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The optimal controlled variables were identified using the method of maximizing the minimum 
singular value, the null space method and the exact local method. The results corresponded well 
with each other, identifying the weight on bit and the topdrive power as the optimal single 
measurement controlled variables. Research on avoiding stick-slip conditions during drilling 
support the conclusion of operating with a varying drill string rotational speed. Combining 
measurements will give a lower loss, but the loss is small (approximately 1% of the active drilling 
time) and the complexity of the control structure will increase. The savings compared to a 
constant input policy were relatively low, approximately 1% of the active drilling time. However, 
the drilling process is very expensive, and any savings in drilling time will equal a substantial 
revenue.  
 
The time spent during pipe connection- and drilling trip procedures is identified as an important 
factor in the optimization of the drilling process. A simple dynamic pressure model was used to 
simulate the performance of a automated feedback pressure control structure involving PI 
controllers. The control structure was able to perform the required procedures while keeping the 
bottom hole pressure within a pressure window of ±5 bar.  
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Chapter 1

Introduction

1.1 Motivation

According to the International Energy Agency (IEA), the world energy demand is expected to
increase by 44% from 2006 to 2030.[1] At the same time, most of the easily-attained petroleum
reserves are already exploited. The result is that the petroleum industry is facing technical
challenges in most areas of the upstream industry. The remaining reservoirs are smaller, deeper
and in more remote locations than the typical reservoir of the previous decades. There is a
need for accurate, cost-effective drilling systems capable of drilling complex wells with increased
demands on pressure control.

The process of drilling a well is very expensive, as it involves hiring a drilling rig and crew for
the duration of drilling the well. It is therefore important to drill the well as fast as possible
in order to minimize the cost. The drillers are highly experienced and aim to drill fast and
safe, while keeping within a set of boundaries and handling upsets. However, the drilling process
involves coordinating a lot of machinery and making quick decisions with the possibility of severe
consequences. The catastrophic blowout on the drill rig Deepwater Horizon in the Gulf of Mexico
in April 2010 clearly showed the magnitude of the potential dangers. The blowout led to the
burning and sinking of the drill rig (see Figure 1.1), and an oil leak with huge environmental
impact. Naturally, the situation became the focus of world press and political agendas, as well
as having enormous economical consequences for the responsible companies.

Many of the decisions made on the rig floor require extremely good knowledge of the various
effects in the drilling process, and they should be made faster than what is possible for a human.
Also, the decisions are often based on experience and out-dated industry standards which are
not necessarily optimal for each and every purpose. Therefore, the drilling process has great
potential for increased automation and optimization in terms of process control.

The downstream industry is highly dependent on good process control, as the refinery product
specifications are controlled very tightly. The application of properly designed control structures
and properly tuned controllers has increased the regularity and thus the profit margins of refinery
products. It is desirable to analyze the drilling process using a plantwide control approach,
in order to determine the optimal variables to control during drilling. The resulting control

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The drill rig Deepwater Horizon burning and sinking in the Gulf of Mexico, April
21, 2010. Photo: U.S. Coast Guard. Used according to license cc by-sa 2.0 Generic, cf.
http://www.flickr.com/photos/uscgd8/4542937668/

structure should provide near-optimal operation even when it is subject to disturbances in drilling
parameters, such as varying formation strength, density or pressure.

The implementation of various new technology such as Managed Pressure Drilling (MPD) have
increased the performance and safety of drilling systems. However, such additions are often
implemented independently of the existing drilling operation system, so there is little coordination
between e.g. the drilling system and the pressure control system. A fully integrated control
structure for the drilling process would increase the efficiency and coordination between both
operators and machinery.

1.2 Aim and Scope of the Thesis

The goal of this thesis is to analyze the drilling process with a plantwide control approach. The
work involves:

• Studying the drilling process to better understand the objective and the importance of the
various process variables.

• Creating a simplified steady-state drilling model in MATLAB based on drilling literature
(Chapter 3).

• Identifying an objective function and constraints for the drilling process, and optimizing
the process with respect to the degrees of freedom (Chapter 4).

• Identifying the optimal (self-optimizing) controlled variables (Chapter 5). The self-optimizing
controlled variables are variables that give the minimum loss when the process is subject
to expected disturbances.
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The steady-state optimization and identification of optimal controlled variables assumes that the
time spent making pipe connections and drilling trips is constant. However, pipe connections
and drilling trips are recognized as important operations in terms of minimizing the total drilling
time. Therefore, an additional study of the performance of feedback pressure control structure
is performed (Chapter 6).
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Chapter 2

Background

This section will introduce the process of drilling a well for petroleum production, including the
equipment used and challenges that are faced. The first section will describe the traditional setup
of a drilling rig, while the purpose and design of a Managed Pressure Drilling (MPD) system
is described in the succeeding section. The last sections include an introduction to numerical
optimization and an introduction to control structure design (plantwide control), as well as a
description of PID controllers.

2.1 The Drilling Process

The drilling of wells into petroleum reserves is performed by a drilling rig, such as illustrated in
Figure 2.1. The drilling rig in the figure is a jacket platform used in offshore drilling operations.
The drill string with the drill bit at the end is rotated by the topdrive, an electric motor at the
top end of the drill string. The topdrive is attached to a hook in the derrick, making it possible to
raise and lower the drill string by the drawworks (hoisting system). While drilling, the drill string
is lowered due to the weight of the string and the progress of the drill bit. As the position of the
topdrive reaches the bottom of the derrick, a new stand of drill pipe added and the hook position
is moved to the top of the new connection. Each stand of pipe is approximately 27 meters in
length, so a typical penetration rate of 15 m/hr will require a new connection approximately
every other hour.[2]

Although not clearly illustrated in Figure 2.1, the drilling rig contains a mud circulation system.
The drilling mud is pumped through the drill string to the bottom of the well and returns to
the surface through the well annulus. The cuttings are separated from the returning mud in
shale shakers, and the mud is sent back to mud tanks on the drill rig. The main functions of the
drilling mud are to:

• Provide hydrostatic pressure to the well to prevent formation fluids from entering the well
during drilling.

• Transport the rock cuttings away from the bit (to ensure efficient drilling) and back to the
surface through the well annulus.

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: Offshore drilling rig (jacket platform). Drilling mud flows from the main pump
through the drill string, out of the bit and back up in the well annulus. The mud transports the
rock cuttings out of the well, and also provides hydrostatic pressure to the borehole.[2]

• Keep the drill bit cool and clean during operation.

Drilling muds also have special properties allowing them to suspend the cuttings while drilling
is paused and the mud is stationary. Various drilling muds have even more specific functions,
such as sealing permeable formations, controlling corrosion and facilitating cementing, but these
effects will not be covered in this thesis.

2.1.1 Managed Pressure Drilling (MPD)

Figure 2.1 of the example drilling rig shows that the top of the annulus is sealed off by a rotating
control device (RCD). The RCD is a part of a newer, more sophisticated drilling technology called
Managed Pressure Drilling (MPD). In conventional drilling, the mud return is open, meaning it
returns to atmospheric pressure. With the implementation of a RCD, the returning mud must
exit through a choke valve, and the valve opening may be controlled by the drillers. This system
provides a means for controlling the pressure profile in the well annulus, which is very important
factor in achieving effective drilling. It is important to keep the pressure profile within the
pressure window, which depends on the characteristics of the formation.

The pressure in the well must be above the collapse pressure of the borehole, to prevent the bore
hole from catastrophically closing in due to the differential pressure acting from outside to inside
of the well. Similarly it is important to keep the pressure below the fracturing pressure of the
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bore hole, in order to prevent hydraulic fracture of the rock formation. Another important aspect
of well pressure control is to prevent uncontrolled influx of reservoir fluids or loss of drilling mud
into the formation. In the case of too low pressure, formation fluids may flow into the annulus
and be driven towards the surface by the pressure gradient. This phenomenon is called a drilling
kick, and is often encountered during drilling. In the worst case, a kick may lead to a surface
blowout, causing large financial losses and possible damages to environment and human lives. If
the well pressure is higher than the formation pressure, the drilling mud will flow into the porous
reservoir and possibly clog up the pores. Drilling mud is fairly expensive, so losses are certainly
undesirable, but the loss of mud may also restrict the production from that part of the reservoir.

The pressure in the annulus is mainly affected by the hydrostatic weight of the mud, but also
the pressure that arises due to friction losses when the mud is circulated. The RCD and choke
valve make it possible for the drillers to set a pressure at the top of the annulus by manipulating
the choke valve opening. The annulus pressure profile will be affected by the pressure at the top,
thus facilitating control of the bottom hole pressure (BHP). In addition to the choke valve, the
top side of the annulus is also connected to a back pressure pump. This pump is included to
help the choke valve provide the required pressure, as the choke valve naturally is restricted to
its fully closed and fully open positions.

Being able to apply a pressure at the top of the annulus reduces the risk of drilling kicks leading
to a blowout, as the kick may be countered by increasing the choke pressure. The advantage is
that we are able to drill underbalanced, in other words with a bottom-hole pressure that is lower
than the formation pressure. Underbalanced drilling increases the rate of penetration, eliminates
formation damage because no mud is forced into the formation, reduces lost circulation and
eliminates differential sticking. However, it is critical that the pressure control system is reliable.

Several procedures during drilling operations have significant effects on the annulus pressure.
Each time a pipe connection is made, the main pump is disconnected and circulation stops. The
pressure term due to friction is thereby lost. Changing the drill bit or other failures require
a full retraction of the drill string from the well, called a drilling trip. The volume of the
well is increased, leading to a lower mud height and pressure. The opposite (a pressure surge) is
experienced when inserting the drill string back into the well. Similar effects of vertical movement
of the drill string are experienced in offshore drilling due to wave motion (heave).

It is clear that accurate control of the annulus pressure profile is important during all aspects
of the drilling process. In Managed Pressure Drilling (MPD) control structures, the bottom
hole pressure (the pressure at the drill bit) or the shoe pressure (the pressure at the bottom of
the casing, above the openhole section) is usually chosen as the controlled variable. However,
the downhole pressures are not easily measured. Information from the bottom of the well is
traditionally sent to the surface by pulses in the mud (mud-pulse telemetry). These signals
are not available when the mud circulation rate is low or stopped completely, e.g. during pipe
connections. Instead, advanced hydraulic models have been used to estimate the downhole
pressures. Stamnes [2] studied the estimation of the bottom hole pressure (BHP) using adaptive
observers. For the course of this thesis we however assume a wired drill string with exact
measurement of the bottom hole pressure.
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2.2 Introduction to Numerical Optimization

Optimization problems are seen in various applications, such as stock portfolios, chemical pro-
cesses and transportation logistics. Optimization is also present in various levels of typical
industry companies, from management to design to operation. The purpose of any optimization
is to find the values of the variables corresponding to the best possible value of a given objective
function. An optimization problem function can be linear or non-linear, and may be subject to
constraints. A general optimization problem can be defined as follows:

Minimize (or maximize): J = f(x) (2.1)
Subject to: g(x) ≤ 0

h(x) = 0

In Equation 2.2, J represents the objective function, which is a function of variable(s) x. The
optimization problem may be subject to inequality constraints g(x) and equality constraints h(x).

Different optimization methods have been developed in order to solve problems such as above. In
the case where both objective function and constraints are linear functions of the variables, the
optimization becomes a linear programming problem. If either objective function or constraints
are non-linear functions of the variables, the problem is non-linear and more sophisticated meth-
ods are required to solve the problem.

One of the most popular and robust methods for non-linear optimization is the sequential
quadratic programming (SQP) algorithm. The SQP algorithm handles both equality and in-
equality constraints, and is reduced to Newton’s method for finding a point where the gradient
of the objective is zero if the problem is unconstrained. The method constructs and solves a
local model of the optimization problem and yields a step towards the solution of the original
problem. The SQP algorithm uses a quadratic model for the objective function and linear mod-
els for the constraints. This is called a quadratic program (QP). The quadratic programs are
solved sequentially, by minimizing the Lagrangian function with the linear approximation of the
constraints in order to reach the optimum for the problem.[3] The optimum is defined by the
Karush-Kuhn-Tucker conditions, a generalization of the method of Lagrangian multipliers to
inequality constraints.[4]

The Karush-Kuhn-Tucker conditions are analogous to the condition that the gradient of the
objective function must be zero at optimum, modified to take constraints into account. The
conditions are based on the method of Lagrange multipliers, with the inclusion of inequality
constraints rather than being restricted to equality constraints. The Lagrange function for a
constrained optimization problem is presented in Equation 2.2.

L(x, λ) = f(x) +
∑

λg,igi(x) +
∑

λh,ihi(x) (2.2)

The vector λ is the concatenation of vectors λg and λh, and is the vector of Lagrange multipliers.
The KKT conditions are presented in Equations 2.3 through 2.7:

∇xL(x, λ) = 0 (2.3)
λg,igi(x) = 0 ∀ i (2.4)

g(x) ≤ 0 (2.5)
h(x) = 0 (2.6)
λg,i ≥ 0 (2.7)
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Equation 2.3 represents the condition of a zero gradient of the Lagrangian function, while Equa-
tion 2.4 represents the complementary slackness. Equations 2.5 and 2.7 require that the in-
equalities and equalities constraints are met, while Equation 2.7 requires that the Lagrangian
multipliers associated with the inequality constraint functions are positive.[4]

2.3 Control Structure Design (Plantwide Control)

Control structures in the chemical industry are often organized in a hierarchy as illustrated in
Figure 2.2.[5] As indicated in the figure, the two bottom layers are parts of the control structure,
while the layers above provide the operational setpoints for the process. In order to design a
control structure one must carefully analyze the process at hand. A lot of work may be put into
designing and tuning controllers, but the control structure itself may be far from optimal for its
purpose. This section will present the procedures of Skogestad et al. [5, 6, 7, 8, 9, 10] for control
structure design and selection of self-optimizing controlled variables. A summary of important
notation is presented in Table 2.1.

Table 2.1: Summary of Important Notation

u Unconstrained degree of freedom (MV)
y Measurement (including u’s)
z Controlled variable (CV)
nu # of u’s
nz # of CV’s (nz = nu)
ny # of y’s (ny ≥ nz)

J(u, d) Cost function to be minimized
Jopt(d) Optimal value of J

L = J(u, d) - Jopt(d) Loss

The plantwide control approach to a control structure design problem is based on top-down and
bottom-up procedures. The top-down analysis is used to determine the controlled outputs, while
the bottom-up procedures are used to select measurements and manipulated variables as well as
determine a control configuration. The procedures are summarized below. [5]

Top-down:

1. Identify a cost function J for the process and identify operational constraints.

2. Identify the degrees of freedom available to the process.

3. Analayze the solution for optimal operation for various disturbances, with the purpose of
determining the primary controlled variables (CV’s) which, when kept at a constant set
point, indirectly minimize the cost.

Bottom-up:

1. Regulatory control: Identify additional variables to be measured and controlled, and suggest
pairing with manipulated inputs.
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Figure 2.2: Typical control system hierarchy in a chemical plant.[5]

2. Supervisory control: Propose a configuration for a supervisory control layer (decentralized,
MPC).

3. On-line optimization: Determine whether a real-time optimizer (RTO) is needed, or whether
constant setpoints are sufficient.

The top-down procedures with selection of the controlled variables is the most critical part of
the plantwide control approach. After optimizing with respect to the objective function J and
the operational constraints, we get the nominal optimal values for the manipulated variables
or inputs (u), and the measurements (y). The next step is to determine the optimal controlled
variables (CV’s), also denoted as z. First, active constraints must be controlled to ensure optimal
operation. One degree of freedom (manipulated variable) is consumed for control of each active
constraint. Further, we want to choose the best possible CV’s to control with the remaining
manipulated variables. We want to choose CV’s that, when controlled at a constant set point,
give minimal loss when the process is subject to disturbances. The optimal CV’s are therefore
called self-optimizing controlled variables. The idea is illustrated in Figure 2.3, where z1 is a
better controlled variable than z2.

The self-optimizing controlled variables may be determined by performing so-called brute-force
analyses. This involves selecting various combinations of controlled variables, introducing ex-
tected disturbances and calculating the loss. However, in most cases we have many measurements
to choose from but only a few manipulated variables, which leads to very many combinations of
CV’s. Therefore, we use mathematical methods to determine the best controlled variables. We
will perform a local analysis of the loss function to explain the theory.
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Figure 2.3: Loss imposed by keeping a constant set point for the controlled variable. In this case
z1 is a better self-optimizing controlled variable than z2.[5]

2.3.1 Local Analysis

The loss function is the difference between the cost function J(u, d) and the re-optimized cost
function Jopt(u, d), where d represents a disturbance to the system. The cost function J(u, d)
is assumed to be twice differentiable, and the optimization problem is considered to be uncon-
strained. Any active constraints should have been removed (both the measurement and one
degree of freedom) from further analysis as described above. We want to determine which vari-
ables are best to control by the remaining manipulated variables.

The objective function may be expressed as a local second-order Taylor series expansion around
the nominal optimal point of operation. This is shown in Equation 2.8.

J(u, d) = Jopt(u, d) +
[
Ju Jd

]T [∆u
∆d

]
+

1
2

[
∆u
∆d

]T [
Juu Jud

Jdu Jdd

] [
∆u
∆d

]
(2.8)

where ∆u = u−uopt and ∆d = d−dopt. We recognize that the gradient of the objective function
with respect to the manipulated variables (Ju) is equal to zero at the unconstrained optimum.
For a given disturbance d (∆d = 0), the loss function may be written as Equation 2.9.

L = J − Jopt =
1
2

(u− uopt)TJuu(u− uopt) (2.9)

Introducing z̃ = J
1/2
uu (u−uopt), we may reduce the notation to Equation 2.10. ‖z̃‖2 is the 2-norm,

or maximum singular value of z̃.

L =
1
2
‖z̃‖22 (2.10)
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2.3.2 Maximum Scaled Gain (Minimum Singular Value) Method

The controlled variables (z) are chosen as a subset of the available measurements (y). The
controlled variables (z) may be expressed as a function of the manipulated variables (u) and the
disturbances (d) as shown in Equation 2.11.

z = Gu+Gdd (2.11)

Assuming that the disturbance d is fixed (∆d = 0), we may write z − zopt = G(u − uopt).
Equation 2.12 shows how z − zopt can be written as a sum of an optimization error eopt and an
implementation error n.

z − zopt = z − r + r − zopt = n+ eopt(d) (2.12)

The optimization error is the difference between the optimal value zopt and the set point for the
controller r (the nominal optimal value). The implementation error is the difference between
the controller set point and the actual value of z. The implementation error is due to imperfect
control, or due to incorrect measurements, which often are a factor i real systems. The absolute
value of z−zopt is called the expected optimal span of the measurements, and is denoted span(z).

For a multivariable case, z and u are vectors. According to Skogestad & Postlethwaite [5], the
outputs are scaled with respect to their optimal span by multiplication with the output scaling
matrix S1 = diag{1/span(zi)}. The resulting scaled outputs are shown in Equation 2.13, where
G′ = S1G.

z′ − z′opt = S1G(u− uopt) = G′(u− uopt) (2.13)

Using (u− uopt) = G′−1(z′ − z′opt) and Equation 2.10, we write Equation 2.14.

L =
1
2
||J1/2

uu G
′−1(z′ − z′opt)||22 (2.14)

The scaled output deviation z′ − z′opt has a magnitude of less than unity due to the scaling.
Therefore, the maximum value of the 2-norm ‖z′ − z′opt‖2 is unity. The maximum expected loss
for a multivariable case may then be expressed as in Equation 2.15.[5]

Lmax = max
‖z′−z′opt‖2≤1

1
2
||J1/2

uu G
′−1(z′ − z′opt)||22

=
1
2
σ̄2(J1/2

uu G
′−1) =

1
2

1

σ2(G′J−1/2
uu )

(2.15)

The maximum of the 2-norm ‖z̃‖2 is given by the induced 2-norm ‖J1/2
uu G′−1‖i2, which is equal to

the maximum singular value σ̄(J1/2
uu G′−1). The last equality is given by the relationship between

the maximum and minimum singular values, as shown in Equation 2.16.

σ̄(A−1) = 1/σ(A) (2.16)
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From Equation 2.15 we can deduce that it is optimal to choose measurements that maximize the
minimum singular value σ(G′J−1/2

uu ), where G′ = S1G.

2.3.3 Null Space Method

We have considered z as a subset of the available measurements y. However, if we use linear
combinations of measurements y to form various z’s, we have an infinite number of potential
controlled variables available.[5, 10] We express z as shown in Equation 2.17. A block diagram
of a control structure with measurement combinations is presented in Figure 2.4.

z = Hy (2.17)

Figure 2.4: Block diagram of a control structure with measurement combinations as controlled
variables.[9] Note: The controlled variables are denoted c in the figure, while this thesis uses
notation z.

The re-optimized values of the measurements (yopt) depend on the disturbance that is introduced
on the system. They also depend on the implementation error (see Equation 2.12), but for this
case we assume that the implementation errors are negligible. We may express this relationship
as shown in Equation 2.18. The matrix F may be viewed as the gain from the disturbance d to
the optimal variation of the measurements.

∆yopt = F ∆d (2.18)

Optimally, we want zopt to be independent of the disturbance d (∆zopt = 0 · ∆d). Combining
Equation 2.17 with Equation 2.18, we get Equation 2.19.

∆zopt = HF∆d (2.19)

In order to achieve optimal constant set points (zopt = 0), we require that HF = 0. In other
words, H must be in the left null space of F . The null space of F has dimension ny − nd so we
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must require nz = nu ≤ ny−nd. The last inequality then states that we must choose to combine
ny ≥ nu + nd measurements for the controlled variables z. The optimal controlled variables
(measurement combinations) may be determined using Equation 2.20.

z = Hy = null(F ) · y (2.20)

2.3.4 Exact Local Method

The exact local method also considers optimal linear combinations of measurements, but takes
implementation errors into account. For a constant set point policy, Halvorsen et. al.[9] showed
that the optimal variation in the manipulated variables is given by Equation 2.21.

∆uopt = (u− uopt) = −J−1
uu Jud∆d (2.21)

The expression in Equation 2.21 is obtained from Equation 2.8 by applying a given disturbance
(∆d = 0) and recognizing that Ju = 0 at optimum. The optimal variation in the measurements
(y) may then be expressed as in Equation 2.22

∆yopt = G∆u+Gd∆d = −(GJ−1
uu Jud −Gd)∆d = F∆d (2.22)

The F matrix is the disturbance sensitivity matrix from disturbances d to measurements y at
the nominal optimum, same as in Equation 2.18. The control variables are a linear combination
of the measurements, as shown in Equation 2.23.

z = Hy (2.23)

The deviation in manipulated variables may also be expressed in terms of the controlled vari-
ables, as shown in Equations 2.24 through 2.26. ∆zopt represents the optimal variation of the
measurements, while ∆z represents the implementation errors. ∆zs is neglected because we
assume a constant set point policy.

(u− uopt) = (HG)−1(z − zopt) = (HG)−1(∆z −∆zopt) (2.24)

∆zopt = H∆yopt = HF∆d (2.25)

∆z = ∆zs − n = −n = −Hn (2.26)

We introduce the magnitudes of the disturbances d and implementation errors n in diagonal
scaling vectors Wd and Wn as shown below.

∆d = Wdd
′

n = Wnn
′



2.4. PID CONTROLLER DESIGN 15

where d′ and n′ are vectors with: ∣∣∣∣∣∣∣∣[d′n′
]∣∣∣∣∣∣∣∣

2

≤ 1

Re-writing Equation 2.24, we get Equation 2.27.

(u− uopt) = (HG)−1H [FWd Wn]
[
d′

n′

]
(2.27)

We define the matrix F̃ as follows:

F̃ =
[
F Wd Wn

]
Inserting Equation 2.27 into the loss function in Equation 2.10 we get Equation 2.28 for the loss.

L =
1
2
||J1/2

uu (HG)−1HF̃ ||22 (2.28)

For the case of a full matrix H, the problem in Equation 2.28 may be re-written as the quadratic
programming problem in Equation 2.29.[8, 11]

min
H
||HF̃ ||2 (2.29)

subject to: HG = J1/2
uu

2.4 PID Controller Design

A proportional − integral − derivative (PID) controller has three terms, one proportional to
the error (e), one proportional to the integral of the error and one proportional to the derivative
of the error. The output of the PID controller is the value of the manipulated input u(t). The
PID controller equation is presented in Equation 2.30.

u(t) = KP e(t) +KI

∫ t

0
e(τ)dτ +KD

de(t)
dt

(2.30)

KP , KI andKD are the tuning parameters of the controller, and are called the proportional gain,
integral gain and derivative gain, respectively. Only PI controllers are used in the work with this
thesis, in order to facilitate simpler tuning. The PI controller equation is simply Equation 2.30
without the last term involving the derivative action. Thus, we are left with only two tuning
parameters, KP and KI .
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Chapter 3

Steady-State Drilling Model

A simplified steady-state drilling model was created in MATLAB in order to simulate the drilling
process. This section will explain the equations behind the drilling model, and explain the var-
ious assumptions that were made. The assumptions are based upon drilling literature search
performed as part of the thesis work. The MATLAB files for the model are attached in Ap-
pendix E.

3.1 Drilling Model Equations

3.1.1 The Rate of Penetration

The rate of penetration (ROP) is the speed in at which the drill string and bit are propelled into
the formation. The ROP depends on several factors, including the weight on bit (WOB), the
rotational speed of the bit, the pressure gradient at the bottom of the well and the hydraulic jet
impact force of the drilling fluid. The ROP may also be viewed as a manipulated variable itself,
while e.g. treating the WOB as the dependent variable. However, this report has focused on the
treating the ROP as a measurement.

Bourgoyne and Young [12, 13] have presented a complex model for the rate of penetration,
expressed as a function containing 8 multiplied terms (Equation 3.1).

R = f1f2f3f4f5f6f7f8 (3.1)

The factors f1 - f8 represent various effects on the rate of penetration (R in Equation 3.1) by
formation strength, depth, WOB, drill string rotational speed, differential pressure, jet impact
force of the mud, etc. The factor f1 models the effects of formation strength and bit type on
the rate of penetration, and is constant for given drilling conditions and bit type. The effect or
increasing formation strength due to normal compaction with depth is included in f2, while f3

models the effect of under-compaction in abnormally pressured formations. The factors f2 and f3

are also constant for a given formation. The factor f4 models the effect of over- or underbalance
on the penetration rate, and is presented in Equation 3.2. The equation is modified from the

17
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original equation by Bourgoyne and Young [12, 13], where it is a function of the mud density.
The factors f5 and f6 are related to the weight on bit (WOB) and rotational speed of the bit,
and are presented in Equations 3.3 and 3.4. The effect of tooth wear is modeled in factor f7, but
is assumed to be constant for a steady-state model. The factor f8 is presented in Equation 3.5
and models the effect of the hydraulic jet impact force of the drilling mud on the penetration
rate. The equations were originally published using engineering units, but have been altered to
SI units for the thesis work.

f4 = ea4(pf−pbh) (3.2)

f5 =


(

W
db

)
−
(

W
db

)
t

71.4−
(

W
db

)
t

a5

(3.3)

f6 =
(
N

60

)a6

(3.4)

f8 =
(

Fj

4 482

)a8

(3.5)

W represents the weight on bit (WOB) in metric tons while N represents the rotational speed
of the bit in revolutions per minute (RPM). The diameter of the drill (and thus also the well
at the given depth) is expressed as db. (W/db)t represents the threshold WOB per bit diameter
that is required to penetrate the given surface, and is therefore dependent on the formation
characteristics. pf represents the formation pressure at the bottom of the well in bar, while pbh

represents the bottom hole pressure in the wellbore. Fj represents the hydraulic jet impact force
in Newton.

The constant terms f1 - f3 and f7 were combined in one constant, R0. This constant represents
the formation drillability in units m/hr. The resulting equation for the ROP is given in Equa-
tion 3.6. The exponents a4, a5, a6 and a8 were chosen based on typical values found in literature,
and are presented in Table 3.1.[13]

Table 3.1: Penetration Rate Equation Parameters

Parameter a4 a5 a6 a8

Value 0.01 1 0.7 0.3

R = R0 e
0.01 (pf−pbh)


(

W
db

)
−
(

W
db

)
t

71.4−
(

W
db

)
t

(N
60

)0.7( Fj

4 482

)0.3

(3.6)

Equation 3.6 shows that the rate of penetration increases linearly with increasing W (WOB),
while the increase is less than linear with N , the rotational speed of the bit. The gain in ROP
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by increased rotational speed N will be less prominent at higher values of N . Both responses
make physical sense, though some may argue that the rate of penetration should decrease at
higher values of WOB. The reason for such a physical response is widely believed to be a result
of insufficient bottom-hole cleaning, and not a direct consequence of an increase in WOB.[13]
Insufficient hole cleaning will result in re-grinding of cuttings that are not quickly transported
away from the drill bit, leading to a less-than-optimal rate of penetration. However, we assume
perfect hole cleaning conditions and expect a response similar to that of Equation 3.6.

3.1.2 Topdrive Torque and Power

The torque and power of the topdrive are useful measurement to monitor during the drilling
process, and may be feasible variables for controlling the process. The torque that is needed to
rotate the drill string is the product of the force Fc and the length of the arm that the force is
acting on, in this case the radius of the drill string. The force Fc can be expressed as the product
of the specific cutting force kc and the area of the drilled surface, as shown in Equation 3.7,
where ds denotes the diameter of the drill string.

T = Fc
ds

2
= kc

d2
b ds π

8
(3.7)

The specific cutting force kc depends on the formation strength, but also on the weight on bit.
It is assumed that the specific cutting force can be modeled as a product of a parameter k0

c

which only depends on the formation characteristics, multiplied with the WOB. This is shown
in Equation 3.8.

kc = k0
c W (3.8)

The topdrive power (in kW ) can be calculated from the torque (T ) as shown in Equation 3.9.

P =
2πN T

60 000
(3.9)

3.1.3 Bottom Hole Cleaning

As mentioned in Section 2.1, one of the purposes of the drilling mud is to transport the cuttings
away from the bit and up to the surface through the well annulus. It is very important to ensure
sufficient transport of the cuttings, otherwise the drill bit will keep grinding the cuttings that
accumulate at the bottom of the well. This will lead to a lower rate of penetration and thus less
efficient drilling.

The circulation rate and properties of the drilling mud determine its capacity of transporting
the cuttings. First, the slip velocity of the particles must be determined, which is dependent on
the geometry and density of the cuttings. The slip velocity for Newtonian fluids in creeping flow,
i.e. very low Reynolds numbers (< 0.1), may be calculated using Stoke’s law. Choosing realistic
values for the annulus velocity, mud density, viscosity and the diameters of the drill string and
well, an estimate of the Reynolds number may be made as shown Equation 3.11. The hydraulic
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diameter of an annulus may be calculated using Equation 3.10.

dH =
π(d2

b − d2
s)

π(db + ds)
= db − ds (3.10)

NRe =
ρf va dH

µ
=

1 400 kg/m3 · 0.7m/s · (0.254m− 0.100m)
0.02Pa·s

= 7 546 (3.11)

From Equation 3.11 it is clear that Stoke’s law can not be used. For Reynolds numbers over 0.1,
empirically determined friction coefficients must be used. The friction coefficient in this case is
defined in Equation 3.12,

f =
F

AEK
(3.12)

where

• F = force exerted on the particle due to viscous drag,

• A = characteristic area of the particle, and

• EK = kinetic energy per unit volume.[13]

The force F is the difference between the weight and buoyancy of the particle, defined by Equa-
tion 3.13. The particle diameter is denoted dp, while ρs and ρf denote the particle density and
the effective mud density, respectively. The kinetic energy EK is defined by Equation 3.14, where
vsl is the particle slip velocity.

F = Fg − Fbo = (ρs − ρf ) g (π d3
p/6) (3.13)

EK =
1
2
ρs v

2
sl (3.14)

Assuming the particles are spherical, the characteristic area is given as A = π d2
p/4. Combining

the equations gives Equation 3.15 for the friction factor.

f =
4
3
g
dp

v2
sl

ρs − ρf

ρf
(3.15)

Several correlations have been proposed in order to let the slip velocity equations apply for
non-Newtonian fluids, such as drilling muds. Moore [14, 13] proposed that for Reynolds numbers
above 300, the flow around the particle is fully turbulent and the friction factor becomes constant
at a value of about 1.5. Chien [15, 13] recommends the use of 1.72 for the friction coefficient for
Reynolds numbers above 100. Though slightly different for lower Reynolds numbers, the different
correlations seems to agree rather closely for turbulent flows. Thus, using Moore’s correlation
and solving Equation 3.15 for the slip velocity, we get Equation 3.16.

vsl =

√
8
9
g dp

ρs − ρf

ρf
(3.16)
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The effective transport velocity vT of the cuttings is defined as the difference between the annulus
mud velocity and the slip velocity of the particles. The expression is shown in Equation 3.17.
Assuming that the mud flow through the bit (qbit) is equal to the flow of mud from the main pump
(qin), the annulus flow velocity is expressed as in Equation 3.18. Aa represents the cross-sectional
area of the well annulus.

vT = va − vslip (3.17)

va =
qbit
Aa

=
4 qin

π (d2
b − d2

s)
(3.18)

The transport velocity can be used to calculate the fraction of cuttings (xc) in the mud that is
flowing in the well annulus, since it can also be expressed as a function of the rate of cuttings as
shown in Equation 3.19.[13]

vT =
qs

Aa xc
(3.19)

The feed of cuttings per second (qs) is determined by the ROP (R) as shown in Equation 3.20,
and the fraction of solids in the mud return can be calculated by re-organizing Equation 3.19 as
shown in Equation 3.21.

qs =
R

3 600
Ab =

R

3 600
π
d2

b

4
(3.20)

xc =
qc

Aa vT
(3.21)

The effective density of the returning mud is dependent on the fraction of cuttings, and is
calculated using Equation 3.22.

ρf = xc ρs + (1− xc) ρm (3.22)

The transport velocity vT must be greater than zero in order for the cuttings to be transported
out of the well. A negative vT means that the slip velocity is higher than the annulus velocity,
resulting in an accumulation of cuttings at the bottom of the well. While a small, positive vT

in theory would bring the cuttings to the surface, this would result in a very high percentage
of cuttings in the mud and significantly increase the mud density, which in turn would lead to
a higher bottom-hole pressure and thus less favorable drilling conditions (refer to Equations 3.2
and 3.6).

3.1.4 Bottom Hole Pressure

All measurements from the bottom of the well are in practice rather difficult to obtain. The mea-
surements may be sent to the top by mud pulse telemetry, but this technology is ineffective during
times of lost circulation and when the mud circulation rate is low. Mud-pulse telemetry requires
a minimum flow rate of approximately 600-1000 liter/min. The measurements are updated only
1-10 times per minute and experience a couple of seconds of delay as they are transmitted to
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the surface. Underbalanced drilling also imposes several other challenges to mud pulse teleme-
try, as gas that is introduced to reduce the equivalent mud density causes signal attenuation
and drastically reduces the ability to transmit data through the mud. However, as mentioned
in Section 2.1.1, we assume we have a wired drill pipe providing accurate measurements of the
bottom hole pressure.

The measurement of the bottom hole pressure was modeled using simple fluid mechanics. The
flow of mud through the well annulus to the surface may be used to determine the pressure
profile. The annulus flow is assumed to be one-dimensional and we neglect other momentum
effects that may be experienced due to the rotation of the drill string. We also assume that the
drilling fluid is incompressible.

At steady-state and applying the assumptions above, the Navier-Stokes equations are reduced
to Equation 3.23. F represents the friction forces affecting the flow, z is the length coordinate
along the path of the flow (positive direction upwards), while Aa represents the cross-sectional
area of the annulus.

0 = −∂p
∂z
− 1
Aa

∂F

∂z
− ρf g (3.23)

We assume the friction gradient ∂F/∂z is constant, and integrate Equation 3.23 from z = −D
to z = 0. D is the depth of the well in meters (D > 0). Further, we re-organize to get pbh on
the left side of the equation, and get Equation 3.24.

pbh = pc +
1
Aa

∂F

∂z
D + ρf g D (3.24)

The friction loss term is dependent on the geometry of the flow (in this case an annulus) and
is difficult to calculate accurately. For this simple model, we assume that the annulus pressure
drop due to friction is linearly dependent on the mud flow. For a mud flow of 1 m3/min, we
assume a 15 bar pressure drop, giving a friction parameter θ = 15

1/60 = 900 bar · s/m3. The final
equation for the bottom-hole pressure measurement is shown in Equation 3.25.

pbh = pc + θ qin + ρf g D (3.25)

The first term represents the choke pressure, in other words the pressure at the top of the
annulus. The choke pressure term is only relevant for MPD systems that involve a sealed-off
annulus (RCD) and choke valve. For conventional drilling with an open mud return, pc is equal to
the atmospheric pressure. The second term represents the pressure loss due to friction. The last
term is the hydrostatic pressure from the annulus mud column, which is the also the dominant
term in the expression.
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3.2 Parameters

The various parameters in the drilling model are summarized in Table 3.2.

Table 3.2: Drilling Model Parameters

Parameter Description Value Unit
db Drill bit diameter 0.254 m

(W/db)t Threshold WOB per diameter 12.6 tons/m
ds Drill string diameter 0.10 m
dp Drilled particle diameter 0.005 m
θ Annulus friction parameter 900 kg/m4 s
D Depth of well 3 000 m
ρm Drilling mud density 1 400 kg/m3

ρs Cuttings density 2 700 kg/m3

R0 Formation drillability 5 m/hr
k0

c Formation cutting force parameter 100 000 N/tonm2

3.2.1 Parameters Relationships

Several parameters in the model equations are related to the formation strength. In Sec-
tion 5.1, disturbances are applied in order to determine the optimal variables for control in
a self-optimizing structure. Treating the different parameters as individual disturbances, the
system would be subject to more disturbances than there are measurements available. Such a
scenario is undesirable, as it would be difficult for the control structure to respond. Additionally,
such a model would not be realistic, as a disturbance in formation strength should affect all of
the related parameters simultaneously.

Since this is a simplified model, the various parameters related to the formation strength were
modeled as functions of the formation drillability R0. An increase in formation strength cor-
responds to a reduction in drillability. Similarly, the threshold WOB needed to penetrate the
formation increases, so it is modeled as inversely proportional to R0 as shown in Equation 3.26.(

W

db

)
t

∝ 1
R0

(3.26)

The topdrive torque and power should increase with increasing formation strength. Thus, the
parameter k0

c is modeled as inversely proportional to the formation drillability R0. See Equation
3.27. The nominal value of k0

c was determined to give a realistic result for the topdrive power.

k0
c ∝

1
R0

(3.27)

It is emphasized that the relations described in the equations above are not based on exact
empirical results or theoretical deduction, rather logical reasoning of a realistic scenario. While
being a simplified model, they should be sufficient to provide reasonable responses for the various
parameters to a disturbance in formation strength. It should also be emphasized that the drilling
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model is not based on any specific scenario or field data, but should be interpreted as a simple
model of a fictional drilling process.

3.3 Drilling Model Results

A steady-state model of the drilling process was created in MATLAB as a function accepting
the various inputs (denoted u) and returning the values of the measurements (denoted y). The
MATLAB files are attached in Appendix E. The inputs to the drilling model are presented in
Table 3.3, and the output of the drilling model is presented in Table 3.4.

Table 3.3: Drilling Model Inputs

Input (u) Description Value Unit
W Weight on Bit (WOB) 30 tons
N Drill string RPM 100 min−1

qin Main mud pump flow 40 liter/s
pc Choke pressure 10 bar

Table 3.4: Drilling Model Outputs

Measurement (y) Description Value Unit
R Rate of penetration (ROP) 17.61 m/hr
T Topdrive torque 29.92 kNm
P Topdrive power 313.36 kW
xc Fraction of cuttings in mud 0.79 %
pbh Bottom hole pressure 461 bar



Chapter 4

Optimization and Active Constraint
Control

This section will provide an analysis and overview of the various factors affecting the cost of the
drilling process in order to identify the objective function for the optimization problem. The
degrees of freedom for optimization of the process will be presented. An equation describing
the cost of drilling (objective function) is derived, and the operational constraints will be iden-
tified. Finally, the nominal optimal values of both manipulated variables and measurements are
determined, as well as the active constraints at optimum.

4.1 Degrees of Freedom (DOF)

In general, a degree of freedom (DOF) is a single scalar number describing a micro-state of a
system. The system is then completely described by all its degrees of freedom. For process
design, the number of steady-state DOF’s is the number of variables (parameters) that must
be specified to completely define the process. The degrees of freedom can be calculated by
subtracting the number of specified variables (equations) from the number of process variables,
as shown in Equation 4.1.

NSS = Nvar −NSV (4.1)

Nvar represents the number of process variables, and NSV represents the number of specified
variables (equations). However, counting equations is not a very efficient procedure. The steady-
state degrees of freedom for a process may also be determined by counting the manipulated
variables NMV and subtracting the variables with no steady-state effect and the process specifi-
cations. The degrees of freedom in the drilling process involve all manipulated variables (MV’s)
available to the driller. They are recapitulated in Table 4.1. We assume that Managed Pres-
sure Drilling (MPD) is available, thus allowing us to use the choke pressure (pc) as a degree of
freedom.

In MPD systems, the choke pressure pc is set by the choke valve and back pressure pump
associated with the rotating control device (RCD). The choke valve is used to control the pressure,
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Table 4.1: Manipulated Variables (MV’s) in the Drilling Process

MV (u) Description Unit
W Weight on Bit (WOB) tons
N Drill string RPM min−1

qin Main mud pump flow liter/s
pc Choke pressure bar

but its range is limited to the fully opened and fully closed positions of the valve. The back
pressure pump can apply additional pressure in order to lift the range of the choke valve to the
appropriate level. However, the choke pressure is treated directly as a manipulated variable in
this thesis as it represents one degree of freedom in the process.

4.2 Objective Function: The Cost of Drilling

In order to study the optimization of the drilling process it is critical to identify the objective
function of the problem. The drilling is usually performed by a contractor and paid on a per-day
basis. Thus, the major concern when optimizing the drilling process is naturally to reduce the
lease time. The same applies to companies that own their own drill rigs and employ their own
operators, as a faster drilling time may allow the rig to be used for other tasks sooner. We
assume that the costs of energy, drill bits and other equipment is negligible in comparison to the
per-day cost of keeping the rig in operation.

The cost of drilling may be represented as in Equation 4.2. J represents the total cost of drilling,
Cf represents a fixed cost for leasing the drilling rig while Cvar represents the operational costs
per hour. The total time of leasing the drilling rig consists of the drilling time (td), the time
spent making pipe connections (tc), and the total trip time (tt).

J = Cf + Cvar(td + tc + tt) (4.2)

The drilling time may be expressed as the total depth of the well in meters (D), divided by the
average rate of penetration (R) in m/hr. See Equation 4.3.

td =
D

R
(4.3)

The total time spent making connections to the drill string is a function of both the depth and
the connection time (t0c). The relationship is shown in Equation 4.4. It is assumed that each
pipe connection is 27 meters long, so D

27 pipe connections must be made in to reach the desired
depth of the well.

tc = t0c
D

27
(4.4)

The total trip time is difficult to predict. Many trips are necessary and planned in order to
change the drill bit and install well casing, but other unexpected conditions or disturbances may
also cause problems to the equipment and cause a trip. We assume that the total trip time may
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be expressed as a product of the time spent on a single trip multiplied by the number of trips.
The number of trips required for bit changes is the drilling time (td) divided by the lifetime of
the bit (t0d). The lifetime of the bit depends on the operating conditions and wear the bit is
exposed to. In addition, a constant number of trips (1 every 1000 meters) are assumed for the
installation of casing and other purposes. The total trip time is expressed in Equation 4.5

tt = t0t

(
td
t0d

+
D

1 000

)
= t0t

(
D

R t0d
+

D

1 000

)
(4.5)

Combining Equations 4.2 to 4.5, the cost function of the drilling process may be expressed as
Equation 4.6.

J = Cf + Cvar

(
D

R
+ t0c

D

27
+ t0t

(
D

R t0d
+

D

1 000

))
(4.6)

Naturally, it is desirable to perform the drilling as fast as possible. At first glance, one may
expect this to be ambiguous with maximizing the rate of penetration (R). However, the drill bit
wear is affected by the operating conditions and is an important factor in optimizing the drilling.

4.2.1 Bit Wear

The drill bit must be changed when either the teeth or the bearings are completely worn out.[13].
We assume that the bit teeth wear out before the bearings, so the bit lifetime is equivalent to
the time needed to completely wear down the teeth. According to Bourgoyne et. al. [13], the
bit tooth wear may be modeled as shown in Equation 4.7

dh

dt
=

1
τH

(
N

60

)H1


(

W
db

)
m
− 71.4(

W
db

)
m
−
(

W
db

)
(1 +H2/2

1 +H2h

)
(4.7)

where

• h = fractional tooth height that has been worn away,

• t = time, hours,

• H1, H2, (W/db)m = constants,

• τH = formation abrasiveness constant, hours.

As in Equation 3.6 on page 18, W and N represent the weight on bit and rotational speed of
the drill string, respectively. The recommended values for H1, H2 and (W/db)m from various
rolling-cutter rock bit classes are presented in Table 4.2.[13] (W/db)m represents the maximum
WOB per diameter of drill bit that should be used. For the course of this work, the drill bit has
been assumed to be a class 3-1 bit.

(W/db)m in Table 4.2 has units lbf/in. When converted to metric units, we get (W/db)m =
178.6 tons/m. A bit diameter of 0.254 m (10 in.) gives Wm = 45.36 tons for the maximum
WOB.
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Table 4.2: Recommended Tooth-Wear Parameters for Rolling-Cutter Bits [13]

Bit Class H1 H2 (W/db)m

1-1 to 1-2 1.90 7 7.0
1-3 to 1-4 1.84 6 8.0
2-1 to 2-2 1.80 5 8.5

2-3 1.76 4 9.0
3-1 1.70 3 10.0
3-2 1.65 2 10.0
3-3 1.60 2 10.0
4-1 1.50 2 10.0

Defining a tooth wear parameter J2 as in Equation 4.8, we may rewrite Equation 4.7 as shown
in Equation 4.9.

J2 =


(

W
db

)
m
−
(

W
db

)
(

W
db

)
m
− 71.4

(60
N

)H1
(

1
1 +H2/2

)
(4.8)

∫ t0d

0
dt = J2τH

∫ hf

0
(1 +H2h) dh (4.9)

Integrating Equation 4.9 we get Equation 4.10.

t0d = J2τH(hf +H2h
2
f/2) (4.10)

We assume that the same bit (class 3-1) is used consequently, so there will be no changes in
parameters. By collecting the constants in one single time constant K, we get Equation 4.11.

t0d = K


(

W
db

)
m
−
(

W
db

)
(

W
db

)
m
− 71.4

(60
N

)1.7

(4.11)

K may be regarded as a bit lifetime constant and is naturally dependent on the strength and
abrasiveness of the drilled formation. The bit lifetime constant K will be reduced as a result
of an increase in formation strength, and is thus modeled as proportional to the drillability R0

(Equation 4.12).
K ∝ R0 (4.12)

The value of K was set to 75 hours by trial and error to give a realistic value for the bit lifetime
of approximately 15 hours.

4.2.2 Operating Modes

In addition to the operating conditions, Equation 4.6 on page 27 shows that the drilling process
costs are highly dependent on the non-drilling times (t0c and t0t ). In fact, it may be easier to divide
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the process into two specific operating modes: One for the actual drilling, and one for the pipe
connections and drilling trips. This is due to the nature of the plantwide control approach of this
project. The same objectives are not applicable to bothmodes of the process. During connections
and trips, pressure control is the only relevant control objective. The design and performance of
the pressure control system during pipe connections and trips is studied in Chapter 6.

During the actual drilling operation, the specific connection time (t0c) and trip time (t0t ) may be
assumed constant. Thus, the second term in the main brackets of Equation 4.6 and the last term
regarding the trip time are regarded as constant. With respect to minimizing the cost function,
constant terms are irrelevant and may be neglected. The resulting equation is presented in
Equation 4.13.

min J = min
(
D

R
+ t0t

D

R t0d

)
(4.13)

The trip time constant t0t was assumed to be 10 hours. The other terms (penetration rate R
and the bit-lifetime t0d) are dependent on the drilling operating conditions and are part of the
optimization problem. The total well depth D is constant and could be removed, but was kept
in the objective function in order to give it the more comprehensible units of time (hours). The
depth D was set to 3 000 meters.

4.3 Operational Constraints

There are several constraints that need to be taken into account during drilling, both for measure-
ments and for inputs. The most important constraints are the pressure constraints, as described
in Section 2.1.1. The bottom hole pressure must be controlled within its limits very accurately.
We assume the bottom hole pressure is constrained between 470 and 480 bar for a depth of 3 000
meters.

The weight on bit (WOB) is constrained by the threshold WOB (Table 3.2) on page 23 and the
maximum WOB per diameter (W/db)m (Table 4.2 on page 28). We assume that the rotational
speed of the drill string has an upper constraint of 200 RPM, as values above this would most
likely cause problems for the equipment. The specifications of the topdrive motor naturally
provide physical limits for the torque and power. However, we assume that the topdrive has
sufficient capacity to operate at the optimal conditions.

The mud circulation rate may be altered in order to affect various measurements, such as the
pressure profile, the fraction of cuttings in the returning mud, or the penetration rate. A high
mud circulation rate will provide a higher jet impact force through the nozzles of the drill
bit. However, increasing the mud flow rate beyond a certain point will eventually increase the
frictional losses in both drill string and annulus. In turn, this will reduce the jet impact force at
the bit, thus reducing the rate of penetration and increasing the drilling costs.[13] A high mud
circulation rate also increases the risk of mud loss if the well is overbalanced. In order to take
these considerations into account in the optimization problem, the mud flow rate was constrained
at a maximum of 50 liter/s. The operational constraints are recapitulated in Table 4.3.
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Table 4.3: Operational Constraints in the Drilling Process

Constraint Lower Bound Upper Bound Unit
W 3.2 45.4 tons
N 0 200 min−1

qin 0 50 liter/s
pbh 470 480 bar

4.4 Optimization Results

The optimization of the drilling process was carried out in MATLAB using the fmincon function
for non-linear constrained minimization. The active-set algorithm for the fmincon function uses
a sequential quadratic programming (SQP) method, solving a quadratic program (QP) at each
iteration and updating an estimate of the Hessian of the Lagrangian function.[16]

The scripts and functions that were used are attached in Appendix E. The nominal optimal
values for the objective function, the manipulated variables and the measurements are presented
in Table 4.4. Some information about the optimization routine is presented in Table 4.5.

Table 4.4: Nominal Optimal Values

Obj. fun. Nom. opt. Unit
J 249.09 hours

MV’s Nom. opt. Unit
W 33.1 tons
N 100 min−1

qin 50 liter/s
pc 10.3 bar

Measurements Nom. opt. Unit
R 20.5 m/hr
T 33 kNm
P 344 kW
xc 0.7 %
pbh 470.0 bar

Table 4.5: Details About the Optimization

Number of iterations 24
Function Evaluations 131

First order optimality measure 3.8 · 10−4

Active inequalities 2
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The Hessian of the Lagrangian function (refer to Section 2.2) at optimum is presented below.

∇2
uuL(u, λ) = 104 ·


0.1005 −0.0006 −0.1483 0.5960
−0.0006 0.0086 0.0063 −0.0218
−0.1483 0.0063 0.2223 −0.8908
0.5960 −0.0218 −0.8908 3.5719


The active constraints in the optimization are the lower bottom hole pressure constraint and the
upper mud circulation rate constraint.

4.5 Active Constraints

It is important to control the constraints that are active at the optimum to ensure optimal
operation. This holds for any type of process. As an example, consider a chemical plant producing
product A that is sold with a purity requirement of 95%. The purity specification constraint will
likely be active at optimal operation, because it is uneconomic to produce the product with a
higher purity. A purity that is higher than the required specification would mean the company is
selling a higher value product for a lesser price. In order to ensure optimal operation of the plant
when disturbances to the process occur, it is important to control the purity by a manipulated
variable (e.g. heat applied to separation process, or feed of a specific reactant).

The active constraints in the drilling process model are the bottom hole pressure (pbh) and the
mud circulation rate (qin). The control of each active constraint consumes one manipulated
variable (MV). We assume the bottom hole pressure is controlled using the choke pressure (pc)
as described in Section 2.1.1, and thus omit the choke pressure and the mud flow rate from
further analysis.

4.6 Unconstrained Optimization

The bottom hole pressure and the mud circulation rate are omitted from the optimization, and
are specified at their constrained values shown in Table 4.6.

Table 4.6: Active Constraints in the Drilling Process

Active Constraint Value Unit
qin 50 liter/s
pbh 470 bar

The remaining optimization problem is unconstrained. The Hessian matrix of the objective
function (Juu) at the unconstrained optimum is presented below.

∇2J(u) = Juu =
[
1.8816 0.1159
0.1159 0.0222

]
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Graphical representations of the objective function versus the two unconstrained degrees of
freedom, the weight on bit (WOB) and rotational speed of the drill string, are presented in
Figures 4.1a and 4.1b. A 3-dimensional surface plot of the objective function is presented in
Figure 4.2.

(a) J(u,d) vs. WOB (N = 150 rpm) (b) J(u,d) vs. RPM (WOB = 25 tons)

Figure 4.1: Plots of the objective function J(u, d) vs the weight on bit (WOB) and the drill
string RPM.

Figure 4.2: Surface plot of the objective function J(u, d) versus the WOB and the drill string
RPM.

The remaining task is to determine what variables should be controlled by the two unconstrained
degrees of freedom in the drilling process. The choices of controlled variables may give very
different results when the drilling process is subject to disturbances. This will be analyzed in
Chapter 5.



Chapter 5

Self-Optimizing Controlled Variables

This section will cover the process of selecting the variables that should be controlled during the
drilling process. The theory was described in detail in Section 2.3.

The results of Chapter 4 showed that two degrees of freedom must be used to control the active
constraints. Assuming the MPD system with the choke and backpressure pump is used to control
the bottomhole pressure and the mud circulation rate is kept at its constrained value, we are left
with two manipulated variables:

• Weight on Bit (W )

• Drill string rotary speed (N)

The manipulated variables can be used to control various measurements in order to gain more
profitable operation when the drilling process is subject to disturbances.

The best controlled variables may be identified by a brute-force evaluation, implementing con-
trol of various combinations of controlled variables, introducing the expected disturbances and
calculating the loss compared to the re-optimized value of the objective function. While the
process only involves two unconstrained degrees of freedom and thus two controlled variables left
to determine, a brute-force evaluation is rather tedious work. We have six variables available
after removing the bottom hole pressure, choke pressure and mud flow rate from the analysis.
Therefore, we are left with 6!

2! 4! =
(
6
2

)
= 15 combinations of controlled variables. It is important

to recognize that the manipulated variables are treated as measurements when determining the
controlled variables. In case a manipulated variable is used as a controlled variable, it means
that it is beneficial to keep the MV constant.

Instead of performing a brute-force evaluation, we may determine the self-optimizing controlled
variables by various mathematical methods. The procedures and results of the maximum scaled
gain (minimum singular value) method, the null space method and the exact local method are
described in Sections 5.2, 5.3 and 5.4.
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5.1 Process Gains and Disturbances

The process gains from the inputs to the measurements (outputs) can be achieved by applying
small perturbations to the manipulated variables. The magnitude of the perturbations was 1% of
the nominal value. The calculation is performed as shown in Equation 5.1, and the gain matrix
is presented in Appendix B. The MATLAB script is presented in Appendix E. The inputs
themselves are included as the bottom two measurements in the gain matrix, so the bottom 2×2
matrix is naturally an identity matrix.

Gi,j =
∆yi

∆uj
=
yi − y0

i

uj − u0
j

(5.1)

The first steps in selecting the optimal controlled variables is identifying the sensitivity of the
measurements to various disturbances. As described in Section 3.2.1, the parameters related
to the formation strength were all modeled to be functions of the drillability parameter R0.
In addition to the formation strength, disturbances in the formation density and the bottom
hole pressure were introduced. The disturbance parameters were perturbed 1%, and the drilling
process was re-optimized after each disturbance in order to determine the optimal variation of
the process variables. The disturbance sensitivity matrix F was calculated using Equation 5.2,
and is presented below. The left column of F represents the disturbance in formation drillability
(R0), the middle column represents the disturbance in formation density (ρs), while the rightmost
column represents the disturbance in the bottom hole pressure (pbh).

Fi,j =
∆yi,opt

∆dj
=
yi,opt − y0

i,opt

dj − d0
j

(5.2)

F =



3.94 0.00 −0.15
−6.71 −0.00 −0.00
−27.05 0.00 0.00

0.26 0.00 −0.01
−0.18 −0.00 −0.00
12.60 0.00 0.00



The expected magnitudes the disturbances are presented in Table 5.1.

Table 5.1: Expected Disturbances

Disturbance Magnitude Unit
R0 -2.5 m/hr
ρs 500 kg/m3

pbh 10 bar

The expected implementation errors (n) for each measurement (y) were estimated based on
assumptions of measurement sensitivity, and are presented in Table 5.2.
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Table 5.2: Implementation Errors

Measurement (y) Implementation error (n) Unit
R 0.1 m/hr
T 3 kNm
P 30 kW
xc 1.0 %
W 3 tons
N 10 min−1

5.2 Maximum Scaled Gain (Minimum Singular Value) Method

The optimal variation of the measurements (eopt = ∆yopt) when subject to the disturbances in
Table 5.1 are calculated using Equation 5.3. Further, the optimal span of the measurements is
calculated as shown in Equation 5.4. The results are presented in Table 5.3.

eopt = ∆yopt = F Wd (5.3)

span(zi) = max
d
|ei,opt|+ n (5.4)

Table 5.3: Optimal Variation, Implementation Errors and Expected Optimal Span

Measurement eopt ei span(z) Unit
R 9.85 0.1 9.95 m/hr
T 17.8 3.0 20.8 kNm
P 68 30 98 kW
xc 0.6 1.0 1.6 %
W 0.5 3.0 3.5 tons
N 31 10 41 min−1

The scaled gain matrix (G′) is calculated by multiplying the output scaling matrix S1 with the
gain matrix G. As described in Section 2.3.2, the S1 matrix consists of the inverse elements of the
span along its diagonal. Combinations of 2× 2 matrices are selected from G′, and the minimum
singular value σ(G′J−1/2

uu ) is calculated. The results are sorted by descending minimum singular
value and presented in Table 5.4. The S1 and G′ matrices are presented in Appendix B.

The results indicate that the best controlled variables (CV’s) during drilling are the topdrive
power (P ) and the weight on bit (W ). The pairing of controlled and manipulated variables is
fairly intuitive in this case. The weight on bit is kept constant while the rotational speed of the
drill string is used to control the topdrive power at a constant set point.
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Table 5.4: Minimum Singular Value Results

z1 z2 σ(G′J−1/2
uu )

P W 0.243
W N 0.159
R W 0.077
P N 0.058
R T 0.051
T P 0.050
T N 0.043
R N 0.042
xc W 0.037
T xc 0.037
R P 0.018
xc N 0.021
P xc 0.009
R xc 0.0000
T W 0.0000

5.3 Null Space Method

We have two manipulated variables and three disturbances. However, we assume that the dis-
turbance in drillability R0 is the most prevalent and thus neglect the other disturbances. The
assumption is supported by analyzing the disturbance sensitivity matrix F . The sensitivities to
a disturbance in R0 (the leftmost column) are much higher than the other disturbances.

Thus, we consider only one disturbance and choose ny = nu + nd = 2 + 1 = 3 measurements to
combine in order to calculate the optimal measurement combination using the null space method.
It should not matter which measurements are selected. However, we analyze the disturbance
sensitivity matrix F and pick measurements with smallest relative sensitivity. Thus, we choose
to combine the measurements of the topdrive power (P ), the weight on bit (W ) and the drill
string rotational speed (N).

The left null space of the new disturbance sensitivity matrix F (containing only the rows
corresponding to P , W and N) was calculated, giving the measurement combination matrix
(Hnullspace) below. The results were normalized so the Euclidean norm of each row in H was
equal to unity.

Hnullspace =
[
−0.01 1.00 0.00
0.42 0.00 0.91

]

The first row of Hnullspace is approximately equal to controlling the weight on bit (W ), while the
second row indicates controlling a combination of the topdrive power (P ) and the drill string
RPM. Therefore, the results do not differ too much from those obtained using the method of
maximizing the singular value. However, the nullspace method does not take implementation
errors into account, and is therefore not the most reliable method for determining self-optimizing
control variables.
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5.4 Exact Local Method

We use the exact local method to determine the optimal measurement combinations for the
controlled variables, this time considering the effects of implementation errors. The F̃ matrix is
constructed as shown below:

F̃ =
[
F Wd Wn

]
Using the exact local method, we may choose how many measurements we wish to combine in
our controlled variables. The loss is reduced by increasing the number of measurements that
are combined, but this also increases the complexity of the controller. In order to achieve the
optimal measurement combination matrices H, we solve the optimization problem presented in
Equation 5.5.

min
H
||HF̃ ||2 (5.5)

subject to: HG = J1/2
uu

The exact local method was solved by vectorizing the appropriate matrices and solving a quadratic
minimization problem subject to linear constraints. The procedures are shown in Appendix C.
The optimal measurement combinations and the corresponding maximum losses are presented
in Table 5.5. The complete tables with all the results of the exact local method are presented in
Tables D.1 to D.5 in Appendix D. The rows of the measurement combination matrices H were
normalized so the Euclidean norm of each row was equal to unity. The normalization should
make it easier to interpret the effect of each individual measurement to the controlled variable.

The number of measurements that are combined the controlled variables declines as the table
extends downward. The last row represents no control, thus keeping the inputs (WOB and
drill string RPM) constant. When only two measurements are combined, the measurement
combination matrix H is irrelevant and single measurements can be chosen instead. This can
be seen from Equation 5.6. If H is a square matrix we get HH−1 = I, and it is clear that the
choice of H has no effect on the loss.

L =
1
2
||J1/2

uu (HG)−1HF̃ ||22 (5.6)

The loss decreases as we increase the number of measurements that are combined. This is
expected, as the effect of the optimal variation of each measurement is reduced by combining an
increasing amount of measurements. A graphical representation of the losses plottet against the
number of measurements is presented in Figure 5.1.

The losses in Table 5.5 are the maximum losses, in other words the loss when the magnitude of the
expected disturbances (d′) and implementation errors (n′) is unity. Figure 5.2 shows a graphical
representation of the loss function for the six candidate optimal measurement combinations
(presented in Table 5.5) as a function of the magnitude of the disturbances and implementation
errors. The results show that the loss using a constant input policy is less than six hours higher
than the optimal combination of two measurements (P and W ).
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Figure 5.3 shows the maximum losses with some selected two-measurement combinations that
give very high losses. Several of the combinations may sound like good variables to control, if
the system is not analyzed properly. The figure is meant to illustrate the importance of choosing
good controlled variables.

Table 5.5: Optimal Controlled Variables

Description CV’s (CV1 on top, CV2 on bottom) Max. loss

6 measurements 0.75 R + 0.40 T + 0.02 P + 0.001 xc + 0.53 W - 0.07 N 1.87-0.39 R - 0.11 T + 0.16 P - 0.001 xc - 0.77 W + 0.46 N

5 measurements 0.75 R + 0.40 T + 0.02 P + 0.53 W - 0.07 N 1.87-0.39 R - 0.11 T + 0.16 P - 0.77 W + 0.46 N

4 measurements 0.70 R + 0.52 T + 0.50 W - 0.01 N 2.02-0.19 R + 0.76 T - 0.36 W + 0.50 N

3 measurements 0.83 R + 0.56 T - 0.05 N 3.15-0.51 R + 0.64 T + 0.58 N

Single measurements W 6.24
P

Constant Inputs W 11.44
N

Figure 5.1: Plot of maximum loss versus the number of combined measurements.
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Figure 5.2: Plot of maximum loss of optimal measurement combinations versus the magnitude
of disturbances.

Figure 5.3: Plot of maximum loss of poor measurement combinations versus the magnitude of
disturbances.
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5.5 Pairing of Variables

The pairing of controlled variables with manipulated variables is usually determined by calcu-
lating the relative gain array (RGA), and choosing combinations that have a positive relative
gain as close to one as possible.[5, 17] However, the pairing of variables is irrelevant when solving
the exact local method with more measurements (y) than inputs (u), because the measurement
combination matrix H will be multivariable itself.

Equation 5.5 on page 37 showed the optimization problem associated with the exact local method.
The optimal solution H of the measurement combinations is non-unique.[11] From Equation 5.6
on page 37, we see that any non-singular matrix D of size nu×nu will be a solution to the exact
local method. We introduce H1 = DH, and apply it to Equation 5.6. The result of the loss
variable is presented in Equation 5.7. D is invertible because it is a square, non-singular matrix.

J1/2
uu (H1G)−1H1F̃ = J1/2

uu DD
−1(HG)−1HF̃ = J1/2

uu (HG)−1HF̃ (5.7)

The result is that we have an extra degree of freedom in choosing the measurement combinations.
We may, e.g. choose D = (HG)−1 and get H1G = DHG = I, thus resulting in a diagonal
decoupling. As mentioned above, the consequence of this degree of freedom is that calculating
the RGA and pairing variables is not relevant for measurement combinations. The pairing and
H matrix may be chosen as desired by selecting the appropriate D matrix.

The pairing for the optimal single measurement controlled variables (two measurements), how-
ever, must be determined. In this case, it is fairly intuitive. The weight on bit (W ) is kept
constant, while the drill string RPM (N) is used to control the topdrive power (P ). Interpret-
ing this control structure physically tells us that as the formation strength increases, the power
is kept at a constant set point by reducing the drill string RPM. Refer to Section 3.1 for the
equations. This control structure will give less loss than keeping the inputs constant, as seen in
Table 5.5 and Figure 5.2.

In addition to the self-optimizing controlled variables determined in this section, we chose to
control the bottom hole pressure (pbh) with the annulus choke pressure (pc) and keep the mud
circulation rate (the main mud pump flow rate, qin) at a constant set point. This is because they
represent active constraints at optimum, as explained in Section 4.5.

5.6 Discussion

The previous sections have determined the optimal single measurement controlled variables, and
the optimal measurement combinations for combining three to six measurements. However, the
question that yet remains is, how many measurements do we wish to combine? The loss is reduced
by increasing the number of measurements that are combined in the controlled variables, as the
effect of the optimal variation of each measurement is reduced. On the other hand, implementing
measurement combinations complicates the control structure which naturally is undesirable. We
wish to keep the control structure as simple as possible in order to facilitate easier understanding
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of the controllers and also ease the tuning.

The graphical representation of the loss versus the number of measurements in Figure 5.1 shows
us that the reduction in loss from combining more than four measurements is negligible. Thus,
we should not worry about using more than four measurements in the controlled variables. The
next question is whether we want to choose single measurements for the controlled variables, or
whether we want the lower loss, but increased complexity, of introducing measurement combi-
nations. In the case of measurement combinations being chosen, one might as well combine four
measurements instead of three. The difference in controller design is minimal, but the reduction
in loss is more prominent (see Figure 5.1).

The last option available is not selecting any controlled variables for the two unconstrained
degrees of freedom, thus keeping them at constant values. The expected loss with such a constant
input policy was shown in Figure 5.2. The loss is less than 12 hours of a total active drilling
time of approximately 550 hours. The time spent making pipe connections and drilling trips,
as well as the non-productive time is not included in the active drilling time. Thus, the loss
with constant inputs is 2.2% of the active drilling time. The loss when controlling the optimal
combination of four measurements is 2 hours. This means that the savings with a measurement
combination control structure are approximately 10 hours, or 1.8% of the active drilling time.
Similar results have been reported in drilling literature by Reed [18] and Galle and Woods [19].
Reed [18] indicated a difference of less than 3% between constant and variable bit weight and
rotary speed for the cases studied, while Galle and Woods [19] reported that the costs were only
slightly higher with constant inputs.

The optimal controlled variables using single measurements are the topdrive power and the
weight on bit. This control structure gives a loss of approximately 6 hours. Thus, the savings
compared to a constant input policy are less than 6 hours, or 1.1% of the active drilling time.

The drilling process is subject to much uncertainty regarding unforeseen events and accidents such
as stuck pipe, drilling kicks and equipment failure. These incidents necessitate non-productive
time on the drill rig, which is just as costly as the time spent drilling. According to Godhavn
[20], the non-productive time may count up to 30% of the total drilling time. Compared to
non-productive times of such magnitudes, savings of 1-2% in active drilling time seem negligible.
However, the per-day rate of drilling is very costly, and any time saved equals a substantial
revenue.

Another possibility is to discard the constant set point policy and control of self-optimizing
controlled variables, and rather install a real-time optimizer (RTO). Eren and Ozbayoglu [21]
suggest that real-time optimizers will be widely used in future drilling activities. A RTO is
hierarchically positioned above the control layer (see Figure 2.2 on page 10), and continuously
optimizes the drilling process for the process parameters at the given time. The RTO unit then
passes the optimal values of the process variables as set points to the control layer, as illustrated
in Figure 2.4 on page 13. However, installing a RTO requires an on-line computer database
with a continuous feed of accurate drilling parameters. Real-time optimization may not be as
reliable as operating with constant set points, and may prove to involve more effort than is
reflected in the outcome. The loss with a constant set point policy for a optimal combination of
measurements very small relative to the total drilling time. It may be likely that the increased
savings of installing an RTO are not worth the increased complexity of the control structure.
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5.7 Stick-Slip Phenomenon

The drill string is a long, relatively thin-walled metal pipe extending several thousand meters.
It is natural that the drill string experiences vibrations during drilling. The vibrations are
classified as torsional, axial and lateral vibrations, each presenting a challenge to the drilling
process. Torsional vibrations may result in stick-slip oscillations of the drill string, while axial
vibrations may cause the drill string to oscillate along its vertical axis, thus making the bit
bounce against the bottom of the well. Lateral vibrations may cause the drill bit to rotate
around multiple centers in the borehole in a whirling fashion, thus drilling an oversized hole and
reducing the rate of penetration. The stick-slip phenomenon is in particular considered to be a
major problem in drilling operations, and has been frequently addressed in drilling literature.

Torsional vibrations in the drill string and the stick-slip phenomenon arise from the difference
between static and dynamic friction. Various downhole conditions such as drag, doglegs (bends),
tight hole sections or formation characteristics may cause the bit to temporarily get stuck or stall
in the formation while the topdrive continues to rotate the drill string. The result is that torsional
energy is built up in the drill string until the energy overcomes the static friction between the drill
bit and the formation. Since the dynamic friction is lower than the static friction, the drill string
has excessive energy stored up to propel itself around. The result is that once the bit comes loose,
it rotates or whips around at a very high speed. This creates a torsional wave that travels up the
drill string to the surface and the topdrive. If the topdrive is operated at a constant speed, it will
act as a fixed end to the drill string and reflect the torsional wave back down. When reaching
the bit, the torsional wave may cause it to stall again, thus repeating the stick-slip cycle. The
stick-slip motion causes fatigue to the drill string, specially at the pipe connection joints, and
causes severe axial and lateral vibrations during the slip phase. The consequences are excessive
bit wear and a reduced rate of penetration.[22, 23]

The stick-slip phenomenon can be encountered even without the effect of physical conditions such
as described above. At low rotational speeds, the transition between static and dynamic friction
causes a drop in the frictional torque, as shown in Figure 5.4.[22, 24, 25] The negative slope
of the friction torque with respect to the rotational speed has an anti-damping effect, causing
the magnitude of the stick-slip phenomenon to increase with each cycle. Thus, when operating
with a drill string rotational speed in the transition phase, the drill string will experience self-
sustained stick-slip oscillations. Increasing the rotational speed above the critical speed will
cause the oscillations to be dampened and thus eventually reach a constant value. However, the
optimal rotary speed may be lower than the critical speed for torsional oscillations. Therefore, it
is desirable to be able to operate in this region without experiencing the stick-slip phenomenon.

Several solutions to eliminate stick-slip have been presented in drilling literature, such as soft-
torque systems, manipulating the weight on bit (WOB) or introducing a vibration damper in the
bottom hole assembly (BHA).[22] The solution involving the use a torque feedback control system
with a varying drill string rotational speed seems to be most widespread.[26, 27] In conventional
drilling, the topdrive is designed to keep the rotational speed of the drill string at a constant
value. As described above, such a system will reflect the torsional wave and introduce stick-slip
oscillations if operated below the critical RPM. Instead, Halsey et. al. [26] proposed letting
the topdrive respond to the dynamic torque oscillations in such a way that the vibrations are
dampened or absorbed. The control system involved implementing torque measurement at the
drilling floor and controlling the torque by manipulating the rotational speed of the drill string.
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Figure 5.4: Plot of friction torque as a function of rotational speed of the drill string.[25]

The torque feedback control system was studied further by Javanmardi et. al. [27], implementing
a direct measurement of the torque from the topdrive motor current and voltage measurements.
The system was tested on off-shore wells with significant reductions on torque fluctuations and
stick-slip conditions. In addition, the performance of the torque feedback control system was
found to increase when reducing the inertia of the topdrive.[28]

The problems regarding the stick-slip phenomenon seem to be closely related to keeping a con-
stant drill string rotational speed. Applying the results from the drilling literature that were
described above, we may assume that a constant input (WOB and drill string RPM) control
structure could potentially be subject to stick-slip conditions and thus give non-optimal drilling
operation. On the other hand, using the drill string rotational speed to control the topdrive
power, or other combinations of measurements, implies a varying rotary speed input. Distur-
bances in lithology that may provoke stick-slip will be compensated by the rotational speed of
the drill string in order to keep the controlled variable at its set point. Thus, it is likely that
varying the drill string RPM will reduce the reflection of torsional vibrations from the topdrive
and thus dampen stick-slip oscillations in a similar manner as the torque feedback systems of
Halsey et. al. [26] and Javanmardi et. al. [27].

Other solutions to avoid stick-slip conditions involve increasing the rotational speed above the
critical value. However, an excessive drill string RPM may lead to lateral vibrations, that again
reduce the rate of penetration.[22] Additionally, merely changing an input from its optimal value
will result in non-optimal operating conditions. The increase in drill string RPM may however be
compensated (or even completely substituted) by reducing the weight on bit, since the torque is
dependent on the WOB. The structure of such a control system is quite sophisticated. Therefore,
an alternative solution to avoiding stick-slip could be implemented in a supervisory control layer
(refer to Figure 2.2 on page 10), involving a model predictive controller (MPC). Recognizing
stick-slip conditions, the MPC could optimize the process (avoiding stick-slip) and determine
new optimal set points for the weight on bit and drill string rotational speed.
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Chapter 6

Pressure Control and Automation

Although it is important to drill fast and efficiently, the efficiency during non-drilling operations
such as pipe connections and trips is equally important to optimize the total drilling process.
These operations make up a significant portion of the total time, as explained in Section 4.2.

During the entire drilling process, it is important to accurately control the pressure profile of
the well in order to prevent unwanted influx of reservoir fluids or outflux (loss) of mud into the
formation. This is a challenging task, as the procedures during pipe connections and drilling trips
have a large impact on the pressure. Since the main pump is disconnected for each connection,
the mud circulation is stopped and the pressure term due to friction is lost (refer to Section 3.1).
Similarly, full retraction of the drill string (trip) increases the volume of the well and lowers the
height of the mud column, leading to a loss of hydrostatic pressure. Using MPD technology,
these disturbances can be compensated for using the choke valve and back pressure pump to
control the bottom hole pressure as explained in Section 2.1.1.

The performance of the pressure control system is essential to the speed of these operations.
Referring to Equation 4.6 on page 27, minimizing t0c and t0t will minimize the total drilling time
and costs. However, it is important to realize that these operations are independent from the
actual drilling tasks. During connections and trips, pressure control and the speed of operations
are the only relevant control objectives.

During a pipe connection or trip, the task of ramping down the main pump while simultaneously
ramping up the back pressure pump and keeping the bottom hole pressure within its margins
is a challenging tasks for the drillers. It would be highly beneficial to design an automated
procedure and control system for each pipe connection process, as well as trips. Ideally, the
operator would only need to initiate e.g. a pipe connection program and the required procedures
would be handled automatically by the drilling control system.

45
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6.1 Pressure Control Structure

The drilling model that was described in Chapter 3 and used in Chapters 4 and 5 used the choke
pressure (pc) as a degree of freedom. It was assumed that the choke pressure is manipulated
in order to control the bottom-hole pressure, as part of the managed pressure drilling (MPD)
system. This section will study the performance of the MPD system, in terms of how the pressure
control structure may be designed.

As described in Section 2.1.1, the top of the annulus is sealed off by a rotating control device
(RCD) so that the flow of mud may be controlled by a choke valve. A back pressure pump is
also connected to the annulus, so pressures which are in excess of the capacity of the valve may
be achieved. A schematic is presented in Figure 6.1, showing an overview of the well. The left
side shows the equipment and connections to the drill string, while the right side focuses on the
well annulus.

Figure 6.1: Schematic of a well, with drilling mud circulation system.[2, 29]

Since the bottom hole pressure is dependent on the annulus mud flow, it is possible to use the
main mud pump flow to control the pressure. However, in Section 4.5 we determined it to be
optimal to control the main pump flow rate at its upper constraint of 50 liter/s. Anyhow,
the main pump can not be used for pressure control during pipe connections since it must be
disconnected from the drill string. Therefore, it is beneficial to find other variables for control. A
cascaded control structure with input reseting has been proposed for controlling the bottom-hole
pressure. A block diagram of the control structure is presented in Figure 6.2.

The bottom hole pressure is controlled by a cascade controller (K1 in Figure 6.2) which uses the
choke pressure set point (pc,s) as an input. The choke pressure (pc) is controlled using the choke
valve opening (controller K2 in Figure 6.2). However, the valve may not have the sufficient range
for control. In this case, the back pressure pump may be used to elevate the choke pressure. We
may view this type of co-ordination of inputs as a input reseting control structure. Little or no
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Figure 6.2: Block diagram of the pressure control structure.

action is needed by the back pressure pump as long as the choke valve position is close to 50%, as
the valve should be able to operate in a certain range. However, the valve position may change
very quickly during pipe connections and trips, thus making a slow loop input reset controller
inappropriate in this case. The issue was solved by raising the valve position controller error
to the third power, making the input reset controller (K3 in Figure 6.2) a non-linear controller.
The result is high controller action when the valve position is far from its set point of 50%, but
little action when the valve position is in an acceptable range.

6.2 Pipe Connections and Drilling Trips

In order to optimize the drilling process, we wish to minimize the pipe connection time t0c and
the trip time t0t . In order to simulate the effect on a pipe connection or a trip on the drilling
process, we first need to identify the procedures which take place. During a pipe connection,
the topdrive and mud pump must be disconnected from the drill string in order to facilitate
the connection. While the main pump is ramped down, the drillers must be able to rely on the
pressure control system to keep the bottom-hole pressure at its set point (minimum between its
margins). Thus, a pipe connection involves the following sequence of procedures: [30]

1. Position drill string to roughneck position

2. Stop drill string rotation

3. Engage slips

4. Ramp down main mud pump

5. Perform physical connection

6. Ramp up main mud pump

7. Release slips

8. Start drill string rotation

9. Trip in drill string to bottom of the well
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A drill trip involves a full retraction of the drill string from the well. Thus, it may be viewed
as a series of retracting the length of one stand of pipe and performing a reversed connection
procedure.

The speed of pipe connection and tripping operations is naturally dependent on certain proce-
dures that must be assumed to require a constant amount of time, such as the physical connection
procedure. The speed of other procedures, however, such as ramping the main pump up/down
and tripping the drill string in/out may possibly be improved. Changing the mud circulation
rate or the drill string position will affect the bottom hole pressure. Therefore, it is important
that these procedures are performed quickly (to minimize the cost), but without causing exces-
sive upset to the bottom hole pressure. The possible consequences of poor pressure control were
addressed in Section 2.1.

In order to facilitate optimal operation of drilling trips and pipe connections, it is important
that the mud flow rate and drill string velocity is automatically controlled rather than manu-
ally controlled by the drillers. It would be optimal to configure automated sequences for pipe
connections and trips that could easily be initialized by the operators.

6.2.1 Automation with Controllers

We want to implement control of the mud circulation rate and the depth of the drill string, so the
operators will only need to change the set point of the corresponding variable to its desired value.
This can be done by implementing controllers for the main mud pump flow rate and the vertical
position of the drill bit. However, the controller responses must be slow enough to maintain the
bottom hole pressure within its margins. To achieve this type of response, we include switches
in the control structure. The MATLAB Simulink switch block is shown in Figure 6.3.

Figure 6.3: MATLAB Simulink switch block.

The switch block accepts three inputs, and the output is selected as either the first or third
input based on the value of the second input. In this case, the first input involves no action at
all, while the third input is the proposed action by the controller. The second input is chosen
as the absolute difference between the bottom hole pressure and its set point. If the absolute
error is greater than the passing criteria of the switch, no action is applied to the corresponding
variables. On the other hand, if the pressure is within the boundaries of the passing criteria,
the PI-controller action is applied. A block diagram of the complete pressure control structure
with the addition of controllers for the main mud pump flow rate and the position of the drill
bit is presented in Figure 6.4. When initializing a pipe connection sequence, the operator simply
changes the main mud pump flow rate set point to zero. The controller will reduce the pump flow
rate as fast as possible while maintaining the bottom hole pressure within the margins defined by
the passing criteria of the switch. When ramping up the pump, the desired flow rate is applied as
the new set point and the controller takes care of the dynamics. The same applies for a drilling
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Figure 6.4: Block diagram of the pressure control structure with controllers for the main mud
pump flow rate and drill bit position.

trip. The operators apply a new set point for the position of the drill bit corresponding to the
length of one stand of pipe, and the controller performs the tripping in/out as fast as possible
with respect to the bottom hole pressure.

6.3 Dynamic Pressure Model

A simple dynamic pressure model in MATLAB was used to test the performance of the pressure
control structure. The model was based on the work of Kaasa [29], and the assumptions of
one-dimensional flow with constant density in an annulus with constant cross-sectional area.
The equations are derived from the continuity- and momentum equation(s) and are presented in
presented in the work of Stamnes [2, 31]. The differential equations of the model are presented
in Equations 6.1 through 6.3.

Va

βa
ṗc = qbit − qc + qbck (6.1)

Vd

βd
ṗp = qp − qbit (6.2)

Mq̇bit = pp − pc − θ1qbit − θ2|qbit|qbit (6.3)

The bottom hole pressure is calculated from Equation 6.4, and the choke pressure is calculated
from the choke equation presented in Equation 6.5.

pbh = pc + θ1qbit + ρgD (6.4)
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qc = Kc zc

√
2
ρm

(pc − p0) (6.5)

Linear friction is assumed for the well annulus while quadratic friction is assumed for the drill
string. Similar to Equation 3.25 on page 22, the pressure drop due to friction was modeled with
friction parameters θ1 and θ2. The pressures pp and pc are in units barg and represent the main
pump pressure and the choke pressure, respectively. p0 represents the atmospheric pressure, and
since the units are barg we have p0 = 0. The flow rates qp, qbck, qbit and qc represent the rates
of the main pump, the back pressure pump, the flow rate through the bit and the flow rate
through the choke valve. Kc is the valve constant, and has units m2. Va represents the volume
of the well annulus, and is calculated from the same parameters that are presented in Table 3.2.
Vd represents the internal volume of the drill string, and is calculated using the inner diameter
specification in Table 6.1. β represents the bulk modulus of the drilling mud, and is a measure
of the mud’s resistance to compressibility. The parameter M is the sum of the mass coefficients
Ma and Md, which are defined in Equations 6.6 and 6.7.

Ma =
ρD

Aa
(6.6)

Md =
ρD

Ad
(6.7)

The mud density is the same in the drill string as in the annulus, as the model is based on
stationary conditions with zero rate of penetration. The returning mud is therefore not affected
by cuttings that increase the effective mud density, such as in Equation 3.22 on page 21.

The model parameters are summarized and the values are presented in Table 6.1. The MATLAB
scripts and functions for the simple dynamic pressure model are attached in Appendix E.

Table 6.1: Dynamic Pressure Model Parameters

Parameter Description Value Unit
db Drill bit diameter 0.254 m
ds Drill string outer diameter 0.10 m
di Drill string inner 0.085 m
Va Annulus volume 128.45 m3

Vd Drill string internal volume 17.02 m3

β Bulk modulus 20 000 bar
θ1 Annulus friction parameter 900 kg/m4 s
θ2 Drill string friction parameter 180 000 kg/m7

M Mass coefficient 8 384 105 kg/m4

D Depth of well 3 000 m
ρ Drilling mud density 0.0140 105 kg/m3

Kc Valve flow constant 0.0025 m2
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6.4 Simulations

6.4.1 Controller Design

The control structure presented in Figure 6.4 was implemented in the pressure model with PI-
controllers for K1 - K5. The input reset controller (K3 in Figure 6.4) was modeled as a non-linear
controller, raising the choke valve position error to the third power. The controllers were manually
tuned to give satisfactory control performance. Refer to Equation 2.30 on page 15 for the PI
controller design equation, and to Seborg et. al. [17], Skogestad and Postlethwaite [5] or other
process control literature for more information on the topic.

The switches (S4 and S5 in Figure 6.4) were designed to pass no action to their respective
variables (the mud pump flow rate and the drill bit position) for bottom hole pressure errors
greater than or equal to 5 bar in magnitude. For absolute errors of less than 5 bar, the normal
PI action from the corresponding controller (K4 or K5) was passed. In other words, the bottom
hole pressure is controlled within a pressure window of ± 5 bar.

6.4.2 Results

Figures 6.5 through 6.10 present the responses of the various process variables to the main pro-
cedures during pipe connection and/or drilling trips. The following takes place in the simulation:

• At time = 100 seconds, the set point for the main mud pump flow rate is set to zero.

• At time = 200 seconds, the set point for the drill bit position is increased by 27 meters,
representing one stand of pipe.

• At time = 300 seconds, the drill bit position set point is set back to its original value of
-3000 meters.

• At time = 400 seconds, the mud pump flow rate set point is set back to 3000 liter/min (50
liter/s).

The responses show that the pressure control structure is able to handle the disturbances in
pressure that are caused by changing the main mud pump flow rate as well as the retraction and
re-insertion of drill string. The ramping up/down of the main mud pump is performed as quickly
as possible within the bottom hole pressure boundaries. Figure 6.8 shows that the pump is
ramped down completely in approximately 50 seconds. Likewise, tripping one stand of drill pipe
in/out is performed in approximately 10 seconds. This corresponds to a speed of approximately
3 m/s, which may be close to the physical limitations of the drawworks.
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Figure 6.5: Bottom hole pressure, main pump pressure, choke pressure and choke pressure set
point responses to a drilling trip simulation.

Figure 6.6: Close-up of the bottom hole pressure response in Figure 6.5.
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Figure 6.7: Valve position response to a drilling trip simulation.

Figure 6.8: Main pump and drill bit flow rate response to a drilling trip simulation.
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Figure 6.9: Back pressure pump flow rate and choke flow response to a drilling trip simulation.

Figure 6.10: Drill bit vertical position response to a drilling trip simulation.
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6.5 Discussion: Model Predictive Control (MPC)

The results in the preceding section show how simple PI controllers in the regulatory control layer
may control the bottom hole pressure (BHP) while pipe connection and drilling trip procedures
are performed. Alternatively, the control may be lifted to a supervisory layer (refer to Figure 2.2
on page 10) involving a model predictive controller (MPC) controlling the bottom hole pressure.
A model predictive controller uses a linear algebra method for predicting the future responses to
changing the manipulated variables. Once the model has been created the controller can use the
model, in combination with current process measurements, in order achieve the desired response
by changing the appropriate manipulated variables accordingly.[32]

Breyholtz et. al. [33] demonstrated the use of control hierarchy (Skogestad [6]) to the Managed
Pressure Drilling (MPD) system, with a MPC controller in the supervisory layer. The control
structure is illustrated in Figure 6.11.

Figure 6.11: Illustration of the MPD well control system with control hierarchy.[33]

The regulatory control layer consists of feedback control loops with PID controllers (refer to
Equation 2.30 on page 15). PID controllers are by far the most widely used control technology
in the industry, mostly due to their simplicity and ease of tuning. The PID controllers accept
set points from the MPC, and vary the corresponding manipulated variables accordingly.

One of the great advantages with model predictive controllers is the possibility of including
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constraints to the controller. Thus, if the choke valve (zc) reaches its constraints, the MPC
controller can automatically compensate by providing a higher set point to the back pressure
pump (qbck) controller. Similarly, the main mud pump flow rate may be used to control the
pressure profile during drilling operation, but is shut down by the MPC prior to pipe connections
or drilling trip procedures. The MPC controller will accept operator inputs for the hook position
(bit position) and main mud pump set points when applicable, and manipulate the process
variable in order to reach the new set points while simultaneously controlling the bottom hole
pressure.

The MPC controller could probably handle all the control tasks by itself, but the modeling effort
is greatly reduced by the PID controllers in the regulatory layer. The model dependency is in
fact one of the major disadvantages with model predictive controllers, as an accurate model is
necessary to obtain good results. When working properly, a MPC will outperform the alternative
strategy of a feedback control structure. However, the MPC performance is dependent on many
parameters being correctly formulated, such as the model itself, the prediction horizon, control
horizon, manipulated input weighting and sample time. Therefore, a feedback control structure
consisting of PI controllers was presented in this thesis work as a feasible alternative.



Chapter 7

Conclusions and Further Work

7.1 Conclusions

The thesis work has involved a extensive search for- and review of drilling literature, in order
to learn the process and the challenges that are faced during drilling operations. A steady-state
model of the drilling process was modeled based on equations found in literature. Most of the
drilling equations used are empirical and require parameter estimation for a large number of
parameters. These estimates were made based on reported values in drilling literature, as well
as trial-and-error procedures to re-produce realistic drilling results from the model.

The objective function, or cost function, of the drilling process was determined based on drilling
literature, reasoning and analysis. The cost function was to reflect all parts of the drilling process,
not only the active drilling time. Analysis of the objective function led to the separation of the
drilling operations into two operating modes: Active drilling operations, and pipe connections
and drilling trips. The reason for separating the process into two operating modes was the
difference in control objectives. Thus, the optimization the active drilling operations and the
pipe connections and trips were analyzed separately.

7.1.1 Optimal Controlled Variables

The drilling process was optimized for given parameters representing the drilling conditions. The
constraints on the bottom hole pressure and mud circulation rate were active at the optimum.
It is optimal to control active constraints, so two degrees of freedom were removed from further
analysis. The bottom hole pressure was controlled by the choke pressure, while the main mud
pump flow rate was kept constant.

The expected disturbances were applied and the unconstrained drilling process was re-optimized
in order to determine the optimal self-optimizing controlled variables. The results showed that
there is negligible gain in combining more than four measurements in the controlled variables.
The optimal CV’s using single measurements and measurement combinations of three and four
measurements are presented in Table 7.1. The maximum loss in hours is included in the rightmost
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column.

Table 7.1: Optimal Controlled Variables

Description CV’s (CV1 on top, CV2 on bottom) Max. loss

4 measurements 0.70 R + 0.52 T + 0.50 W - 0.01 N 2.02-0.19 R + 0.76 T - 0.36 W + 0.50 N

3 measurements 0.83 R + 0.56 T - 0.05 N 3.15-0.51 R + 0.64 T + 0.58 N

Single measurements W 6.24
P

Constant Inputs W 11.44
N

For single measurement controlled variables, the results show that it is optimal to control the
topdrive power by manipulating the drill string rotational speed, and keep the weight on bit
(WOB) constant. Combining several measurements will give a lower loss, but the loss is small
(approximately 1 % of the active drilling time) and the complexity of the control structure will
increase.

A constant input policy will only have a loss of approximately 1 % of the active drilling time
compared to the optimal single measurement control structure, thus raising the question of
whether or not implementing a control structure is worth the added complexity to the drilling
system. However, problems with stick-slip phenomenon are prone in drilling systems operating
with a constant drill string rotational speed. Several authors have proposed stick-slip prevention
techniques involving a varying rotational drill string speed. Therefore, it is likely that a control
structure a varying drill string RPM will be optimal.

7.1.2 Pressure Control & Automation

A feedback control structure involving PI controllers was designed for controlling the bottom
hole pressure, using the back pressure pump and the choke valve opening as manipulated inputs.
The time spent performing pipe connections and drilling trips is an important factor in the
optimization of the drilling process. It is important that these procedures are performed as fast
as possible, while keeping the bottom hole pressure within its margins. Procedures that involve
room for automation are the ramping down/up of the main mud pump, as well as tripping the
drill string in and out of the well. An automatic control system was designed to perform these
procedures as fast as possible, while keeping the bottom hole pressure within a pressure window
of ±5 bar. The control structure was able to perform the tasks at speeds that are likely to
be close to the physical limitations of the process equipment. Thus, we may conclude that the
performance is satisfactory.

An alternative solution of implementing a model predictive controller was discussed. The MPC
will perform as a supervisory controller in a hierarchical structure. An MPC will give superior re-
sults compared to a stand-alone regulatory control structure, but requires an increased modeling
effort and is more error prone.
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7.2 Further work

The drilling process involves many challenges and complications that make it difficult to assess
the process completely and take everything into account. The thesis work has been carried out
without any prior experience with drilling processes, thus consisting of rather simplified models.
Further studies of the drilling process and industry experience would undoubtedly result in a
more detailed drilling model, improving the accuracy of the results.

It would be interesting to test the model and results of this thesis in real-life drilling operations. A
brute-force analysis should be performed, implementing control of the self-optimizing controlled
variables determined in this thesis. The results would show whether or not the theoretical results
hold for a real-life drilling scenario. Similarly, the real-life performance of the suggested feedback
pressure control structure should be tested.

The results will also show whether the simple steady-state model is adequate in describing the
drilling process. In case improvements are required, the results may give insight to which areas
of the model are weaker, and which are stronger.
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Appendix A

Nomenclature

Table A.1: Nomenclature

Symbol Description Unit
β Bulk modulus bar
µ Viscosity Pa·s
ρf Effective mud density kg/m3

ρ / ρm Mud density kg/m3

ρs Formation density kg/m3

θ1 Annulus friction parameter kg/m4 s
θ2 Drill string friction parameter kg/m7

Aa Cross-sectional area of annulus m2

D Well depth m
db Drill bit diameter m
dH Hydraulic diameter m
di Drill string inner diameter m
dp Drilled particle diameter m
ds Drill string outer diameter m
Fbo Buoyant force N
Fc Cutting force N
Fg Gravitational force N
Fj Hydraulic jet impact force N
f Friction factor -
g Acceleration due to Earth gravity m/s2

J(u, d) Objective function value hours
K Bit life-time constant hours
Kc Valve flow constant m2

k0
c Specific cutting force constant N/tonm2

kc Specific cutting force N/m2

M Mass coefficient 105 kg/m4

NRe Reynolds number -
N Drill string rotational speed min−1

P Power kW
pbh Bottom hole pressure bar

Continued on next page
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Table A.1 – continued from previous page
Symbol Description Unit
pc Choke pressure bar
pf Formation pressure bar
qbit Mud flow rate at drill bit liter/s
qin Main mud pump flow rate liter/s
qs Feed of cuttings m3/s
R Rate of penetration m/hr
R0 Drillability constant m/hr
T Torque kN/m
tc Total connection time hours
t0c Single connection time hours
td Drilling time hours
t0d Drill bit life-time hours
tt Total trip time hours
t0t Single trip time hours
vsl Particle slip velocity m/s
va Annulus velocity m/s
Va Annulus volume m3

Vd Internal volume of drill string m3

Vs Volume of drilled particle m3

vT Transport velocity m/s
W Weight on bit tons
xc Fraction of cuttings in mud %
zc Choke valve opening %



Appendix B

Miscellaneous Calculation Matrices

The gain matrix, sensitivity matrix and various other matrices used in the calculations are
presented below.

∇2J(u) = Juu =
[
1.88160.1159
0.11590.0222

]

G =



0.5046 0.1056
0.9975 0
10.4167 3.4536
0.0331 0.0069
1.0000 0

0 1.0000



S1 =



0.1005 0 0 0 0 0
0 0.0505 0 0 0 0
0 0 0.0102 0 0 0
0 0 0 0.8727 0 0
0 0 0 0 0.2888 0
0 0 0 0 0 0.0241



G′ = S1G =



0.05 0.01
0.05 0
0.11 0.04
0.03 0.01
0.29 0

0 0.02
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F =



3.94 0.00 −0.15
−6.71 −0.00 −0.00
−27.05 0.00 0.00

0.26 0.00 −0.01
−0.18 −0.00 −0.00
12.60 0.00 0.00



Wd =

−2.5 0 0
0 500 0
0 0 10



Wn =



0.1 0 0 0 0 0
0 3 0 0 0 0
0 0 30 0 0 0
0 0 0 0.5 0 0
0 0 0 0 3 0
0 0 0 0 0 10



F̃ = [F Wd Wn] =



−9.85 0.00 −1.47 0.1 0 0 0 0 0
16.78 −0.00 −0.00 0 3 0 0 0 0
67.63 0.00 0.00 0 0 30 0 0 0
−0.65 0.08 −0.10 0 0 0 0.5 0 0
0.46 −0.00 −0.00 0 0 0 0 3 0
−31.49 0.00 0.00 0 0 0 0 0 10





Appendix C

Solving the Exact Local Method for a
Multivariable Case

The following method was used to solve the exact local method in Chapter 5. The material
was originally produced by Alstad et. al. [8]. The presented material considers a system with
two controlled variables (and manipulated variables), but could just as well be extended to any
dimension.

The minimization problem encountered in solving the exact local method is presented in Equa-
tion C.1.

min
H
‖HF̃‖22 (C.1)

subject to: HG = J1/2
uu

In order to solve the exact local method, we transform the multivariable case into a scalar
problem. We introduce the matrix X = HT , and further split the matrices X and J1/2

uu into the
vectors as shown in Equation C.2.

X =
[
x1 x2

]
J1/2

uu =
[
J1 J2

]
(C.2)

The long vectors xn and Jn, and the large matrices GT
n and F̃n are introduced as presented in

Equations C.3 and C.4.

xn =

[
x1

x2

]
, Jn =

[
J1

J2

]
(C.3)

GT
n =

[
GT 0
0 GT

]
F̃n =

[
F̃ 0

0 F̃

]
(C.4)

Applying the equations above to ‖HF̃‖2, we can write Equation C.5 for the objective function
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of the minimization problem.

‖HF̃‖22 =

∣∣∣∣∣
∣∣∣∣∣
[
xT

1 F̃

xT
2 F̃

]∣∣∣∣∣
∣∣∣∣∣
2

2

= ‖
[
xT

1 F̃ xT
2 F̃
]
‖22 (C.5)

= ‖xT
n F̃n‖22 = ‖F̃ T

n xn‖22 = xT
n F̃nF̃

T
n xn (C.6)

Since Juu is a symmetric positive definite matrix at an unconstrained optimum, J1/2
uu is also a

symmetric positive definite matrix. Thus, we can write HG = GTHT = GTX = J
1/2
uu .

Further:
GTX =

[
GTx1 GTx2

]
=
[
J1 J2

]
Thus, the constraints may be written as shown in Equation C.7.

[
GTx1

GTx2

]
=
[
J1J2

]
⇒ Gnxn = Jn (C.7)

The result is that the optimization problem in Equation C.1 may be re-written as Equation C.8
and the quadratic program can easily be solved, e.g. using the MATLAB® function quadprog.

min
xn

xT
n F̃nF̃

T
n xn (C.8)

subject to: Gnxn = Jn

The xn matrix is finally reshaped back to form the optimal measurement combination matrix
H, where the first row of H is found as the top half of the column vector xn while the second
row of H is the bottom part.

H =

[
xT

1

xT
2

]



Appendix D

Results of the Exact Local Method

The results of the exact local method for 2-6 measurement combinations are presented in
Tables D.1 through D.5.

Table D.1: Optimal Combinations of 6 Measurements

H matrix Max. loss
0.75 0.40 0.02 0.00 0.53 -0.07 1.87-0.39 -0.11 0.16 -0.00 -0.77 0.46

Table D.2: Optimal Combinations of 5 Measurements

H matrix Max. loss
0.00 0.02 0.01 0.83 0.55 0.01 4.830.00 0.04 0.10 -0.64 -0.72 0.24
0.58 0.00 0.04 0.00 0.80 -0.14 2.71-0.32 0.00 0.15 -0.00 -0.81 0.46
0.70 0.52 0.00 0.00 0.50 -0.01 2.02-0.19 0.76 0.00 -0.00 -0.36 0.50
0.75 0.40 0.02 0.00 0.53 -0.07 1.87-0.39 -0.11 0.16 0.00 -0.77 0.46
0.88 0.47 0.01 0.00 0.00 -0.10 3.04-0.81 -0.37 0.13 -0.00 0.00 0.44
0.62 0.49 -0.00 0.00 0.61 0.00 2.270.12 -0.49 0.15 0.00 -0.85 0.00
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Table D.3: Optimal Combinations of 4 Measurements

H matrix Max. loss
0.00 0.00 0.01 0.82 0.57 0.01 4.850.00 0.00 0.10 -0.68 -0.69 0.23
0.00 0.09 0.00 0.83 0.55 0.03 4.970.00 0.69 0.00 -0.41 -0.46 0.39
0.00 0.01 0.01 0.00 1.00 0.03 5.130.00 0.06 0.12 0.00 -0.94 0.30
0.00 0.03 0.00 1.00 0.00 -0.00 56.280.00 -0.03 0.01 -1.00 0.00 0.03
0.00 -0.01 0.01 0.85 0.53 0.00 4.860.00 -0.58 0.15 0.39 -0.70 0.00
-0.06 0.00 0.00 -0.00 1.00 0.06 8.50-0.70 0.00 0.00 -0.00 0.62 0.35
0.58 0.00 0.04 0.00 0.80 -0.14 2.71-0.32 0.00 0.15 0.00 -0.81 0.46
0.96 0.00 0.06 0.00 0.00 -0.27 6.04-0.82 0.00 0.10 -0.00 0.00 0.56
0.12 0.00 0.02 0.00 0.99 0.00 4.410.38 0.00 0.08 0.00 -0.92 0.00
0.70 0.52 0.00 0.00 0.50 -0.01 2.02-0.19 0.76 0.00 0.00 -0.36 0.50
0.83 0.56 0.00 0.00 0.00 -0.05 3.15-0.51 0.64 0.00 -0.00 0.00 0.58
0.62 0.48 0.00 0.00 0.62 0.00 9.660.54 0.41 0.00 0.00 -0.74 0.00
0.88 0.47 0.01 0.00 0.00 -0.10 3.04-0.81 -0.37 0.13 0.00 0.00 0.44
0.62 0.49 -0.00 0.00 0.61 0.00 2.270.12 -0.49 0.15 0.00 -0.85 0.00
0.75 0.66 -0.01 0.00 0.00 0.00 4.61-0.42 -0.90 0.14 -0.00 0.00 0.00
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Table D.4: Optimal Combinations of 3 Measurements

H matrix Max. loss
0.00 0.00 0.00 -0.46 0.89 0.05 10.310.00 0.00 0.00 -1.00 0.05 0.04
0.00 0.00 0.01 0.00 1.00 0.02 5.130.00 0.00 0.13 0.00 -0.95 0.29
0.00 0.00 0.00 1.00 0.00 -0.02 60.890.00 0.00 0.00 -1.00 0.00 0.04
0.00 0.00 0.01 0.90 0.44 0.00 4.870.00 0.00 0.01 0.99 -0.14 0.00
0.00 0.12 0.00 0.00 0.99 0.06 5.270.00 0.75 0.00 0.00 -0.51 0.41
0.00 0.05 0.00 1.00 0.00 -0.00 56.740.00 0.05 0.00 -1.00 0.00 0.06
0.00 0.03 0.00 1.00 0.03 0.00 107.640.00 0.03 0.00 1.00 -0.05 0.00
0.00 1.00 0.05 0.00 0.00 -0.08 160.090.00 -0.85 0.13 0.00 0.00 0.51
0.00 -0.07 0.02 0.00 1.00 0.00 5.200.00 -0.64 0.16 0.00 -0.75 0.00
0.00 0.05 -0.00 1.00 0.00 0.00 57.370.00 -0.11 0.02 -0.99 0.00 0.00
-0.06 0.00 0.00 0.00 1.00 0.06 8.50-0.70 0.00 0.00 0.00 0.62 0.35
0.99 0.00 0.00 0.00 0.00 -0.10 165.270.68 0.00 0.00 0.00 0.00 0.73
0.49 0.00 0.00 0.00 0.87 0.00 84.740.86 0.00 0.00 0.00 -0.52 0.00
0.96 0.00 0.06 0.00 0.00 -0.27 6.04-0.82 0.00 0.10 0.00 0.00 0.56
0.12 0.00 0.02 0.00 0.99 0.00 4.410.38 0.00 0.08 0.00 -0.92 0.00
1.00 0.00 -0.04 0.00 0.00 0.00 2077.66-1.00 0.00 0.07 -0.00 0.00 0.00
0.83 0.56 0.00 0.00 0.00 -0.05 3.15-0.51 0.64 0.00 0.00 0.00 0.58
0.62 0.48 0.00 0.00 0.62 0.00 9.660.54 0.41 0.00 0.00 -0.74 0.00
0.49 0.87 0.00 0.00 0.00 0.00 227.970.86 -0.52 0.00 0.00 0.00 0.00
0.75 0.66 -0.01 0.00 0.00 0.00 4.61-0.42 -0.90 0.14 0.00 0.00 0.00
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Table D.5: Optimal Combinations of 2 Measurements

H matrix Max. loss
0.00 0.00 0.00 0.00 1.00 0.06 11.440.00 0.00 0.00 0.00 0.49 0.87
0.00 0.00 0.00 1.00 0.00 -0.00 475.950.00 0.00 0.00 1.00 0.00 0.04
0.00 0.00 0.00 1.00 0.06 0.00 184.940.00 0.00 0.00 1.00 -0.02 0.00
0.00 0.00 0.33 0.00 0.00 -0.94 168.840.00 0.00 0.07 0.00 0.00 1.00
0.00 0.00 0.02 0.00 1.00 0.00 6.240.00 0.00 0.12 0.00 -0.99 0.00
0.00 0.00 -0.00 1.00 0.00 0.00 3790.860.00 0.00 0.00 -1.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.06 161.900.00 0.49 0.00 0.00 0.00 0.87
NaN NaN NaN NaN NaN NaN NaNNaN NaN NaN NaN NaN NaN
0.00 0.06 0.00 1.00 0.00 0.00 278.100.00 -0.02 0.00 1.00 0.00 0.00
0.00 1.00 0.02 0.00 0.00 0.00 160.700.00 -0.99 0.12 0.00 0.00 0.00
0.99 0.00 0.00 0.00 0.00 -0.10 165.270.68 0.00 0.00 0.00 0.00 0.73
0.49 0.00 0.00 0.00 0.87 0.00 84.740.86 0.00 0.00 0.00 -0.52 0.00
0.03 0.00 0.00 -1.00 0.00 0.00 NaN-0.03 0.00 0.00 1.00 0.00 0.00
1.00 0.00 -0.04 0.00 0.00 0.00 2077.66-1.00 0.00 0.07 0.00 0.00 0.00
0.49 0.87 0.00 0.00 0.00 0.00 227.970.86 -0.52 0.00 0.00 0.00 0.00
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MATLAB files

The MATLAB scripts and functions that were used in order to produce the results of this thesis
work are attached on the CD-ROM marked Appendix E. A list of the file names and descriptions
are presented in Table E.1.

Table E.1: List of MATLAB Files

File name Description
main4u.m Main script for optimizing the drilling process with 4 inputs
drilling4u.m Steady-state drilling model accepting 4 inputs
drillsolve4u.m Function used to solve equation system in drilling4u.m
objfun4u.m Objective function accepting 4 inputs
constraints.m Drilling model constraints
main.m Main script for optimizing the unconstrained drilling process with 2 inputs
drilling.m Steady-state drilling model accepting 2 inputs
drillsolve.m Function used to solve equation system in drilling.m
objfun.m Objective function accepting 2 inputs
msv.m Function used to solve the method of maximizing the minimum singular value
exactlocal.m Function used to solve the exact local method
runSim.m Main script for running control simulations on dynamic pressure model
calcf.m Function used to calculate the dynamics of the pressure model
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main4u.m:

1 %Script for optimizing the drilling process with 4 inputs
2 %Needs external functions drilling4u.m, drillsolve4u.m
3 %objfun4u.m and constraints.m.
4 %DEH − 2010
5

6 clear all
7 close all
8 clc
9

10 global db Wdbmax tt0 dstring Wdbt R0 K kc D dp Aa g rho rhos theta1
11

12 %Parameters:
13 db = 0.254; %Bit diameter, m
14 Wdbmax = 178.583; %Maximum WOB per m diameter, tons/m
15 tt0 = 10; %Trip time, hours
16 dstring = 0.1; %Diameter of drill string, m
17 D = 3000; %Depth, m
18 Aa = (db^2−dstring^2)*pi/4; %Cross−sectional area of annulus, m2
19 g = 9.81; %Gravity
20 R0 = 5; %Formation drillability, m/hr
21 tempR0 = R0;
22 K = 15*R0; %Formation abrasiveness constant, hours
23 kc = 5e5/R0; %Specific cutting force, N/m2−ton
24 Wdbt = 63/R0; %Threshold WOB per m diameter, tons/m
25 theta1 = 900; %Friction parameter
26 rhos = 2700; %Formation density, kg/m3
27 rho = 1400; %Mud density, kg/m3
28 dp = 0.005; %Particle diameter, m
29

30 %Optimization:
31 u0 = [30; %WOB, tons
32 100; %RPM
33 40; %qmud, l/s
34 10]; %pc, bar
35

36 lb = [0; 0; 0; 0];
37 ub = [Wdbmax*db; 200; 50; 100];
38 options = optimset('Display','iter','TolFun',1e−12,'MaxFunEvals',300);
39 [u,fval,exitflag,output,lambda,grad,hessian] = fmincon(@objfun4u, u0,...
40 [],[],[],[],lb,ub,@constraints,options)
41 Juu = hessian;
42

43 %Nominal optimum u and y:
44 y0 = drilling4u(u)
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drilling4u.m:

1 function y = drilling4u(u)
2 %Function that calculates drilling model equations.
3 %Run main4u.m
4 %DEH − 2010
5

6 global db dstring kc WOB RPM qmud pc
7

8 y = zeros(9,1);
9

10 WOB = u(1);
11 RPM = u(2);
12 qmud = u(3);
13 pc = u(4);
14

15 x0 = [15;1;460];
16 res = fsolve(@drillsolve4u,x0);
17 y(1) = res(1); %ROP
18 y(4) = res(2); %Cuttings fraction
19 y(5) = res(3); %Mud flow
20 F = u(1)/db*kc*db^2*pi/4; %Force, N, function of WOB and formation strength
21 y(2) = F*dstring/2000; %Torque, kNm.
22 y(3) = y(2)*2*pi*u(2)/60; %Power, kW
23 y(6) = u(1);
24 y(7) = u(2);
25 y(8) = u(3);
26 y(9) = u(4);

drillsolve4u.m:

1 function f = drillsolve4u(y)
2 %Function that solves system of drilling equations.
3 %Run main4u.m
4 %DEH − 2010
5

6 global db Aa dp g Wdbt R0 rho rhos theta1 D WOB RPM qmud pc
7

8 f = zeros(3,1);
9

10 newrho = rho*(1−y(2)/100) + rhos*y(2)/100; %rhof, kg/m3
11 bhp = pc + theta1*qmud/1000 + newrho*g*D/1e5; %BHP, bar
12

13 An = 3*pi*0.01^2/4; %nozzle x−sec area, m2
14 Fj = qmud^2*rho/An/1e6; %hydraulic jet impact force, N
15 ROP = R0*(WOB/db−Wdbt)/(71.433−Wdbt)*(RPM/60)^0.7*exp(0.01*...
16 (470−bhp))*(Fj/4448.22)^.3;
17

18 va = qmud/1000/Aa; %annulus velocity, m/s
19 vslip = sqrt(8/9*g*dp*(rhos−newrho)/rho); %slip velocity, m/s
20 vT = va − vslip; %transport velocity, m/s
21 qs = ROP*pi/4*db^2*1000/3600; %cuttings feed rate, l/s
22 xc = qs/1000/Aa/vT*100; %cuttings fraction
23

24 f(1) = ROP − y(1);
25 f(2) = xc − y(2);
26 f(3) = bhp − y(3);
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objfun4u.m:

1 function f = objfun4u(u)
2 %Objective function for optimization of the drilling process.
3 %Run main4u.m
4 %DEH
5

6 global db Wdbmax tt0 K D
7

8 y = drilling4u(u);
9 R = y(1);

10

11 td0 = K*(60/u(2))^1.7*(Wdbmax−u(1)/db)/(Wdbmax−71.433); %bit life−time
12 f = D*(1/R + tt0/(R*td0)); %J, objective function

constraints.m:

1 function [C Ceq] = constraints(x)
2 %Function containing the drilling process constraints.
3 %Run main4u.m
4 %DEH − 2010
5

6 y = drilling4u(x);
7

8 Ceq = []; %no equality constraints
9 C = zeros(2,1);

10

11 C(1) = 470 − y(5);
12 C(2) = y(5) − 480;

main.m:

1 %Script for optimizing drilling process with 2 inputs
2 %Needs external functions drilling.m, drillsolve.m, objfun.m
3 %msv.m and exactlocal.m.
4 %DEH − 2010
5

6 clear all
7 close all
8 clc
9

10 global db Wdbmax tt0 dstring Wdbt R0 K kc D bhp qmud dp Aa g rho rhos
11

12 %Parameters:
13 db = 0.254; %Bit diameter, m
14 Wdbmax = 178.583; %Maximum WOB per m diameter, tons/m
15 tt0 = 10; %Trip time, hours
16 dstring = 0.1; %Diameter of drill string, m
17 D = 3000; %Depth
18 Aa = (db^2−dstring^2)*pi/4; %Cross−sectional area of annulus, m2
19 g = 9.81; %Gravity
20 R0 = 5; %Formation drillability, m/hr
21 tempR0 = R0;
22 K = 15*R0; %Formation abrasiveness constant, hours
23 kc = 5e5/R0; %Specific cutting force, N/m2−ton
24 Wdbt = 63/R0; %Threshold WOB per m diameter, tons/m
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25 bhp = 470; %BHP, bar
26 bhpsave = bhp;
27 qmud = 50; %Mud flow rate, l/s
28 rhos = 2700; %Formation density, kg/m3
29 rho = 1400; %Mud density, kg/m3
30 dp = 0.005; %Diameter of drilled particle, m
31

32 %Optimization:
33 u0 = [30; %WOB, tons
34 100]; %RPM
35 lb = [0; 0];
36 ub = [Wdbmax*db; 300];
37 options = optimset('Display','iter','TolFun',1e−12,'MaxFunEvals',300);
38 [u,fval,exitflag,output,lambda,grad,hessian] = fmincon(@objfun, u0,[],...
39 [],[],[],lb,ub,[],options);
40 Juu = hessian;
41

42 %Nominal optimum u and y:
43 y0 = drilling(u);
44

45 %Gains:
46 G = zeros(length(y0),length(u));
47 ∆u = 0.01*u;
48 for i = 1:length(u)
49 udev = u+∆u.*[zeros(i−1,1); ones(1,1); zeros(length(u)−i,1)];
50 G(:,i) = (drilling(udev) − y0)./(∆u(i));
51 end
52 [ny,nu] = size(G);
53

54 %Implementation errors:
55 eimp = [0.1; 3; 30; 0.5; 3; 10];
56

57 %Disturbances:
58 d = [R0;rhos;bhp];
59 nd = length(d);
60 ∆yopt = zeros(length(y0),nd);
61 Gd = zeros(length(y0),nd);
62 F = zeros(length(y0),nd);
63 ∆d = 0.01*d;
64 for i = 1:nd
65 ddev = d+∆d.*[zeros(i−1,1);ones(1,1);zeros(nd−i,1)];
66 R0 = ddev(1);
67 K = 15*R0;
68 kc = 5e5/R0;
69 Wdbt = 63/R0;
70 rhos = ddev(2);
71 bhp = ddev(3);
72 Gd(:,i) = (drilling(u)−y0)/∆d(i);
73

74 %Re−optimization
75 options = optimset('TolFun',1e−12,'MaxFunEvals',300);
76 [uopt,fvalopt,exitflag,output] = fmincon(@objfun, u0,[],[],[],[],...
77 lb,ub,[],options);
78 ∆yopt(:,i) = drilling(uopt)−y0;
79 F(:,i) = ∆yopt(:,i)/∆d(i);
80 end
81 bhp = bhpsave;
82

83 stepsize = 0.1;
84 lossplot = zeros(1+ny+nchoosek(ny,nu)+nchoosek(ny,nu+1)+...
85 nchoosek(ny,nu+2),1/stepsize+1);
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86

87 for a = −1:stepsize:1
88 c = (1+stepsize+a)/stepsize;
89 ddash = a*ones(nd);
90 ndash = a*ones(ny);
91 Wd = diag([−2.5; 500; 10]).*ddash;
92 Wn = diag(eimp).*ndash;
93 Ftilde = [F*Wd Wn];
94

95 %Exact Local Method:
96 tempG = G;
97 tempGd = Gd;
98 tempFtilde = Ftilde;
99 H1 = zeros(size(lossplot,1),ny);

100 H2 = zeros(size(lossplot,1),ny);
101 lossvector = zeros(size(lossplot,1),2);
102 [H maxloss] = exactlocal(Ftilde,Juu,G,Gd);
103 H1(1,:) = H(1,:);
104 H2(1,:) = H(2,:);
105 lossvector(1,:) = maxloss;
106

107 for i=1:ny
108 G(i,:) = 0;
109 Gd(i,:) = 0;
110 Ftilde(i,:) = 0;
111 [H maxloss] = exactlocal(Ftilde,Juu,G,Gd);
112 H1(i+1,:) = H(1,:);
113 H2(i+1,:) = H(2,:);
114 lossvector(i+1,:) = maxloss;
115 G = tempG;
116 Gd = tempGd;
117 Ftilde = tempFtilde;
118 end
119 n = ny+2;
120 for j = nchoosek(1:ny,nu)'
121 G(j,:) = 0;
122 Gd(j,:) = 0;
123 Ftilde(j,:) = 0;
124 [H maxloss] = exactlocal(Ftilde,Juu,G,Gd);
125 H1(n,:) = H(1,:);
126 H2(n,:) = H(2,:);
127 lossvector(n,:) = maxloss;
128 n = n+1;
129 G = tempG;
130 Gd = tempGd;
131 Ftilde = tempFtilde;
132 end
133 m = n;
134 for j = nchoosek(1:ny,nu+1)'
135 G(j,:) = 0;
136 Gd(j,:) = 0;
137 Ftilde(j,:) = 0;
138 [H maxloss] = exactlocal(Ftilde,Juu,G,Gd);
139 H1(m,:) = H(1,:);
140 H2(m,:) = H(2,:);
141 lossvector(m,:) = maxloss;
142 m = m+1;
143 G = tempG;
144 Gd = tempGd;
145 Ftilde = tempFtilde;
146 end
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147 o = m;
148 for j = nchoosek(1:ny,nu+2)'
149 G(j,:) = 0;
150 Gd(j,:) = 0;
151 Ftilde(j,:) = 0;
152 [H maxloss] = exactlocal(Ftilde,Juu,G,Gd);
153 H1(o,:) = H(1,:);
154 H2(o,:) = H(2,:);
155 lossvector(o,:) = maxloss;
156 o = o+1;
157 G = tempG;
158 Gd = tempGd;
159 Ftilde = tempFtilde;
160 end
161

162 res = [H1 H2 lossvector];
163

164 [C5 I5] = min(res(2:7,13));
165 I5 = I5+1;
166 [C4 I4] = min(res(8:22,13));
167 I4 = I4+7;
168 [C3 I3] = min(res(23:42,13));
169 I3 = I3+22;
170 [C2 I2] = min(res(43:57,13));
171 I2 = I2+42;
172

173 lossplot(:,round(c)) = res(:,13);
174 end
175

176 %Minimum Singular Value method:
177 eopt = max(abs(F*Wd),[],2);
178 span = eopt+eimp;
179 S1 = diag(1./span);
180 SG = S1*G;
181 msvrank = msv(SG,Juu);
182

183 %Nullspace method:
184 nullspaceF = [F(3,1);F(5:6,1)];
185 Hnullspace = null(nullspaceF')';
186

187 lossplot2 = lossplot(:,11:21);
188

189 Hmatrix = zeros(2*size(H1,1),ny);
190 for i = 1:size(H1,1)
191 Hmatrix(2*i−1,:) = H1(i,:);
192 Hmatrix(2*i,:) = H2(i,:);
193 end
194

195 %Results of the exact local method
196 disp(res)
197

198 %Plots
199 x = −1:stepsize:1;
200 x2 = 0:stepsize:1;
201

202 set(0,'defaultaxesfontsize',14);
203 set(0,'defaulttextfontsize',14);
204 set(0,'DefaultLineLineWidth',1.5);
205 set(0,'DefaultFigureColor','none');
206 legFontSize = 14;
207 scrsz = get(0,'ScreenSize');
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208

209 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
210 plot(2:6,[lossvector(I2,1),lossvector(I3,1),lossvector(I4,1),...
211 lossvector(I5,1),lossvector(1,1)],'k')
212 ylabel('Loss = J − Jopt, [hours]')
213 xlabel('No. of measurements')
214 set(gcf, 'PaperPositionMode', 'auto')
215 print −djpeg lossmeas
216

217 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
218 plot(x2,lossplot2(1,:),'k−',x2,lossplot2(I5,:),'k:+',...
219 x2,lossplot2(I4,:),'k:o',x2,lossplot2(I3,:),'k−−d',...
220 x2,lossplot2(I2,:),'k−−',x2,lossplot2(43,:),'k−.')
221 h(1) = legend('R, T, P , x$_c$, W, N', 'R, T, P, W, N', 'R, T, W, N',...
222 'R, T, N', 'P, W', 'W, N (Const. Inputs)','Location','NorthWest');
223 ylabel('Loss = J − Jopt, [hours]')
224 xlabel('Magnitude of |d| / |n|')
225 set(h,'Interpreter','latex','FontSize',legFontSize)
226 set(gcf, 'PaperPositionMode', 'auto')
227 print −djpeg lossbest
228

229 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
230 plot(x2,lossplot2(45,:),'k:*',x2,lossplot2(46,:),'k−.',...
231 x2,lossplot2(51,:),'k−−',x2,lossplot2(54,:),'k:d',...
232 x2,lossplot2(57,:),'k−')
233 axis([0 1 0 300])
234 h(1) = legend('x$_c$, W', 'P, N', 'T, x$_c$', 'R, W', 'R, T',...
235 'Location','NorthWest');
236 ylabel('Loss = J − Jopt, [hours]')
237 xlabel('Magnitude of |d| / |n|')
238 set(h,'Interpreter','latex','FontSize',legFontSize)
239 set(gcf, 'PaperPositionMode', 'auto')
240 print −djpeg lossbad

drilling.m:

1 function y = drilling(u)
2 %Function calculating the drilling equations.
3 %Run script main.m
4 %DEH − 2010
5 global db dstring kc WOB RPM
6

7 y = zeros(6,1);
8

9 WOB = u(1);
10 RPM = u(2);
11

12 x0 = [15; 5];
13 x = fsolve(@drillsolve,x0);
14

15 y(1) = x(1); %ROP, m/hr
16 F = u(1)/db*kc*db^2*pi/4; %Force, N, function of WOB and rock strength
17 y(2) = F*dstring/2000; %Torque, kNm.
18 y(3) = y(2)*2*pi*u(2)/60; %Power, kW
19 y(4) = x(2); %Cuttings percent
20 y(5) = u(1);
21 y(6) = u(2);
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drillsolve.m:

1 function f = drillsolve(y)
2 %Function that solves system of drilling model equations.
3 %Run script main.m.
4 %DEH − 2010
5

6 global db Aa dp g Wdbt R0 rho rhos WOB RPM qmud bhp
7

8 f = zeros(2,1);
9

10 newrho = rho*(1−y(2)/100) + rhos*y(2)/100;
11

12 An = 3*pi*0.01^2/4; %Nozzle x−sec area, m^2
13 Fj = qmud^2*rho/An/1e6; %Hydraulic jet impact force, N
14 ROP = R0*(WOB/db−Wdbt)/(71.433−Wdbt)*(RPM/60)^0.7*exp(0.01*(470−bhp))...
15 *(Fj/4448.22)^.3;
16

17 va = qmud/1000/Aa; %Annulus velocity, m/s
18 vslip = sqrt(8/9*g*dp*(rhos−newrho)/rho); %Slip velocity, m/s
19 vT = va − vslip; %Transport velocity, m/s
20 qs = y(1)*pi/4*db^2*1000/3600; %Cuttings feed rate, l/s
21 xc = qs/1000/Aa/vT*100; %Cuttings percent
22

23 f(1) = ROP − y(1);
24 f(2) = xc − y(2);

objfun.m:

1 function f = objfun(u)
2 %Objective function for optimization of the drilling process
3 %Run script main.m
4 %DEH − 2010
5

6 global db Wdbmax tt0 K D WOB RPM
7

8 WOB = u(1);
9 RPM = u(2);

10

11 x0 = [15; 5];
12 x = fsolve(@drillsolve,x0);
13

14 R = x(1); %ROP
15 td0 = K*(60/u(2))^1.7*(Wdbmax−u(1)/db)/(Wdbmax−71.433);
16 f = D*(1/R + tt0/(R*td0));
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msv.m:

1 function rank = msv(SG,Juu)
2 %Function that calculates the minimum singular value of combinations
3 %of 2 controlled variables.
4 %Run script main.m
5 %DEH − 2010
6

7 [ny,nu] = size(SG);
8 rank = zeros(nchoosek(ny,nu),nu+1);
9

10 k=1;
11 for a = nchoosek(1:ny,nu)'
12 tempSG = [SG(a(1),:);SG(a(2),:)];
13 minsingval = min(svd(tempSG*inv(sqrtm(Juu))));
14 rank(k,:) = [a(1) a(2) minsingval];
15 k=k+1;
16 end
17

18 rank = sortrows(rank,−3);

exactlocal.m:

1 function [Hq maxloss] = exactlocal(B,Juu,Gy,Gdy)
2 %Function that solves the exact local method for selection of optimal CV's.
3 %Run script main.m
4 %DEH − 2010
5

6 [ny,nu]= size(Gy);
7 nd = size(Gdy,2);
8 Juuhalf = sqrtm(Juu);
9 Jn = []; Fn = []; GnyT = [];

10

11 GnyT = zeros(nu*nu,nu*ny);
12 Fn = zeros(nu*ny,nu*(ny+nd));
13 for i = 1:nu
14 GnyT((i−1)*nu+1:i*nu,(i−1)*ny+1:i*ny) = Gy';
15 Jn = [Jn;Juuhalf(i,:)'];
16 Fn((i−1)*ny+1:i*ny,(i−1)*(ny+nd)+1:i*(ny+nd)) = B;
17 end
18

19 if nnz(Gy(:,1)) == 0 || nnz(Gy(:,2)) == 0
20 Hq = NaN*ones(nu,ny);
21 maxloss = NaN;
22 avgloss = NaN;
23 else
24 options = optimset('quadprog');
25 options = optimset(options,'TolPCG',1e−10,'TolCon',1e−10,'Display','iter');
26 xn1 = quadprog(Fn*Fn',zeros(size(Fn*Fn',1),1),[],[],GnyT,Jn,[],[],[],options);
27 Hq = reshape(xn1,ny,nu)';
28

29 %normalizing so Euclidean norm of each row = 1
30 Hq = [Hq(1,:)./sqrt(sum(Hq(1,:).^2)); Hq(2,:)./sqrt(sum(Hq(2,:).^2))];
31

32 maxloss = 0.5*norm(sqrtm(Juu)*inv(Hq*Gy)*(Hq*B))^2;
33

34 end
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runSim.m:

1 %Script for simulating performance of an automated pressure control
2 %structure using a simple dynamic pressure model.
3 %Script needs to use external functions calcf.m.
4 %Written by: ?NS 2009
5 %Modified by: DEH 2010
6

7 clear all
8 close all
9 clc

10

11 % set up simulation
12 % stepsize
13 dT = 0.1;
14 % time vector
15 time=0:dT:600;
16

17 % system parameters
18 Va = 128.45;
19 Vd = 17.02;
20 VaDot = 0;
21 betaa = 20000;
22 betad = 20000;
23 M = 8384;
24 rhoa = 0.0140;
25 rhod = 0.0140;
26 g = 9.81;
27 theta1= 900;
28 theta2= 60000;
29 hBit = 3000;
30 Atot = 0.0485; %Va/hBit + Vd/hBit
31 Apipe = 0.00218; %7" OD 3" ID
32

33 %intial conditions
34 pc0 = 13;
35 pp0 = 208;
36 qbit0 = 3000/60000;
37 zc0 = 0.5;
38 pbit0 = 470;
39 pcref0 = 13;
40 hmud0 = 3000;
41 qbck0 = 235/60000;
42 qp0 = 3000/60000;
43 hpipe0 = 3000;
44 qc0 = qp0+qbck0;
45

46 % storage arrays
47 pc = zeros(length(time),1);
48 pp = zeros(length(time),1);
49 qbit = zeros(length(time),1);
50 qbck = zeros(length(time),1);
51 qp = zeros(length(time),1);
52 zc = zeros(length(time),1);
53 pbit = zeros(length(time),1);
54 pcref = zeros(length(time),1);
55 hmud = zeros(length(time),1);
56 qc = zeros(length(time),1);
57 hpipe = zeros(length(time),1);
58
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59 pc(1) = pc0;
60 pp(1) = pp0;
61 qbit(1)= qbit0;
62 zc(1) = zc0;
63 pbit(1) = pbit0;
64 pcref(1) = pcref0;
65 hmud(1) = hmud0;
66 qbck(1) = qbck0;
67 qp(1) = qp0;
68 hpipe(1) = hpipe0;
69 qc(1) = qc0;
70

71 %PI controller to keep pbit at a setpoint
72 pbitref = 470;
73 Kppcref = 4;
74 Kipcref = 10;
75 eipcref = pcref0/Kipcref;
76

77 %PI controller to keep pc at a setpoint
78 Kp = 0.01;
79 Ki = 5e−3;
80 ei = zc0/Ki;
81

82 %PI controller to keep zc at a setpoint
83 zcref = 0.5;
84 Kpbck = 0.01;
85 Kibck = 0.005;
86 eibck = qbck0/Kibck;
87

88 %PI controller to keep qp at a setpoint
89 qpref = 3000/60000;
90 Kpqp = 0.1;
91 Kiqp = 0.1;
92 eiqp = qp0/Kiqp;
93

94 %PI controller to keep hpipe at a setpoint
95 hpiperef = 3000;
96 Kphpipe = 0.1;
97 Kihpipe = 0.5;
98 eihpipe = hpipe0/Kihpipe;
99

100 %Euler integration
101 for i=1:length(time)−1
102 %Define current state vectors
103 x = [pc(i); pp(i);qbit(i)];
104

105 %Set inputs
106 if time(i)<100
107 qpref = 3000/60000;
108 hpiperef = 3000;
109 elseif time(i)<200
110 %Ramp down pump
111 qpref = 0;
112 zcref = 0.15;
113 elseif time(i)<300
114 %Trip out drill string
115 hpiperef = 2973;
116 elseif time(i)<400
117 %Trip in drill string
118 hpiperef = 3000;
119 elseif time(i)≥400
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120 %Ramp up pump
121 qpref = 3000/60000;
122 zcref = 0.5;
123 end
124

125 %Controllers
126 if i ≥2
127

128 %Cascade controller to keep pbit at setpoint by changing pcref
129 epcref = pbitref − pbit(i−1);
130 eipcref = eipcref + dT*epcref;
131 pcref(i) = max(Kppcref*epcref + Kipcref*eipcref,0);
132

133 %Controller to keep qp at setpoint, with switch
134 eqp = qpref − qp(i−1);
135 eiqp = eiqp + dT*eqp;
136 if abs(epcref) < 5
137 qp(i) = Kpqp*eqp + Kiqp*eiqp;
138 else
139 qp(i) = qp(i−1);
140 end
141

142 %Controller to keep hpipe at setpoint, with switch
143 ehpipe = hpiperef − hpipe(i−1);
144 eihpipe = eihpipe + dT*ehpipe;
145 if abs(epcref) < 5
146 hpipe(i) = Kphpipe*ehpipe + Kihpipe*eihpipe;
147 else
148 hpipe(i) = hpipe(i−1);
149 end
150

151 %Simple controller to keep pc at pcref by changing zc
152 e = pc(i−1)−pcref(i−1);
153 ei = ei + dT*e;
154 zc(i) = min(max(Kp * e + Ki * ei,0),100);
155

156 %Input reset controller to keep zc at setpoint by changing qbck
157 ebck = zcref − zc(i−1);
158 eibck = eibck + dT*ebck;
159 qbck(i) = max( Kpbck*ebck + Kibck*eibck,0);
160

161 end
162

163

164 %Calculate right−hand side
165 [f qccalc] = calcf(time(i),x,zc(i),qbck(i),qp(i),hBit,Va,...
166 VaDot,Vd,betaa,betad,M,theta1,theta2,rhod,rhoa,g);
167

168 %Step states
169 x = x + dT*f;
170

171 if i>2
172 vpipe = (hpipe(i)−hpipe(i−1))/dT;
173 else
174 vpipe = 0;
175 end
176

177 qc(i+1) = qccalc + Apipe*vpipe;
178 hmud(i+1) = hmud(i)+Apipe*vpipe/Atot*dT + (qp(i) + qbck(i) −...
179 qc(i))/Atot*dT;
180
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181 %Store results
182

183 pc(i+1) = x(1);
184 pp(i+1) = x(2);
185 qbit(i+1) = x(3);
186

187 %Calculate pbit
188 pbit(i+1) = pc(i+1)+theta1*qbit(i+1)+rhoa*g*hBit;
189

190 end
191

192 %Store last results
193 zc(length(time)) = zc(length(time)−1);
194 qp(length(time)) = qp(length(time)−1);
195 qbck(length(time)) = qbck(length(time)−1);
196 pcref(length(time)−1:length(time)) = pcref(length(time)−2);
197 hmud(length(time)) = hmud(length(time)−1);
198 hpipe(length(time)) = hpipe(length(time)−1);
199 qc(length(time)) = qc(length(time)−1);
200

201 %% Plot results
202 set(0,'defaultaxesfontsize',14);
203 set(0,'defaulttextfontsize',14);
204 set(0,'DefaultLineLineWidth',1.5);
205 set(0,'DefaultFigureColor','none');
206 legFontSize = 16;
207 scrsz = get(0,'ScreenSize');
208

209 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
210 plot(time,pc,time,pcref,time,pbit−400)
211 h(1)=legend('$p_c$','$p_{c,s}$','$p_{bit}$ − 400','Location','Best');
212 xlabel('Time [s]');
213 ylabel('Pressure [bar]')
214 set(h,'Interpreter','latex','FontSize',legFontSize)
215 set(gcf, 'PaperPositionMode', 'auto') % Use screen size
216 print −djpeg cascadecontrol
217

218 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
219 plot(time,zc*100)
220 h(1)=legend('$z_c$');
221 axis([0 600 0 100]);
222 ylabel('Valve Position [%]');
223 xlabel('Time [s]');
224 set(h,'Interpreter','latex','FontSize',legFontSize)
225 set(gcf, 'PaperPositionMode', 'auto') % Use screen size
226 print −djpeg cascadecontrol2
227

228

229 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
230 plot(time,qp*60000,time,qbit*60000)
231 h(1)=legend('$q_p$','$q_{bit}$','Location','Best');
232 %axis([0 600 0 2500]);
233 ylabel('Volume flow [liter/min]');
234 xlabel('Time [s]');
235 set(h,'Interpreter','latex','FontSize',legFontSize)
236 set(gcf, 'PaperPositionMode', 'auto') % Use screen size
237 print −djpeg cascadecontrol3
238

239 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
240 plot(time,qbck*60000,time,qc*60000)
241 h(1)=legend('$q_{bck}$','$q_c$','Location','Best');
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242 axis([0 600 0 6000]);
243 ylabel('Volume flow [liter/min]');
244 xlabel('Time [s]');
245 set(h,'Interpreter','latex','FontSize',legFontSize)
246 set(gcf, 'PaperPositionMode', 'auto') % Use screen size
247 print −djpeg cascadecontrol4
248

249 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
250 plot(time,−hpipe)
251 h(1)=legend('$h_{bit}$');
252 %axis([0 600 −3010 −2960]);
253 xlabel('Time [s]');
254 ylabel('Height [m]')
255 set(h,'Interpreter','latex','FontSize',legFontSize)
256 set(gcf, 'PaperPositionMode', 'auto') % Use screen size
257 print −djpeg cascadecontrol5
258

259 figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])
260 plot(time,pbit)
261 h(1)=legend('$p_{bh}$');
262 %axis([0 600 −3010 −2960]);
263 xlabel('Time [s]');
264 ylabel('Pressure [bar]')
265 set(h,'Interpreter','latex','FontSize',legFontSize)
266 set(gcf, 'PaperPositionMode', 'auto') % Use screen size
267 print −djpeg cascadecontrol6

calcf.m:

1 function [f qc] = calcf(t,x,zc,qbck,qp,hBit,Va,VaDot,Vd,betaa,betad,M,...
2 theta1,theta2,rhod,rhoa,g)
3 %Function calculates right hand side f = [f1;f2;f3] of system equations
4 %x = [pc;pp;qbit]
5 %?NS − 2009
6 %Modified: DEH − 2010
7

8 % get states
9 pc = x(1);

10 pp = x(2);
11 qbit = x(3);
12

13 % calc qc
14 qc = 0.0025*zc*sqrt(2/rhoa*(pc−0));
15

16 % calc f
17 f1 = (betaa/Va) * (qbit − qc + qbck + VaDot);
18 f2 = (betad/Vd) * (qp − qbit);
19

20 % project
21 if qbit>0
22 f3 = (1/M) * (pp−pc−theta1*qbit−theta2*abs(qbit)*qbit +...
23 (rhod−rhoa)*g*hBit);
24 else
25 f3 = max((1/M) * (pp−pc+(rhod−rhoa)*g*hBit),0);
26 end
27

28 f = [f1;f2;f3];
29 end


