valve opening is located at an unstable operating point. Unfortunately the steady state
production rate at this optimal operating point can only be maintained through active
stabilization of the system, which we hope to achieve by introducing a controller. This
justifies the use of automatic control in gas-lift systems. It should however be noted that
if the gas produced from the reservoir is at least 10 percent of the total circulated gas
rate, experience has shown that this produced gas is enough to support the gas lift system
without the need of an additional external gas source, [3]. This would of course reduce
the cost associated with the use of extra lift gas.

2.6.2 Compering Stable and Unstable Production Rates

In the previous subsection it was shown that, with the objectives to minimize the use of
injection gas and maximizing the production flow, the optimal operating points is located
in an unstable region. However, that conclusion was based on an argument in which only
the steady state production values was considered. Thus it was implicitly assumed that
the stable steady state production rate is higher than the unstable production rate at the
same operating point. To investigate if this is true, a new simulation study was conducted
with the OLGA flow simulator.

The study was performed in the following way. A constant gas injection rate of 0.8 [kg/s]
was selected. The system was then simulated, in turn, with the production valve opening
ranging from almost closed (10 percent opening) to fully open (100 percent opening).
The opening was incremented with 5 percent between each simulation. As long as the
specific combination of gas injection rate and production valve opening resulted in a stable
system, the steady state production value was noted. When the combination resulted in
a unstable system, the average of the unstable production, over a longer time period, was
calculated. The results are presented in figure (2.6.2).
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Figure 2.6.2: Stable vs Unstable Production

In the figure, to the left, both the steady state production rate and the average unstable
production rate is plotted as a result of the different production valve openings. To
the right, the difference between the two flow rates are shown. It can be seen that
the production rate in the system is increasing while the production valve opening is
increasing, as long as the system is stable. However, as soon as the system turns unstable,
the average production rate is drastically decreasing. Note that the system turns unstable
with a valve opening of approximately 30 percent. This opening is lower than what was
found to be the optimal operating point, which was at 40 percent, with the specified gas
injection rate. It is concluded that the unstable flow regime results in a lower average
production than the stable flow regime. This proves that the conclusion reached in the
end of section (2.6.1) is indeed true: it may be beneficial to introduce automatic control
in gas lift systems due to the fact that it can possibly result in stabilizing the system
at an operating point which maximizes production subject to minimizing the amount of
injection gas.

2.7 Other Instabilities in Gas Lift Systems
Besides the casing heading instability, there are two other types of instabilities which
is recognized in gas-lift systems: the formation-heading and the tubing-heading. Casing
heading and formation-heading are close to identical. For more information on these types
of instabilities, outside the scope of this thesis, see [12].
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Chapter 3

Advanced Flow Simulator : The
OLGA Model

The OLGA flow simulator is regarded as the real flow process in this work. This chapter
therefore presents the simulator and describes the gas lift case setup which is used in this
thesis.

3.1 What is OLGA
To perfectly describe a phenomenon as complex as multiphase flow is virtually impossible.
Each single interaction between each specific part of an enormous system would have
to be considered in the equations. Even in the hypothetical case that all the correct
equations governing each relationship and causality in the system were taken into account,
solving them would be extremely challenging and require tremendous calculation power.
Nonetheless because of our need to be able to predict how flow systems, such as a gas lift
system, are going to behave at different operating conditions, advanced flow simulators
are continuously in development. A commercially available flow simulator model which
is recognized to be one of the most accurate to this date, is the OLGA flow simulator,
marketed by the SPT-group. The OLGA flow simulator can be used to simulate a specific
setup composed by the user. The graphical interface can be used to combine pipelines,
different process equipment and a network of wells. The user can build a system that
is desired to simulate by combing a large selection of different options included into the
software.

OLGA is widely applied in research, e.g., [7] and [13], and is also used in the industry. In
the manual following the software it is claimed that “OLGA is the industry standard tool
for transient simulation of multiphase petroleum production”, [14]. However it is important
to note that regardless of how advanced the OLGA flow simulator may be, it is also just
another flawed model trying its best to replicate and predict the complex real behavior
of a flow system. That is, the OLGA model is in no way guaranteed to produce the exact
real behavior of a system. Hopefully however, the simulation results render an adequate
description of the situation at hand.

From the start of its development in 1980, the OLGA model has gone through several
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changes. With time, SINTEF and a number of oil companies have contributed with field
data which has been incorporated in the software to improve the simulation accuracy
and reduce uncertainty, [14]. OLGA was recently purchased by one of the worlds leading
oilfield services providers, Schlumberger. This may contribute to further recognition and
wider applications of the flow simulator. In this work it is the latest version of the
simulator, OLGA 7, which is used.

3.2 OLGA Model Fundamentals

Unlike the low order model, which will be presented in chapter (4), the OLGA model
is a three-fluid model with separate continuity equations for each phase. The low order
model is only based on simple mass balances for gas and liquid that flows in and out of
the defined system. The OLGA model on the other hand, accounts for interfacial mass
transfer. Furthermore, the flow simulator uses three momentum equations. Two are used
for the continuous liquid phases, i.e., one for water and one for oil. The third momentum
equation is for the combination of gas with liquid drops, [15]. Needles to say, the OLGA
flow simulator is much more advanced than the low order model that will be presented
in the next chapter.

3.3 The Gas Lift Case In OLGA

The specific case study which is implemented and used in OLGA in this thesis, is a slightly
modified version of the one provided by Gisle Otto Eikrem, at Statoil. It is assumed to use
somewhat realistic parameter values made up from the Norwegian Petroleum Institute.
All the specific settings and constants used in the case study are given in a system
report generated by the OLGA software, located in appendix (B). The main parameters,
however, are a vertical well with the length of 2048 meters. A tubing with a diameter
of 0.124 meters. The reservoir pressure is 150 bara with a temperature of 108 degrees
celsius and a productivity index of 2.47 · 10−6 [kg/s/Pa]. The pressure in the inlet of the
separator is 15 bara. While the temperature of the gas injected into the annulus is at 60
degrees celsius, at 160 bara and a constant injection rate of 0.8 [kg/s.]

3.4 OLGA Stability Map

To investigate how the gas lift setup in OLGA behaves during different operating condi-
tions, it was decided to make a stability map of the system. By using the same data that
was generated through the simulations performed to make the production figure (2.6.1)
presented in section (2.6.1), the following figure is created.

15



0 10 20 30 40 50 60 70 80 90 100 110

0.4

0.6

0.8

1

1.2

1.4

1.6

Production Choke Opening [%]

Ra
te

 o
f L

ift
 G

as
 In

to
 A

nn
ul

us
 [K

g/
s]

OLGA Stability Map: o (Stable), + (Unstable)

 

 

Approximate Stability Transition

Figure 3.4.1: OLGA Stability Map

In figure (3.4.1) it is shown if the system is stable or unstable at different combinations
of gas injection rates into the annulus and production choke opening. The circles (o)
depicts stable operating points, and the (+) show the unstable operating points. An
approximate transition between the stable and unstable region is also shown as a dotted
red line. The map provides a good insight of the system behavior, and it can easily be
seen when the system turns unstable. Note that the system behaves as expected. At
combinations of low gas injection rates in relation to high production choke openings,
results in an unstable system. As the gas injection rate is increased or alternatively, the
production choke opening is decreased, the system moves towards the stable region. By
a closer inspection of the plotted approximate stability transition line, it seems to be an
almost linear relationship between the two variables. At least between production choke
openings from 10 to 50 percent. In that region, a 10 percent increase in the production
valve opening changes the stability transition line to a gas injection rate corresponding
to an increase of approximately 0.2 [kg/s].
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Chapter 4

Low Order Model for Gas lift
Systems

The reasons for developing a simplified model when we already have available a much
more advanced flow simulator, i.e., the OLGA model, is justified as follows. The OLGA
model consist of equations that are not directly available, it is more like a black box
from which one can apply an input and get an output. With that in mind, it can not be
used directly in a controllability analysis, or for model based controllers. Furthermore the
OLGA model consist of much more equations, relationships and possibilities that what is
used in this simple gas lift setup, since it is supposed to be used for many other different
flow scenarios as well. It is however a great tool for testing results found in the low order
model in a more realistic scenario.

This section derives the final version of the new low-order model to be used for gas lift
systems. Most of what is presented in this chapter is more or less a direct rendering of
what was presented in the fall project assignment, [1], where the main part of the model
development was conducted. Still, some new modifications to the model are presented,
such as a new friction term. The resulting non-linear model is implemented in Matlab
and is solved with an numerical integrator. The implementation code of the model is
given in appendix (D.0.2).

4.1 Basis and Foundation of the New Model

In the paper “Simplified Dynamical Models for Control of Severe Slugging in Multiphase
Risers” [13], Jahanshahi and Skogestad presents a simple dynamical new low-order model
for multiphase flow in risers. In the fall project, a modification of that model, to be used
for gas lift systems, was developed. The model consists of three states, similar to what
we refer to as the Eikrem model, presented in [16], and [7]. In contrast to the Eikrem
model, the model proposed here also include a pressure drop term due to friction in the
tubing. The state which involves the mass of the liquid in the tubing is also modified so
that is also accounts for the liquid mass below the gas injection point. Another difference
between the two models is also noted. In the Eikrem model, the mass production flow of
gas and liquid is calculated from the weight fractions of the different phases in relation
to total fluid weight in the whole tubing. In the model presented in here, and in the
project assignment, an assumption made by Skogestad and Jahanshahi in [13], is used to
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calculate the phase fractions and the density in the top of the tubing. The assumption is
explained in more detail in section (4.3.6). Furthermore this model also accounts for gas
flowing in from the reservoir.

4.2 Mass Balances in Model

The model consists of three states, which are; The mass of the gas in the annulus (x1),
the mass of the gas in the whole tubing (x2) and the mass of the liquid in the whole
tubing (x3). The state equations which constitutes the model is simply the mass balances
of the respective phases over the tubing volume and the annulus volume. A mass balance
is the mass inflow to a respective volume, subtracted by the mass outflow from the same
volume. The change in the mass of gas in the annulus, with respect to time, i.e., the
time derivative of x1, is given by the mass inflow rate of gas into the top of the annulus
(wGa,in), subtracted by the mass outflow rate of gas (wGa,out). The outflow is the lift gas
which flows through the gas lift injection valve into the tubing. The result is equation
(4.2.1). By applying the same principle, the change in the mass of the gas in the tubing,
is the mass flow rate of gas flowing into the tubing from the annulus, through the gas lift
injection valve (wGa,out), added with the mass flow rate of gas flowing into the bottom of
the tubing, from the reservoir (wGr,out), and finally subtracted by the mass rate of the
gas flowing out of the top of the tubing (wGt,out), through the production choke. The
result is equation (4.2.2). Since there is no liquid in the annulus, the change in the liquid
mass in the tubing is simply the mass flow rate of liquid flowing in from the reservoir,
(wLr,out), subtracted by the mass flow rate of liquid flowing out the top of the tubing,
(wLt,out), through the production choke. The result is equation (4.2.3), which together
with equation (4.2.1) and (4.2.2) describes the whole system.

.
x1 =

.
mGa

= wGa,in − wGa,out (4.2.1)
.
x2 =

.
mGt

= wGr,out + wGa,out − wGtout (4.2.2)
.
x3 =

.
mLt

= wLr,out − wLt,out (4.2.3)

4.3 Flows, Pressures, Phase fractions and Friction

As just shown, the low order model is defined by the mass flows in and out of the system.
However, it is how the flows in the equations, (4.2.1)-(4.2.3), are calculated, which slightly
differs from many other similar models of gas lift systems, proposed by different authors.
It is the flow calculations which is the challenge.

4.3.1 Flow into Annulus

Firstly the flow from the external gas source into the top of the annulus, through the gas
lift choke (wGa,in) is derived. Due to the fact that there is only gas inside the annulus,
the pressure in the top of the annulus can be calculated with the ideal gas law, assuming
that temperature inside the annulus (Ta) is constant. Assuming constant temperature
is a reasonable as it is varying slowly. By using the fact that mass equals volume times
mass density, the expression for the pressure in top of the annulus is therefore given as:

Pat =
RTax1
MGVa

(4.3.1)
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where R is the ideal gas constant and MG is the molar mass of the gas. Pressure in the
bottom of the annulus near the gas injection point to the tubing, (Pab) , is calculated in
the same way as in the Eikrem model [7]. That is, it is given by adding the pressure drop
from the gas column to the pressure at top of the annulus. The resulting expression is:

Pab = Pat +
x1gLa

Va
(4.3.2)

where g is the gravitational constant, La is the length of the annulus, and Va is the volume
of the annulus. A pressure drop term due to friction in the annulus is not considered in
this model, only friction in the tubing in applied, and is derived in section (4.3.3). The gas
density at the bottom of the annulus is therefore given from the pressure in the bottom
of the annulus, through a rewrite of the ideal gas law, and can be expressed as:

ρG,ab =
PabMG

RTa
(4.3.3)

Gas entering the annulus on the topside is assumed to come from an external gas source,
a tank or a compressor, with pressure denoted Pgs. The density of the gas flowing into
the annulus can be expressed in a way similar to that in equation (4.3.3), and is given as:

ρGa,in =
PgsMG

RTa
(4.3.4)

Using the mass flow version of the general valve model presented in equation 4.1 in [17],
the resulting gas mass flow into the annulus is therefore given as:

wGa,in = Kgsz2

√
ρGa,in ·max{Pgs − Pat, 0} (4.3.5)

where Kgs is a constant discharge coefficient, the valve parameter, and z2 is the gas-lift
choke opening fraction. A linear valve characteristic is used. Pgs − Pat is the pressure
drop across the restriction. When the pressure in the top of the annulus is greater than
the pressure in the external gas source, the will be no gas flow into the annulus.

4.3.2 Pressure in The Tubing at The Gas Injection Point
On page 4 in [18], a saturated oil reservoir is defined as a reservoir were the initial pressure
is equal to the bubble-point pressure of the reservoir, i.e., the reservoir is fully in liquid
state but it is about to vaporize. Assuming a saturated oil reservoir and high pressure in
the bottom of the tubing, we conclude that the distance between the gas injection point
in the tubing and the bottom hole of the well, denoted Lbh, is filled with fluid in pure
liquid phase. The volume of the gas in the tubing is calculated by using the total volume
of the tubing, subtracted by volume occupied by the liquid. The volume occupied by the
liquid, above the gas injection point, is calculated in the following way:

VLt
=
mLt

ρL
− SbhLbh =

x3
ρl
− SbhLbh (4.3.6)

where Sbh is the surface area of the bottom hole, and ρL is the density of the liquid, which
is assumed constant. Using equation (4.3.6), the density of the gas at the top of the tubing
is the sum of the mass of gas and liquid divided by the volume, and is calculated as:

ρG,tt =
mGt

Vt − VLt
=

x2

Vt −
x3
ρL

+ SbhLbh

(4.3.7)
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where Vt is the total volume of the tubing, including the bottom hole part. This expression
can be used together with the ideal gas law to calculate the pressure in the top of the
tubing:

Ptt =
ρG,ttRTt
MG

(4.3.8)

where Tt is the temperature in the tubing, which is assumed constant. The average
mixture density inside the tubing is

ρ̄mix =
x2 + x3 − ρLSbhLbh

Vt
(4.3.9)

The pressure in the tubing at the gas injection point can now be calculated similar to
what was done in equation (4.3.2) , by adding the pressure drop from the fluid column in
the tubing to the pressure at top of the annulus, i.e.,

Ptb = Ptt + ρ̄mixgLt + Ft (4.3.10)

where Lt is the length from the top of the tubing to the gas injection point. Ft is the
pressure drop term over the same distance, due to friction in the tubing, which will be
derived in section (4.3.3).

4.3.3 Friction

Calculating the pressure drop due to friction in the tubing was one of the main challenges
in the fall project work. In the riser model proposed by Jahanshahi and Skogestad [13],
which this model is based on, the friction is calculated in an expression that is based on
the flow rate through the tubing. But in a gas lift system, the flow rate of gas into the
tubing, from the annulus, is dependent on the pressure at the gas injection point in the
tubing. This pressure is again dependent on the pressure drop due to friction. To avoid
this mutual dependence, it is proposed to define an average flow rate from the reservoir
to the tubing, w̄res, which will be an constant in the model, and can be used as an tuning
parameter for the friction term.

To be able to include friction in the model, it is necessary to introduce the term superficial
velocity. In single phase flow the volumetric flow rate divided by the the pipe cross-
sectional area is often used as the average velocity at a particular point in time, i.e.,
the instantaneous average velocity. In that way the average velocity directly reflects the
volumetric flow rate. However, in multiphase flow systems, the fraction of the pipe cross-
sectional area occupied by one particular phase will vary in time and space. That means
that the flow is no longer proportional to the velocity at a given point. Instead we may
define the average phase velocity by using the fraction of the cross-sectional area occupied
by the particular phase. For a more detailed definition of superficial velocities, see section
1.5.3 in [4]. Using the previously defined average flow rate from the reservoir (w̄res), and
with a cross section in the tubing equal to πr2, the average superficial velocity of the
liquid phase in the tubing is expressed as

Ūsl,t =
(1− αm

G,tb)w̄res

ρLπr2
(4.3.11)

where r is the radius of the the tubing, and αm
G,tb is the gas mass fraction at the bottom

of the tubing. Defining the mass gas-oil-ratio (GOR) as the ratio between the mass gas
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rate and the mass liquid rate flowing in from the reservoir, i.e., ( GOR =
ẇGr,out

ẇLr,out
), the

gas mass fraction at the bottom of the tubing can be expressed as

αm
G,tb =

GOR

GOR+ 1
(4.3.12)

The density of the gas bubbles at the bottom of the tubing can be approximated by

ρ̄G,tb ≈
(Pres − ρLgLbh)MG

RTt
(4.3.13)

where Pres is the pressure in the reservoir. The average superficial velocity of the gas
phase in the tubing now becomes

Ūsg,t =
(αm

G,tbw̄res + wGa,in)

ρ̄G,tbπr2
(4.3.14)

The average mixture velocity in the tubing is defined as the sum of the average phase
velocities in the tubing and is therefore given as

Ūm,t = Ūsl,t + Ūsg,t (4.3.15)

We can now use the average mixture velocity to express the Reynolds number in the
tubing as defined for multiphase flow:

Ret =
2rρ̄mixŪm,t

µ
(4.3.16)

where µ is the constant viscosity.
The average liquid volume fraction inside the tubing is

ᾱL,t =
x3 − ρLSbhLbh

VtρL
(4.3.17)

The new friction factor that is used in the tubing can now be calculated. It is an explicit
approximation of the implicit Colebrook-White equation which was proposed by Haaland
in [19].

1√
λt

= −1.8log10

[(
ε/(2r)

3.7

)1.11

+
6.9

Ret

]
(4.3.18)

where ε is the wall roughness constant.
Pressure loss due to friction from the top of the tubing down to the gas injection point,
now becomes:

Ft =
ᾱL,tλtρ̄mixŪ

2
m,tLt

4r
(4.3.19)

4.3.4 Inflow of Lift-Gas to Tubing
We can now insert the pressure drop due to friction (4.3.19) into the equation for the
pressure in the tubing at the injection point (4.3.10), which results in:

Ptb = Ptt + ρ̄mixgLt +
ᾱL,tλtρ̄mixŪ

2
m,tLt

4r
(4.3.20)

And by using the same equation for describing flow through a valve as in (4.3.5) we get
the expression for the mass flow rate of gas injected into the tubing from the annulus:

wGa,out = Ka

√
ρG,ab ·max{Pab − Ptb, 0} (4.3.21)
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4.3.5 Mass Flow Rate from the Reservoir to Riser
With the assumption of only fluid in liquid phase below the gas injection point in the
tubing, the average liquid velocity at the bottom-hole is:

ŪL,bh =
w̄res

ρLSbh
(4.3.22)

and the Reynolds number at the bottom hole is:

Rebh =
2rbρLŪL,bh

µ
(4.3.23)

where rb is the radius of the tubing below the gas injection point. Friction factor using
the same correlation as in (4.3.18) becomes:

1√
λb

= −1.8log10

[(
εb/(2rb)

3.7

)1.11

+
6.9

Ret

]
(4.3.24)

The pressure loss due to friction in the tubing below the gas injection point can now be
calculated in the same way as in (4.3.19) and is expressed as:

Fb =
λbhρLŪ

2
L,bhLbh

4r
(4.3.25)

The pressure at the bottom-hole can now be calculated as:
Pbh = Ptb + Fb + ρLgLbh (4.3.26)

And the mass flow rate from the reservoir to the riser is expressed as:

wres = PI ·max{Pres − Pbh, 0} (4.3.27)

where PI is the productivity index. The productivity index expresses the ability of the
reservoir to deliver fluids to the tubing, it is a constant in this model. Using the the gas
mass fraction at the bottom of the tubing, (αm

G,tb), calculated in equation (4.3.12), and
the mass flow rate from the reservoir just calculated, the mass flow rate of liquid and gas
from the reservoir to the tubing can be calculated as:

wLr,out = (1− αm
G,tb)wres (4.3.28)

wGr,out = αm
G,tbwres (4.3.29)

respectively.

4.3.6 Liquid and Gas Volume Fractions
With the expression for the pressure at the gas injection point in the tubing, calculated
in (4.3.10), we can write a more accurate expression for the gas density at the same point:

ρG,tb =
PtbMG

RTt
(4.3.30)

The liquid volume fraction at the gas injection point in the tubing then becomes:
αL,tb =

wLr,outρG,tb

wLr,outρG,tb + (wGa,out + wGr,out)ρL
(4.3.31)

Now the assumption used by Jahanshahi and Skogestad in [13] is applied. The assumption
is that in an vertical gravity dominant two-phase flow pipe, there is approximately a linear
relationship between the pressure and the liquid volume fraction. So it is assumed that
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the gradient of the pressure along the tubing is constant in the desired smooth flow
regimes. With the assumption of this linear relationship, the liquid volume fraction also
maintains approximately a constant gradient along the tubing for the stable flow regimes.
Jahanshahi and Skogestad further argues that this assumption suggests that the liquid
volume fraction at the middle of the tubing is the average of the liquid volume fraction at
the two ends of the tubing. However, the liquid volume fraction at the middle of the tubing
is approximately equal to the average liquid volume fraction in the tubing. Jahanshahi
and Skogestad therefore conclude that we can express the liquid volume fraction at top
of the tubing as:

αL,tt = 2ᾱL,t − αL,tb (4.3.32)

where the average liquid volume fraction in the tubing is calculated in (4.3.17). The
mixture density at top of the tubing can now be written as:

ρmix,t = αL,ttρL + (1− αL,tt)ρG,tt (4.3.33)

4.3.7 Mass and Volumetric flow out the Production Choke

With the expression for the mixture density at the top of the tubing in equation (4.3.33),
we can now write the expression for the mixture mass flow rate out the production choke
on the top of the tubing as:

wout = Kptz1

√
ρmix,t ·max{Ptt − P0, 0} (4.3.34)

where Kpt is the constant valve parameter, and P0 is the pressure at the receiving facility.
The volumetric flow rate out the production choke is then:

Qout =
wout

ρmix,t
(4.3.35)

The gas mass fraction at the top of the tubing is now:

αm
G,tt =

(1− αL,tt)ρG,tt

αL,ttρL + (1− αL,tt)ρG,tt
(4.3.36)

The resulting mass gas and liquid flow rates out from the tubing to the receiving facility
is then expressed as:

wGt,out = αm
G,ttwout (4.3.37)

wLt,out = (1− αm
G,tt)wout (4.3.38)

respectively. The model is complete.

4.4 The Constants used in Model

The constant used in this model are taken from the OLGA flow simulator case study pro-
vided by Gisle Otto Eikrem at Statoil. It is assumed to use somewhat realistic parameter
values. All the constants and parameters that are used are listed in appendix (A.0.1).
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4.4.1 Stability Map of Model
In the same way as was done for the OLGA model, as stability map of the low order
model was created. Note that the low order model behaves as desired. Increasing the
gas injection rate, or decreasing the production choke opening, moves the system towards
the stable region in the plot. The stability map of each of the models are compared in
chapter (5).

Figure 4.4.1: Low-Order Model Stability Map
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Chapter 5

Compering and Fitting the
Models

In this chapter the new low order model, which was derived in chapter (4), is fitted and
compared to the OLGA flow simulator. As previously mentioned, OLGA is regarded as
the real flow process in this thesis. The objective is therefore to make the response of the
low order model as similar as possible to the gas lift case set up in OLGA. Thus, if the
low order model is abel to sufficiently accurate reproduce the response of the advanced
flow simulator, it is concluded as a valid model. This justifies it to be used in a simulation
study to test out different control structures, for model based control, as well as to use it
as a basis to perform a controllability analysis.

The low order model has 4 tuning parameters, i.e., constants, that can be altered to
change the response. These parameters, which are used in equations (4.3.5), (4.3.11),
(4.3.21) and (4.3.34), in the chapter (4), are adjusted to fit the outputs of the low order
model to the OLGA simulator. The outputs are the measurements which are considered
the most important candidates to be used in automatic control of the system. When the
low order model is used in this thesis, the injection rate of gas into the annulus is set to
a constant value, equal to the value set in the OLGA flow simulator case study. This was
done to be able to easier fit the response of the two models.

5.1 Bifurcation Map

To compare the output response of the two models, and see how the adjustment of the
fitting parameters affects the response of the low order model, it was decided to make
a bifurcation diagram of both the low order model response, and the OLGA simulator
response. A bifurcation diagram is a plot which shows how a model reacts when keeping
all parameters constant except one designated bifurcation parameter. The bifurcation
parameter, which in this case is the production valve opening, is incrementally changed,
with an 5 percent increment, from an almost fully closed to fully open valve. The other
constant values used in the model are listed in table (A.1) in appendix (A.0.1). At
each point, the system is simulated over a longer time period. From the outputs of the
simulation series, the steady state, maximum and minimum value of the response over the
whole simulation time is noted. Naturally, at the operating points where the system is
stable, i.e., with low production valve openings, the steady state is equal to the maximum
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and the minimum value. The result of the study is shown in figure (5.1.1):

0 20 40 60 80 100
0

50

100

150

200

valve opening, Z [%]

P bh
 [b

ar
]

a) Pressure at Bottom Hole (Pbh)

 

 

OLGA− Model
Low−order Model

0 20 40 60 80 100
0

20

40

60

80

100

valve opening, Z [%]

w
ou

t [k
g/

s]

b) Mass Production Flow Rate (wout)

 

 
OLGA− Model
Low−order Model

0 20 40 60 80 100
50

100

150

200

valve opening, Z [%]

P ab
 [b

ar
]

c) Pressure at Bottom of Annulus (Pab)

 

 
OLGA− Model
Low−order Model

0 20 40 60 80 100
60

80

100

120

140

valve opening, Z [%]

P at
 [b

ar
]

d) Pressure at Top of Annulus (Pat)

 

 

OLGA− Model
Low−order Model

0 20 40 60 80 100
0

20

40

60

80

valve opening, Z [%]

P tt [b
ar

]

e) Pressure at Top of Tubing (Ptt)

 

 
OLGA− Model
Low−order Model

0 20 40 60 80 100
0

200

400

600

valve opening, Z [%]

Q
ou

t [l
itr

e/
s]

f) Outlet volumetric flow rate (Qout)

 

 
OLGA− Model
Low−order Model

Figure 5.1.1: Bifurcation Diagram

It can be seen in the figure that the critical point, i.e., the point where the system
turns unstable, is when the production valve reaches an opening of about 30 percent.
The figure may be somewhat hard to interpret so here follows an explanation. For each
of the subplots in the figure, there is actually plotted six different lines. Three red
lines, corresponding to the OLGA flow simulator response, and three dotted black lines,
corresponding to the low order model response. The three lines in the same color represent
the steady state, minimum and maximum values of the response obtained over a longer
simulation time at the specific operating point. As previously mentioned, as long as the
system is stable, all the lines in the same color will be identical. However, when the system
turns unstable, at the critical point, two of the three lines in the same color will diverge.
That is, the maximum peak of the oscillations from the simulation at the respective point
is the upper line in each figure, the minimum peak of the oscillations is the lower line, and
the steady state value, which can only be maintained with feedback control, is the middle
line. The objective is to fit the maximum, minimum and steady state lines of the two
colors to each other. Of course, a perfect match is difficult, if not impossible to achieve, as
the OLGA model has far more advanced dynamics than the low order model. The most
important part to fit accurately in this case is considered to be the critical point, since we
want the models to be stable or unstable at the same operating points. Far to much time
was spent in this thesis to try fit the low order model to the OLGA model by chancing
the value of the fitting parameters in the low order model. As can be seen, the accuracy
of the fitting is not perfect. However, the coinciding of the responses is hopefully good
enough to use the low order model as a basis to design controllers that can successfully
be applied also to the advanced flow simulator.
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5.2 Stability Map Comparison
The bifurcation diagram is a great tool for comparing and fitting the response. Unfor-
tunately, the models are only compared when one parameter, is changed. Even though
that parameter was one of the most important parameters, namely the production valve
openings, there is one other parameter which has a huge influence on the system. To
also fit the system to be stable and unstable with different combinations of gas injection
rates and production vale openings, the low order stability map was fitted to the OLGA
stability map. The final fitting and tuning can be seen in figure (5.2.1). In the figures it
can be seen that the stability map of the two models are closely fitted. The final value
of the fitting parameters in the low order model can be found in table (A.1) in appendix
(A.0.1).

Figure 5.2.1: Stability Map Comparison
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Chapter 6

Controllability Analysis of The
Low-Order Model

The low-order model presented in this theses is a modification from the one that was
derived in my project assignment,[1]. In the project assignment there was also conducted
a controllability analysis. However, since the model has been changed in this thesis, and
the tuning parameters are altered to fit the response to the OLGA flow simulator, the
controllability bounds calculated in the project assignment are no longer valid. Therefore
a new analysis is performed in this thesis. Naturally, most of what is presented in this
chapter, which is necessary to be able to perform and evaluate the analysis, is more or
less identical to the way it is presented in the project assignment. The results however,
are different.

A controllability analysis is a mathematical tool which can be used to examine to what
extent different control structures are suitable for stabilizing a specific system. A control
structure is a specific combination of inputs, i.e., manipulated variables (MV), and out-
puts, i.e., controlled variables (CV), that may be used to control a system. The analysis
give out specific numbers which may be compared to decide on the theoretically optimal
measurements to be used for different objectives in control. Different objectives may be
disturbance rejection, tracking a set point, or attenuate the effect of noise entering the
system. However, the controllability analysis is a linear tool, which means that it can only
be applied on a linear model. Therefore the non-linear low order model was linearized
around a specific operating point, to be able to perform the analysis. The consequence
of this is of course that the results are only truly valid for the linear model. With the
assumption that the linear model gives a sufficient description of the dynamical behavior
of the non-linear model, in a close neighborhood of the operating point, the results may
also be valid for the non-linear model at the specific point. It should be kept in mind
that the casing heading phenomenon is highly nonlinear, and because of this the results
of the analysis should only be used as an indication of what the actual conditions may
be. The control structures which seems most promising in the analysis is further tested
in simulations of the non-linear model in chapter (9).

The analysis was performed with eight different measurement candidates. The candidates
were evaluated both as how they would perform as single measurements for use in SISO

28



systems, and how they would perform when combined with other measurements, for use
in both SIMO and MIMO systems. The measurements candidates were; the pressure
deep in the tubing near the well, which we call the the bottom hole pressure (Pbh), the
mixture mass flow rate out the production choke (wout), the mixture density in top of
the tubing (ρmix,t), the mass gas flow rate into the annulus (wGa,in), the pressure in the
top of the tubing (Ptt), the pressure in the top of the annulus (Pat) , the pressure in
the bottom of the annulus (Pab) and the liquid volume fraction in the top of the tubing
(αL,tt). How realistic it is that these measurements are available in the real facilities
are discussed in section (7.1). In reality, some of the measurements may be very poor,
inaccessible because of their location in a harsh environment, consisting of noise or suffer
from a big time delay.

The theoretical background that is used to perform the analysis and interpret the con-
trollability results is mainly based on the theory presented in chapter 5 and 6 in the
book “Multivariable Feedback Control - Analysis and Design” written by Skogestad and
Postlethwaite [20]. Note that it is not the more widely known conventional state control-
lability that is analyzed in this thesis, on the contrary we are exploring the concept of
input-output controllability. This concept is defined in chapter 5 in [20], :

(Input-Output) controllability is the ability to achieve acceptable control performance;
that is, to keep the outputs (y) within specified bounds or displacements from their refer-
ences (r), in spite of unknown but bounded variations, such as disturbances (d) and plant
changes (including uncertainty), using available inputs (u) and available measurements
(ym and dm).

6.1 Linearization
The low order nonlinear model derived in chapter (4), was linearized around an equi-
librium point. This was done to be able to perform the controllability analysis in the
frequency domain. An equilibrium point is a system state which does not change when
all inputs to the model are constant, including disturbances. With a specific production
valve opening (z∗1), and gas lift choke opening (z∗2), the equilibrium point can be calcu-
lated by simultaneously solving the state equations (4.2.1, 4.2.2, 4.2.3) set equal to zero.
The result is a steady state solution with a corresponding steady state oil production flow
rate. However, this equilibrium point may be unstable, in which case the flow rate will
not be sustained when various disturbances are present. The non-linear system may have
several equilibrium points for each combination of valve openings. Each point results in
a different linearized systems. It was shown in chapter (2.6.1) that the optimal operating
points are located in the unstable region of the system. With that in mind, the unstable
operating point corresponding to z∗1 = 60% and z∗2 = 40% was chosen to linearize around.
The opening of z∗2 = 40% is the value that corresponded to a gas injection rate of 0.86
[kg/s]. It can be seen in the stability map of the low-order model, in figure (4.4.1), that
this operating point is far from the stable region.

Linearization of the nonlinear model was carried out in Matlab, in three different ways.
The reason for using different methods was simply to confirm that the resulting linear sys-
tem was correct. Both the forward difference method and the central difference method,
which are numerical differentiation methods were implemented based on the theory pre-
sented in chapter 8 in [21]. The implementation code of the central difference method
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is given in appendix (D.0.3). Also an analytical differentiation was performed by using
the model equations directly with the symbolic differentiation function, which is part of
the symbolic toolbox, in Matlab. The analytical procedure was however very slow, it
was also very cumbersome since it had to be changed each time the model was changed.
Nevertheless, the use of the three different differentiation methods resulted in very similar
linear systems. It was therefore concluded that the linearization was correctly performed.
The central difference method was chosen as default in the continuation of the work, as
it was faster than the analytical, and it is supposed to be slightly more accurate then the
forward difference method, [21].

The disturbance variables in the system was decided to be the reservoir pressure and
the pressure in the source of the lift gas. At the linearization point they were set to
the constant values of 160 bara and 140 bara, respectively. The rest of the constants in
the model were set to the values given in table (A.1). The resulting linear state space
model with 4u = [4z1,4z2]T , 4d = [d1, d2]T = [4Pres,4Pgs]

T , 4x = [x1, x2, x3]T ,
4y = [wGa,in, Pat, Ptt, Pab, Pbh, wout, ρmix,t, αL,tt]

T is given as:

4ẋ = A4x+B4u+Bd4d (6.1.1)
4y = C4x+D4u+Dd4d (6.1.2)

where 4 is used to indicate that this is deviation variables from the values at the equi-
librium point. The matrices has the following values:

A =

 −0.0023 0.0027 0.0006
0.0038 −0.0174 −0.0011
−0.0232 −0.1444 −0.0019

 (6.1.3)

B =

 0 4.1233
−1.4343 −3.5407
−29.4095 13.5285

 Bd =

 0 0.0199
−0.0099 −0.0001
0.3853 0.0653

 (6.1.4)

C =



−0.0002 0 0
0.0275 0 0

0 0.1104 0.0016
0.0307 0 0
−0.0032 0.0474 0.0110
0.0223 0.1474 −0.0004
0.4510 −0.5255 −0.0605
0.0006 −0.0008 −0.0001


(6.1.5)

D =



0 2.1515
0 0
0 0
0 0
0 34.2327

30.8439 −20.4151
0 −412.4968
0 −0.5509


Dd =



0 0.0104
0 0
0 0
0 0
0 0.1653

−0.1284 −0.0986
−2.5950 −1.9913
−0.0035 −0.0027


(6.1.6)
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6.2 Scaling the Model
To be able to do a sensible controllability analysis, and to compare the different transfer
functions in the system, the linear model was scaled in the way outlined in chapter 1.4
in [20]. The scaling was done so that all signals in the system were less than one in
magnitude. The scaling factors are based on allowed magnitudes of the inputs signals,
and expected magnitudes of the reference change and disturbances. The following three
diagonal scaling matrices are introduced: the control error scaling (D̃e), the input scaling
(D̃u) and the disturbance scaling (D̃d). Given the unscaled control error (ê), the unscaled
output (ŷ), the unscaled input (û) and the unscaled disturbance (d̂), the corresponding
scaled variables are: e = ˜D−1e ê, y = ˜D−1e ŷ, u = ˜D−1u û and d = ˜D−1d d̂ , respectively. The
resulting scaled transfer functions describing the linear system are given as:

G = ˜D−1e ĜD̃u (6.2.1)

Gd = ˜D−1e ĜdD̃d (6.2.2)

where Ĝ, and Ĝd, are the unscaled transfer functions of the system. The scaling values
used in this analysis were:

D̃u =

[
0.4 0
0 0.4

]
(6.2.3)

D̃d =

[
3 0
0 3

]
(6.2.4)

D̃e =



0.05 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 0.23


(6.2.5)

where is it seen that both disturbance variables are expected a maximum variation of 3
bar around their nominal values.

6.3 Theory for Input-Output Controllability Analysis
The evaluation of the input-output controllability of the system is conducted by calcu-
lating the lower bounds on different closed-loop transfer functions in the system. This
section therefore presents the different transfer functions, and how to calculate their min-
imum bounds. The resulting bounds that are calculated is further evaluated in section
(6.4) where it is concluded on which measurements in the system that should be used for
stabilizing control of the model.

6.3.1 Closed-Loop Transfer Functions in Model
Assume a linear plant transfer function model on the form y = G(s)u + Gd(s)d, where
y is the output, d is the disturbance and u is the output of a feedback controller on the
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form u = K(s)(r − y − n), where K(s) is the transfer function of the controller, r is the
desired reference value and n is the measurement noise. The objective of the controller
is to manipulate the input (u) such that the control error (e = y− r) remains as small as
possible, in spite of disturbances (d). As shown in chapter 2.2.2 in [20], substituting the
controller expression into the plant model yields the closed loop transfer function:

y = (I +GK)−1GK︸ ︷︷ ︸ r
T

+ (I +GK)−1︸ ︷︷ ︸
S

Gdd− (I +GK)−1GK︸ ︷︷ ︸
T

n (6.3.1)

where S and T is know as the sensitivity and the complementary sensitivity function
respectively. In equation (6.3.1), S is the closed loop transfer function from the output
disturbance to the outputs, and T is the closed loop transfer function from the reference
signal to the output. The control error can now be expressed as:

e = y − r = −Sr + SGdd− Tn (6.3.2)

and the input as:
u = KSr−KSGdd−KSn (6.3.3)

It follows that in a controllability analysis the information about achievable performance
and possible robustness problems can be evaluated by obtaining the lower bounds on
the closed-loop transfer functions S, T , KS, SG, KSGd and SGd, see [20] for a more
thorough explanation. Introducing the loop transfer function L = GK, we can express
the sensitivity and the complementary sensitivity function as

S = (I +GK)−1 = (I + L)−1 (6.3.4)
T = (I +GK)−1GK = (I + L)−1L (6.3.5)

from where it is seen that S + T = I. To achieve perfect control we want e = y − r = 0.
Consider again equation (6.3.2). As explained in section 2.6 in [20], the requirement to
achieve perfect control in terms of disturbance rejection and command tracking we need
S ≈ 0, or equivalently, T ≈ I, which again implies that L must be large in magnitude.
But to eliminate the effect of the measurement noise we need T ≈ 0, or equivalently,
S ≈ I, which implies that L must be small in magnitude. This shows that in feedback
design there is a trade-off between good disturbance rejecting and tracking versus a small
effect of the noise.

6.3.2 Pole and Zero Vectors and Directions

Central to the controllability analysis is the theory of pole vectors. Pole vectors are also
used to calculate some of the bounds on the closed loop transfer functions. As explained in
chapter 4 in [20], in multivariable systems, poles and zeros has directions associated with
them. To quantify them we use the input and output pole and zero vectors of the system.
Only output pole vectors are used in this project, and its direction is used for calculating
the bound on sensitivity and complementary sensitivity function in equation (6.3.10). For
the state space realization of the linear system, we have found an measurement matrix
(C), in equation (6.1.5). The output pole vector (ŷpi) is now defined as:

ŷpi = Cti (6.3.6)

where ti is the right eigenvector of the state matrix (A) found in equation (6.1.3). The
pole vectors give an indication of how much the i′th mode is observed in the output. Now
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pole directions (ypi) are defined to be pole vectors with unit length, that is:

ypi =
ŷpi

‖ ŷpi ‖2
(6.3.7)

It is shown in [22] that for a system with only one unstable pole, there is a relationship
between the magnitude of the input and the magnitude of the pole vector elements.
The measurement with the largest element in the output pole vector should be used for
stabilizing control, as this corresponds to the minimum input usage for stabilization.

6.3.3 Minimum Peaks on Closed-Loop Transfer Functions
Skogestad and Postletwaite [20], derives some algebraic and analytic constraints for dif-
ferent closed-loop transfer functions. Bounds on peaks of the different transfer functions
described in section (6.3.1) are considered using the H∞ - norm, defined as

‖M(s)‖∞ , max
ω
|M(jω) | (6.3.8)

which is the peak, i.e., the maximum value, of the frequency response of M.

6.3.4 Minimum Peaks on S and T

The lowest achievable peak on S and T is influenced by the RHP-zeros and RHP-poles
of the system. Theorem 5.2 in chapter 5 in [20] states that a RHP-zero implies that a
peak in | S | is inevitable. It also tells us that the peak will increase if we reduce | S |
in other frequencies, which is refereed to as “the second waterbed formula”. Denoting the
minimum peak in S as MS,min, the bound onMs,min for closed loop stability for a SISO
system is given in theorem 5.3 in [20] as :

MS,min ≥
Np∏
i=1

|z + pi|
|z − pi|

(6.3.9)

which must be satisfied for each RHP-zero z, where Np denotes the number of RHP-poles,
pi , of the plant transfer function G(s). The bound holds with equality for a system with
a single unstable zero and no time-delays. The equation shows that the lowest achievable
peak in S is closely related to the distance between the unstable poles and zeros, and
it is noted that the bound approaches infinity as the distance |z − pi| approaches zero.
Denoting the minimum peak for T asMT,min, it is proved in Chen in [23], that the bound
in equation (6.3.9) also apply for MT,min. Chen further generalize the bound for MIMO
systems, with any number of unstable poles and zeros:

MS,min = MT,min =

√
1 + σ̄2(Q

− 1
2

p QzpQ
− 1

2
z ) (6.3.10)

where σ̄ is the maximum singular value1. The elements in Qz, Qp, Qzp, are given as
follows:

[Qz]ij =
yHz,iyz,j

zi + z̄j
, [Qp]ij =

yHp,iyp,j

p̄i + pj
, [Qzp]ij =

yHz,iyp,j

zi − pj
(6.3.11)

where z̄, and p̄, denotes the complex-conjugate of the zero and pole, respectively. And yz,i
and yp,i are the direction vectors previously defined in equation (6.3.7), associated with
the zero zi and the pole pi. And yH is the conjugate transpose, also refereed to as the
Hermitian transpose. Time delays will add additional limitations, but are not considered
in the calculations done is this assignment.

1σi(G) =
√
λi(GHG)
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6.3.5 Lower Bound on KS

As seen in equation (6.3.3), the transfer functionKS describes the effect the measurement
noise n and the reference r has on the control input. It also contributes to the effect the
disturbance has on the input. We desire that the peak of KS is small, particularly for
unstable systems, as this will avoid a large change in the input signal in response to noise
and disturbances. A large peak value in KS indicates that the input may easily saturate,
which is highly unwanted as a saturated input will have a problem with stabilizing the
system. For multiple and complex unstable poles , Glover shows in [24] that the following

bound applies:

‖KS‖∞ ≥
1

σH(Ω(G)∗)
(6.3.12)

where σH(Ω(G)∗) is the smallest Hankel singular value of the mirror image of the anti-
stable part of G. The mirror image of the anti-stable part of G is the resulting system
when mirroring all unstable parts of G into the LHP. The Hankel singular values are the
square root of the eigenvalues of the product of the controllability and the observability
gramians of the system, see pages 160-161 in [20].

An alternative bound that holds with equality for a single real RHP-pole (p) is given in
[25] as:

‖KS‖∞ ≥| Gs(p)
−1 | (6.3.13)

where Gsis the the stable version of an plant G found by mirroring all RHP poles into
the LHP.

6.3.6 Lower Bound on SGd and SG

In equation (6.3.2) it is seen that the transfer function SGd describes how the disturbance
d effects the control error. This bound should be kept small to suppress the influence of
the disturbance to the system. In [23] the following bound for any unstable zero (z) is
derived:

‖ SGd ‖∞≥| Gd,ms(z) |
Np∏
i=1

|z + p̄i|
|z − p̄i|

(6.3.14)

the bound is tight for systems with one unstable zero. Gd,ms is the stable minimum phase
version of Gd, and can be calculated as defined in equation 5.27 in [20]:

Gd,ms =
∏
i

s− pi
s+ pi

Gd

∏
j

s+ zj
s− zj

(6.3.15)

Consider again equation (6.3.2). With only disturbances (du) on the input variables (u)
to the system, then Gd becomes G, and SG now becomes the transfer function from the
input-disturbance to the error. We desire that the bound on SG is small so that the effect
of input disturbances on the error is small. Since Gd now is G, the bound on SG can be
calculated with the same equation (6.3.15) if Gd,ms is replaced with Gms.

6.3.7 Lower Bound on KSGd

As seen in equation (6.3.3), the transfer function KSGd is the transfer function from the
disturbance d to the input u. For the disturbance to have a little effect in the input to
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the plant, this bound should be small. For a system with multiple and complex unstable
poles, [20] derive the following bound:

‖ KSGd ‖∞≥
1

σH(Ω(G−1d,msG))
(6.3.16)

where G−1d,ms is the inverse of the stable minimum phase version of Gd. An alternative
bound which is tight for systems with a single real unstable pole is given in [20] as:

‖ KSGd ‖∞=| G−1s (p) | · | Gd,ms(p) | (6.3.17)

6.4 Discussion of the Calculated Bounds
The minimum peaks on each of the different bounds presented in section, (6.3.4)-(6.3.7),
were calculated in a Matlab script by Esmaeil Jahanshahi. The results of the calculations
are presented in tables (C.1), (C.2), (C.3), in appendix (C). Based on the results several
conclusions can be made about how suitable each of the measurement candidates are to
be used for stabilizing control in combination with the respective manipulated variables.

6.4.1 Single Control Structures
We start by evaluating the bounds presented in table, (C.1), for single input single out-
put control systems, with the production choke as the manipulated variable. The best
measurement candidate can easily be seen to be the pressure in the bottom hole (Pbh), as
it has the lowest peaks on all of the calculated bounds. Furthermore, this measurement
has the greatest steady state gain, and the largest pole vectors. This means that a little
change in the bottom hole pressure variable causes a larger change in the system dynamics
when compared to using any of the other measurement candidates. The result is that
when this measurement is used as the controlled variable, there is a lower chance that
the manipulated variable, i.e., the production choke, will saturate when the controller is
trying to stabilize the system or reject disturbances, than if any of the other measure-
ments are used. Unfortunately, the pressure in the bottom hole is know not to be directly
measurable, but this is discussed later in the thesis.

The second best measurement candidate can be seen in the table to be the pressure in
the bottom of the annulus. This is justified by the same arguments, that all the peaks on
the calculated bounds are lower than most of the other measurements. Surprisingly, the
pressure in the top of the annulus has almost as low peak on the bounds as the annulus
bottom pressure. However the peak on KS is larger, which means that measurement
noise will have a larger effect on the manipulated variable, as explained in section (6.3.5).
The result will be that the valve is more likely to saturate when using the top pressure
in the annulus as the controlled variable, as opposed to using the bottom pressure in the
annulus. This is also validated by the fact that the steady state gain for the top pressure
is lower than for the bottom pressure.

The single worst measurement candidate to be used as the controlled variables can be
seen in the table to be the liquid volume fraction in the top of the tubing. This is because
it has high minimum peaks on all of the bounds, which in turns means that it is both
very sensitive to measurement noise, responds poorly when exposed to disturbances, and
it is very likely to saturate the manipulated variable when it tries to stabilize the system.
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The second worst candidate is either the density mixture in the top of the tubing, or the
pressure in the top of the tubing. While the density can be seen to have a higher peak
on the KS bound, meaning that is will respond poorly to measurement noise, the tubing
top pressure has the definitely largest peak on the SG bound, meaning that an input
disturbance will have a large effect on the control error, as explained in section (6.3.6).
Judging by the result of the analysis, these measurements are not recommend to be used
as controlled variables in single measurement control structures.

6.4.2 Combined Control Structures

Next we evaluate the minimum peaks on the calculated bounds for control structures that
uses two measurements and one single manipulated variable. These control structures are
called Single Input Multiple Outputs (SIMO) in this thesis, and the bounds are presented
in table (C.2), in appendix (C). The manipulated variable is still the production choke
on the top of the tubing.

It can be seen in the table that all measurement pairs in which the pressure in the bot-
tom hole is combined with any other measurement show to be some of the best control
structures, with low peaks on all of the bounds. This is not surprising, as the analysis
for single control structures showed the bottom hole pressure to be the single best mea-
surement candidate. However, by combing it with other measurements, is shows slight
improvements, as can be seen by small reductions in the minimum peaks for some of the
bounds. It is interesting to see that when combining the bottom hole pressure in the
tubing with one of the worst measurement candidates from the SISO analysis, namely
the mixture density it the top of the tubing, the control structures obtains a lower peak in
the KSGd1 bound, while the rest of the bounds remain identical. This means that when
combing the two measurements, the control structure will improve its performance in
rejecting disturbances in the reservoir pressure, compared to when only using the bottom
hole pressure alone. The improvement however, is small.

The single best combined control structure, which has the lowest peaks on all of the
bounds are the combination of the bottom hole pressure measurement with the tubing top
pressure measurement. This control structure is only slightly better then when combining
the bottom hole pressure with the mass production flow rate. Interestingly enough, a
combination of the measurement in the top of the annulus and top of the tubing proves
to be almost as good as the best combination structures with the bottom hole pressure.
The only difference is that the top pressure combination has a higher peak in the KS
bound, which unfortunately means that the input, i.e., the valve, is more likely to saturate
when the system is exposed to measurement noise. However, as will be further discussed
in section (7.1), a control structure which only uses top side measurements are favorable
to any one using bottom pressure measurements, as the measurements near the surface
are both more reliable and accessible.

6.4.3 Multivariable Control Structures

Finally it is tested if any control structures with two inputs and two outputs, a so called
Multiple Input Multiple Output (MIMO) system, will show any improvements in control.
In this case, both the production choke on the top of the tubing and the gas injection
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choke on the top of the annulus, are the manipulated variables. The calculated minimum
peaks on the bounds are presented in table (C.3), in appendix (C).

When comparing the MIMO results to the SIMO results, it is clear that improvement in
adding the gas injection gas as an extra manipulated variable is poor. Of course there are
some improvements by lower peaks in some of the bounds, however not so much that it
seems to be worth the added complexity of the control structure. There are however other
benefits of adding an extra input to the system. By having two manipulated variables, one
may in theory control two controlled variables to their respective setpoint. Furthermore,
if one controller breaks down, the other may be able to keep the system stable.

6.4.4 The Effect of The Disturbances
It is interesting to see that all of the control structures are more affected by a disturbance
in the reservoir pressure, compared to a disturbance in the gas source pressure, containing
the extra lift gas. This can be seen in tables (C.1), (C.2), and (C.3), as the minimum
peaks in KSGd1 and SGd1 is much higher than the minimum peaks for the KSGd2 and
SGd2 bounds. It is therefore decided that to restrict the number of different simulations
scenarios, when testing the most promising control structures further, only a disturbance
in the reservoir pressure is applied.

6.5 Selecting the Control Structures
Based on the above discussion of the controllability results, it was decided to test and
compare some of the most promising control structures further in simulations. Since the
pressure in the bottom hole showed great results, at least one control structure using it
as the controlled variable, and the production choke as the manipulated variable should
be tested. Furthermore the other promising control structure in which a combination of
the top pressure measurement in the tubing with the top pressure measurement in the
annulus will be tested. Also it is decided to test a state feedback control structure to see
how it compares to the output feedback controllers.

The controllability results showed some improvements by adding the gas injection choke
as an extra manipulated variable in the control structures. However, in the fall project
assignment it was performed another analysis which considered the gas injection choke
as a single manipulated variable in combination with the different measurements. The
results proved this input to be inadequate to stabilize the system when any realistically
disturbances entered the system. With that in mind, and to limit how many control struc-
tures to compare further in simulations, it was decided not to test any control structures
involving the gas injection choke as a manipulated variable.
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Chapter 7

Estimator for Gas-Lift System

7.1 Availability of Measurements and States
In section (6.4), the results of the controllability analysis proved that the single best
measurement to use for both stabilizing control and disturbance rejection is the bottom
hole pressure, which in some literature is referred to as the downhole pressure. See figure
(1.2.1), for its location. Another good measurement candidate to use for control, was
shown to be the pressure in the bottom of the annulus. These results are of course only
based on a linearized model around one operating point of the low order model. However
the low order model was fitted to the OLGA flow simulator which is believed to be of high
accuracy, so it is assumed that the result of the analysis should be somewhat realistic and
applicable for the real flow facilities as well. Even though the analysis proved the bottom
pressures in both the annulus and tubing to be a good measurement candidates, it is not
yet discussed to what degree these measurements are really available in the real facilities.

When considering the location of the bottom hole pressure, deep under the surface in the
bottom of the tubing, near the reservoir, it is not surprising that this single measurement
has shown in practice not the be very accessible. In [26], by Aamoe et al, it is stated
that based on a Statoil report [27], the downhole pressure measurement is generally not
available. Neither is the bottom pressure in the annulus. Further it is noted that in the
case that they are available, the measurements must be considered unreliable, i.e., noisy or
with a high rate of failure. This is due to the fact that the pressure senors are are located
in harsh environment with high pressure and temperature. In addition, if the sensors
are broken, they are inaccessible for maintenance due to their location. Nevertheless,
engineers are continuously working on improving the down hole pressure measurements.
In an article posted in World Oil, based on a case study performed by Schlumberger, [28],
it is shown that they were able to achieve a sufficient pressure measurement, from the
harsh environment, by using a signature quartz gauge in a gauge carrier. The duration
of the study however, was only 15 days.

Based on the actual availability of the measurements, it is decided that an estimator
should be introduced to the gas lift system when testing a control structure that uses the
bottom hole pressure as the measurement. In this thesis the estimator is tested in different
scenarios. The first scenario is to estimate the bottom hole pressure by only using the
available top side pressure measurements, in the tubing and annulus. In this case the
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estimator is tested when these measurements are available with or without noise. When
noise is applied, it is white noise. In practice, these measurement would of course always
be affected by noise to some extent. However, by assuming that this noise is small, it can
be neglected. In the second scenario, the bottom hole pressure is considered available,
but noisy. In this case, white noise is added to the measurement. It is also investigated
if the estimator is able to sufficiently estimate the states in the low order model, so that
the state estimates can be used in a state feedback controller.

7.2 Choice of Estimator
The Extended Kalman Filter (EKF) is one of the most widely applied estimators for
non-linear systems, [29]. However one of the filter shortcomings is that it arrives at its
estimate through linearization of the non-linear model. Years of research and use of the
EKF has unfortunately proven that the filter has the disadvantage that it only provides
sufficient estimates for system that are almost linear on the time scale of the updates,
[30]. It has also been shown that it is hard to implement and difficult to tune. See chapter
14 in [29] for detailed examples on how the use of first-order linearization in the EKF, to
update the mean of the state, results in erroneously estimates when applied to nonlinear
systems.

A literature search, of former applied estimators in gas-lift systems, reveals that the
standard EKF has already been tested in a similar study, performed by Eikrem et al. in
[16]. Even though the state estimate results were adequate, they were to a large extent
based on the availability of the down-hole pressure measurement. In the article it is
also claimed, that from an industrial point of view, it is realistic that this measurement
is available but unreliable, because of its location in a harsh environment. In another
article covering estimation in gas-lift systems, by Aamoe et al. , [26], a non-linear state
observer is designed using top measurements only. However it is assumed that one of the
states, the mass of gas in the annulus, is measured. Promising results are achieved, but
since the observer is designed using parts of the specific model equations directly, it may
be difficult to apply the estimator, without modification, on other models.

Based on the type of estimators applied on gas-lift models in other similar work, there
seems to be an absence in the use of the Unscented Kalman Filter (UKF). It was therefore
decided to test this filter, which has shown promising results for other non-linear models,
unrelated to gas-lift, [31]. The UKF also posses the desired property that it avoids local
linearization when calculating the estimates, which, as explained above, is a source of error
in the EKF. Instead the filter uses the non-linear model directly to propagate estimates
forward in time, [32]. This seems promising for the model at hand.

7.3 The Unscented Kalman Filter

7.3.1 The Principle of The UKF
The unscented Kalman filter is based on the assumption that it is easier to approximate
a probability distribution than it is to approximate an arbitrary nonlinear function or
transformation [33]. The idea is to generate a set of perturbed points around the current
state estimate. These perturbed points, which in the literature is commonly referred to
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as sigma-points, are then further transformed by propagating them through the nonlinear
system equations. The weighted average of the transformed points is further used in the
calculation of the new state- and measurement -estimate, as explained in more detail in
section (7.3.2.4). The sigma-points are selected so that the ensemble mean and covariance
of the points are equal to the state estimate and state covariance matrix, respectively, at
the previous time-step. How this is done in practice is shown in section (7.3.2.3). The
idea is that the ensemble mean and covariance of the transformed vectors should give a
good estimate of the true mean and covariance of the measurement, [29].

7.3.2 UKF Algorithm

There exist different versions of the filter with minor variations, but they are all based on
the same principle previously explained in section (7.3.1). The version of the filter that
is chosen to implement in this thesis is the one presented in [31], in which a modification
from the original filter is made by introducing one extra sigma-point into the calculations
of the state estimate. As a result of introducing this additional point, the original points
in the set must be scaled to maintain the given covariance. The steps in UKF algorithm
is presented below and the Matlab implementation is included in appendix (D.0.4).

7.3.2.1 The Filter Model

The nonlinear low-order model derived in section (4) can be presented on the following
form:

xk+1 = f(xk, uk) + φk (7.3.1)

where, xk , is the state vector at time-step k, uk , is the control input at time-step k, f
is the non-linear state equation, and φk is the state excitation noise. The measurements
in the the model can similarly be written as:

yk = h(xk, uk−1) + ψk (7.3.2)

where, yk, is the measurement vector at time-step k, h is the non-linear measurement
equation, and ψk is the measurement noise.

The noise entering the state and measurement equations are both assumed to be zero
mean, normally distributed and with know covariances, Φ and Ψ, respectively, [32]. Note
that for simplicity it is assumed that both the noise on the states (φk) and measurements
(ψk) enter the system equations linearly. The filter can easily be modified to handle noise
which enters the system equations non-linearly, by augmenting the state vectors with the
noise as shown in [29]. That was not emphasized in this simulation study.

7.3.2.2 Initializing The Filter

Prior to starting the estimation algorithm, the filter must be initialized with a start value
for the mean of the state, x̂0. This can be the actual value, or a guess which seems
reasonable. In this simulation study the actual value will of course be available from the
model, but in the real facilities one can only assume the initial value, as it is not available
to measure. Initial values for the state covariance Px, is also necessary. The initial value
of the covariance will only affect the transient of the estimate response, and its effect will
fade out as time progresses when it is updated through the filter equations .
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7.3.2.3 Calculating The Sigma-Points

At each iteration this version of the UKF filter calculates 2N + 1 sigma points, where N
is the number of states in the model, i.e., 3, in the gas-lift model. The sigma-points, (xS),
at the current time step, are calculated through the use of the latest estimate of the state
covariance, (Px), from the previous iteration, in the following way:

x
(i)
S = x̂k−1 , i = 1

x
(i)
S = x̂k−1 + Γp(i) , i = 2, ..., N + 1

x
(i)
S = x̂k−1 − Γp(i) , i = N + 2, ..., 2N + 1

(7.3.3)

where p(i) is the transposed i ’th row in the matrix square root of the state covariance
matrix, that is:

p(i) =
(√

Px

)T
i

(7.3.4)

defined so that
(√
Px

)T (√
Px

)
= Px , [32]. Γ is a constant scaling parameter defined to

be:
Γ = α

√
(N + κ) (7.3.5)

which is tuned through the constants α, and κ. N is the previously defined state dimen-
sion. The α- parameter should ideally be a small number [34], however no smaller than
zero and no greater than one, i.e. , 0 ≤ α ≤ 1 . It controls the size of the sigma-point
distribution [31], and according to [35] its value will only affect the higher order of the non-
linear system. The κ - parameter must be chosen κ ≥ 0 , to guarantee the semi-positive
definiteness of the state covariance matrix [31]. Note that each of the sigma-points are
vectors with the same dimension as the state vector, and that the, i, in x(i)S , indexes the
sigma-point vector number, not the individual elements in the vector.

7.3.2.4 Transformation and The a-priori State Estimate

Each of the 2N+1 sigma-points calculated in section (7.3.2.3) are transformed (xS → xT )
by individually propagating them through the nonlinear system state equation, as follows:

x
(i)
T = f(x

(i)
S , uk−1), i = 1, ..., 2N + 1 (7.3.6)

The transformed points are further combined to obtain the a-priori state estimate:

x̂−k =

2N+1∑
i=1

(w(i)
m x

(i)
T ) (7.3.7)

where w(i)
m is a weight defined as:w

(i)
m =

Γ2 −N
Γ2

, i = 1

w
(i)
m =

1

2Γ2
, i = 2, ..., 2N + 1

(7.3.8)

Now that the a-priori state estimate (x̂−k ) is derived, the a-priori state covariance is
calculated as the weighted average quadratic difference from the transformed points, in
the following way:

P−x =

2N+1∑
i=1

w(i)
c (x

(i)
T − x̂

−
k )(x

(i)
T − x̂

−
k )T + Φ (7.3.9)
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where w(i)
c is a weight defined as:w

(i)
c =

Γ2 −N
Γ2

+ (1− α2 + β) , i = 1

w
(i)
c =

1

2Γ2
, i = 2, ..., 2N + 1

(7.3.10)

where β is a non-negative weighting parameter. According to [31], it is introduced to affect
the weighting of the first sigma-point, so that the covariance of the ensemble remains
identical to what it would be for the original filter algorithm that uses one less sigma-
point. It is further stated that knowledge of the higher order moments of the probability
distribution can be incorporated in the βparameter, and that the choice, β = 2, is optimal
for a Gaussian prior probability distribution.

7.3.2.5 Transformation and The a-priori Measurement Estimate

The same principle is used to estimate the measurement. Each of the sigma-points derived
in equation (7.3.3), are transformed (xS → yT ) by individually propagating them through
the nonlinear system measurement equation, as follows:

y
(i)
T = h(x

(i)
S , uk−1), i = 1, ..., 2N + 1 (7.3.11)

The weighted mean of the transformed outputs, i.e., the a-priori measurement estimate,
is calculated in a similar way to what is done in equation (7.3.7), that is:

ŷ−k =

2N+1∑
i=1

(w(i)
m y

(i)
T ) (7.3.12)

Using the a-priori measurement estimate, the measurement covariance (P−y ) is found in
the following way:

P−y =

2N+1∑
i=1

w(i)
c (y

(i)
T − ŷ

−
k )(y

(i)
T − ŷ

−
k )T + Ψ (7.3.13)

note that the weights (wm and wc) are the same as defined in equation (7.3.8) and (7.3.10)
respectively.

7.3.2.6 Cross-Covariance, Kalman Gain and UKF-Estimate

Now that we have the a-priori estimates, the transformed states and the transformed
measurements, the cross covariance is given as:

Pxy =

2N+1∑
i=1

w(i)
c (x

(i)
T − x̂

−
k )(y

(i)
T − ŷ

−
k )T (7.3.14)

Using this, we can now calculate the Kalman gain:
Kk = PxyP

−1
y (7.3.15)

Finally the UKF estimates and state covariance is updated according to the standard
Kalman update equations:

x̂k = x̂−k +Kk(yk − ŷ−k ) (7.3.16)
Px = P−x −KkP

−
y K

T
k (7.3.17)
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where yk is the actual measurement entering the filter at time-step k. The estimation
algorithm is complete, and repeats itself at the next time-step when a more recent mea-
surement becomes available.

7.4 Estimation with model uncertainty

The Unscented Kalman filter is tested on two different models in this report, the low-
order model and the OLGA-model. As previously stated, the OLGA-model is regarded to
be the real flow process in this work. The estimator however, uses the system equations
from the low-order model, as described in section (7.3.2.1). When the estimator is used in
this thesis, the objective is to estimate the states and measurements that are considered
unmeasurable. The estimates are based on the outputs that are considered available.
Consequently, when the estimator is applied on the OLGA-model, the optimal estimate
will to a large degree depend on how accurately the low-order model is able to replicate
the OLGA-model. The resulting estimates of the OLGA-models unmeasurable states and
outputs, can only be as good as the compliance, i.e., the match of the models. This is
now elaborated in greater detail.

Consider the case in which the objective is to obtain an estimate of the bottom-hole
pressure in the OLGA-model, when the available measurement is the pressure in the
top of the tubing. The UKF will use the difference between the latest estimation and
measurement, of the top-pressure, to update the state-estimate. This is shown in equation
(7.3.16). Note that the estimated top-pressure is based on the filter-model (which is the
low-order model), but the measured top-pressure is the output from the OLGA-model.
The resulting estimated state is used as input to the measurement-equation in the filter-
model, to retrieve the bottom-hole pressure estimate. However, because of the model
uncertainty, the state-estimate that corresponds to an exact estimate of the OLGA-model
top-pressure, may not necessarily produce an exact estimate of the OLGA states or OLGA
bottom hole pressure. This is a result of the model-mismatch, i.e., the low-order model
does not replicate real process (the OLGA-model) in a perfect manner. Consequently the
error in the estimate of the states, and outputs, that can not be measured, will depend on
the difference between the models at that point. It is previously shown in the bifurcation
diagrams in figure (5.1.1) that the low-order model fails to reproduce the exact same
outputs as the OLGA-model. An estimation error is therefore expected when the UKF is
applied on the OLGA model. A possible solution could be to include parameter estimation
into the estimation algorithm. However, as the bottom hole pressure is just one of several
control structures that are tested in this thesis, it was decided not too spend any more
time on further enhancing the filter.

7.5 Open Loop Estimation

In this section, the derived estimator is tested in open loop simulations of both the low
order model and the OLGA flow simulator in different scenarios.

7.5.1 Low-Order Model Estimation

First the estimator is applied to the low order model.
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7.5.1.1 Estimation Results Using Top Pressure Measurements

In this first scenario, the estimator is tested when the available measurements are the top
pressure in the annulus and the top pressure in the tubing. White noise is added to the
two measurements. The objective is to estimate the real value of the top measurements,
that is, to filter out the noise. Furthermore the states and bottom hole pressure in the
tubing are estimated. The initial states of the estimator is set to different values than
the actual real values, even though it is difficult to see it in the plotted results. This is
because an accurate estimate is reached fast, and the simulations is over a longer time
period. The tuning parameters in the filter, which was explained above, is set to the
following values:

UKF Tuning Parameters

Ψ

[
0.968 0

0 0.968

]
Φ 1e-04*

 1 −0.1 0.1
−0.1 1 −0.1
0.1 −0.1 1


α 0.001
β 2
κ 0

The estimation results of the bottom hole pressure in given in figure (7.5.1) below.
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Figure 7.5.1: Open Loop Bottom Hole Pressure Estimation

It seems like the UKF is successful in achieving an accurate estimate of the bottom hole
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pressure by only using two noisy top pressure measurements. This proves promising for
further using the estimator in combination with a controller.

The estimation of the states are shown in figure (7.5.2).
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Figure 7.5.2: Open Loop State Estimation

It can bee seen that an accurate estimate of the states are also reached rapidly, which
enables for the use of a state feedback estimator where the actual states are replaced with
the estimated states. Figure (7.5.3) shows the noisy measurements which is feed to the
estimator, the real value of the pressures, and the estimated value by the UKF.
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Figure 7.5.3: Open Loop Top Pressures Estimate

It can be seen that the estimator filters out the noise and rapidly reaches the correct values
of the pressures. To conclude, the estimator shows very promising result when applied to
the low order model. Of course, since the estimator is based on the same model equations
as the low order model, and it is only added white noise to the measurements, the results
are not that impressing. It will be more interesting to see how the estimator works on
the OLGA simulator with different dynamics.

7.5.2 OLGA Model Estimation

Next the estimator is applied to the advanced OLGA flow simulator. This is a greater
challenge, as the estimator is based on the low order model equations.

7.5.2.1 Estimation Results Using Top Pressure Measurements

In the first scenario, it is tested if the estimator is able to produce an accurate estimate of
the bottom hole pressure in the tubing when two perfect top pressure measurements are
available. The two available measurements are once again the top pressure in the annulus
and the top pressure in the tubing. The tuning parameters in the UKF are set to the
following values:
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UKF Tuning Parameters

Ψ 1e− 4 ∗
[

1 0
0 1

]
Φ

 5 −0.1 0.1
−0.1 1 −1
0.1 −1 100


α 0.001
β 2
κ 0

Figure (7.5.4) shows the response of the estimation of the bottom hole pressure in the
tubing.
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Figure 7.5.4: OLGA Open Loop Bottom Hole Pressure Estimate

The estimate is far from perfect. It may seem like the estimate is sufficient at some points
through the simulation, but by a closer inspection it is noted that the difference between
the estimate and the actual value is at most about 15 bars. This estimate is probably not
adequate to be used for control. Further in figure (7.5.5), the estimate of the states are
shown.
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Figure 7.5.5: OLGA Open Loop State Estimation

Also the estimate of the states shows a big discrepancy from the actual values. Especially
the third state (x3) , i.e., the liquid mass in the tubing, is poorly estimated. It is con-
cluded that any control structure that uses these estimates will probably not perform in
a sufficient manner.

7.5.2.2 Estimation Results Using Top Pressures and Noisy Bottom Hole
Pressure Measurements

In this scenario, the two top pressure, i.e., the pressure in the top of the annulus, and
the pressure in the top of the tubing, are consider available without noise. Furthermore,
a noisy measurement of the bottom hole pressure in the tubing is also available. White
noise is added to the bottom hole pressure measurement. How realistic this scenario is
can be discussed, but it is probably not very likely. The tuning parameters for the UKF
is now set to:

UKF Tuning Parameters

Ψ 1e− 4 ∗

 1 0 0
0 1 0
0 0 1


Φ

 5 −0.1 0.1
−0.1 1 −1
0.1 −1 100


α 0.001
β 2
κ 0
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The noisy bottom hole pressure measurement, as well as the actual value of the bottom
hole pressure, and the estimated value is shown in figure (7.5.6).
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Figure 7.5.6: OLGA Open Loop Noisy Bottom Hole Pressure Estimate

It can be seen in the figure that an adequate estimate of the real bottom hole pressure
value is reached. It is therefore concluded that this scenario could be tested further in
simulations when combined with a controller. Figure (7.5.7) shows the response of the
state estimations.
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Figure 7.5.7: OLGA Open Loop State Estimation

The figure shows that there is still a big discrepancy in the estimation of the states. To
improve the estimation results, the filter tuning parameters could be further altered to
hopefully achieve better results. However, far too much time was spent on tuning, and
this was the best result that could be achieved. This goes to show that maybe more time
should be spent on fitting the response of the low order model to the OLGA simulator. But
when so much time have to be spent on implementing and tuning the filter, it is possibly
better to first try control figurations which uses available measurements to stabilize the
gas lift system.

7.5.3 Choosing Control Structures With Estimation
Based on the open loop estimation results, the following conclusion is reached on which
control structures, combined with an estimator, that should be further tested in simu-
lations. First of all, for the low order model, all estimation results proved more than
accurate by only using noisy top pressure estimates. Therefore any of the control struc-
tures could be tested in combination with the estimator. However, estimation results on
the OLGA simulator was not great. It is therefore decided only to test configurations
where both the top side pressures are available without noise, and the tubing bottom hole
pressure is available with noise.
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Chapter 8

Controllers for The Casing
Heading Instability

8.1 Proportional Integral Controller

The proportional integral (PI) controller is one of the most widely applied controllers in
the process industry, mainly due to its simplicity in implementation and tuning. The
transfer function from its input, the control error e, to its output, the control signal u,
can be described as:

K(s) =
u

e
(s) = Kp(1 +

1

τIs
) (8.1.1)

where Kp is the proportional gain, τI is the integral time and s is the Laplace variable.
The gain Kp and the integral time τI are the tuning parameters in the controller. The
gain is the stabilizing part, and the integral time is adjusted to remove steady state
error. Derivate action can also be included to the controller to achieve the more know
Proportional Integral Derivative (PID) controller. This is however discarded in this work,
as it is uncommon to use in process control applications. This is because the improvement
in performance as result of the added derivative action is usually too small to justify the
added complexity and the increased sensitivity to measurement noise, [20]. The PI-
controller is applied in most of the control structures in this thesis.

Unfortunately, the PI controller may suffer from a problem which is called integrator-
windup. In such a case, the integral part of the controller builds up when the input
is saturated. This happens because the controller is not aware of that the signal it is
sending into the process is saturated. Because of saturation in the input signal, there is
a discrepancy between the control signal the controller thinks is being applied , and the
actual control signal at is saturation limit. The result is that when the controller does
not achieve the response it wishes, it will further try to increase or decrease the control
signal, depending on if the valve is fully open or closed respectively. This is because the
integral of the error is continuously increasing when the input is saturated. Therefore, a
simple anti-windup scheme is implemented in the PI-controllers used in this thesis. The
change in the controller algorithm is that as long as the control signal is saturated, i.e.,
the valve is fully closed or fully open, the integral of the error is kept constant. That is,
the integration of the error is stopped when the input is saturated.
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8.2 Linear Quadratic Regulator

The Linear Quadric Regulator (LQR) is a state feedback controller which is optimal in the
sense that it computes the control signal by minimizing a defined quadratic cost function
subject to a linear system. Basically it is just another way to calculate the constant
proportional gain, K, in a state feedback controller on the form:

u = −Kx (8.2.1)

Consider a linear system on state space form, the optimization problem may then be
defined as:

min
u,x

J(u, x) =

t=∞ˆ

t=0

[xTQx+ uTRu]dτ (8.2.2)

subject to the linear system dynamics
ẋ = Ax+Bu (8.2.3)

The objective is to minimize the cost function over en infinite time horizon, subject to
the system dynamics. The A and B matrices are part of the linear system description.
They are obtained through linearization of the nonlinear low order model, as describes
in section (6.1). The Q and R are weighting matrices for the states and the inputs,
respectively. They are assumed to be symmetric, and its is required that R is positive
definite, which means that all eigenvalues of the matrix is greater than zero, while Q is
required to be at least positive semidefinite, meaning that all eigenvalues of the matrix
must be greater or equal to zero. The weighting matrices are the tuning parameters in the
controller. Further it is required that all uncontrollable states in the model have stable
dynamics, i.e., the pair (A,B) have to be stabilizable, [36].

To solve the optimization problem, the lqr-function in Matlab is used. This function
calculates the optimal feedback controller by solving the associated Riccati equation:

ATS + SA− (SB)R−1(BST ) +Q = 0 (8.2.4)

The state feedback gain is further derived from S through the following equation

K = R−1(BTS) (8.2.5)

as explained in the Matlab reference guide, [37].

The standard version of the LQR controller does not include integral action, which
is necessary to remove stationary deviation. To include integral action in the con-
troller, the linear system equations can be augmented with an integral state (xi), i.e.,
x =

[
x1 x2 x3

]T → x̃ =
[
x1 x2 x3 xi

]T . The integral state is decided to be
the integral of the error in the annulus top pressure measurement, that is: xi =

´
e dτ =´

(P ∗at −Pat) dτ , where P ∗at is the setpoint reference for the annulus top pressure. Figure
(8.2.1), taken from the Matlab documentation [37], shows the resulting control setup:
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Figure 8.2.1: LQR Controller Setup

The system matrices are augmented as follows:

Ã =

[
A 0
−C 0

]
, B̃ =

[
B
−D

]
(8.2.6)

where the C and D matrices in the measurement equation in the linear model. Only the
parts of the C and D matrices that describe the pressure in the top of the annulus are
used in (8.2.6). The optimization problem is now solved as explained in equations, (8.2.4)-
(8.2.5), with the augmented matrices. The resulting optimal gain matrix K can now be
expressed as, K =

[
Kx Ki

]T , where Kx is the normal part of the gain dedicated to
the normal states, and Ki is the gain designed for the integral state. Anti-windup is
implemented in the same way as described for the PI-controller. That is, if the control
signal is saturated, the integral of the error is kept constant.

It is important to note that the controller only uses a linear system model. The conse-
quence of this is of course that when it is applied on the nonlinear model, the controller is
only valid in a close neighborhood of the point it was linearized about. A possible solution
to this may be to adapt the gain by relinearize the system when the operating point is
changing. This is however not done in this work. Furthermore, when the controller is
applied on the OLGA model, the performance is of course dependent of how accurate the
low order model is able to reproduce the response of the advanced flow simulator. That
is, if the low order model is a poor description of how OLGA will behave at a certain
point, the low order model based LQR controller is likely to produce an invalid controller
gain.

Due to the fact that the LQR is a linear controller, a final modification has to be done
to apply it on the nonlinear system. Assuming that the nonlinear model ẋ = f(x, u) is
linearized about an operating point (x̄, ū), the final LQR control law, with integral action,
for the nonlinear system is:

u = −Kx(x− x̄)−Kixi + ū (8.2.7)

8.3 Linear Quadratic Gaussian Control
One of the LQR controllers biggest drawbacks, is that it is a state feedback controller,
i.e., it needs the full state to be able to compute the control signal. The states of the
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gas lift model are the respective masses of gas and liquid in the tubing and annulus
volume. It is not realistic to assume that these states are measurable. Instead of feeding
the controller with the true states, one may achieve a suboptimal solution by applying
feedback from the estimated states. The UKF filter that was presented in chapter (7) is
used to estimate the states based on two different scenarios. The first scenario considers
that only the top pressures measurements, in the annulus and in the tubing, are available.
This is tested both with and without noise on the measurements. Further in the second
scenario we assume that in addition to the top pressures, there is also a noisy bottom
hole pressure measurement available. For simplicity it is assumed that the noise entering
the measurement is white. When using a LQR in combination with an Kalman filter, it is
in the literature named the Linear Quadratic Gaussian (LQG) controller. Note that the
best possible result that this controller can achieve, is when a perfect state estimate is
feed into it, which makes it identical to the LQR controller. Thus, if the LQR controller
shows poor performance, the LQG controller will most likely be even worse, as it is a
suboptimal solution.

The final LQG control law for the nonlinear system, with integral action included in the
same way as for the LQR controller, is:

u = −Kx(x̂− x̄)−Kixi + ū (8.3.1)

where x̂ is the estimated states, i.e., the output from the unscented Kalman filter. The
controller structure is shown in figure (8.3.1).

Figure 8.3.1: LQG Controller Setup

8.4 Cascade Control

A cascade control structure is also tested in the thesis. This is a simple setup with a
PI-controller in series with a P-controller. The inner loop consist of a P-controller which
gets it setpoint from the outer loop consisting of a PI-controller. The main reason for
using a cascade controller is that by adding an controller in the inner loop, it changes the
system dynamics that the outer loop sees. Hopefully this will provide the outer loop with
a system which is easier to control. The inner loop should be faster than the outer loop
for this control structure to make sense. When tuning the controllers, the inner loop is
tuned first. The cascaded setup can be seen in figure (8.4.1).
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Figure 8.4.1: Cascade Control Configuration
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Chapter 9

Simulation Study : The
Low-Order Model

This chapter investigates how the most promising results from the controllability analysis
behaves in simulations on the nonlinear low order model. The interesting part is to see
how valid the results from the analysis, which is based on a linear version of the model,
actually are to the nonlinear model.

9.1 Bottom Hole Pressure Control

The bottom hole pressure proved to be the best measurement candidate to use for both
stabilization and disturbance rejection, based on the results of the analyses. It is there-
fore further tested in simulations in two different scenarios. In the first scenario we
consider that the measurement is available without noise. As previously discussed, this
is an unrealistic assumption. However, simulations are first conducted with the perfect
measurement available to verify the result of the analysis. Also, by using the perfect
measurement we avoid the use of the estimator and thereby exclude it as an potential
source of error.

9.1.1 Measured Bottom Hole Pressure PI Control

A simple PI-controller is applied. The tuning parameters are found by trial and error in
simulations, and the final constants are listed below.

Tuning Parameters
Kp -1/10
τI 100

First a simulation without any disturbances is performed. The system is started with a
small perturbation from the chosen unstable equilibrium point. The open loop system is
simulated in 120 minutes, before the controller is started. The red (X) in the plot marks
the time when the controller is started. The result can be seen in figure (9.1.1).
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Figure 9.1.1: Bottom Hole Pressure Control

A second simulation sequence is conducted with a disturbance in form of a sine wave in
the reservoir pressure. Again the open loop system, without disturbances, is simulated
in 120 minutes, before the controller is started. When the simulation time reaches 225
minutes, the disturbance in the reservoir is applied. This is marked by the black (+) in
the plot. The result can be seen in figure (9.1.2).
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Figure 9.1.2: Bottom Hole Pressure Control With Disturbance

9.1.2 Estimated Bottom Hole Pressure PI Control

As previously discussed, the more realistic scenario is that the bottom hole pressure has
to be estimated when it is to be used in a control structure. In the following scenario,
the only measurements which are considered available are the pressure in the top of the
annulus and the pressure in the top of the tubing. Furthermore, these measurements are
in this scenario affected by white noise. The objective is therefore to use the Unscented
Kalman Filter, presented in section (7), to estimate the tubing bottom hole pressure based
on the two available noisy measurements. In the simulations, the system is once again
started in a point which is a small perturbation from the chosen unstable equilibrium
point. The system is simulated in open loop 120 minutes before the controller is applied.
However, the estimator is activated from simulation start with an initial estimate which
differs from the real state. The tuning parameters of the estimator, is set to the same
constant as was applied in section (7.5.1.1). Figure (9.1.3) shows the control results and
the estimated bottom hole pressure.
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Figure 9.1.3: Estimated Bottom Hole Pressure Control

In figure (9.1.4) the estimated top pressures and the noisy measurements are plotted.
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Figure 9.1.4: Estimated Top Pressures

9.2 Cascaded Top Pressures Control
One other control structure which proved promising in the analysis was when combin-
ing the two top pressure measurements. This was decided to test in a cascade control
structure in the setup presented in section (8.4), with the tubing top pressure as the
inner loop, and the annulus top pressure as the outer loop. It is favorable to use only
top pressure measurements in a control structure, since these measurements are consid-
ered more reliable and accurate. In this scenario, these two measurements are considered
available without noise. Noise could be added, but it was shown in section (7.5.3) that
the UKF is able to accurately estimate the low order model top pressures anyway. Thus
it was decided not to simulate this control structure with noise, as it will only increase
the complexity of the control structure.

The inner pressure loop, i.e., the tubing top pressure controller is set to be a P-controller.
That is, the inner loop does not have integral action, therefore a stationary error in this
variable is expected. The reference signal for the inner loop is provided by the outer
loop, as was shown in section (8.4). The outer loop, i.e., the annulus top pressure, is a
PI-controller. The tuning parameters for the two controller are found by trial and error
in simulations, and is listed in the following table:
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Tuning Parameters Inner Loop (P-controller) Outer Loop (PI-controller)
Kp 0.02 -2
τI – 450

The simulation study is conducted similar to how is was done for the bottom hole pressure.
First the system is started with a small perturbation from the chosen unstable equilibrium
point. The system is simulated for 150 minutes before the controller is started, which is
depicted with the red (X) in the plot. First the setup is tested without disturbances. The
response can be seen in figure (9.2.1).
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Figure 9.2.1: Cascade Control without Disturbance

Secondly the same control structure is tested with a small disturbance in the reservoir
pressure. The control setup is exposed to a smaller disturbance than the one applied in
the bottom hole pressure control configuration simulations. The reason for this is that the
controllability analysis proved that the top pressures are more sensitive to disturbances,
more specifically this control structure is more likely to saturate when disturbances grow
big. The response can be seen in figure (9.2.2).
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Figure 9.2.2: Cascade Control with small Disturbance

Finally, the top pressure control structure is tested with a big disturbance in the reservoir
pressure. The disturbance is at the same size as the one applied to the bottom hole
pressure control configuration. Once again, the simulations are started in open loop from
a perturbation from the unstable operating point. The controller is activated 150 minutes
into the simulations, and the disturbances are applied from 225 minutes. The response
can be seen in figure (9.2.3).
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Figure 9.2.3: Cascade Control with big Disturbance

9.3 LQR-controller with Integral Action
The final control structure to be tested in simulations is a state feedback configuration.
It was previously mentioned that it is unrealistic that these states are available as mea-
surements. However, the control structure is tested first without the extra complexity of
adding an estimator. The LQR controller was derived in section (8.2), and achieves inte-
gral action by measuring the top pressure in the annulus. The tuning parameters, i.e. the
weighting matrices where found by trial and error in simulations, with the requirements
for the parameters, that was as listen in section (8.2) in mind. The used values are listen
in the following table.

Tuning Parameters

Q


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


R 104

Notice the heigh weight on R, which punishes the control signal. The reason for the high
value is to try to keep the valve opening from saturating. The last element in Q is the
weight on the augmented state, i.e., the integral state.
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First a simulation is performed without disturbances. Again, the system is started with
an perturbation from the unstable operating point and is run for 120 minutes before the
controller is activated. The resulting response can be seen in figure (9.3.1).
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Figure 9.3.1: LQR Control

Secondly a simulation is performed with disturbances. The disturbances is activated 225
minutes into the simulations, and have the same magnitude as was used for the bottom
hole pressure control configuration. The response of the annulus top pressure, the mass
production flow, the control signal and the disturbance is shown in figure (9.3.2).

64



0 50 100 150 200 250 300 350
50

100

150

Annulus Top Pressure

[minutes]

[b
a

ra
]

 

 

measurement

setpoint

Control Start

Disturbance Start

0 50 100 150 200 250 300 350
0

50

100

Mass Production Flow

[minutes]

[k
g

/s
]

0 50 100 150 200 250 300 350

0

50

100

Control Signal: Production Choke Opening (z1)

[minutes]

[P
e

rc
e

n
t]

0 50 100 150 200 250 300 350
150

160

170

Disturbance: Pressure in Reservoir

[minutes]

[b
a

ra
]

Figure 9.3.2: LQR Control with disturbances

The response of the states are shown in figure (9.3.3).
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Figure 9.3.3: LQR Control - response of states

9.4 LQG-controller with Integral Action
Since the states cannot be considered available to be used directly in the real facilities, we
also test the LQG controller to perform a more realistic simulation study. In which case,
the estimated states from the UKF are feed back to the LQR controller, as was explained
in section (8.3). The states are estimated from two noisy measurements, the top pressure
in the annulus and the top pressure in the tubing. The initial estimated states are different
from the true values of the states. In the simulations, the system is once again started in
a point which is a small perturbation from the chosen unstable equilibrium point. The
system is simulated in open loop 120 minutes before the controller is started. However,
the estimator is activated from simulation start with an initial estimate which differs from
the real state. The response of the annulus top pressure, which is used for integral action,
as well as the production mass flow and the control signal, can be seen in figure (9.4.1).
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Figure 9.4.1: LQG control results

The estimate and response of the states are shown in figure (9.4.2).
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Figure 9.4.2: Estimated and Controlled States

The noisy measurement and estimate of the top pressure are shown in figure (9.4.3).
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Figure 9.4.3: Estimated Top Pressures

9.5 Discussion Of Low Order Model Simulation Results
The results obtained in the controllability analysis were further confirmed in the simula-
tions. The bottom hole pressure proved to be the single best measurement candidate to
use for control, if available. The control configuration with the bottom hole pressure as
the controlled variable, and the production choke as the manipulated variable, was able
to stabilize the system without stationary deviation, and proved effective in rejecting dis-
turbances in the reservoir pressure. However, as discussed in section (7.1), one may not
assume that the the bottom hole pressure is a reliable measurement. Fortunately, the
simulations result of the control structure which uses the estimated bottom hole pressure
also provides a sufficiently good performance, due to the fact that the estimator is able
to accurately estimate the real value which is needed for control.

The analysis further showed that a control structure which uses a combination of the
top pressures, in this case the cascaded control configuration, should perform almost as
good as the control structure which uses the pressure in the bottom hole as the controlled
variable. When considering that these measurements are in fact available and reliable,
this control configuration should be the preferred alternative of the two configurations.
Simulations proves that the cascaded control structure it is able to both stabilize the sys-
tem and effectively reject the disturbances. The main drawback of this control structure
compared to the configuration using the pressure in the bottom hole, can be seen when
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comparing figure (9.1.2) and (9.2.3). The bottom hole pressure control structure is shown
superior in stabilizing the system when the disturbances grow to a certain size. One rea-
son for why the cascaded control structure is not able to stabilize the system when the
system is affected by big disturbances may be because the input, i.e., the control signal,
seems to more easily saturate with this setup. However, interesting work in applying
feedforward from the disturbances that affect the system, to reduce the magnitude of the
plant input moves, has been researched in an paper by Hovd and Bitmead, [38]. Sup-
plementing such a structure into the proposed cascaded control structure could maybe
improve the disturbance rejection properties of the controller. This is not investigated
further in this thesis.

Even though a state feedback controller structure was not considered in the analysis, it
was tested in simulations with the LQR controller. The controller was able to stabilize
the system, and reject disturbances at the same magnitude as the bottom hole pressure
control structure was able to suppress. However the states can not be considered available
in the real facilities. The LQG controller which instead used the estimated states proved
just as sufficient performance because the estimator was able to accurately estimate both
the states and the annulus top pressure, which was needed for control.

One thing is noted when performing the simulations. It could be an idea to introduce
a constraint on the rate of change on the opening of the valve. In these simulations, it
is possible for the valve to move from fully closed to fully open instantaneously. This is
unphysical and may be a potential source of error in the results. However, the dynamics of
the system is very slow, with a period time of several hours, so how much this constraint
would in fact change the control results is questionable.

To summarize and conclude on the result of the simulation study on the low order model,
the bottom hole pressure control structure is proven as the best setup to use for control.
That is if the measurement is available, or if it can be accurately estimated. The LQR
controller showed equal good performance, if the states are available for feedback, or if
an accurate estimate of them are obtained. However, the bottom hole pressure control
structure is still preferred because of its simplicity in implementation. If estimation
results are poor, the cascaded top pressure configuration is recommended, as it relies
on only measurements which are considered available. The structure is able to stabilize
the system and reject disturbances of certain magnitudes. How the cascaded control
structures compares to the bottom hole pressure control structure on the OLGA model
is investigated in the next chapter.
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Chapter 10

Simulation Study : The OLGA
Model

In this chapter the same control structures that where tested on the low order model is
applied on the OLGA simulator. This provides a view of how robust the controllers are
when tested on different models, and will hopefully provide a deeper insight of how the
different controller will respond to a more real life situation. The result of the simulations
are discussed in the end of the chapter.

10.1 The Matlab OLGA Connection

To be able to use controllers developed in Matlab directly on the OLGA flow simulator,
a communication channel had to be set up between the programs. New to he latest
version of the flow simulator, OLGA 7, is that there is no longer a built in Matlab-OLGA
connection toolbox, which was included in earlier versions of the software. Instead other
client programs are now intended to interact with OLGA through the use of an OPC
server. The server is set up by the OLGA simulator, and a framework to connect and
interact with this server was implemented in Matlab. The framework uses the Matlab
OPC Toolbox to create a data access object which is used to read and write values from
and to the OLGA simulator. The simulator mode is set to external, in the server settings
in OLGA. This options lets the client program manually decide on how and when to run
simulations by adjusting certain time variables that the simulator is depending on. A
more detailed description on how to enable an OPC server in OLGA, and different ways
to manage the server interaction, can be found in the OPC-server guide documentation
which is included in the OLGA software package.

10.2 Bottom Hole Pressure Control

10.2.1 Measured Bottom Hole Pressure PI Control

The same tuning parameters which was applied for the bottom hole pressure control
configuration for the low order model was applied to the OLGA flow simulator. The
simulator is started at the chosen unstable operating point, and the controller is activated
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280 minutes into the simulations. No disturbances are applied. The result can be seen in
figure (10.2.1).
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Figure 10.2.1: OLGA Bottom Hole Pressure Control

10.2.2 Estimated Bottom Hole Pressure PI Control

The next control structure tested on the OLGA flow simulator is to use the estimated
bottom hole pressure as the controlled variable. The bottom hole pressure is estimated
with the use of the UKF which is based on the low order model equations. Perfect
measurements of the top pressure in the tubing and the annulus are used, as well as a
noisy measurement of the bottom hole pressure. The initial states used in the estimator is
very close to the actual initial states. The tuning of the UKF constants are are set to the
same constants as in section (7.5.2.2). The control results are shown in figure (10.2.2).
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Figure 10.2.2: Estimated Bottom Hole Pressure Control

The estimation result of the bottom hole pressure, as well as the noisy measurement is
shown in figure (10.2.3).
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Figure 10.2.3: Estimated Bottom Hole Pressure

10.3 Cascaded Top Pressure Control

The next control configuration to be tested on the OLGA flow simulator is the cascaded
top pressure control configuration. In these simulations, both measurements are assumed
to be available without noise. Unfortunately, the same tuning as was used for the low
order model did not respond good in the OLGA simulations. New tuning parameters
where found by trial and error, and resulted in decreasing the proportional term for the
outer controller loop. The new parameters are shown in the following table:

Tuning Parameters Inner Loop (P-controller) Outer Loop (PI-controller)
Kp 0.02 -3
τI – 450

The system is simulated 100 minutes before the controller is started. No disturbances are
applied to the system. The response is shown in figure (10.3.1).
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Figure 10.3.1: OLGA Cascade Control

10.4 LQR-controller with Integral Action

The state feedback controller is also tested on the OLGA simulator. The same tuning
parameters that was obtained for the low order model is applied. First the simulations
is in open loop, then the controller is activated 100 minutes into the simulations. The
response of the annulus top pressure which is used for integral action, as well as the
response of the mass production flow and the control signal is given in figure (10.4.1).

75



0 50 100 150 200 250 300
80

100

120

140

Annulus Top Pressure (outer loop)

[minutes]

[b
a
ra

]

 

 

measurement

setpoint

Control Start

0 50 100 150 200 250 300
0

20

40

60

80

Mass Production Flow

[minutes]

[k
g
/s

]

0 50 100 150 200 250 300

0

50

100

Control Signal: Production Choke Opening (z1)

[minutes]

[P
e
rc

e
n
t]

Figure 10.4.1: OLGA LQR Control

The response of the states are given in figure (10.4.2).
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Figure 10.4.2: OLGA LQR Control - State Response

10.5 LQG-controller with Integral Action

Finally the LQG controller is tested on the OLGA flow simulator. The states are estimated
through the UKF by using perfect measurement of the top pressure in the tubing and
annulus, as well as a noisy measurement of the bottom hole pressure. The tuning of the
weights are the same as applied for the LQR controller with real state feedback. The
tuning parameters for the UKF filter are the same as applied in section (10.2.2). Figure
(10.5.1) shows the response of the OLGA top pressure, the mass production flow and the
control signal.
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Figure 10.5.1: OLGA LQG Control

The estimate and response of the states are shown in figure (10.5.2).
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Figure 10.5.2: OLGA LQG Control State Estimate

The estimate and response of the bottom hole pressure in the tubing, as well as the noisy
measurement can be seen in figure (10.5.3).
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Figure 10.5.3: OLGA LQG Control Bottom Hole Pressure Estimate

10.6 Discussion of OLGA Simulation Results
The first thing to notice after having tested the different control configurations on the
OLGA flow simulator, is that all of the control structures which requires estimation show
worse response than when applied to the low order model. This is of course due to the
fact that the estimator is not able to accurately enough estimate either the states or the
outputs which are needed for control. However, if estimation results are put a side, all
of the control structures which uses real measurements are able to stabilize the system.
And if available, the bottom hole pressure is still one of the best measurement candidates
to be used for control.

When the control configuration that uses the estimated bottom hole pressure is applied,
it shows the worst response of all the simulations performed on the OLGA model. It is
able to reduce the oscillations, but not remove them entirely. One possible explanation
for this may be that the estimator provides an insufficient estimate of the the bottom
hole pressure. The result is that the controller is feed with the wrong error between the
setpoint and the actual value of the bottom hole pressure. When the controller tries to
remove this stationary deviation, it actually increases the real error. So the problem is
really the interaction between the estimator and the controller. This control structure is
therefore not recommended if a better estimator is not applied. The estimation results
could improve by further fitting the low order model better to the response of the OLGA
simulator.

The LQR controller with measured states seems to be able to stabilize the system without
stationary deviation. And surprisingly the LQG controller also shows sufficient perfor-
mance even though the estimate of the states is poor. This is probably because it uses the
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annulus top pressure for integral action, and this measurement is feed to the controller
without noise.

With a more realistic view on the results, it seems that either a better estimator is
needed, or one should use the cascaded top pressure control structure. This control
structure is abel to stabilize both the low order model and the OLGA flow simulator and
has the favorable property that is only uses measurement which are considered available.
Even though the LQG controller was able to match the response of the cascaded control
structure, the LQG controller is far more complex to implement, and the estimator may of
coursed have to be tuned for each different flow facility. The recommendation is therefore
to use the cascaded top pressure control configuration which is simple to set up and easy
to tune.
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Chapter 11

Conclusion and Further Work

To conclude, this thesis has shown several things. First of all, the final version of a new
nonlinear low order gas lift model is derived. The new model includes a friction term
for the pressure drop in the tubing. Also, instead of using the average of the phases in
the whole volume to calculate respective phase fractions in the top of the tubing, a new
more accurate way is proposed. The model is compared to the more advanced OLGA
flow simulator, and the it is seen that the model is capable of successfully reproduce the
casing heading instability to a certain accuracy, which aims to show that using an overly
complicated model of a gas lift system is not necessary for the applications of controller
design for the casing heading instability.

Secondly it is shown that automatic control should be applied to gas lift system to optimize
production with respect to maximizing the production rate flow and minimize the use of
lift gas. This is justified through a thorough simulation study which shows that the
optimal operating conditions lies in an unstable region, where the desired production flow
can not be maintained without automatic control.

Thirdly it has been shown, through both a controllability analysis and in simulations,
that the bottom hole pressure in the tubing is the single best candidate to be used as
the controlled variable, when the production choke is used as the manipulated variable,
to prevent the casing heading instability. However, since it is not realistic that this
measurement is available in the real facilities, one either needs to provide a good estimator,
or find a new way to measure it. As long as there does exists adequate technology to obtain
a sufficient accurate measurement, this control structure is not recommend. The state
feedback LQR controller was proven to be a good control strategy for both stabilization
and rejection of unknown disturbances, however, this control structure suffers from the
same flaw as the bottom hole pressure control configuration, which is that it is based
on measurements which can not be considered available. In this case, it is the states
of the model, i.e., the masses of gas and liquid in the system. The final recommended
control strategy in this thesis is to use a cascade controller which only relies on what is
considered available top pressures in the system and is easy to implement. The cascaded
control structures uses a proportional controller on the tubing top pressure in the inner
loop, and a proportional integral controller on the annulus top pressure in the outer loop.
This control structures shows good result in the controllability analysis, and is successfully
able to stabilize the system in simulations of both the new low order model and the newest
version of the advanced OLGA flow simulator. However, it is sensitive to disturbances,
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and was not able to stabilize the system when the disturbance in the reservoir pressure
was too big.

Finally, the controllability analysis also shows many other different control configura-
tions which are possible control structures, even though they were not tested further in
simulation in this thesis.

There are many different subjects to be dealt with for any further work on gas lift systems.
For example, the controllability analysis revealed many other promising control structures
that could be tested on gas lift systems, but they where not tested in simulations in this
thesis. Also the control structures that were tested in simulations were not exposed to
any disturbances when applied to the OLGA flow simulator, only when tested on the
low order model. This would be interesting to test further in the OLGA model, and
might reveal more information of their performances. Another subject which might be
interesting to investigate in further work is to performed a nonlinear analysis of the
new low order model, as the controllability analysis performed in this thesis is based on
linear theory. Furthermore it would be interesting to see if the recommended cascaded
control structure would improve its ability to reject disturbances if feedforward from the
disturbance is included in the control setup. Another possibility is to include feedforward
from an estimation of the disturbances, if they can not be measured. The most interesting
thing to test in further work is however to apply the most promising control structure on
a real gas lift facility.
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Appendix A

Model Constants

A.0.1 Low-Order Model Constants

Table A.1: Constant Values in Model
Symbol Description Value Unit

R universal gas constant 8.314 [J/Kmol]
g gravity 9.81 m/s2

µ viscosity 0.364e-03 Pa.s
ρL liquid density 760 kg/m3

MG gas molecular weight 0.0167 [kg/mol]
Ta annulus temperature 348 K
Va annulus volume 64.34 m3

La annulus length 2048 m3

Pgs gas source pressure 140 bar
Vt tubing volume 25.03 m3

Sbh cross-section below injection point 0.00314 m2

Lbh length below injection point 75 m
Tt tubing temperature 369.4 K

GOR mass gas oil ratio 0 fraction
Pres reservoir pressure 160 bar
w̄res average mass flow from reservoir 18 kg/s
r tubing radius 0.067 m
rb bottom hole radius 0.0067 m
Lt tubing length 2048 m
PI productivity index 2.47e-6 kg/(s.Pa)
Kgs gas-lift choke constant 9.98 × 10−5 -
Ka injection valve constant 1.40 × 10−4 -
Kpt production choke constant 2.90 × 10−3 -
ε wall roughens tubing 3e-5 m
εb wall roughens bottom hole 4.5e-5 m
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Appendix B

OLGA Simulator Settings

The following setting are the output report generated by the OLGA flow simulator. It
describes how the gas lift case is composed in detail. Everything from pipe and section
lengths, to material used in the pipes and options for the simulator, as well as boundary
conditions, is listed.

Figure B.0.1: OLGA Setup Parameters Part 1
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Figure B.0.2: OLGA Setup Parameters Part 2

Figure B.0.3: OLGA Setup Parameters Part 3
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Figure B.0.4: OLGA Setup Parameters Part 4
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Figure B.0.5: OLGA Setup Parameters Part 5
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Figure B.0.6: OLGA Setup Parameters Part 6
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Figure B.0.7: OLGA Setup Parameters Part 7
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Figure B.0.8: OLGA Setup Parameters Part 8
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Appendix C

Calculated Controllability
Bounds

SISO:

Resulting bounds for the single input single output (SISO) control schemes. The input,
i.e., the manipulated variable, is the production valve at the top of the tubing.

Table C.1: Controllability Results SISO Systems
Measurement Value Dy G(0) Pole vector |S|=|T| |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2|
wGa,in [kg/s] 0.86 0.05 0.76 0.0004 1 3.04 0 0.23 1.987 0 0
Pat [bar] 81.16 1 5.22 0.0031 1 0.44 0 0.23 0.1 0 0
Ptt [bar] 20.89 1 5.72 0.0028 3.06 0.38 10.49 0.25 0.11 0.69 0.42
Pab [bar] 90.35 1 5.81 0.0034 1 0.4 0 0.23 0.1 0 0
Pbh [bar] 88.56 1 6.95 0.0089 1 0.11 0 0.23 0.09 0 0
wout [kg/s] 18.51 2 0.88 0.0024 1 0.49 0 0.3 0.11 0 0

ρmix,t [kg/m3] 186.96 20 1.61 0.0013 3.11 1.24 3.77 0.56 0.29 0.71 0.38
αL,tt [frac] 0.23 0.23 0.17 0.0001 3.11 10.83 0.43 0.57 0.3 0.08 0.04

SIMO:

Resulting bounds for single input multiple output (SIMO) control schemes. The input,
i.e., the manipulated variable, is the production valve at the top of the tubing.

96



Table C.2: Controllability Results SIMO systems
Measurement Pole vector |S|=|T| |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2|
Pab,wout 0.0034 1 0.26 0 0.13 0.05 0 0
Pab, ρmix,t 0.0034 1 0.36 0 0.2 0.08 0 0
Pab, wGa,in 0.0034 1 0.4 0 0.12 0.1 0 0
Pat, Pbh 0.0089 1 0.11 0 0.12 0.05 0 0
Pat, Ptt 0.0031 1 0.26 0 0.12 0.05 0 0
Pat, ρmix,t 0.0031 1 0.39 0 0.2 0.08 0 0
Pat, wGa,in 0.0031 1 0.44 0 0.12 0.1 0 0
Pat, wout 0.0031 1 0.27 0 0.13 0.05 0 0
Pbh, ρmix,t 0.0089 1 0.11 0 0.2 0.09 0 0
Pbh, wGa,in 0.0089 1 0.11 0 0.12 0.1 0 0
Pbh, wout 0.0089 1 0.1 0 0.13 0.05 0 0
Ptt, Pbh 0.0089 1 0.1 0 0.12 0.05 0 0
Ptt, ρmix,t 0.0028 1 0.34 0 0.21 0.1 0 0
Ptt, wGa,in 0.0028 1 0.37 0 0.12 0.12 0 0
Ptt, wout 0.0028 1 0.3 0 0.14 0.06 0 0

Qout, wGa,in 0.0024 1 0.47 0 0.13 0.12 0 0

MIMO:
Resulting bounds for the Multiple Input Multiple Output (MIMO) control schemes The
manipulated variables are the production valve at the top of the tubing and the gas choke
at the top of the annulus.

Table C.3: Controllability Results MIMO systems
Measurement Pole vector |S|=|T| |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2|
Pab,wout 0.0034 1.00 0.12 0.00 0.08 0.03 0.00 0.00
Pab, ρmix,t 0.0034 1.50 0.14 2.00 0.11 0.05 0.34 0.12
Pab, wGa,in 0.0034 1.00 0.16 0.00 0.09 0.07 0.00 0.00
Pat, Pbh 0.0089 1.00 0.07 0.00 0.08 0.03 0.00 0.00
Pat, Ptt 0.0031 1.59 0.13 11.00 0.08 0.03 0.96 0.62
Pat, ρmix,t 0.0031 1.00 0.13 0.00 0.08 0.03 0.00 0.00
Pat, wGa,in 0.0031 1.52 0.15 1.87 0.11 0.05 0.32 0.11
Pat, wout 0.0031 1.00 0.18 0.00 0.09 0.07 0.00 0.00
Pbh, ρmix,t 0.0089 1.00 0.07 0.00 0.08 0.04 0.00 0.00
Pbh, wGa,in 0.0089 1.02 0.07 7.71 0.11 0.06 1.05 0.52
Pbh, wout 0.0089 1.00 0.07 0.00 0.09 0.09 0.00 0.00
Ptt, Pbh 0.0089 1.20 0.07 16.73 0.08 0.04 1.04 1.04
Ptt, ρmix,t 0.0028 2.05 0.19 0.00 0.09 0.04 1.04 1.04
Ptt, wGa,in 0.0028 2.15 0.20 19.48 0.12 0.06 1.69 1.69
Ptt, wout 0.0028 2.69 0.25 19.38 0.09 0.09 1.14 1.14

Qout, wGa,in 0.0024 1.00 0.30 0.00 0.10 0.09 0.00 0.00
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Appendix D

Matlab Implementation Codes

In this appendix some of the essential Matlab implementations codes used in this thesis
are given.

D.0.2 The Low Order Gas Lift Model

function [x_dot,y] = v1_gaslift_model0(x,u,par)
%% **** States **********
x1=x(1); %Gas mass in annulus
x2=x(2); %Gas mass in riser
x3=x(3); %Liquid mass in riser (whole system, tubing+BH)

%% ***** Inputs ******
u1=u(1); %Valve opening top choke
u2=u(2); %Valve opening of to injection choke
%% ****** Disturbances ******
GOR = u(3); % Mass GOR from reservoir (d1) [-]
P_r = u(4)*1e5; % Rservoir pressure (d2) [bar]
P_gs = u(5)*1e5; % Gass source pressure (d3) [bar]
P0 = u(6)*1e5; % Separator Pressure (d4) [bar]

%% Density of gas inside riser
%rho_G_r=x2/(par.V_r + par.L_bh*par.S_bh - x3/par.rho_L);
if (par.V_r - (x3-par.rho_L*par.L_bh*par.S_bh)/par.rho_L) >0

rho_G_r=x2/(par.V_r - (x3-par.rho_L*par.L_bh*par.S_bh)/par.rho_L);
else

rho_G_r=0;
end

%% ************* Average mixture density ***************
rho_mix=(x2+x3-par.rho_L*par.V_bh)/(par.L_r*pi*par.r_r^2);
rho_mix=max(rho_mix,0);
alpha_L_av = x3/(par.rho_L*(par.V_bh+par.V_r));

98



alpha_L_av=max(alpha_L_av,0);
%% Pressure riser top
P_r_t=rho_G_r*par.R*par.T_r/(par.M_G_r_t); P_r_t=max(P_r_t,0);
alpha_G_m_in = GOR/(GOR+1);
rho_G_r_in = (P_r - par.rho_L*par.g*par.L_bh)...

*par.M_G_r_t/(par.R*par.T_r);
%% ********* Pressure at bottom of annulus *********************
P_a_t = (par.R*par.T_a*x1/(par.M_G_a*par.V_a));
P_a_b= P_a_t + (x1*par.g*par.L_a/par.V_a) ;

%% ********* Density of gas in the gas injection tank ************
rho_G_in= P_gs*par.M_G_a/(par.R*par.T_a);

%% ********** Injected gas into annulus ******************
%w_G_a_in = par.K_s*u2*sqrt(rho_G_in*max(P_gs-P_a_t,0));
w_G_a_in =u2;
%% ********** Density of gas in bottom of annulus **********
rho_G_a_b= P_a_b*par.M_G_a/(par.R*par.T_a);

%% ************ Calculating Friction of Riser **********
w_r_in_av = 14.6;
Usl_av=(1-alpha_G_m_in)*w_r_in_av/(par.rho_L*pi*(par.r_r^2));
Usl_av=max(Usl_av,0);
Usg_av= (alpha_G_m_in*w_r_in_av+w_G_a_in)/(rho_G_r*pi*(par.r_r^2));
Usg_av=max(Usg_av,0);
U_M_av=Usl_av+Usg_av;
Re=(2*rho_mix*U_M_av*par.r_r)/par.my; Re=max(Re,0);

%% Haaland Friction Factor
temp = -1.8*log10((par.ew/par.D_w/3.7)^1.11+6.9/Re);
lambda=(1/temp)^2;
F_riser=real(alpha_L_av*(lambda*rho_mix*(U_M_av^2)*...

(par.L_r+par.L_h))/(4*par.r_r));
F_riser=max(F_riser,0);

%% *********** Pressure at bottom of tubing ******************
P_r_b=P_r_t + (rho_mix*par.g*par.L_r) +F_riser;
if P_r_b<0 %Check for positive pressure in bottom of riser

P_r_b=0;
end

%% ********* Injection gas flow rate from annulus to riser *********
if (P_a_b - P_r_b)>0 && rho_G_a_b>0

w_G_a_out = par.K_a*sqrt(rho_G_a_b*(P_a_b - P_r_b));
else

w_G_a_out = 0; %Gas mass flow out of annulus
end
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%% Liquid velocity at bottom hole
Ul_b= w_r_in_av/(par.rho_L*pi*(par.r_r^2));
Ul_b=max(Ul_b,0);
%% Reynolds number at bottom-hole:
Re_b=(2*par.rho_L*Ul_b*par.r_r)/par.my;
Re_b=max(Re_b,0);
%% Friction factor at bottom-hole:
%lambda_b=0.0056+(0.5*(Re_b^(-0.32)));
%% Darcy Friction Factor
temp = -1.8*log10((par.ew/par.D_b/3.7)^1.11+6.9/Re_b);
lambda_b=(1/temp)^2;
%% Pressure loss due to friction from injection point to bottom-hole:
F_b=real((lambda_b*par.rho_L*(Ul_b^2)*(par.L_bh))/(4*par.r_r));
F_b=max(0,F_b);
%% Bottom-hole pressure
P_bh=P_r_b+par.rho_L*par.g*par.L_bh +F_b; P_bh=max(P_bh,0);

%% Liquid Inflow rate
if (P_r_b >= P_r)

w_r_in=0;
else

w_r_in=par.PI*(P_r-P_bh);
end
w_L_r_in = (1-alpha_G_m_in)*w_r_in; w_L_r_in=max(w_L_r_in,0);
w_G_r_in = alpha_G_m_in*w_r_in; w_G_r_in=max(w_G_r_in,0);
%% ********** Gas density in bottom of riser **************
rho_G_r_b=P_r_b*par.M_G_r_t/(par.R*par.T_r);
rho_G_r_b=max(rho_G_r_b,0);

%% Alpha liquid in
%alpha_G = x2/(x2+x3);

if ( ((w_G_a_out+w_G_r_in) >0)&&(w_L_r_in >0) )
alpha_L_in= (w_L_r_in*rho_G_r_b)...

/(w_L_r_in*rho_G_r_b+(w_G_a_out+w_G_r_in)*par.rho_L) ;
elseif (w_L_r_in >0)

alpha_L_in=1;
else

alpha_L_in=0;
end
alpha_L_in=max(alpha_L_in,0);
alpha_L_in=min(alpha_L_in,1);
%% ******** Liquid volume fraction top of riser **************
if ( (2*alpha_L_av - alpha_L_in )> 0 )

alpha_L_t=2*alpha_L_av - alpha_L_in;
else

alpha_L_t=0;
end
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alpha_L_t=min(1,alpha_L_t);
alpha_L_t=max(0,alpha_L_t);
%% *********** Density mixture top of riser ******************
rho_M_t= alpha_L_t*par.rho_L +(1-alpha_L_t)*rho_G_r;
rho_M_t=max(0,rho_M_t);
%% ********* Liquid mass fraction top of riser ****************
if ((alpha_L_t*par.rho_L +(1-alpha_L_t)*rho_G_r) > 0)

alpha_L_m_t=(alpha_L_t*par.rho_L)...
/(alpha_L_t*par.rho_L +(1-alpha_L_t)*rho_G_r);

else
alpha_L_m_t=0;

end
alpha_L_m_t=min(1,alpha_L_m_t);
alpha_L_m_t=max(0,alpha_L_m_t);
alpha_G_m_t=1-alpha_L_m_t;

%% ********** Mixture flow out of riser ****************
if (P_r_t-P0)>0

if(rho_M_t==0)
w_mix_r_out=0;

else
w_mix_r_out=par.K_r*u1*sqrt(rho_M_t*(P_r_t-P0));

end
else

w_mix_r_out=0;
end
w_mix_r_out=max(0,w_mix_r_out);
%% Mass liquid flow rate out of riser
w_L_r_out=(1-alpha_G_m_t)*w_mix_r_out;
w_L_r_out=max(w_L_r_out,0);
w_L_r_out=min(w_L_r_out,w_mix_r_out);
%% Mass gas flow rate out of riser
w_G_r_out=alpha_G_m_t*w_mix_r_out;
w_G_r_out=max(0,w_G_r_out);

%% Derivatives
x1_dot = w_G_a_in - w_G_a_out;
x2_dot = (w_G_a_out+w_G_r_in) - w_G_r_out;
x3_dot = w_L_r_in - w_L_r_out;

%% Derivatives vector
x_dot=[x1_dot;x2_dot;x3_dot];

%% Measurements vector
y=[w_G_a_in;P_a_t;P_r_t;P_a_b;P_bh;w_mix_r_out;rho_M_t;alpha_L_t];

end
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D.0.3 The Central Difference Method

function [A,B,C,D] = central_difference(x0,u0,par)
format long
dx_value = 1e-7;
du_value = 1e-7;

Ns=3; %Number of states
Nm=8; %Number of measurements
Nu=6; %Number of inputs

A = zeros(Ns,Ns);
B = zeros(Ns,Nu);
C = zeros(Nm,Ns);
D = zeros(Nm,Nu);

dx= zeros(Ns,1);
for i =1:Ns

dx(i)=dx_value;
x1 = x0 + dx;
x2= x0 - dx;
xdot1=v1_gaslift_model([],x1,u0,’derivatives’,par);
xdot2=v1_gaslift_model([],x2,u0,’derivatives’,par);

y1 = v1_gaslift_model([],x1,u0,’measurements’,par);
y2 = v1_gaslift_model([],x2,u0,’measurements’,par);

A(:,i) = (xdot1-xdot2)/(2*dx(i));
C(:,i) = (y1-y2)/(2*dx(i));
dx(i)=0;

end

du=zeros(Nu,1);
for i =1:Nu

du(i)=du_value;
u1 = u0 + du;
u2= u0 - du;

xdot1=v1_gaslift_model([],x0,u1,’derivatives’,par);
xdot2=v1_gaslift_model([],x0,u2,’derivatives’,par);

y1 = v1_gaslift_model([],x0,u1,’measurements’,par);
y2 = v1_gaslift_model([],x0,u2,’measurements’,par);

B(:,i) = (xdot1-xdot2)/(2*du(i));
D(:,i) = (y1-y2)/(2*du(i));
du(i)=0;

102



end
%Remove last column which is just transfer function from P0
%B(:,end)=[];
%D(:,end)=[];

end

D.0.4 The Unscented Kalman Filter

function [x_est y_est P] = augmented_UKF_weights(xh,ym,P,u,par)
% This version augments the sigmapoints with one extra point
% and uses different tunings parameters

%% Solver Options
M=eye(3); % Mass Matrix for ODE-solver
dT=1; % Time for Inegration
T_span = [0 dT]; % Integrate from time=0 to dT
options=odeset(’AbsTol’,1e-10,’RelTol’,1e-10,’MaxStep’,100,’Mass’,M);

%%
format(’long’)

%% Dimension Parameters
olga_sensors=[2 3]; % Availabe Measurements in OLGA model
matlab_sensors=[2 3]; % Available Measurements in Gaslift Model
%senors=[5];
Nx = length(xh); % Number of States
Ns = (2*Nx) +1; % Number of Sigma Points
Ny = length(olga_sensors); % Number of Measured Measurements

%% Noise (uncertainty)
%V= 1e-4*eye(2); % Measurement Noise tuning, no noise
V = 0.967798873798523*eye(2); %Tuning White Noise
a=1;
b=1;
c=1;
W=1e-5*[10 -a b; -a 10 -c; b -c 10];

%% Scaling Parameters
betta=2; % Tuning Parameter must be non-negavtive
alpha=1e-3;%1; % Tuning Parameter must be 0<=alpha<=1
kappa=0;%1; % Tuning Paramerer must be >=0
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%%
lambda=(alpha^2)*(Nx+kappa) - Nx;
gamma=sqrt(Nx+lambda);

%% Weights
wm0 = lambda/(Nx+lambda);
wm = ones(2*Nx,1)*(1/(2*(Nx+lambda)));
wc = ones(2*Nx +1,1)*((lambda/(Nx+lambda)) + (1 -(alpha^2) +betta));
for i=2:1:length(wc)

wc(i)=(1/(2*(Nx+lambda)));
end

%% Start UKF Algorithm

%% Calculate Sigma Points
[S0, valid] = chol(P);
if valid >0 % P is not positive definitt, can not use chol

S=sqrt(abs(P));
else

S=S0;
end

Xs=zeros(Nx,Ns);
for i=1:1:(Nx+1)

if i==1
Xs(:,i)= xh;

else
Xs(:,i) = xh + gamma*S(i-1,:)’;
Xs(:,i+Nx) = xh - gamma*S(i-1,:)’;

end
end

%% Apply Constraints on sigma Points
%Xs=sigma_constrain(Xs);

%% Propegate Sigma Points through System
Xs_prop=zeros(Nx,Ns);
for i=1:1:Ns

[t,state]=ode15s(@v1_gaslift_model,T_span,...
Xs(:,i),options,u,’derivatives’,par);

state=state(end,:);
Xs_prop(:,i) = state;

end
%Xs_prop=sigma_constrain(Xs_prop);
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%% Calculate apriori state estimate
%X_ap=zeros(Nx,Ns);
xh=zeros(Nx,1);
for i=1:1:Ns

if i==1
xh = xh +wm0*Xs_prop(:,i);

else
xh = xh +wm(i-1)*Xs_prop(:,i);

end
end

%% Calculate the apriori covariance of states
P=zeros(Nx,Nx);
for i=1:1:Ns

P= P + wc(i)*( (Xs_prop(:,i) -xh)*(Xs_prop(:,i) -xh)’ );
end
P=P+W;
%% Get Measurements from Propegated sigmapoints

Ys=zeros(Ny,Ns);
for i=1:1:Ns

y_full=v1_gaslift_model([],Xs_prop(:,i),u,’measurements’,par);
y=y_full(matlab_sensors);
Ys(:,i)=y;

end

%% Calculate Means of Measurements
yh=zeros(Ny,1);
for i=1:1:Ns

if i==1
yh= yh +wm0*Ys(:,i);

else
yh= yh + wm(i-1)*Ys(:,i);

end
end

%% Calculate the measurement Covariance

Py=zeros(Ny,Ny);
for i=1:1:Ns

Py = Py + (wc(i)*( (Ys(:,i) -yh)*(Ys(:,i) -yh)’ ));
end
Py=Py+V;
Py

%% Calculate the state measurement cross Covariance
Pxy=zeros(Nx,Ny);
for i=1:1:Ns
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Pxy= Pxy + wc(i)*((Xs_prop(:,i)-xh)*(Ys(:,i)-yh)’);
end

%% Calculate Kalman Gain
K=Pxy/Py;

%% Update Covariance
P= P - K*Py*K’;

%% Calculate Posteori Estmate
x_est= xh + K*(ym(olga_sensors) -yh);
y_est_full=v1_gaslift_model([],x_est,u,’measurements’,par);
y_est=y_est_full;

end
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Appendix E

Conference Paper

The following conference paper was submitted and accepted to the 2012 International
Symposium on Advanced Control of Chemical Processes, (ADCHEM 2012), where it will
be presented in Singapore in July 2012. The paper is based partly on results from my
project assignment [1], partly from results in this master thesis, and finally on some in-
dependent work conducted by my co-supervisor Esmaeil Jahanshahi. The paper starts
by introducing the new low-order model and compares it to the OLGA flow simulator.
Following that, the controllability results of the low-order model are presented, and the
results from the analysis are used to conclude on the controllable variables best suited for
stabilizing control. The paper ends with a simulation study of some of the proposed con-
trol structures, where a robust H-infinity controller is applied for stabilizing the linearized
version of the low-order model.
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Control structure design for stabilizing
unstable gas-lift oil wells

Esmaeil Jahanshahi, Sigurd Skogestad 1 and Henrik Hansen

Department of Chemical Engineering, Norwegian University of Science
and technology, Trondheim, NO-7491 (e-mail: skoge@ntnu.no).

Abstract: Active control of the production choke valve is the recommended solution to
prevent casing-heading instability in gas-lifted oil wells. Focus of this work is to find a simple
yet robust control structure for stabilization of the system. In order to find suitable control
variables, a controllability analysis of the system with different candidate control variables
and two alternative manipulated variables was performed. Moreover, to include robustness and
performance requirements at the same time, the controllability analysis was extended to a
mixed sensitivity H∞ optimization problem. A control structure using only the available top-
side pressure measurements was found to be effective to stabilize this system.

Keywords: Oil production, two-phase flow, gas-lift, controllability, H∞ control.

1. INTRODUCTION

Gas-lift is one of the processes which are used to artificially
lift oil from wells where there is insufficient reservoir pres-
sure to produce from the well. This method is also used for
increasing the production rate of oil wells. In this process,
gas is routed from the surface into the annulus and then
injected deep into the tubing in order to be mixed with
the fluid from the reservoir. This reduces the density of
the column of fluid in the tubing and lightens it, Leads to
a lower pressure at the bottom-hole. Hence the production
rate from the low pressure reservoir is increased.
Gas-lifted oil wells often become unstable at their decline
stages. The unstable operation is characterized by large
oscillatory variations in the pressure and the production
rate. There are several phenomena causing instability in
gas-lifted oil wells; we focus on the “casing-heading” in-
stability in this paper.
The oscillatory flow condition is undesirable and an ef-
fective solution is needed to prevent it. The conventional
solutions include reducing the opening of the production
choke valve and increasing the amount of the injected gas.
However, closing the production choke increases the back
pressure of the valve, and reduces the production rate from
the oil well; also increasing the injected gas is costly.
Automatic control was first used by Jansen et al. (1999) to
stabilize unstable gas-lifted oil wells. Measurements such
as pressure, flow rate or fluid density are used as the
control variables and the top-side choke valves are the
manipulated variables. The bottom-hole pressure in well
is the recommended control variable for anti-slug control
of gas-lift wells, but this measurement is not available
usually. Therefore, Eikrem et al. (2004) and Aamo et al.
(2005) utilized model-based observers to estimate bottom-
hole pressure from top-side measurements.
We look for other possibilities for anti-slug control of
gas-lift oil wells. In this way, we examine all of possible
measured variables of the system to find suitable control
1 Corresponding author

variables for stabilization. In addition, we consider the
gas-lift choke valve as a secondary manipulated variable
and we examine if using the second manipulated variable
improves the control. Similar works on control structure
design for stabilizing riser slugging has been done by
Sivertsen et al. (2009), Storkaas and Skogestad (2007).
The controllability analysis is used as a tool to find con-
trol variables satisfying performance and robustness re-
quirements. The controllability is evaluated by minimum
achievable peaks of different closed-loop transfer functions.
The control variables or combinations of them resulting in
smaller peaks are preferred (Skogestad and Postlethwaite
(2005)).
However, the controllability analysis is a mathematical
tool for linear systems. Knowing that nature of the system
and even the simplified model used in this work is highly
nonlinear, the controllability analysis only gives insight
into the necessary conditions and limitations.
For the controllability analysis and the model-based con-
trol design, a simple dynamical model of the system is
preferred. First, a three-state model for casing-heading
instability was developed in ABB AS, then Dvergsnes
(1999) added two states for energy in annulus and tubing.
Imsland (2002) ignored the two energy states, but he used
more sophisticated pressure drop calculations. A simplified
version of the Imsland model was used by Eikrem et al.
(2004) which is the basis of the model presented in this
paper. We add a pressure loss term due to friction, also we
use a new approach by Jahanshahi and Skogestad (2011)
for calculating phase fractions and density at top of the
tubing.
This paper is organized as the following. A modified simpli-
fied model for the casing heading instability is introduced
in Section 2. Afterwards, the theoretical background for
the controllability analysis is given in Section 3, then con-
trollability analysis results are presented in Section 4. In
section 5, we choose suitable control structures, and finally
the main conclusions and remarks will be summarized in
Section 6.



Gas lift 

choke

Production

choke

Oil

outlet 

Gas

inlet 

Annulus 

Injection

valve 

Tubing

Candidate CVs

wG,in: Inlet gas mass flow rate 

Pat: Annulus top pressure 

Pab: Annulus bottom pressure 

Pbh: Bottom-hole pressure 

Ptt: Tubing top pressure 

wout: Outlet mass flow rate 

 mix,t: Mixture density at top of tubing 

 L,t: Liquid volume fraction at top 

MVs

u1: Opening of production choke 

u2: Opening of gas lift choke 

DVs

Pres: Reservoir pressure 

Pgs: Gas lift source pressure 

Pres

Pgs

Ptt  mix,t  L,t

Pat

Pbh

u1

u2
wG,in

wout

Pab

Fig. 1. Schematic presentation of candidate control vari-
ables and manipulated variables

2. SIMPLIFIED DYNAMICAL MODEL

A schematic illustration of gas-lift oil wells is shown in
Fig. 1. Similar to the model introduced by Eikrem et al.
(2004), state variables of our model are x1 mass of gas in
the annulus, x2 mass of gas in the tubing and x3 mass of
liquid in the tubing. We consider also production of gas
from the reservoir, therefore our state equations are in the
following form:

ẋ1 = wG,in − wG,inj (1)

ẋ2 = wG,inj + wG,res − wG,out (2)

ẋ3 = wL,res − wL,out (3)

In this model, wG,in is the mass flow rate of inlet gas to
the annulus and wG,inj is the mass flow of injected gas
from the annulus into the tubing. wG,res and wL,res are
gas and liquid mass flow rates from the reservoir to the
tubing. wG,out and wL,out are the mass flow rates of gas
and oil outlet from the tubing, respectively.
There is only gas phase inside the annulus, and pressure
at top of the annulus can be calculated by ideal gas law.

Pat =
RTax1

MGVa
(4)

Then, the pressure at bottom of the annulus is given by

Pab = Pat +
x1gLa

Va
, (5)

Thus, the density of the gas phase at this point is

ρG,ab =
PabMG

RTa
. (6)

The inlet gas to the annulus comes from a source tank or
a compressor with the pressure Pgs, and the density of gas
through the gas-lift choke can be written as:

ρG,in =
PgsMG

RTa
(7)

Therefore, gas mass flow into the annulus is

wG,in = Kgsu2

√
ρG,inmax(Pgs − Pat, 0). (8)

Because of high pressure, the fluid from the reservoir
is saturated (Ahmed (2006)). Hence, we assume that
distance between the bottom-hole and the injection point,
Lbh, is filled by liquid phase. This must be accounted for in
calculating the volume of gas in the tubing. Consequently,
the density of gas at top of the tubing follows as

ρG,t =
x2

Vt + SbhLbh − x3/ρL
. (9)

Pressure at top of tubing using ideal gas law:

Ptt =
ρG,tRTt

MG
(10)

Average mixture density inside tubing:

ρmix =
x2 + x3 − ρLSbhLbh

Vt
(11)

Average liquid volume fraction inside tubing:

αL =
x3 − ρLSbhLbh

VtρL
(12)

GOR is the constant mass ratio of gas and liquid produced
from the reservoir, and gas mass fraction at bottom of the
tubing is

αm
G,b = GOR/(GOR+ 1). (13)

Before calculating the inlet mass flow rate from the reser-
voir by use of the bottom-hole pressure in equation (27),
the pressure drop due to friction is needed to determine
the bottom-hole pressure. However, we need to know the
inlet flow rate to calculate the friction term. We evade this
problem by using an average of the inlet flow rate, wres,
in calculation of friction terms.
Average superficial velocity of liquid phase in tubing:

Usl,t =
4(1− αm

G,b)wres

ρLπD2
t

(14)

Average superficial velocity of gas phase:

Usg,t =
4(wG,in + αm

G,bwres)

ρG,tπD2
t

(15)

We have not calculated flow rate of the injected gas from
the annulus into the tubing yet, instead we use wG,in in
equation (15); we believe averages of these two variables
are equal.
Average mixture velocity in tubing:

Um,t = Usl,t + Usg,t (16)

Reynolds number of flow in tubing:

Ret =
ρmixUm,tDt

µ
(17)



An explicit approximation of the implicit Colebrook-White
equation proposed by Haaland (1983) is used as the
friction factor in the tubing.

1√
λt

= −1.8 log10

[(
ϵ/Dt

3.7

)1.11

+
6.9

Ret

]
(18)

Pressure loss due to friction in tubing:

Ft =
αLλtρmixU

2

m,tLt

2Dt
(19)

Pressure at bottom of the tubing where gas being injected
from annulus:

Ptb = Ptt + ρmixgLt + Ft (20)

Mass flow rate of gas injected into tubing:

wG,inj = Kinj

√
ρG,abmax(Pab − Ptb, 0) (21)

Liquid velocity at bottom-hole:

U l,b =
wres

ρLSbh
(22)

Reynolds number of flow at bottom-hole:

Reb =
ρLU l,bDb

µ
(23)

Friction factor at bottom-hole:

1√
λb

= −1.8 log10

[(
ϵ/Db

3.7

)1.11

+
6.9

Reb

]
(24)

Pressure loss due to friction from bottom-hole to injection
point:

Fb =
λbρLU

2

l,bLbh

2Db
(25)

Pressure at bottom-hole:

Pbh = Ptb + Fb + ρLgLbh (26)

Mass flow rate from reservoir to tubing:

wres = PImax(Pres − Pbh, 0) (27)

Mass flow rate of liquid from reservoir to tubing:

wL,res = (1− αm
G,b)wres (28)

Mass flow rate of gas from reservoir to the well:

wG,res = αm
G,bwres (29)

Density of gas at bottom of tubing:

ρG,tb =
PtbMG

RTt
(30)

Liquid volume fraction at bottom of tubing:

αL,b =
wL,resρG,tb

wL,resρG,tb + (wG,inj + wG,res)ρL
(31)

With the same assumptions used by Jahanshahi and
Skogestad (2011), liquid volume fraction at top of the
tubing can be written as

αL,t = 2αL − αL,b, (32)
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Fig. 2. Stability transition of system, blue markers for
OLGA and red markers for simplified model

Then, the mixture density at top of the tubing will be

ρmix,t = αL,tρL + (1− αL,t)ρG,t. (33)

Mass flow rate of mixture from production choke:

wout = Kpru1

√
ρmix,tmax(Ptt − P0, 0) (34)

Volumetric flow rate of production choke:

Qout = wout/ρmix,t (35)

Gas mass fraction at top of tubing:

αm
G,t =

(1− αL,t)ρG,t

αL,tρL + (1− αL,t)ρG,t
(36)

Mass flow rate of outlet gas from tubing:

wG,out = αm
G,twout (37)

Mass flow rate of outlet liquid from tubing:

wL,out = (1− αm
G,t)wout (38)

The simplified model was fitted to a test case implemented
in the OLGA simulator. Constants and parameters used
in the model are given in Table 1. The stability map of the
system is shown in Fig. 2 where stability transitions of the
OLGA model and the simplified model are compared. The
controllability analysis and all simulations are performed
at the operating point u1 = 0.6 and wG,in = 0.86 [kg/s]
which is located in the unstable region of the stability map.
It was not possible to add the gas-lift choke to the OLGA
model, therefore we used a constant gas source equal to
wG,in = 0.8 [kg/s] in the OLGA model and we fitted the
model with the constant gas rate. Then, we added the gas-
lift choke valve to the Matlab model so that the simplified
model gives wG,in = 0.8 [kg/s] when the gas-lift choke
opening is u2 = 0.4 and the production choke opening is
u1 = 0.3. The system switches from stable to unstable at
this operating point. Finally, we opened the production
valve to u1 = 0.6 in order to make the system unstable;
the inlet gas rate becomes wG,in = 0.86 [kg/s] at this
operating point.



3. CONTROLLABILITY ANALYSIS: THEORETICAL
BACKGROUND

The state controllability is not considered in this work; in-
stead the concept of input-output controllability as defined
by Skogestad and Postlethwaite (2005) is used.

Definition 1. (Input-output) controllability is the abil-
ity to achieve acceptable control performance; that is, to
keep the outputs (y) within specified bounds or displace-
ments from their references (r), in spite of unknown but
bounded variations, such as disturbances (d) and plant
changes (including uncertainty), using available inputs (u)
and available measurements (ym and dm).

The ability of the system to reach performance and ro-
bustness requirements with the control can be evaluated
quantitatively by calculating minimum achievable peaks
of different closed-loop transfer functions. These peaks are
related to physical limitations of a the system in terms of
controllability and they are dependent on the location of
poles and zeros of the open-loop system.

3.1 Transfer functions

We assume a linear model in the form y = G(s)u+Gd(s)d
with a feedback controller u = K(s)(r − y − n) in which
d represents disturbances and n is the measurement noise.
The resulting closed-loop system is

y = Tr + SGdd− Tn, (39)

where S = (I + GK)−1 and T = GK(I + GK)−1 =
I − S represent the sensitivity and the complementary
sensitivity transfer functions, respectively. The control
input to the closed-loop system is

u = KS(r −Gdd− n). (40)

In addition to the transfer functions introduced above,
the transfer function SG is related to the effect of input

Table 1. Parameters values used in simulations

Symb. Description Values Units

R universal gas constant 8314 J/(kmol.K)
g gravity 9.81 m/s2

µ viscosity 3.64× 10−3 Pa.s
ρL liquid density 760 kg/m3

MG gas molecular weight 16.7 gr
Ta annulus temperature 348 K
Va annulus volume 64.34 m3

La annulus length 2048 m3

Pgs gas source pressure 140 bar
Vt tubing volume 25.03 m3

Sbh
cross-section below

injection point
0.0314 m2

Lbh
length below
injection point

75 m

Tt tubing temperature 369.4 K
GOR mass gas oil ratio 0 –
Pres reservoir pressure 160 bar

wres
average mass flow
from reservoir

18 kg/s

Dt tubing diameter 0.134 m
Lt tubing length 2048 m
PI productivity index 2.47e-6 kg/(s.Pa)
Kgs gas-lift choke cons. 9.98× 10−5 –
Kinj injection valve cons. 1.40× 10−4 –
Kpr production choke cons. 2.90× 10−3 –

disturbances on the control error r − y. The closed-loop
transfer functions S, T,KS and SG can also be regarded
as the measures of robustness against different types of
uncertainty. We prefer to keep them as small as possible
to achieve better robustness properties of the control sys-
tem. For instance, the sensitivity transfer function S is
also the sensitivity to inverse relative uncertainty, which
is a good indication of uncertainty in the pole locations
(Skogestad and Postlethwaite (2005)). Therefore, the low-
est achievable peaks of the closed-loop transfer functions
S, T,KS, SG,KSGd and SGd provide information regard-
ing both achievable performance and possible robustness
issues.

By the “peak” we mean maximum value of frequency
response or H∞ norm, ∥M∥∞ = maxω ∥M(jω)∥, that is
simply the peak value of the transfer function. The bounds
are not dependent on the controller K, and they are
physical properties of the system itself. The bounds are,
however, dependent on a systematic and correct scaling of
the system. Scaling of the system will be explained later
in this Section.
The lowest achievable peaks in sensitivity and comple-
mentary sensitivity transfer functions, denoted MS,min

and MT,min, are closely related to the distance between
the unstable poles (pi) and zeros (zi). Considering SISO
systems, for any unstable (RHP) zero z:

∥S∥∞ ≥ MS,min =

Np∏
i=1

|z + pi|
|z − pi|

. (41)

Note that the bound approaches infinity as z approaches
pi. For systems with only one unstable zero, the bound
holds with equality.
Formulae for calculating bounds on minimum achievable
peaks of the other closed-loop transfer functions are given
by Skogestad and Postlethwaite (2005), also by Storkaas
and Skogestad (2007).

3.2 Mixed Sensitivity Controllability Analysis

The above controllability measures were also considered
by Sivertsen et al. (2009), Storkaas and Skogestad (2007).
However, these measures considering only one of transfer
functions at any time, may give conflicting results. To get a
single measure (γ), we consider an H∞ problem where we
want to bound σ(S) for performance, σ(T ) for robustness
and to avoid sensitivity to noise and σ(KS) to penal-
ize large inputs. These requirements may be combined
into a stacked H∞ problem (Skogestad and Postlethwaite
(2005)).

min
K

∥N(K)∥∞ , N
∆
=

[
WuKS
WTT
WPS

]
(42)

where WP and WT determine the desired shapes of sensi-
tivity S and complementary sensitivity T . Typically, W−1

P
is chosen to be small at low frequencies to achieve good
disturbance attenuation (i.e., performance), and W−1

T is
chosen to be small outside the control bandwidth, which
helps to ensure good stability margin (i.e., robustness).
Solution to this optimization problem is a stabilizing con-
troller K corresponding to S, T and KS which satisfy the
following loop shaping inequalities:
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Fig. 3. Closed-loop transfer function for mixed sensitivity
control design

σ(KS(jω)) ≤ γσ(W−1
u (jω))

σ(T (jω)) ≤ γσ(W−1
T (jω))

σ(S(jω)) ≤ γσ(W−1
P (jω))

(43)

To have the same cost function in all simulation tests
for the measurement selection, all the candidate control
variables shown in Fig. 1 are included in the y1 port and
the control variable(s) for test is in the port y2 of the
generalized plant in Fig. 3. The value of γ in equation (43)
should be as small as possible for good controllability.

3.3 Scaling

One important step before controllability analysis is scal-
ing of inputs, outputs and disturbances of the model. In
Definition 1, the bound that the control variable must be
kept within is not the same for different control variables
shown in Fig. 1. For a correct comparison between candi-
date control variables, they must be scaled based on their
maximum allowed variations, in a way that maximum al-
lowed variation for all of them in the scaled model become
(-1,1). The scaling factors Dy for different measurements
are given in Table 2. Disturbances in the scaled model
are also expected to vary in the range of (−1, 1). The
maximum expected value of the both disturbances (Pres

and Pgs) is 3 bar variation around their nominal values.
Therefore, the scaling matrix of the disturbances:

Dd =

[
3 0
0 3

]
.

Controllability analysis is performed at the operating point
u1 = 0.6 and u2 = 0.4. Valves can go to filly-open or fully-
closed condition, therefore the maximum possible change
for the both manipulated variables is 0.4, this means

Du =

[
0.4 0
0 0.4

]
.

4. CONTROLLABILITY ANALYSIS RESULTS

4.1 Bounds on Minimum Achievable Peaks

Minimum achievable peaks for different closed-loop trans-
fer functions are given in Table 2 and Table 3. Minimum
peaks of |S| = |T | for Ptt, ρmix,t and αL,t in Table 2 are
larger than 1, and it is expected to have difficulty using
these measurements as control variables.
The reason for large values of |S| = |T | is RHP-zeros in
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Fig. 4. Location of RHP-poles of system and RHP-zeros of
tubing top pressure for u2 = 0.4 and different values
of u1

transfer functions. Location of RHP-poles of the system
and RHP-zeros of Ptt for u2 = 0.4 and different production
choke openings u1 are shown in Fig. 4. The system has
a pair of complex conjugate poles on the imaginary axis
for u1 = 0.3. These two poles move to the RHP and the
system becomes unstable for u1 > 0.3; this is in agreement
with the stability map in Fig. 2. Ptt shows two RHP-
zeros for all u1 values. One of the RHP-zeros does not
move so much and it is always close to pole locations. As
the production valve opening u1 increases, RHP-poles get
closer to the smaller (important) RHP-zero. According to
equation (41), the closer poles and zeros are, the larger the
peak of sensitivity transfer function becomes.
The pressure at top of the tubing, Ptt, is not recommended
to be used as a single control variable, but the large peak
of sensitivity does not occur when it combines with other
measurement. The minimum achievable peak of sensitivity
transfer function for the paired measurements becomes 1
in Table 2, because the system becomes non-square and
zeros disappear.
The bottom-hole pressure Pbh shows the best controlla-
bility properties. It has the largest element in the output
pole vector that makes it suitable for stabilization of the
unstable system. Moreover, Pbh has the largest steady-
state gain G(0) and the smallest values for all of the closed-
loop transfer functions. In the second place, the pressure
at the bottom of the annulus shows good controllability
properties. The third good candidate is the pressure at
top of the annulus, Pat.

4.2 Mixed Sensitivity Controllability Analysis

The γ values are given in Table 2 and Table 3. Con-
trol structures with small value of γ are able to reach
performance, robustness and input requirements easier.
The bottom-hole pressure shows the smallest γ among
the single measurements; it is consistent with the other
controllability data. Moreover, combination of the bottom-
hole pressure and the tubing top pressure results in the
smallest γ for the both single manipulated variable and
the related MIMO case.
Using two control variables and one manipulated variable,



Table 2. Controllability data using u1 as manipulated variable

Measurement Value Dy G(0) Pole vector |S| = |T | |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2| γ1 γ2
wgin[kg/s] 0.86 0.05 0.76 0.0004 1.00 3.04 0.00 0.23 1.987 0.00 0.00 89.55 –
Pat[bar] 81.16 1 5.22 0.0031 1.00 0.44 0.00 0.23 0.10 0.00 0.00 14.85 –
Ptt[bar] 20.89 1 5.72 0.0028 3.06 0.38 10.49 0.25 0.11 0.69 0.42 19.16 –
Pab[bar] 90.35 1 5.81 0.0034 1.00 0.40 0.00 0.23 0.10 0.00 0.00 13.54 –
Pbh[bar] 88.56 1 6.95 0.0089 1.00 0.11 0.00 0.23 0.09 0.00 0.00 3.60 –
wout[kg/s] 18.51 2 0.88 0.0024 1.00 0.49 0.00 0.30 0.11 0.00 0.00 19.35 –
ρmix,t[kg/m

3] 186.96 20 1.61 0.0013 3.11 1.24 3.77 0.56 0.29 0.71 0.38 38.08 –
αL,t[−] 0.23 0.23 0.17 0.0001 3.11 10.83 0.43 0.57 0.30 0.08 0.04 289.88 –
Pab wout – – – 0.0034 1.00 0.26 0.00 0.13 0.05 0.00 0.00 8.89 19.35
Pab ρmix – – – 0.0034 1.00 0.36 0.00 0.20 0.08 0.00 0.00 12.20 13.17
Pab wG,in – – – 0.0034 1.00 0.40 0.00 0.12 0.10 0.00 0.00 13.42 22.13
Pat Pbh – – – 0.0089 1.00 0.11 0.00 0.12 0.05 0.00 0.00 4.52 3.45
Pat Ptt – – – 0.0031 1.00 0.26 0.00 0.12 0.05 0.00 0.00 8.65 11.58
Pat wout – – – 0.0031 1.00 0.27 0.00 0.13 0.05 0.00 0.00 9.17 19.35
Pat ρmix – – – 0.0031 1.00 0.39 0.00 0.20 0.08 0.00 0.00 13.12 13.96
Pat wG,in – – – 0.0031 1.00 0.44 0.00 0.12 0.10 0.00 0.00 14.70 22.13
Pbh wout – – – 0.0089 1.00 0.10 0.00 0.13 0.05 0.00 0.00 3.39 19.35
Pbh ρmix – – – 0.0089 1.00 0.11 0.00 0.20 0.09 0.00 0.00 3.53 10.96
Pbh wG,in – – – 0.0089 1.00 0.11 0.00 0.12 0.10 0.00 0.00 3.60 22.13
Ptt Pbh – – – 0.0089 1.00 0.10 0.00 0.12 0.05 0.00 0.00 7.25 3.39
Ptt wout – – – 0.0028 1.00 0.30 0.00 0.14 0.06 0.00 0.00 15.41 19.35
Ptt ρmix – – – 0.0028 1.00 0.34 0.00 0.21 0.10 0.00 0.00 16.97 12.23
Ptt wG,in – – – 0.0028 1.00 0.37 0.00 0.12 0.12 0.00 0.00 18.64 22.13
wout wG,in – – – 0.0024 1.00 0.47 0.00 0.13 0.12 0.00 0.00 19.35 22.13

Table 3. Controllability data using u1 and u2 as manipulated variables (MIMO controller)

Measurement Pole vector |S| = |T | |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2| γ1 γ2 γ3
Pab wout 0.0034 1.00 0.12 0.00 0.08 0.03 0.00 0.00 7.55 13.20 15.31
Pab ρmix,t 0.0034 1.50 0.14 2.00 0.11 0.05 0.34 0.12 10.39 12.16 16.53
Pab wG,in 0.0034 1.00 0.16 0.00 0.09 0.07 0.00 0.00 11.43 10.98 12.40
Pat Pbh 0.0089 1.00 0.07 0.00 0.08 0.03 0.00 0.00 3.94 3.20 14.47
Pat Ptt 0.0031 1.59 0.13 11.00 0.08 0.03 0.96 0.62 7.36 7.76 8.16
Pat wout 0.0031 1.00 0.13 0.00 0.08 0.03 0.00 0.00 7.83 12.30 15.33
Pat ρmix,t 0.0031 1.52 0.15 1.87 0.11 0.05 0.32 0.11 11.23 12.89 16.74
Pat wG,in 0.0031 1.00 0.18 0.00 0.09 0.07 0.00 0.00 12.59 12.20 13.63
Pbh wout 0.0089 1.00 0.07 0.00 0.08 0.04 0.00 0.00 3.15 13.30 75.80
Pbh ρmix,t 0.0089 1.02 0.07 7.71 0.11 0.06 1.05 0.52 3.28 10.07 32.09
Pbh wG,in 0.0089 1.00 0.07 0.00 0.09 0.09 0.00 0.00 3.35 3.20 3.58
Ptt Pbh 0.0089 1.20 0.07 16.73 0.08 0.04 1.04 0.64 5.19 3.15 5.22
Ptt wout 0.0028 2.05 0.19 0.00 0.09 0.04 1.04 0.64 11.37 13.30 12.33
Ptt ρmix,t 0.0028 2.15 0.20 19.48 0.12 0.06 1.69 0.95 12.18 11.35 13.09
Ptt wG,in 0.0028 2.69 0.25 19.38 0.09 0.09 1.14 1.09 14.15 8.78 16.56
wout wG,in 0.0024 1.00 0.30 0.00 0.10 0.09 0.00 0.00 13.30 11.32 21.55

it is impossible to get tight control on the both control
variables at the same time. Similar to a cascade controller,
we can have tight control with a constant set-point only
on one of control variables.
In Table 2, we calculated γ1 when tight control was re-
quired on the first control variable of the pair, and γ2 when
tight control was on the second one in the pair.
Uisng two manipulated variables, it was possible to have
tight control on the both control variables in the pairs; γ3
values in Table 3 were calculated for this condition. γ1 and
γ2 in Table 3 can be compared to those in Table 2, but the
cost function related to the H∞ problem for calculating
the γ3 values is different.

5. CONTROL STRUCTURE SELECTION

Based on the controllability data provided in Table 2 and
Table 3, we can decide about choosing the control struc-
ture. For a SISO control structure, pressure at bottom-
hole Pbh is the best control variables in our results. It is in

accordance with previous works in which always Pbh has
been favored. Pbh usually is not directly measurable, but as
suggested by Eikrem et al. (2004) and Aamo et al. (2005),
it can estimated using an observer. Simulation result of
using this measurement is shown in Fig 5. Simulation
results of using Ptt and Pat are shown in Fig 6 and
Fig 7, respectively. The both Ptt and Pat demonstrate poor
performance when they are used for SISO control. All of
the simulations are based on scaled variables, and the ideal
is to keep the control variables in the range of (-1,1).
Looking at paired control variables with u1 as the manip-
ulated variable in Table 2, all parings including Pbh with
tight control on Pbh result in small γ values. However,
there is no significant improvement in γ values compared
to using the single control variable Pbh; simulation result
of combing Pbh and wout is shown in Fig. 8. The next
suitable combination is the pair of Pat and Ptt (two top-
side pressures) with tight control on Pat. The simulation
result for this case is given in Fig. 9.
We did controllability analysis also by using u2 as the
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Fig. 5. Simulation result ofH∞ control using Pbh as control
variable and u1 as manipulated variable
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Fig. 6. Simulation result of H∞ control using Ptt as control
variable and u1 as manipulated variable

single manipulating variable, but the results using u2 were
not satisfactory and we did not add another large table for
sake of the space limitation. The simulation result using
relatively the best pair of control variables for this case,
resulted in γ2 = 14.1, is shown in Fig. 10.
Looking at Table 3, the pairs with Pbh show small γ values,
but compared to the γ values in Table 2, there is no
substantial improvement. The simulation result of using
the two top-side pressure measurement, Pat and Ptt, using
two manipulated variables is shown in Fig. 11.
The pressures at top can be easily measured with good
accuracy and a control structure using their combination
(Fig. 9) is recommended. However, by comparing simu-
lation results in Fig. 9 and Fig. 11, one should notice
that adding the secondary manipulated variable does not
enhance the control performance.
The choice of the suitable control structure is dependant
on proper scaling of the control variables. For example for
this case, first we chose a small scaling factor for the mass
flow rate and we wanted to control it in a tight bound.
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Fig. 7. Simulation result ofH∞ control using Pat as control
variables and u1 as manipulated variable
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Fig. 8. Simulation result of H∞ control using Pbh and wout

as control variables and u1 as manipulated variable

As a result, gain of the system with this control variable
increased and the control structures using the flow rate
resulted in better performance compared to those using
the pressures. In order to control the flow rate in a tight
range, we must be able to measure it accurately. However,
this is unlikely for two-phase flow in practice. Therefore, we
chose a wider scaling factor for the flow rate. On the other
hand, pressure can be measured more reliably, thus a small
scaling factor was used for pressures. Consequently, the
control structures using pressure measurements are shown
to be superior for this case study.

6. CONCLUSION

An improved dynamical model for the casing-heading in-
stability in gas-lifted oil wells was proposed, then the pro-
posed model was fitted to a rigorous model in the OLGA
simulator. Minimum achievable peaks of the different
closed-loop transfer functions with each of the candidate
control variables and their combinations were calculated.
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Fig. 9. Simulation result of H∞ control for Pat and Ptt as
control variables and u1 as manipulated variable
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Fig. 10. Simulation result of H∞ control using Pbh and
Ptt as control variables and and u2 as manipulated
variable

Performance, robustness and input usage requirements
were integrated in a mixed-sensitivity control problem and
a single number (γ) was represented to evaluate quality of
alternative control structures. We found out that adding
the secondary manipulated variable does not improve sta-
bilization of the gas-lifted oil wells significantly.
The bottom-hole pressure is the best control variable for
this system in terms of controllability. Nevertheless, this
variable often is not directly measurable.
Finally, a control structure using a pair of top-side pressure
measurements was shown to be effective for preventing the
casing-heading instability.
Further, it was found that accuracy of the sensors must be
taken into account for scaling of different control variables
correctly.
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Fig. 11. Simulation result of H∞ control for Pat and Ptt

as control variables using MIMO controller
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