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Abstract

This master’s thesis studies the recently proposed initialization scheme for the
H2-optimal static output feedback problem [Manum et al., 2009]. The initializa-
tion scheme consists of solving a convex quadratic programming (QP) problem
to obtain the controller (K0) that in the open-loop sense is closest to the linear
quadratic regulator (LQR). For the special case when the available measurements
yk =C xk , do not contain all information about the system states, we have that the
resulting control law is uk = −KC † yk = −K0 yk , where K is the LQR. In this thesis
we show that for a class of systems this controller is suitable for initializing the H2-
optimal static output feedback problem. In particular, we have tested the synte-
sized H2-optimal controllers on the thermal/optical plant uDAQ28/LT [Jelenčiak
et al., 2007]. A short study of the convexity properties of the H2-optimal static
output feedback problem has shown that the problem is non-convex for some sys-
tems. Thus, we cannot expect to find the globally H2-optimal static output feed-
back for cases where the initialization procedure fails to provide a good controller
guess.
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Chapter 1

Introduction

When N. Wiener developed the field of cybernetics in 1948 and wrote the book
with the same title, he did it on the basis of feedback control [Wiener, 1948]. Sim-
ple feedback loops, often using proportional-integral-derivative (PID) control, has
been a vital part of any control engineer’s toolbox ever since. The theory behind
this powerful tool is known as ”classical control” and is documented in the works
of Bode, Nichols, and others from the 1940’s.

S. Skogestad points out simplicity, robustness, and stabilization as three funda-
mental advantages of feedback control [Skogestad, 2009]. Simplicity in that tight
control can be achieved even with a very crude model. Robustness since feedback
is required for making a system adapt to new conditions. And stabilization; be-
cause feedback is the only way to fundamentally change the dynamics of a system.
E.g. feedback is the only way to stabilize an unstable plant.

b

r y
G

K

−

1

Figure 1.1: Feedback control of the plant G .

The virtues of feedback are lessened when the control loop is subject to a large
phase lag (time delay). Phase lags introduced by unstable (RHP) zeros and ”effec-
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2 CHAPTER 1. INTRODUCTION

tive time delays” limit the controller gain and the advantages of a high feedback
gain diminishes. These fundamental limitations apply for any controller and can-
not be avoided even with sophisticated model-based control, as we will see later
in this thesis.

Even though feedback from output measurements has been used for a long time
there still exist unsolved problems, the static output feedback problem probably
being the most important [Syrmos et al., 1997]. The unanswered question is; when
can we use a static output feedback to obtain some desired closed-loop character-
istic? Many years of research on the problem have given several important results,
but not yet a satisfactory answer. The reason that this problem has been granted
so much attention is that it involves a big class of problems. Also, it is desirable
because static output feedback is the simplest of all feedback implementations,
not requiring state estimation and generally not a very exact model.

The static output feedback problem may be studied in the setting of linear quadratic
(Gaussian) control. Unlike the conventional formulation, where the quadratic ob-
jective is minimized by choosing future plant inputs, the optimization problem is
then solved with the controller parameters as the degrees of freedom. The result-
ing optimization problem for finding the optimal static output feedback may also
be cast as an H2-optimal control problem, which is the preferred formulation in
this thesis.

The work presented in this thesis is mainly based on the recent research on a
convex initialization scheme for the H2-optimal static output feedback problem
[Manum et al., 2009]. The proposed initialization scheme is reviewed and tested
on some interesting systems, including the thermal/optical plant uDAQ28/LT. A
qualitative analysis of the convexity of the H2-optimal static output feedback prob-
lem is also given.
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1.1 Motivation & goals

Model-based control has enjoyed a lot of attention from the control community
the last decade or so, model-predictive control (MPC) probably being the most
popular approach. Today MPC is considered a mature alternative to classical con-
trol, e.g. PID feedback. The inherently multivariable formulation and constraint
handling are two reasons for the success of MPC. However, for large-scale systems
there still exist challenges in form of increased computational demands, and today
a lot of research is being done on improving optimization efficiency (for example
by model and problem reduction). In addition, MPC generally requires a state esti-
mator, usually implemented as a Kalman filter. On the other hand, a static output
feedback solution does not require a state estimator, nor much (online) computa-
tional effort. Thus, for large systems static output feedback could prove itself to be
a real alternative to model predictive control with state estimation.

In this thesis we aim to compare model-based control, in form of LQG control,
with the static output feedback approach. We will use the initialization proce-
dure in [Manum et al., 2009] to synthesize low-order H2-optimal controllers for
several interesting systems. Especially we want to test the procedure on the ther-
mal/optical plant uDAQ28/LT where noise is present and should be taken into
account in the controller synthesis. Further, we wish to investigate the convexity
properties of the optimization problem used to find the H2-optimal static output
feedback controllers. The goal with this investigation is to learn more about static
output feedback and what problems that may occur with this approach.

The scope of this thesis is limited to linear time-invariant systems without input,
output, or state constraints. The hope is to raise some new questions that can fuel
an ongoing research.
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1.2 Document structure

This thesis is divided into three parts, outlined here. The first part is a literature
study. The literature study is separated into two chapters, the first of those holds
some basic control theory while the following goes more into depth and presents
a review of [Manum et al., 2009]. In the second part a problem statement is given
before the contributions resulting from the work on this thesis is presented. The
thesis is ended by a final discussion and a conclusion drawn on the knowledge
obtained through the study. Finally, a list of points regarding future research and
some hints on what it may bring is provided.

This document holds several appendices with theory, derivations, and figures that
the author has split from the main text for increased reading pleasure.

1.3 Code library

The theory, algorithms, and examples in this thesis were implemented in Mat-
lab™ code. Table 1.1 shows the folder structure of the developed code library.
The code is attached to this document.

Table 1.1: Folder structure

Folder name Description

./ Root folder

./clopt/ Algorithm for closed-loop optimization.

./optmeas/ Implementation of the theory from self-optimizing control.

./examples/ Holds the code for all the examples in this thesis.

./lib/ External libraries.



Chapter 2

Theoretical background

This chapter holds some basic control theory which is needed in the next chap-
ters of this master’s thesis. We will first present the static output feedback problem
and list some of the most important results that has been obtained through the
many years of research on the difficult topic. We then move on to the more pleas-
ant topics of PID and LQG control. These topics are well-developed and widely
accepted. Thus, we only consider the key elements of them and aspects relevant
in later chapters. Next, we acquaint the theory and idea of self-optimizing control.
This theory is central in the review chapter to come, where the main algorithm in
this thesis is presented. The reader is advised to read the theoretical background
in this chapter before moving onwards.

We restrict our discussion to linear, time-invariant (LTI) systems which in contin-
uous time can be formulated as

ẋ(t ) = Ax(t )+Bu(t ), (2.1a)

y(t ) =C x(t )+Du(t ), (2.1b)

where x ∈Rnx is the state vector, u ∈Rnu is the input vector, and y ∈Rny the output
vector. A ∈ Rnx×nx is the state matrix, B ∈ Rnx×nu is the input matrix, C ∈ Rny×nx is
the output matrix, and D ∈ Rny×nu is the direct feedthrough matrix. The discrete
counterpart of (2.1) is

xk+1 = Axk +Buk , (2.2a)

yk =C xk +Duk , (2.2b)

where the dimensions are the same as in the continuous case and the subscript k
refers to time instants.1

1To ease notation the time dependance is often omitted, i.e. x(t ) = x or xk = x. It should be
clear from the context what is meant in each specific case.

5



6 CHAPTER 2. THEORETICAL BACKGROUND

2.1 Static Output Feedback

The static output feedback (SOF) problem is arguably one of the most important
open questions in control engineering; see for example [Blondel et al., 1995]. This
section provides a short summary of the SOF problem and is mainly based on the
clear survey by Syrmos et al. [Syrmos et al., 1997]. A general formulation of the
problem is:

Given a linear time-invariant system, find a static output feedback so
that the closed-loop system has some desirable characteristics, or de-
termine that such a feedback does not exist.

Here ”desirable characteristic” could be pole placement for example. Stated dif-
ferently, the problem of pole placement with static output feedback is to find a

u =−K y y (2.3)

which places the poles (or the eigenvalues) of the closed-loop system ẋ = (A −
BK yC )x as desired. A system is said to be (output) pole-assignable if all poles may
be assigned to a desirable set of poles. We say that the output feedback is static,
meaning that the feedback gain K y is a constant matrix (vector or scalar).

The fact that many control problems can be reduced to some variation of the SOF
problem strengthens its importance. E.g. the design of a dynamical output com-
pensator of order q ≤ n, where n is the system order, may be brought back to the
static output feedback case as shown in [Syrmos et al., 1997]. Modern control de-
sign techniques, such as LQG and MPC with an observer, provides controllers of
order equal to or greater than the order of the plant (q ≥ n). Hence avoiding the
SOF problem. However, for large-order systems these controllers are difficult or
impossible to implement owing to cost, reliability, and hardware limitations. This
motivates the search for simple, low-order controllers and reveals the SOF prob-
lem.

The literature gives several necessary and sufficient conditions for the two prob-
lems of stabilizability and pole placement with static output feedback. Some of
them are listed below, starting with a few important (but untestable) conditions
for pole placement via static output feedback.

Necessary condition 1. A necessary condition for generic pole assignability with a
real gain matrix K y is that nuny ≥ nx .
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Sufficient condition 1. If (A,B ,C ) is minimal (i.e. controllable and observable) with
B and C of full rank then max(nu ,ny ) poles are assignable.

Sufficient condition 2. nuny > n, where n is the McMillan degree of the system, is
sufficient for generic pole assignability [Wang, 1996].

We proceed by presenting the even PIP theorem and a necessary condition for
stabilization of an open-loop unstable plant by static output feedback.

Theorem 2.1 (Even PIP). A linear system H(s) is stabilizable with a stable controller
C (s) that has no real unstable zeros iff (i) the number of real poles of H(s), counted
according to their McMillan degree, between any pair of real blocking zeros in the
right half-plane is even and (ii) the number of real blocking zeros of H(s) between
any two real poles of H(s) is even. In this case we say that H(s) satisfies the even
parity-interlacing property (even PIP).

Necessary condition for static output stabilizability. A necessary condition for static
output stabilizability of an open-loop unstable plant H(s) is that it satisfy the even
PIP.

Example 1 The following example from [Syrmos et al., 1997] illustrates the neces-
sary condition cited above. Consider the plant

H(s) = 1− s

(εs +1)(s −2)
. (2.4)

For ε > 0, the even PIP is not satisfied, and the plant is not SOF-stabilizable. For
−1 < ε ≤ 0, the even PIP is satisfied. However, a simple root-locus analysis shows
that this plant is SOF-stabilizable only for −0.5 ≤ ε ≤ 0. This short example un-
derlines that the even PIP is a necessary, but not sufficient condition for output
stabilizability.

The problem of finding stabilizing static output controllers has been approached
from many angles; the inverse linear-quadratic approach, covariance assignability
by output feedback, output structural constraint approach, and decision meth-
ods, to mention a few [Syrmos et al., 1997]. Unfortunately, the conditions re-
sulting from these approaches are either too restrictive, not efficiently testable,
or both. Moreover, the computational algorithms for testing these conditions are
highly complex and not even guaranteed to converge. To better understand why
this problem is so hard to solve we consider another two approaches, namely the
”Lyapunov approach” and ”LQ approach”. We allow ourselves to copy these from
[Syrmos et al., 1997].
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The Lyapunov approach. Necessary and sufficient conditions for static output
feedback can be obtained in terms of coupled linear matric inequalities follow-
ing a quadratic Lyapunov-function approach. From Lyapunov stability theory we
know that the (continuous) closed-loop system matrix A −BK yC is stable iff K y

satisfies the following matrix inequality:

(A−BK yC )P +P (A−BK yC )> < 0 (2.5)

for some P > 0. For a fixed P , the inequality (2.5) is a linear matrix inequality (LMI)
in the matrix K . The LMI (2.5) is convex in K , so that convex programming can be
used to numerically find a K whenever P > 0 is given. Conditions for static output
feedback stabilization are obtained by finding the solvability conditions of (2.5) in
terms of K [Iwasaki et al., 1994].

Theorem 2.2. There exists a stabilizing static output feedback gain iff there exists a
P > 0 such that

B⊥(AP + AP>)(B⊥)> < 0 (2.6)

(C>)⊥(A>P−1 +P−1 A)[(C>)⊥]> < 0 (2.7)

where B⊥ and (C>)⊥ are full-rank matrices, orthogonal to B and C> respectively.

Notice that (2.6) is an LMI on P and (2.7) is an LMI on P−1.2 Computational meth-
ods based on iterative sequential solutions of the two convex LMI problems with
respect to P and P−1 have been proposed to find stabilizing static output feedback
gains, but convergence of the algorithms is not guaranteed [Iwasaki et al., 1994].

The LQ approach. The SOF problem may also be studied in a linear quadratic
regulator (LQR) setting. Consider the following optimization problem:

min
K y

J =
∞∫

0

x>Qx +u>Ru d t (2.8)

s.t. ẋ = (A−BK yC )x, (2.9)

with Q ≥ 0 and R > 0. In addition, it is required that K y stabilizes the closed-loop
system. The necessary conditions for optimality were given in [Levine & Athans,
1970] and are repeated beneath:

0 = A>
c S +S Ac +Q +C>K y>RK yC (2.10)

0 = Ac P +PA>
c +X (2.11)

0 = RK yC PC>−B>SPC> (2.12)

2It is interesting to note that many other static output feedback control problems, such as sub-
optimal H∞ control, suboptimal linear quadratic control and µ synthesis with constant scaling can
be formulated in terms of coupled LMIs as in (2.6) and (2.7), see for example [Iwasaki & Skelton,
1994].
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with X = x(0)x(0)> and Ac = A −BK yC . Generally, optimal control with reduced
information results in such coupled nonlinear matrix equations. The dependence
of (2.10)-(2.12) on the initial state x(0) may be removed by setting X = E

{
x(0)x(0)>

}
.

E.g. it is common to assume that x(0) is uniformly distributed on the units sphere,
so that X = I .

Conditions for the existence and global uniqueness of solutions to
(2.10)-(2.12) such that P and S are positive definite and (2.9) is sta-
ble are not known. It has been shown that in the discrete case there
exists a gain that minimizes (2.8) locally and also stabilizes the system
if Q ≥ 0, R > 0, rank(C ) = ny , X > 0, and (A,B ,C ) is output stabiliz-
able. However, there may be more than one local minimum, so that
the solution of (2.10)-(2.12) may not yield the global minimum. [Syr-
mos et al., 1997]

Iterative methods for finding K y has been proposed, see for example [Moerder
& Calise, 1985]. However, these algorithms guarantee only a local minimum and
require the selection of an initial stabilizing gain. A direct procedure for finding
such a K y is unknown as discussed in [Syrmos et al., 1997].

To summarize; few SOF design techniques or solution algorithms are available
today. The excisting algorithms are too restrictive, suffer from untestable condi-
tions (transforms the problem into another unsolved problem), and/or is compu-
tational inefficient. The result is that the existing methods are characterized as ad
hoc solutions.

Complexity analysis of the problem of stabilizability by static output feedback has
indicated that it is N P -hard, that is, equally hard to solve as any decision prob-
lem in the complexity class N P [Syrmos et al., 1997]. The negative result that
the (0,1)-Knapsack problem [Cormen et al., 2001] can be reduced to the problem
of pole placement via static output feedback in polynomial time came in a recent
publication [Fu, 2004]. Thus, pole placement with static output feedback is proved
to be N P -hard. This implies that moderately large problems are computationally
intractable. Syrmos et al. [Syrmos et al., 1997] concludes the survey by suggesting
that every effort should be made on exploiting the special structure of each partic-
ular problem.
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2.2 PID control

The proportional-integral-derivative (PID) controller is the most commonly used
control algorithm in industrial control systems [Skogestad & Postlethwaite, 2005].
A common implementation of the PID controller is the parallel (or ideal) form

Kpi d (s) = Kp

(
1+ 1

Ti s
+Td s

)
, (2.13)

where the parameters are the gain Kp , integral time Ti , and derivative time Td .
The PID control law is u(s) = Kpi d (s) · e(s), where e = r − y is the error and r is
the desired output (often called reference signal or setpoint). The controller is not
realizable on this form since it is not proper. To obtain a proper controller it is
common to include limited derivative action by filtering the derivative part of the
controller3, that is

u(s) = Kc

[
1+ 1

Ti s
+ Td s

εTd s +1

]
e(s). (2.14)

The filter characteristic is chosen by ε = (0,1]. Setting ε = 0 gives back the pure
derivative, however with this value the system is not realizable. With ε close to
zero the controller becomes sensitive to noise, because the noise is differentiated.
To increase robustness against process variations and lower sensitivity to noise it
is common to roll-off the controller gain at high frequencies. This can be achieved
by additional low-pass filtering of the control signal, i.e.

Kpi d (s) = Kp

(
1+ 1

Ti s
+Td s

)
· 1

(T f s +1)n , (2.15)

where T f is the filter time constant and n is the order of the filter.

The PID controller is tuned by selecting parameters Kp , Ki , and Kd , that give an
acceptable closed-loop response. A desirable response is often characterized by
the measures of settling time, oscillation period, and overshoot, to mention a few.
In addition, one has to ensure that the PID controller has good robustness prop-
erties. The robustness properties may be quantified by the gain margin and phase
margin, which essentially tells us how close the closed-loop system is to instabil-
ity. We know from Bode’s stability criterion that the loop gain must be less than 1
at the critical frequency ω180 where the phase lag around the loop is −180 degrees
(-360 degrees including the negative gain in the feedback loop). Otherwise, signals
at this frequency will increase in magnitude for each pass through the loop and we
have instability.

3In practical implementations the reference signal is usually not differentiated. This is to avoid
derivative kick when a step occur in the reference signal. With this implementation the controller
has two degrees of freedom because the signal path from y to u is different from that from r to u.
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Many PID tuning methods have been proposed over the years; ranging from the
simple, but most famous Ziegler-Nichols tuning method [Ziegler & Nichols, 1942],
to the more modern simple internal model control (SIMC) tuning rules by Skoges-
tad [Skogestad, 2003]. Various authors have also suggested PID tuning methods
based on the LQR, e.g. [He et al., 2000]. The PID controller can also be tuned via
loop-shaping techniques, where the loop transfer functions is shaped by changing
the controller parameters.4

The PID controller can be generalized to the multi-input multi-output (MIMO)
case where KPI D (s) becomes a full transfer function matrix, connecting each input-
output pair with a single-input single-output (SISO) PID controller. In this case we
call KPI D (s) a MIMO PID controller. The parallel-form PID controller with limited
derivative action (2.14) can be generalized to the MIMO case by

Kpi d (s) =
[

Kp +Ki
1

s
+Kp

s

εs +1

]
, (2.16)

where Kp , Ki , and Kp are nu ×ny -matrices. On this form, all input-output pairs
share the same low-pass filter on the derivative action, and the controller in (2.16)
is a special case of the general MIMO PID controller. This limitation may affect
control when roll-off (of the derivative) is desired at different frequencies for the
input-output pairs. However, in most cases ε is given a small value (typically ε =
0.1) for all input-output pairs. Another special case is when Kp , Ki , and Kd are
square and diagonal matrices, we then have decentralized control, i.e. each input
is paired with one output.

Control systems are today realized in computer software which demand a discrete
implementation. One way to obtain the discrete version of the PID controller is to
use the bilinear transform:

s ← 2

Ts

z −1

z +1
, (2.17)

where Ts is the sampling time. The bilinear transform is a first-order approxima-
tion of the natural logarithm function that is an exact mapping of the z-plane to
the s-plane (Z -transform) [Balchen et al., 2003].

4It is quite ironic that even with all the research that has been layed down in finding controller
parameters that in some sense is optimal, most PID controllers running in the industry run on fac-
tory settings.
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2.3 Linear Quadratic Optimal Control

In this chapter we will go through some properties of optimal control of uncon-
strained LTI systems with a quadratic cost function. The scope of this chapter
is confined to the deterministic linear regulator problem, also known as the LQR
problem, the Kalman filter, and the LQG problem. Lastly, we will talk about H2-
optimal control and the link between it and the LQG problem. No attempt is made
to give an in-depth analysis of these well-known control problems, and we merely
point out some of their most important characteristics. The reason for looking at
these problems is that they constitute the foundation of the work we present later
in this thesis.

The discussion is restricted to linear, time-invariant (LTI) systems with noise, i.e.

ẋ(t ) = Ax(t )+Bu(t )+wd (t ), (2.18a)

y(t ) =C x(t )+wn(t ), (2.18b)

where we have set D = 0 for simplicity. wd (t ) and wn(t ) are the process and mea-
surement noise, in the following we assume them to be uncorrelated zero-mean
Gaussian stochastic processes with constant power spectral density matrices W
and V , respectively. In other words we have that

E
{

wd (t )wd (t )>
}=W δ(t −τ), (2.19a)

E
{

wn(t )wn(t )>
}=V δ(t −τ), (2.19b)

and

E
{

wd (t )wn(t )>
}= 0, (2.20a)

E
{

wn(t )wd (t )>
}= 0, (2.20b)

where E {·} is the expectation operator and δ(t −τ) is a delta function. In the dis-
crete case we will use the same notation for the process and measurement noise
(wd and wn) and the power spectral density matrices (W and V ). However, we
underline here that W and V in continuous time in general are different from W
and V in discrete time. See [Brown & Hwang, 1997] for the relation.
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2.3.1 Continuous-time Linear Quadratic Regulator

The LQR problem, where all states are known, can be stated as follows: given the
system ẋ = Ax +Bu with a non-zero inital state x(0), find the input u(t ) which
takes the system to the zero state (x = 0) in an optimal manner, i.e. by minimizing
the cost

Jr =
∞∫

0

x(t )>Qx(t )+u(t )>Ru(t ) d t . (2.21)

The optimal solution (for any inital state) is

u(t ) =−Kr x(t ), (2.22)

where the feedback gain matrix is derived by

Kr = R−1B>P, (2.23)

0 = PA+ A>P −PBR−1B>P +Q. (2.24)

Eq. (2.24) is a continuous-time algebraic Ricatti equation (CARE) and has an unique
positive semidefinite solution P = P> ≥ 0.

2.3.2 Discrete-time Linear Quadratic Regulator

In discrete time the infinite-horizon LQR problem is to minimize the cost function

Jr =
∞∑

k=0
xT

k Qxk +uT
k Ruk , (2.25)

subject to the system constraint xk+1 = Axk +Buk . The optimal solution is a state
feedback uk =−Kr xk where Kr is found by solving

Kr = R−1B>A>(P −Q), (2.26)

P = A>P (I +BR−1B>P )−1 A+Q. (2.27)

Here, Eq. (2.27) is a discrete-time algebraic Ricatti equation (DARE) with an unique
positive semi-definite solution P = P> ≥ 0.
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2.3.3 Comments on the Linear Quadratic Regulator

Lets address briefly some features of the infinite-horizon LQR problem in Eqs.
(2.21) and (2.25), starting with the issue of stability.

The optimal solution to the infinite-horizon LQR problem, u = −Kr x, gives an
asymptotically stable system if the pair (A,B) is stabilizable and (A,Q

1
2 ) is de-

tectable [Naidu, 2003]. We can interpret these requirements as follows: If we have
unstable states we must be able to detect them via the cost function in order to
control them. Hence we require that (A,Q

1
2 ) is detectable, i.e. all unstable states

are observable. Further, we must require that (A,B) is stabilizable, i.e. all unstable
states are controllable, to guarantee that we can stabilize the unstable states.

The weight matrices are often assumed to be constant and diagonal, and we re-
quire that Q ≥ 0 and R > 0. In order to keep the integral/sum of the expressions
x>Qx in the cost function small and non-negative, we understand that Q must be
positive semidefinite. Due to the quadratic nature of the weightage, large errors
(here e = x − 0 = x) are penalized more than small errors. Also, from u>Ru we
see that one has to pay a higher cost for larger control effort. Since the cost of the
control has to be a positive quantity, that is, we do not want to award zero control
action, the R matrix should be positive definite. Time-varying weights are covered
in [Naidu, 2003].

The weight matrices can be considered as the tuning parameters of the LQR by
regarding Q as a state (error) penalty, and R as a penalty on input usage or in-
put power. Alternatively, we can penalize the outputs (y) by chosing Q =C>QyC ,
where Qy is the output penalty. Loosely speaking, the factor ||Q||/||R|| can be cho-
sen to favourize either fast control or cheap control (low input power).

The LQR has several important advantanges:

• It is inherently multivariable (takes care of coupling in the process).

• It is optimal on the infinite horizon.

• It has good robustness properties (it can be non-robust when implemented
in combination with state estimation).

However, the LQR does not handle constraints. When constraints on states and/or
inputs are added the quadratic programming (QP) problem has infinite optimiza-
tion variables and becomes intractable. Luckily, the infinite-horizon problem can
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be approximated with a finite-horizon (length N ) cost function

Jr =
∞∑

k=0
xT

k Qxk +uT
k Ruk ≈ x>

N SxN +
N−1∑
k=0

xT
k Qxk +uT

k Ruk , (2.28)

where S is the terminal cost on the final state xN . When S satisfies the Ricatti equa-
tion (2.27) (or (2.24) in the continuous case), the relation is exact and the finite-
horizon problem also provides the solution to the unconstrained infinite-horizon
LQR problem. However, when putting structure on the allowed input moves (con-
straints), optimizing on the finite horizon is not necessarily the same as optimizing
on the infinite horizon, unless the horizon is ”long enough”. Several techniques
exist to compute a ”long enough” horizon, that is, a horizon N that guarantee sta-
bility and feasibility of the QP problem, see for example [Keerthi & Gilbert, 1988],
[Gilbert & Tan, 1991].

The choice S = P (Ricatti matrix) implies that the LQR law (u = −Kr x) is utilized
after the horizon. Another option is to choose Kr = 0 after the horizon and S as the
solution of the discrete Lyapunov equation S = A>S A+Q.5 The latter being mean-
ingful only for open-loop stable systems. The matter of truncating the horizon is
discussed in more detail in Appendix B.1.

5The Lyapunov equation becomes A>P +PA +Q = 0 in the continuous case. It is then called a
continuous Lyapunov equation.
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2.3.4 The Discrete Kalman Filter

The Kalman filter is probably the most well-known and widely used tool for stochas-
tic estimation from noisy measurements. It is named after Rudolph E. Kalman,
who in 1960 published his famous paper describing a recursive solution to the
discrete-data linear filtering problem [Kalman, 1960].

The Kalman filter is an optimal observer that estimates the states from noisy mea-
surements by a form of feedback control: the filter estimates the process state at
some time and then obtains feedback in the form of noisy measurements. It is
optimal in that it minimizes the error covariance Pk = E

{
[xk − x̂k ][xk − x̂k ]>

}
by

selecting an optimal Kalman gain Kk at each time instant. It operates recursively
in a loop consisting of two distinct phases: time update and measurement update.

Table 2.1: Notation

x̂k|k−1 The a priori estimate of xk given measurements up to and including yk−1

x̂k|k The a posteriori estimate of xk given measurements up to and including yk

Pk|k−1 The a priori error covariance, Pk|k−1 = E
{
[xk − x̂k|k−1][xk − x̂k|k−1]>

}
Pk|k The a posteriori error covariance, Pk|k = E

{
[xk − x̂k|k ][xk − x̂k|k ]>

}
Using the notation in Table 2.1, the Kalman filter for the discrete LTI system

xk+1 = Axk +Buk +wd ,k , (2.29)

yk =C xk +wn,k , (2.30)

with covariance matrices E
{

wd w>
d

}=W and E
{

wn w>
n

}=V , consists of the equa-
tions summarized by Table 2.2.

Table 2.2: The discrete Kalman filter equations.

Time update Measurement update

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 Kk = Pk|k−1C>(C Pk|k−1C>+V )−1

Pk|k−1 = APk−1|k−1 A>+W Pk|k = (I −KkC )Pk|k−1

x̂k|k = x̂k|k−1 +Kk (yk −C x̂k|k−1)

After initialized with an initial state x0 and covariance matrix P0 the recursive
Kalman filter proceeds in a loop consisting of the time and measurement update.
The loop is illustrated by Figure 2.1. The time update is responsible for project-
ing forward in time the current state and error covariance estimates to obtain the
a priori estimates for the next time step. The measurement update is responsi-
ble for the feedback – i.e. for incorporating new measurements into the a priori
estimate to obtain an improved a posteriori estimate.
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Time update Measurement update
”predict” ”correct”

1

Figure 2.1: The Kalman filter loop.

The error covariance Pk and Kalman gain Kk generally converge as time goes on,
and a suboptimal Kalman filter can be implemented by replacing them with their
respective steady-state values. Lets denote the steady-state values Pk = Pk+1 = P
and Kk = Kk+1 = K f . The suboptimal Kalman filter is then obtained by substituting
P and K f into the equations in Table 2.2. This is the steady-state Kalman filter.

The steady-state Kalman gain K f , also known as the innovation gain, can be found
off-line by solving

K f = PC>(C PC>+V )−1, (2.31)

where P = P> ≥ 0 is the unique positive semidefinite solution of the discrete alge-
braic Ricatti equation (DARE)

P = AP (I +PC>(C PC>+V )−1C P )A>+W. (2.32)

The equations for x̂k|k−1 and x̂k|k in Table 2.2 can then be combined into one time-
invariant state-space model (the steady-state Kalman filter)

x̂k+1 = Ax̂k +Buk + AK f (yk −C x̂k ), (2.33a)

ŷk =C x̂k +C K f (yk −C x̂k ). (2.33b)

From (2.33) we see that the Kalman filter has the same order as the system with
eigenvalues at ei g (A − AK f C ). The reader is referred to [Brown & Hwang, 1997]
and [Kalman, 1960] for more information about the properties and underlying as-
sumptions of the Kalman filter.
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2.3.5 The Continuous Kalman Filter

The continuous steady-state Kalman filter has the structure of an ordinary state
estimator or observer, as shown in Figure 2.2. For the system in (2.18) the estima-
tor is

˙̂x = Ax̂ +Bu +K f (y −C x̂), (2.34)

ŷ =C x̂. (2.35)

The optimal choice of K f minimizes E
{
[x − x̂]>[x − x̂]

}
and is given by

K f = PC>V −1, (2.36)

where P = P> ≥ 0 is the unique positive semidefinite solution of the continuous
algebraic Ricatti equation (CARE)

PA>+ AP −PC>V −1C P +W = 0, (2.37)

with W and V defined by Eqs. (2.19) and (2.20).

b

b Plant

wd wn

y

−

x̂

u

B

Kf

∫

A

C

Kalman filter

ŷ

x̂

1

Figure 2.2: The Kalman filter and noisy plant.
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2.3.6 The LQG problem

The LQG control problem is to find the optimal control input u(t ) which mini-
mizes the cost function

J = E

min
T→∞

1

T

T∫
0

[
x(t )>Qx(t )+u(t )>Ru(t )

]
d t

 , (2.38)

where Q and R are constant weighting matrices that satisfy Q ≥ 0 and R > 0.6 The
effect of these matrices have already been discussed in section 2.3.3. The name
LQG arises from the use of a Linear model, Quadratic cost function (2.38), and
Gaussian white noise processes to model disturbances and noise signals (2.19).

The solution to the LQG problem is known as the separation theorem or certainty
equivalence principle. It is surprisingly simple and consists of first solving the de-
terministic linear quadratic regulator (LQR) problem: the above problem without
wd and wn . The solution to the LQR problem is a simple state feedback law

u(t ) =−Kr x(t ), (2.39)

where Kr is a constant gain matrix which is easy to compute and independent on
the statistical properties of the plant noise, that is W and V . The LQR control law
requires that x is measured and available for feedback. This difficulty is overcome
by computing a optimal estimate x̂ of the state x, so that E

{
[x − x̂]>[x − x̂]

}
is min-

imized. The optimal estimate is given by a Kalman filter and is independent of Q
and R. The solution to the LQG problem is then found by replacing x with x̂, to
give u = −Kr x̂. The separation theorem is simply that the problem can be cast
as two distinct subproblems, one being the LQR problem, the second being the
optimal estimator problem.7 The separation theorem is illustrated in Figure 2.3.

6For the rest of Chapter 2.3 we only consider continuous systems on the form (2.18) with noise
weights (2.19). The presented theory applies with little modification also to discrete systems.

7The author likes to think of the separation theorem in terms of dynamic programming and the
principle of optimality, where the optimal substructure is split into the Kalman filter from y to x̂,
and from x̂ to u the LQR law. In fact, most optimal control problems can be solved with dynamic
programming by analyzing the appropriate Hamilton-Jacobi-Bellman equation [Naidu, 2003].
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b Plant

Kalman filter

LQR controller
−Kr

x̂

u

wd wn

y

1

Figure 2.3: Illustration of the separation theorem.

2.3.7 LQG: combined optimal state estimation and optimal state
feedback

The combination of an LQR and (steady-state) Kalman filter is a dynamic con-
troller. The transfer function from y to u is (assuming negative feedback)

KLQG (s)
s=

[
A−BKr −K f C K f

−Kr 0

]
. (2.40)

The controller has the same degree (number of poles) as the plant. Using Eqs.
(2.34), (2.35), and (2.22) we obtain the closed-loop dynamics

d

dt

[
x

x − x̂

]
=

[
A−BKr BKr

0 A−K f C

][
x

x − x̂

]
+

[
I 0
I −K f

][
wd

wn

]
. (2.41)

The closed-loop poles are simply the union of LQR and kalman filter, as is expected
from the separation theorem.

2.3.8 LQG with integral action

The standard LQG design procedure does not have integral action in the con-
troller. This section presents one way of including integral action with LQG. The
control structure, depicted in Figure 2.4, is borrowed from [Skogestad & Postleth-
waite, 2005].
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With this setup the LQG controller stabilizes the plant, and the extra integral effect
is used to follow a reference signal. The controller dynamics are

d

dt

[
x̂
σ

]
=

[
A−BKr x −K f C −BKr i

0 0

][
x̂
σ

]
+

[
K f

I

]
y, (2.42a)

u = [−Kr x −Kr i ]

[
x̂
σ

]
, (2.42b)

where we have split the LQR gain into two parts, Kr x for the estimated states, and
Kr i for the integrated outputs σ.

b Plant

wd wn

yu∫
−Kr

Kalman
filter

b

b

r

−

1

Figure 2.4: LQG with integral action.

2.3.9 H2-optimal control and link to LQG

The standard H2 optimal control problem is to find a stabilizing controller K
which minimizes

||F (s)||2 =

√√√√√ 1

2π

∞∫
−∞

tr
[
F ( jω)F ( jω)H

]
dω, F , Fl (P,K ), (2.43)

with Fl (P,K ) denoting the lower LFT of the generalized plant P and controller K .8

Note that F must be strictly proper, otherwise the H2 norm is infinite. The gen-
eralized plant P typically includes the plant model, the interconnection structure,
and the designer-specific weighting functions. The H2 norm have several deter-
ministic and stochastic interpretations. A deterministic interpretation of the H2

norm is the 2-norm of the impulse response, i.e. the output resulting from apply-
ing unit impulses to each input (allowing the output to settle to zero before the

8The generalized plant and Linear fractional transforms (LFTs) are covered in appendices A.1
and A.2.
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applying an impulse to the next input). In the stochastic case, minimizing the H2

norm equals the minimization of the output power of the generalized system, due
to a unit intesity white noise input. That is, when

E
{

w(t )w(t )>
}= Iδ(t −τ) (2.44)

the expected power in the error signal z is

E

 lim
T→∞

1

2T

T∫
−T

z(t )>z(t )d t

= ||Fl (P,K )||22, (2.45)

and it is clear that minimizing H2 norm is the same as minimizing the root-mean-
square (rms) value of z. These relations can be shown by using Parseval’s theorem.

The LQG problem described in 2.3.6 is a special case of H2-optimal control. Fol-
lowing the derivation in [Skogestad & Postlethwaite, 2005] we show how the LQG
problem can be cast as an H2 optimization in the general framework. By defining

z =
[

Q
1
2 0

0 R
1
2

][
x
u

]
(2.46)

and representing the stochastic inputs wd and wn as[
wd

wn

]
=

[
W

1
2 0

0 V
1
2

]
w, (2.47)

where w is a white noise process of unit intensity, we can write the LQG cost func-
tion as

J = E

 lim
T→∞

1

T

T∫
0

z(t )>z(t )d t

= ||Fl (P,K )||22. (2.48)

In this formulation

z(s) = Fl (P,K )w(s) (2.49)

and the generalized plant P is given by

P
s=


A W

1
2 0 B

Q
1
2 0 0 0

0 0 0 R
1
2

C 0 V
1
2 0

 . (2.50)

The above formulation of the LQG problem is illustrated in Figure 2.5.



2.3. LINEAR QUADRATIC OPTIMAL CONTROL 23

When the system is deterministic, that is wd = 0 and wn = 0, the LQG problem
reduces to the LQR problem. We can formulate the LQR problem in the general
framework by defining w = x0, v = y and[

z
y

]
= P

[
x0

u

]
, (2.51)

where the generalized plant P is given by

P
s=


A I B

Q
1
2 0 0

0 0 R
1
2

C 0 0

 . (2.52)

The relation between z and x0 can now be written

z(s) = Fl (P,K )x0(s) (2.53)

and the effect of x0 on z can be minimized by minimizing

J = ||Fl (P,K )||2. (2.54)

+
(sI −A)−1B Cb

Q
1
2

K

b

R
1
2

}
z

u y

P

w

{
W

1
2

V
1
2

+

wd

wn

1

Figure 2.5: The LQG problem formulated in the general control configuration.
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2.4 Self-optimizing Control

In self-optimizing control (SOC) we look for which variables to control. The objec-
tive is to find the optimal combination of measurements which, when controlled
to constant setpoint values, will keep the process close to optimum operating con-
ditions despite disturbances and measurement error. The use of a constant set-
point policy can reduce or even eliminate the need for a real-time optimization
(RTO) layer (which compute new optimal setpoints). This is one of the major mo-
tivations behind self-optimizing control, defined as:

Self-optimizing control is when we can achieve an acceptable loss with
constant setpoint values for the controlled variables without the need
to reoptimize when disturbances occur. [Skogestad & Postlethwaite,
2005]

Acceptable loss is quantified in terms of a cost function J which we attempt to
minimize. The constant setpoint policy (cs constant) should yield acceptable loss,
L = J (u,d)− J opt(d), in spite the presence of uncertainty. Uncertainty enters the
problem through (i) external disturbances d and (ii) implementation errors n ,
cs − c. The implementation error n is caused by (i) steady-state control error nc

and (ii) the measurement error ny . For linear measurement combinations we thus
have n = nc +Hny . The control error nc is determined by the controller, but if we
assume that the controller has integral action the steady-state error can be ne-
glected, i.e. nc = 0. The implementation error n is then given by the measurement
error, i.e. n = Hny . Note that it is not possible to have zero loss when imple-
mentation errors are present because each new measurement adds a disturbance
through its associated measurement error, ny .

2.4.1 Results from self-optimizing control

We here state the most important results from self-optimizing control. The nota-
tion is adopted from [Alstad et al., 2008] and presented in Table 2.3.

The objective is to achieve optimal steady-state operation, where the degrees of
freedom u are selected such that the scalar cost function J (u,d) is minimized for
any given disturbance d [Skogestad et al., 2003]. It is assumed that any optimally
active constraint have been implemented, and that u contains the remaining de-
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Measurement
combination (H)

yd ny

c = H(y + ny)
Feedback
controller

Optimizer
(RTO)

cs

u

Process
(G, Gd)

1

Figure 2.6: Feedback implementation of optimal operation with separate layers
for optimization (RTO) and control.

Table 2.3: Notation

u Vector of nu unconstrained variables (degrees of freedom)
d Vector of nd disturbances
y Vector of ny selected measurements used in forming c
c Vector of selected controlled variables (to be identified) with dimension nc = nu

ny Measurement error associated with y
nc Control error associated with c
n Implementation error associated with c; n = nc +Hny

grees of freedom.9 The reduced optimization problem is

min
u

J (u,d). (2.55)

A set of controlled variables c which under a constant setpoint policy (where u is
adjusted to keep c constant, i.e. c = cs) yields optimal operation, at least locally, is
searched for. The problem structure is illustrated in Figure 2.6.

By solving (2.55) for a given d we obtain J opt(d), uopt(d), and yopt(d). Because of
changing disturbances and implementation errors u = uopt(d) can not be imple-
mented in practice. The resulting loss (L) is defined as the difference between the
cost J , when using a non-optimal input u, and J opt(d):

L = J (u,d)− J opt(d). (2.56)

9See [Skogestad & Postlethwaite, 2005] for a more detailed discussion about the underlying as-
sumptions in self-optimizing control.
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A local second-order accurate Taylor series expansion of the cost function around
the nominal point (u∗,d∗) is then

J (u,d) = J (u∗,d∗)+ [
Ju Jd

]>[
∆u
∆d

]
+ 1

2

[
∆u
∆d

]>[
Juu Jud

J>ud Jdd

][
∆u
∆d

]
, (2.57)

where∆u = u−u∗ and∆d = d−d∗.10 For a given disturbance (∆d = 0), the second-
order accurate expansion of the loss function around the optimum (Ju = 0) be-
comes

L = 1

2
(u −uopt)> Juu(u −uopt) = 1

2
z>z, (2.58)

where

z , J 1/2
uu (u −uopt). (2.59)

From here on we consider a constant setpoint policy where the controlled vari-
ables are linear combinations of the measurements, i.e.

c = H y. (2.60)

It is assumed that the number of available degrees of freedom is equal to the num-
ber of controlled variables, i.e. nc = nu . The constant setpoint policy implies that
u is adjusted to give cs = c +n where n is the implementation error for c. And n
is caused by the measurement error, n = Hny . To find the optimal measurement
combination we need to express the loss variables z in terms of d and ny .

The linearized (local) steady-state model is written as

y =G y u +G y
d d = G̃ y

[
u
d

]
, (2.61)

c =Gu +Gd d , (2.62)

where

G̃ y = [
G y G y

d

]
(2.63)

is the augmented plant. From Eqs. (2.60)–(2.62) we get that

G = HG y and Gd = HG y
d . (2.64)

The disturbances d and measurement errors ny are quantified by the diagonal
scaling matrices Wd and Wn , respectively.

d =Wd d ′, (2.65)

ny =Wny ny ′, (2.66)

10The ∆, used to denote deviation variables, is omitted hereafter to simplify the notation.
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where we assume that d ′ and ny ′ are any vectors satisfying∣∣∣∣∣∣∣∣[ d ′

ny ′
]∣∣∣∣∣∣∣∣

2

≤ 1. (2.67)

[Skogestad et al., 2003] justifies the use of the combined vector 2-norm. The non-
linear functions uopt(d) and yopt(d) are also linearized, and it can be shown that

uopt =−J−1
uu Jud d , (2.68)

yopt =− (G y J−1
uu Jud −G y

d )︸ ︷︷ ︸
F

d , (2.69)

where F denotes the optimal sensitivity matrix for the measurements. Using the
constant setpoint policy and the preceeding equations we derive an expression for
the loss variables z in (2.59):

z = Md d ′+Mnny ′, (2.70)

where

Md =−J 1/2
uu (HG y )−1HFWd , (2.71)

Mny =−J 1/2
uu (HG y )−1HWn . (2.72)

Introducing

M , [Md Mny ] (2.73)

gives z = M

[
d ′

ny ′
]

, which is the desired expression for the loss variables. From

(2.58) we have that a non-zero value for z gives a loss L = 1
2 ||z||2, and the worst-

case loss for the expected disturbances and noise in (2.67) is then

Lwc = max L∣∣∣∣∣∣
∣∣∣∣∣∣
 d ′

ny ′

∣∣∣∣∣∣
∣∣∣∣∣∣

2

≤1

= 1

2
(σ̄[M ])2. (2.74)

Thus, to minimize the worst-case loss we need to minimize σ̄(M) with respect to
H . The problem can be stated as

H = arg min
H

σ̄(M). (2.75)

This is the ”exact local method” in [Skogestad et al., 2003]. At first glance (2.75)
may seem like a non-trivial optimization problem as M depends nonlinearly on H ,
as shown in (2.71)-(2.73). However the optimization problem can be reformulated
by introducing

Mn , J 1/2
uu (HG y )−1 = J 1/2

uu G−1, (2.76)
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which may be viewed as the effect of n on the loss variables z. We then have

M = [Md Mny ] =−Mn H [FWd Wny ]. (2.77)

As pointed out in [Alstad et al., 2008] the solution of Eq. (2.75) is not unique. If H
is an optimal solution of (2.75), then H1 = D H is another optimal solution, where
D is a non-singular matrix of dimension nu × nu . This follows from the fact that
Md and Mny in (2.71) and (2.72) are unaffected by the choice of D . An implication
of this is that Mn in Eq. (2.76) may be selected freely. By introducing the constraint
Mn = I and denoting

F̃ , [FWd Wny ], (2.78)

the optimization problem in (2.75) can be stated as

H = arg min
H

σ̄(HF̃ ) subject to HG y = J 1/2
uu . (2.79)

The reformulated problem is easy to solve numerically because of the linearity
in H in both the matrix HF̃ and in the equality constraints. [Alstad et al., 2008]
provides a discussion on the properties of the optimization problem in (2.79) and
gives a discussion of possible choice of norm (Frobenious gives the same result as
the singular value or induced 2-norm). An explicit solution of the problem, when
F̃ F̃> has full row rank, is proved to be

H> = (F̃ F̃>)−1G y (G y>(F̃ F̃>)−1G y )−1 J 1/2
uu . (2.80)

The results presented in this chapter are summarized in the following theorem
from [Alstad et al., 2008].

Theorem 2.3 (Exact local method: Optimal measurement combination). For com-
bined disturbances and measurement errors, the optimal measurement combina-
tion in terms of the Frobenius-norm can be formulated as

min
H

||HF̃ ||F subject to HG y = J 1/2
uu , (2.81)

where F̃ = [FWd Wny ]. F is the optimal measurement sensitivity with respect to
disturbances, and Wd and Wny are diagonal weighting matrices, giving the mag-
nitudes of the disturbances and measurement noise, respectively. Assuming F̃ F̃> is
full rank, the explicit solution for the combination matrix H is

H> = (F̃ F̃>)−1G y (G y>(F̃ F̃>)−1G y )−1 J 1/2
uu . (2.82)

This solution also minimizes the singular value of M, σ̄(M), that is, provides the
solution to the ”exact local method” in (2.75).

Remark. The worst-case loss for the expected disturbances and noise in (2.67),
introduced by adding the constraint c = H y , is Lwc = σ̄(M)/2, where M is given by
Eqs. (2.71)-(2.73).
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Remark. The convex optimization problem in Theorem 2.3 can be solved using
for example CVX, a package for specifying and solving convex programs [Grant &
Boyd, 2009], with the following code:

cvx_begin

variable H(nu*N,ny+nu*N);

minimize norm(H*Ftilde, 'fro')

subject to

H*Gy == sqrtm(Juu);

evx_end

Remark. The above derivations are local, since we assume a linear process and
a second-order objective function in the inputs and the disturbances. Thus, the
proposed controlled variables are only globally optimal for the case with a linear
model and a quadratic objective.

Remark. The results from Theorem 2.3 can be interpreted as adding linear con-
straints that minimize the effect on the solution to a quadratic optimization prob-
lem.

2.4.2 Nullspace method

The nullspace method is a simple method that give the optimal measurement
combination H . The method is based on the following observation: by neglect-
ing the implementation error (Mny = 0), we obtain zero loss (Md = 0) in (2.71) by
selecting H such as HF = 0 ([Alstad & Skogestad, 2007] & [Alstad et al., 2008]). The
nullspace method is summarized in the below theorem.

Theorem 2.4 (Nullspace method). Consider an unconstrained quadratic optimiza-
tion problem in the variables u (vector of nu unconstrained, independent, and free
variables) and d (vector of nd independent disturbances)

min
u

J (u,d) = [
u d

][
Juu Jud

J>ud Jdd

][
u
d

]
. (2.83)

Assume that we want to obtain nc = nu independent controlled variables c that are
linear combinations of the measurements

c = H y. (2.84)

Let y = G y u +G y
d d be the candidate measurements and F = ∂yopt

∂d> = −(G y J−1
uu Jud −

G y
d ) the optimal sensitivity matrix evaluated with constant active constraints. If
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there exist ny ≥ nu+nd independent measurement, it is possible to select the matrix
H in the left nullspace of F , H ∈ N (F>), such that we get

HF = 0. (2.85)

With this choice for H, fixing c (at its nominal optimal value) is first-order optimal
for disturbances d; that is, the loss is zero as long as the sensitivity matrix F does not
change.

Remark. Requiring ny ≥ nu+nd independent measurements is the same as requir-
ing that the matrix G̃ y = [G y G y

d ] is of rank larger than or equal to ny , assuming
that the vectors u and d consist of independent variables.

Remark. The main disadvantage with the nullspace method is that we have no
control of the loss caused by measurement errors as given by the matrix Mny =
−Mn HWny . In [Alstad et al., 2008] they derive an explicit expression for H which
is used to calculate Mny , and to extend the nullspace method to cases with extra
or too few measurements, i.e. ny 6= nu +nd . This is the Extended nullspace method
proposed in the same paper.



Chapter 3

Review of literature

In this chapter we review the recent results from the research on convex initializa-
tion of the H2-optimal static output feedback problem [Manum et al., 2009]. The
theory from Chapter 2 is used throughout this review and the reader is advised to
consult it whenever needed.

3.1 Introducing the problem

In [Manum et al., 2007] a link between invariants for quadratic optimization prob-
lems and linear quadratic (LQ) optimal control was established. The link is that for
LQ control one invariant is ck = uk +K xk , which yields zero loss from optimality
when controlled to a constant setpoint c = cs = 0. The idea presented in [Manum
et al., 2009] is to use this link to generate a controller K0 suitable for initializing a
numerical search for the H2-optimal static output feedback.

Consider a finite horizon LQ problem on the form:

min
u

J (u, x(0)) = E

{
x>

N P xN +
N−1∑
k=0

x>
k Qxk +u>

k Ruk

}
(3.1a)

subject to xk+1 = Axk +Buk , (3.1b)

yk =C xk +wn , (3.1c)

x0 = x(0), (3.1d)

31
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where xk ∈Rnx are the states, uk ∈Rnu are the inputs, and yk ∈Rny are the outputs.
The inputs are collected in the vector u = (u0, u1, . . . , uN−1). As usual Q ≥ 0, R > 0,
and P = P> ≥ 0 are matrices of appropriate dimensions. E {·} is the expectation
operator.

When C = I and wn = 0 the problem reduces to the well-known LQR problem and
the solution to (3.1) is the state feedback uk =−K xk . If wn and x0 follow the white
noise assumption, the solution to (3.1) is the feedback law uk = −K x̂k , where x̂k

is the state estimate from a Kalman filter. The resulting LQG controller is then of
same order nx as the plant.

In [Manum et al., 2009] they considers the static output feedback problem, uk =
K y xk , using the LQ setting above. In particular they consider the multi-input
multi-output (MIMO) PID controller with the number of controlled output nc equal
to the number of inputs nu . They allow measurements yk on the form of con-

trolled outputs yc
k (P), the integrated value

k∑
i=0

yc
k (I), and the derivative ∂yk

∂t (D).

Using results from self-optimizing control [Alstad et al., 2008] they propose a con-
vex approach to find an initial estimate of K y , suitable as a starting point for a
numerical search. The approach is repeated in the next section and the main al-
gorithm is presented at the end of this chapter.

3.2 Finding the optimal measurement combination H

Here we consider a few important cases where we can find explicit expressions for
the problem specific matrices: G y , G y

d , Juu , Jud , F , and H .

Case 1) Full information: In this case we assume that noise-free measurements of
all states are available. The LQ problem in (3.1) can then be rewritten to the form
in (2.83) by treating x0 as the disturbance, and letting u = [u0, u1, . . . , uN−1]> ∈Rñu .
From Theorem 2.4 we know that there exists infinitely many invariants (but only
one of these involves only present states).

Let the measurement candidates be yc = [x0, u0, u1, . . . , uN−1]> = [x0, u]> ∈ Rñy .
Note that this also includes future inputs, however, we will use the usual trick from
MPC and only implement the present (first) input u0. Since we have that ñy =
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ñu +nd we can utilize Theorem 2.4 with the open-loop model:

yc =G y u +G y
d d , (3.2)

G y =
[

0nx×nu N

Inu N

]
∈R(nx+nu N )×(nu N ), (3.3)

G y
d =

[
Inx

0nu N×nx

]
∈R(nx+nu N )×(nx ), (3.4)

where we have introduced the notation Im for an identity matrix with dimension
m ×m.

The matrices Juu and Jud are derivatives of the linear quadratic objective function.
They are derived in B.2 and shown to be:

Juu

2
=


B>PB +R B>A>PB . . . B>(AN−1)>PB

B>PAB B>PB +R . . . B>(AN−2)>PB
...

...
. . .

...
B>PAN−1B B>PAN−2B . . . B>PB +R

 , (3.5)

Jud

2
=


B>P

B>PA
...

B>PAN−1

 A. (3.6)

In this case the sensitivity matrix becomes:

F =−(G y J−1
uu Jud −G y

d ) =
[

Inx

−J−1
uu Jud

]
. (3.7)

Using Theorem 2.4 we have that the combination matrix H is given by HF = 0.
Partitioning H gives

[H1 H2]

[
Inx

J−1
uu Jud

]
= H1 −H2(J−1

uu Jud ) = 0. (3.8)

To ensure a non-trivial solution we can choose H2 = Inu N . The optimal combina-
tion of x0 and u is then

c = H y = J−1
uu Jud︸ ︷︷ ︸

K

x0 +u ⇒ u =−K x0, (3.9)

which can be interpreted as:

Invariant 1: u0 =−K0x0

Invariant 2: u1 =−K1x0

... (3.10)

Invariant N: uN−1 =−KN−1x0
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From Theorem 2.4 implementation of (3.10) give zero loss from optimality, i.e.
they correspond to the optimal trajectory u∗

0 , u∗
1 , . . . , u∗

N−1 from the solution of
(3.1). Moreover, since the states capture all information, we must have that

u1 =−K1(A−BK0)−1︸ ︷︷ ︸
K0

x1. (3.11)

From this we deduce that the solution of (3.1) can be implemented as uk =−K0xk .
In [Manum et al., 2007] it was proved that this gives the same result as conven-
tional linear quadratic control (LQR).

Case 2) Output feedback: We now consider the static output feedback case where
uk = −K y yk and yk = C xk + 0 ·uk , k = 0, 1, . . . , N . When C has full column rank
we have full information (state feedback), but we here consider the general case
where C has full row rank (independent measurements), but not full column rank.

Let yc = [y0, u]> ∈ Rñy , as before u = [u0, u1, . . . , uN−1] ∈ Rñu and the disturbance
is d = x0. The open-loop model is now

yc =
[

0
I

]
︸︷︷︸

G y

u +
[

C
0

]
︸︷︷︸

G y
d

d , (3.12)

and the sensitivity matrix F becomes

F =−(G y J−1
uu Jud −G y

d ) =
[

C
−J−1

uu Jud

]
. (3.13)

We then have that ñy = ny + ñu ≤ nd + ñu and we cannot simply set HF = 0, but
we need to solve the optimization problem in Theorem 2.3.

We follow [Manum et al., 2009] and try to analyze the problem for a given mea-
surement combination H . Lets start by splitting H in the following manner

Hnc×(ny+ñu ) = [H1nc×ny
H2nc×ñu

]. (3.14)

For G y = [0 I ]>, HG y = J 1/2
uu is equivalent to H2 = J 1/2

uu . Further we have that

HF̃ = H [FWd Wny ] = [HFWd HWny ], (3.15)

and for the noise-free case where Wny = 0 we get

HF̃ = [HFWd 0]. (3.16)

The objective is to minimize the Frobenius norm of this matrix, that is we want to
minimize

||[HFWd 0]||F = ||HFWd ||F +||0||F . (3.17)



3.2. FINDING THE OPTIMAL MEASUREMENT COMBINATION H 35

Assume without loss of generality that Wd = I , and let J = −J−1
uu Jud . Using Eq.

(3.13) we get F> = [C> J>] and

HF = H1C +H2 J = H1C − J−1/2
uu Jud , (3.18)

where we have used that H2 = J 1/2
uu . Hence, we want to minimize ||H1C−J−1/2

uu Jud ||F
and we look for a H1 so that

H1C = J−1/2
uu Jud . (3.19)

We can solve this equation for H1 by using the Moore-Penrose pseudo-inverse,
here denoted with a dagger:

H1 = J−1/2
uu JudC †. (3.20)

The optimal measurement combination H is then

H = [J−1/2
uu JudC † J 1/2

uu ]. (3.21)

In the final implementation we can decouple the inputs by premultiplying H with
J−1/2

uu , i.e.

H̃ = J−1/2
uu H = [−J−1

uu JudC † I ]. (3.22)

This means that the open-loop optimal output feedback is

uk =− J−1
uu Jud︸ ︷︷ ︸

K

C † yk , (3.23)

where K is the state feedback found in the previous case (with full information).
So, for an optimal state feedback K the optimal output feedback is KC †. This
means that we can write:

"Invariant" 1: u0 =−K0C †x0

"Invariant" 2: u1 =−K1C †x0

... (3.24)

"Invariant" N: uN−1 =−KN−1C †x0

The variable combinations in 3.24 are called ”invariants” in quotation marks be-
cause they are not invariant to the solution of the original problem, but rather
the variable combinations that minimize the (open-loop) loss. Indeed, the non-
negative loss is

||HF || = ||J−1/2
uu JudC †C − J−1/2

uu Jud || (3.25)

= ||J−1/2
uu Jud (C †C − I )|| (3.26)

≤ ||J−1/2
uu Jud || · ||(C †C − I )||. (3.27)
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For output feedback we have in the least squares sense that

u0 =−K0C †︸ ︷︷ ︸
K y

0

y0, (3.28)

u1 =−K1C †C (A−BK0C †C )−1C †︸ ︷︷ ︸
K y

1

y1. (3.29)

Unfortunately, in general K y
1 6= K y

0 and hence the open-loop solution in (3.24) can-
not be implemented as a constant feedback uk = −K0C † yk = −K y

0 yk , as was the
case with state feedback.

Case 3) Noisy measurement of full state vector: The third case we will consider
is when noisy measurements of the state vector are available, and the noise-level
on all states are the same. That is, ỹk = xk +α, with ỹk denoting the noisy mea-
surement vector andα the noise-to-disturbance ratio. As before, we treat the inital
state as a disturbance (d = x0). The disturbance and noise weights become

Wd = I , Wny =αI , (3.30)

which are assumed to satisfy the bounds in (2.65), (2.66), and (2.67). As proved in
[Manum et al., 2009] the optimal feedback in this case becomes

uk = 1

1+α2 K xk , (3.31)

where K is the optimal feedback in the noise-free case (α= 0). From (3.31) we see
that the optimal state feedback is reduced by a factor 1/(1+α2) compared to the
noise-free case, and, that the optimal gain decreases as the noise level α goes up.

3.3 Closed-loop optimization

In this context we say that a feedback law is open-loop LQ-optimal if it minimizes
the quadratic objective, subject to (linear) system constraints, with the future in-
puts u = [u0, u1, . . . , uN−1]> as optimization variables. We further call such an op-
timization for an open-loop optimization. The LQR is an example of an open-loop
LQ-optimal controller where the optimal sequence of future inputs can be writ-
ten as uk = −Kr xk . This property of the LQR controller is desirable as it can be
implemented as a simple feedback.

We also introduce the terms closed-loop LQ-optimal controller and closed-loop op-
timization, which differs from the open-loop terms in that the optimization prob-
lem is solved with respect to the controller K , i.e. by writing

min
K

J (K ), (3.32)
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we mean minimize J over the parameters in K . Then, if the optimization problem
is convex we can find the globally optimal K which minimizes J and implement
it as a static feedback. Unfortunately, it is generally difficult to prove convexity of
such closed-loop optimization problems. This has already been touched upon in
Chapter 2.1 and it will be the topic of the next chapter in this thesis.

A closed-loop optimization problem can be specified in several ways. In [Manum
et al., 2009] they use the H2 formulation described in Section 2.3.9, that is

min
K

||Fl (P,K )||2, (3.33)

where ||Fl (P,K )||2 is the H2 norm of the lower LFT of the generalized plant P and
the controller K .1 This formulation may be implemented in an LQG-scheme and
the open-loop LQ-optimal controller from Section 3.2 can be used to initialize the
closed-loop optimization problem.

In the deterministic case, with V = 0, W = I , and P defined as in Eq. (2.52), the H2

problem represents the LQR problem. The H2 norm can then be interpreted as
the sum of impulse responses resulting from unit impulses in each input (in this
setting x0 is regarded as the input), and we can use the following approximation
of the H2 problem in (3.33):

min
K

√
trace(M(K )). (3.34)

The function M(K ) is derived in Appendix B.3.

1By following the standard notation used in the control community we here get some ambigu-
ous notation. The reader should not confuse the generalized plant with the final state weight in the
quadratic objective function, both denoted P . It should be clear from the context what is meant
when P occurs in the text.
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3.4 Initialization of the H2-optimal static output feedback
problem

A slightly altered version of the main algorithm in [Manum et al., 2009] is pre-
sented below.2 It is a two-step procedure for finding the H2-optimal static output
feedback. The first step (1-6) is to find the open-loop LQ-optimal controller K0.
This controller corresponds to a controller that in the open-loop sense is closest
to the optimal state feedback LQ controller. The last step (7) is to improve control
by performing a closed-loop optimization using K0 as the starting value.

Table 3.1: Main algorithm – Low-order controller synthesis

1: Define a finite-horizon quadratic objective on the form:

J (u, x) = x>
N P xN +

N−1∑
i=0

x>
i Qxi +u>

i Rui .

2: Calculate Juu and Jud as in (3.5) and (3.6).
3: Define candidate variables y =G y u +G y

d d , with u = [u0, u1, . . . , uN−1]>.
4: Decide disturbance and noise weights Wd and Wny (Default: Wd = I , Wny = 0).
5: Find H by solving the convex optimization problem in Theorem 2.3.
6: Deduce the inital LQ-optimal controller K0 (first invariant) from H .
7: Improve control by performing a closed-loop optimization with K0 as the start-

ing value. The closed-loop H2-optimal controller K can be found by solving
either (3.33) or the approximation (3.34).

Remark. The algorithm above is referred to as Algorithm 3.1 from here on.

Remark. With full information (Case 1) we can calculate K0 directly by extracting
the first invariant from J−1

uu Jud . With output feedback (Case 2) K0 is the first in-
variant of J−1

uu JudC †. In both cases we can also find K0 by performing Step 5 in
Algorithm 3.1, i.e. by solving the convex optimization problem in Theorem 2.3.

Remark. In Algorithm 3.1 we have chosen to use the notation from Chapter 2.4
for the disturbance and noise weight, i.e. Wd and Wny respectively. In Chapter 2.3
we used W and V for the same weights. To avoid confusion we remark here that
W =Wd and V =Wny .

2The original algorithm is modified by adding Step 6.



Chapter 4

Convexity of the H2-optimal static
output feedback problem

In the previous chapter we reviewed an initialization scheme for the H2-optimal
static output feedback problem, recently proposed in [Manum et al., 2009]. The
proposed algorithm is a two-step procedure where the first step finds an initial
controller K0 by solving a convex optimization problem. In the second step K0 is
used to initialize a closed-loop optimization where the controller parameters are
the degrees of freedom. The closed-loop optimization is posed in terms of the H2

norm (3.33) or the impulse response representation (3.34). To remind the reader
we restate the closed-loop optimization problem below (H2 problem):

min
K

Jcl = ||Fl (P,K )||2, (4.1)

where K is a static controller. If the cost function Jcl is convex in K we can find
the globally H2-optimal controller, lets denote it K ∗. However, when Jcl is non-
convex there exist local minima and we can no longer be sure to find K ∗ using
convex programming. In this chapter we investigate the convexity properties of
the H2 problem above. The question we will try to answer is:

• When is the H2 problem in (4.1) convex?

In other words we want to know when we can find K ∗ by solving the optimization
problem in (4.1) as a convex problem.

In Chapter 2.1 we mentioned that the problem of finding an optimal static out-
put feedback, or the set of all stabilizing static output feedback controllers, is re-
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garded as an unsolved problem. All research on the problem indicates that it is
N P -hard, meaning that algorithms much more effective than a brute-force ap-
proach probably does not exist. For example the LQ optimization problem 2.8
results in three coupled, nonlinear matrix equations. These equations are very
hard to solve. Other approaches, such as the Lyapunov approach, also give matrix
equations which cannot be solved in polynomial time.

The reason that we want to answer the question of convexity is simply that we
want to find the optimal static output feedback. It is always preferable (and cheap-
est) to implement the simplest solution and if a static output feedback yields ac-
ceptable control performance there is no doubt in which controller to choose.
From [Syrmos et al., 1997] we learned that systems with higher order than the con-
troller can be brought back to the static output feedback problem. Thus, from the
thousands of PI and PID loops running in the industry we know that the static
output feedback problem is applicable to many real systems.

Preliminary studies have shown that the problem in special cases (SISO systems
with one state) can be made convex under certain requirements on the weight
matrices Q and R, see Appendix C for details. Before the reader continues, the
author wants to underline that no attempt is made here to derive a mathemati-
cal proof which answers the question of convexity. Remembering the advice from
[Syrmos et al., 1997] we will use the structure of some specific examples to study
the convexity of the H2 problem, hoping that it may lead to new knowledge. But,
before presenting these interesting examples a short introduction to convex pro-
gramming is given.

4.1 Convexity of optimization problems

Convexity is a highly attractive property of optimization problems. Problems pos-
sessing this property are generally much easier to solve both in theory and in prac-
tice.

The term ”convex” can be applied both to sets and to functions. Using the defi-
nition in [Nocedal & Wright, 2006], we say that a set S ∈ Rn is a comvex set if the
straight line segment connecting any two points in S lies entirely inside S. The
function f is a convex function if its domain S is a convex set and if for any two
points x and y in S, the following property is satisfied:

f (αx + (1−α)y) ≤α f (x)+ (1−α) f (y), ∀α ∈ [0,1]. (4.2)

We say that f is strictly convex if the inequality in (4.2) is strict whenever x 6= y and
α is in the open interval (0, 1).
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Simple instances of convex sets include the unit ball {y ∈ Rn | ||y ||2 ≤ 1}; and any
polyhedron {x ∈Rn | Ax = b, C x ≤ d}. Examples of convex functions are the affine
(or linear) function f (x) = c>x +α, for any constant vector c ∈ Rn and scalar α;
and the convex quadratic function f (x) = x>H x, where H is a symmetric positive
semidefinite matrix. Figure 4.1 shows a convex and non-convex function.
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Figure 4.1: Example of a convex and non-convex function. The convex function
has a global minima, while the non-convex function has to local minima.

Consider the general constrained optimization problem

min
x∈Rn

f (x) subject to
ci (x) = 0, i ∈ E ,
ci ≤ 0, i ∈I ,

(4.3)

where E and I are sets of indicies for equality and inequality constraints, respec-
tively. Then, the term convex programming is used to describe the special case of
(4.3) in which;

• the objective (cost) function f (x) is convex,

• the equality constraint functions ci (·), i ∈ E , are linear, and

• the inequality constraint functions ci (·), i ∈I , are convex.

When solving an optimization problem on the form (4.3) we are looking for a
global minimizer of f , a point where the function attains its least value. Again,
we cite [Nocedal & Wright, 2006] and give the formal definitions:

• A point x∗ is a global minimizer if f (x∗) ≤ f (x), for all x.
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• A point x∗ is a local minimizer it there is a neighborhood N of x∗ such that
f (x∗) ≤ f (x), for all x ∈N .

For the unconstrained optimization problem, (4.3) without inequality constrains
(i.e. I = ;), we then know that: when f is convex, any local minimizer x∗ is a
global minimizer of f .

The unconstrained optimization problem with the objective function f in Figure
4.1a is convex, thus if we find the local minimizer we know that it also is the global
minimizer of f . If we replace f with the function in Figure 4.1b we no longer have
a convex problem. This f has two local minimizers, thus, if we find one of them
we are not guaranteed that it is the global minimizer. The other minimizer could
be a better solution.

4.2 Examples

To investigate the convexity of the H2 problem in (4.1) we study a few simple ex-
amples. Lets start by defining a LTI ”test” system

xk+1 = Axk +Buk , (4.4)

yk =C xk , (4.5)

with matrices A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈ Rny×nx . This system may contain
controller dynamics. As we discussed in Chapter 2.1 the problem of finding a con-
troller with order less than or equal to the system may be brought back to the static
output feedback problem. By defining design weights Q, R, W , V , and the gener-
alized plant (2.50) we now seek a H2-optimal static output feedback K .

From the theory in 2.3.9 we know that the system must be strictly proper (D =
0) for the H2 norm to exist. Also, when the system is unstable the H2 norm is
infinite. We immediately understand that we cannot find a static output feedback
for unstable systems with B = 0 or C = 0. Thus, to be able to move the eigenvalues
of the unstable modes inside the unit disc we must be require that C 6= 0 and B 6= 0,
leading to the following trivial, but necessary conditions for stabilizability with
static output feedback.

Necessary condition 1: A necessary condition for stabilizability of an unstable sys-
tem with static output feedback is that C 6= 0 and D 6= 0.

We can relax this condition by requiring that only the unstable modes are stabiliz-
able, leading to the next condition.
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Necessary condition 2: A necessary condition for stabilizability of an unstable sys-
tem with static output feedback is that the pair (A,B) is stabilizable and the pair
(A,C ) is detectable.

When one of these two conditions is violated there is no use in searching for an
H2-optimal controller using (4.1) (the H2 norm will be infinite for all controllers
K ). The above conditions are not new results, but leads to some insight in what to
expect when running the optimization problem in (4.1). We continue by present-
ing two examples of SISO systems which satisfies the above conditions, but which
do not give a resulting convex problem.

Example 1. We are interested in finding a SISO system which becomes unstable
when the gain is increased, and goes from unstable to stable when the gain be-
comes high enough. With Bode’s stability criterion in mind we create a system
which phase crosses −180 degrees two times. Consider the transfer function

G(s) = (T3s +1)(T4s +1)

s(T1s +1)(T2s +1)
, (4.6)

where Ti are time constants. The integrator 1/s causes the loop phase to start at
−90 degrees at ω = 0. By selecting the time constants T1 and T2 we can choose
at which frequencies we want an additional phase drop, providing a phase drop
of −90 degrees each. We can place the zeros by selecting T3 and T4, these gives
a phase lift of 90 degrees each. With the values T1 = 1.5, T2 = 1, T3 = 0.3, and
T4 = 0.1 we get the frequency response in Figure 4.2. Note that with these values
the even PIP (Theorem 2.1) is satisfied, which is a requirement for static output
stabilizability.
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Figure 4.2: Frequency response of G(s).

The controller gain K lifts the amplitude when increased (with negative feedback).
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From Bode’s stability criterion we know that the system is stable as long as phase
is greater than −180 degrees when the amplitude crosses the 0dB line. Thus, if
K is increased too much the 0dB crossing will occur at the frequencies where the
phase is below −180 degrees. However, when K becomes high enough the cross-
ing comes after the phase raises back over −180 degrees, and the system is stable
again. For negative K the system is unstable. To summarize we have designed a
system which, when K goes from negative to positive and increases towards infin-
ity, has the property that it is: unstable → stable → unstable → stable.

A minimal realization of the system is:

A =
−1.6667 −0.6667 0

1 0 0
0 1 0

 , B =
0.25

0
0

 , (4.7)

C = [
0.0080 0.1067 0.2667

]
, D = 0. (4.8)

This system is marginally stable with eigenvalues (or poles) at {0, −0.6667, −1}. It
is both controllable and observable.

To confirm that this system yields a non-convex H2 problem we plot the objective
function in (4.1) (Jcl = ||Fl (P,K )||2) as a function of K . The result is presented in
Figure 4.3, where we used the weight matrices Q = 10 ·C>C , R = 0.01, W = I , V =
0, and constructed the generalized plant as in (2.50). Note that the H2 norm is
replaced with 50 for values above 50. Most of the replaced values are infinity due
to an unstable closed-loop system.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

Controller gain

C
os

t f
un

ct
io

n

 

 
Jcl

Figure 4.3: The H2 objective function Jcl = ||Fl (P,K )||2 as a function of K .
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Example 2. In this example we study a discrete SISO system with matrices:

A =
0.31 0.45 0.2

0.33 1.11 0.1
0 −0.51 0.15

 , B =
 0

0.69
0.38

 , (4.9)

C = [−1 0.9 −0.8
]

, D = 0. (4.10)

This system is one of many found by a brute-force algorithm that searches for
SISO systems which give a non-convex H2 problem.1 The system is controllable,
observable, and has eigenvalues at {1.1927, 0.0275, 0.3497}. With one eigenvalue
outside the unit disc the system is unstable. Again we construct the generalized
plant using Eq. (2.50), with matrices Q = I , R = 0.01, W = I , V = 0. The objective
function Jcl = ||Fl (P,K )||2 is plottet versus the controller gain K in Figure 4.4 un-
derneath. When the H2 norm reaches values over 50 we replace it with 50 for the
same reasons as in the previous example.
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Figure 4.4: The H2 objective function Jcl = ||Fl (P,K )||2 as a function of K .

From Figure 4.4 we identify two local minima for K = K ∗
1 = 0.65 and K = K ∗

2 = 8.0.
Clearly, Jcl attains its lowest value for K = K ∗

1 and the global minimum is J∗cl = 3.81.
Luckily, for this example the initial controller found by Algorithm 3.1 is K0 = 3.58,
and the closed-loop optimization converges to the global optimum, J∗cl .

We wish to find the cause for the top between the two minima, when K ≈ 5.8. A
root locus analysis shows that the eigenvalues of the closed-loop system moves
toward the boundary of the unit disc when the gain is increased to 5.8, causing a

1In more detail, the algorithm changes the parameters of A, B , and C in the search for a Jcl =
||Fl (P,K )||2 with more than one minima. On average the algorithm found that about 5% of SISO
systems with three states gave a non-convex H2 problem. This number is based on a test including
four thousand different SISO systems.
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slower closed-loop response. When K is further increased the eigenvalues fall back
in, and the closed-loop response becomes faster, resulting in a local minimum for
K = K ∗

2 . If the loop gain becomes too high one of the eigenvalues leaves the unit
disc and the closed-loop system is unstable.

From this short analysis we conclude that SISO systems possessing this funda-
mental property gives a non-convex H2 problem. That is, we can only allow the
closed-loop response to turn from better to worse one time as the controller gain
is increased from zero. Of course, the behaviour of the objective function is is de-
pendant on the choice of weight matrices. For example, if we weigh the states that
alternates between slow and fast with zero in the Q matrix, they no longer con-
tribute to the objective function.

Example 3. In this example we study how well the (impulse-response) formulation
in (3.34) approximates the H2 problem in (4.1). From the derivation of (3.34) in
Appendix B.3 we know that

min
K

Ji r =
√

trace(M(K )) (4.11)

is the same as minimizing ||Fl (P,K )||2 when N →∞.

Using the system in Example 2 we calculate the H2 norm Jcl = ||Fl (P,K )||2 and
impulse-response objective function Ji r for a range of controller gains. We denote
the approximations J 400

i r , J 200
i r , and J 120

i r , where the superscript represents the hori-
zon length (N ) utilized. The approximations are compared with Jcl in Figure 4.5.
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(a) Approximations of the H2 norm.
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Figure 4.5: Approximation of the H2 norm for different horizon lengths.

We observe from Figure 4.5 that the approximation improves as N is increased.
For N = 400 it is hard to distinguish the approximation from Jcl .
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4.3 Discussion

From Example 1 and 2 we learned that controllability and observability alone (which
satisfies necessary condition 1 and 2) is not enough to guarantee a convex H2

problem. It seems that when the optimization problem is posed in terms of the
controller gains we need to elaborate these conditions to include more sophisti-
cated system behaviours. For instance, from Example 2 we know that the set of
stabilizing controllers must be a connected set. If it is not, we obtain the unde-
sired behaviour of a system that alternates between being stable and unstable as
the controller gains are increased. This results in a non-convex objective function
with more than one minima.

The developed brute-force algorithm that searches for SISO systems giving a non-
convex problem found that about 5% of the tested systems gave a non-convex
problem. This indicates that for a large class of (SISO) systems we can find a glob-
ally H2-optimal static output feedback using Algorithm 3.1. This statement does
however require that the first step of the algorithm provides the closed-loop opti-
mization with a feasible starting point, i.e. a stabilizing controller. Furthermore,
we saw from Example 2 that the algorithm can be utilized also on non-convex
problems, where the solution becomes even more dependant on the initial con-
troller guess. In that specific example the initial guess is good enough for the algo-
rithm to converge to the global optimum.

From Chapter 2.1 we know that in the discrete case there exists a stabilizing gain
that minimizes the infinite-horizon LQ problem locally when the system is output
stabilizable and C has full row rank (in addition to the common requirements Q ≥
0 and R > 0). From [Syrmos et al., 1997] we also know that a direct procedure
for finding such a controller was unknown at that time. Thus, we are tempted
to find out how good the initial controller guess from Algorithm 3.1 is for a more
general class of systems. In the next chapter we test the algorithm on the class
of stable second-order SISO systems. The goal is to further investigate how the
system dynamics affects the convexity of (4.1) and the initial controller guess.

Before moving on we need to comment on the results from Example 3, where we
studied how well the (impulse-response) formulation in (3.34) approximates the
H2 problem in (4.1). The formulation in (3.34) is an approximation of the closed-
loop infinite-horizon LQ problem (which (4.1) represents) because of the finite
horizon length. With (3.34) we assume zero control action after the horizon by
choosing the final state weight according to a Lyapunov equation. So, for a given
controller we must assume that the states come close enough to zero within the
horizon for the approximation to be good. As the controller parameters are the
degrees of freedom in the optimization we can not be assured that the states con-
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verge fast enough with the different gains, and it becomes hard to choose a satis-
fying horizon length on beforehand. The solution is to either use a horizon large
enough to ensure a good approximation for the most interesting controller gains,
or, use the H2 formulation in (4.1).



Chapter 5

Examples

In this chapter we persue the questions raised in the previous chapter with the
aim to learn more about the H2-optimal static output feedback problem and the
workings of Algorithm 3.1. These questions are studied through the three exam-
ples introduced next.

We will start with an example where Algorithm 3.1 is utilized on a second-order
SISO system. We here show how to synthesize static output feedback (P control),
PI and PID control. These controllers are compared against the LQR by studying
optimality, stability margins, closed-loop responses, and more. We also study if
the initialization procedure is well-suited for the H2-optimal static output feed-
back problem in this case.

In the second example we employ the algorithm on a thermal/optical plant with
noisy measurements. Noise considerations are included in the synthesis of a MIMO
PID and PI controller. These controllers are measured up against the full-order
LQG controller by running experiments on the plant. In this elaborate example
we wish to see how the controllers tuned by Algorithm 3.1 works in practice.

Finally, we give a basic example of LQG control of a plant that is inherently difficult
to control. The point to be made with this example is that some systems are hard to
make robust even with a full order controller such as LQG. For such systems it may
not be possible to make an static output controller with acceptable performance,
even if the system is output stabilizable.

Each example stands on its own feet with an introduction, presentation, and dis-
cussion of the obtained results. Therefore, they are gathered in this one chapter.

49
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5.1 H2-optimal control of a second-order system

In this example we attempt to control a general second-order SISO system using
different controllers which are tuned using Algorithm 3.1. We are particularly in-
terested in how well the open-loop controller, found by a convex optimization,
initializes the closed-loop optimization in (4.1).

The controllers to be considered are the PID, PD, PI, and P controller. These con-
trollers will be tuned using Algorithm 3.1 and then compared against the LQR con-
troller with both states available. To test the controllers we will use the general
second-order system

g (s) = k

τ2s2 +2τζs +1
, (5.1)

where ζ is the damping factor. |ζ| < 1 gives an underdamped system with oscilla-
tions, while |ζ| > 1 gives an overdamped system. For simplicity we set k = 1 and
τ = 1. The poles are then located at s = −ζ±

√
ζ2 −1, and we note that the poles

move towards the imaginary axis (± j ) as ζ→ 0. The system is realized in state-
space form with matrices

A =
[−2ζ −1

1 0

]
, B =

[
1
0

]
, C = [

0 1
]

, D = 0.

The system has nx = 2 states, nu = 1 input, and ny = 1 output. (A,B ,C ,D) is aug-
mented with the respective controller dynamics as in Appendix B.4. The PID con-
troller introduces two new states, the PD and PI controller one, and the P con-
troller zero. We denote the number of new states ñx . For PID control the new
outputs become the control error y p = e, integrated error y i = ∫

e d t , and deriva-
tive approximation of error yd ≈ ė. The derivative is approximated by chosing
ε = 0.1, see Chapter 2.2. The augmented systems are discretized with a sampling
time Ts = 0.1. We introduce the notation (APID, BPID, CPID, DPID) to denote the
augmented system, here augmented with the dynamics of a PID controller.

Since the system has two states and only one measurement we have to use Theo-
rem 2.3 to find the optimal measurement combination H . Assuming that all inputs
are measured we choose the measurement candidates to be yc = [y0, u]>, where
u = [u0, u1, . . . , uN−1]> and N is the horizon. y0 represents the outputs of the aug-
mented system. With yc =G y u +G y

d d and d = x0 we thus get

G y =
DPID 0nu×nu (N−1)

Inu 0
0 Inu×(N−1)

u, G y
d =

[
CPID

0nu×(nx+ñx )

]
d (5.2)

where CPID and DPID are replaced with CPI and DPI for PI control, etc.
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Following the procedure in Algorithm 3.1 we start by approximating the infinite-
horizon quadratic objective with

J (x,u) = x>
N P xN +

N−1∑
i=0

x>
i Qxi +u>

i Rui , (5.3)

and the weight matrices in Table 5.1 below. Note that we have chosen to weigh the
outputs y p , y i , and yd , instead of the states.

Table 5.1: Weight matrices

Q R P W V

LQR C>C 1 C>C Inx 0ny

PID C>
PID

1 0 0
0 10−3 0
0 0 0

CPID 1 C>
PID

1 0 0
0 10−3 0
0 0 0

CPID

[
Inx 0
0 02ny

]
03ny

PD C>
PD

[
1 0
0 0

]
CPD 1 C>

PD

[
1 0
0 0

]
CPD

[
Inx 0
0 0ny

]
02ny

PI C>
PI

[
1 0
0 10−3

]
CPI 1 C>

PI

[
1 0
0 10−3

]
CPI

[
Inx 0
0 0ny

]
0ny

P C>C 1 C>C Inx 0ny

As seen from Table 5.1 the derivative action yd is given zero weight. This allows
for as much derivative action as needed. The integrator states introduced with
PID and PI control gives one pole (eigenvalue) at zero (or unit disc in the discrete
case), which unless moved causes the closed-loop H2 norm to become infinity.
Hence, we choose to give the integrated output a small weight to push it inside
the left half-plane (or equivalently inside the unit disc). We do not consider noise
and set V to zero in all cases. W is chosen to weight disturbances only the original
system states, which makes it easier to compare the different controllers in terms
of the H2 norm. Figure 2.5 illustrates how the different weight matrices enter the
problem. Juu and Jud are found using Eqs. (3.5) and (3.6), respectively.

We now run the last steps in Algorithm 3.1 to find controllers on the form u =
Kp y p+Ki y i+Kd yd (PID), where y i and yd are set to zero depending on the desired
controller. For instance, y i = 0 gives the PD controller u = Kp y p +Kd yd . We call
the first invariant from the optimal measurement combination H for ”first-move”
controller and denote it K0 (initial controller guess). The first-move controller is
improved by a closed-loop optimization and we denote the H2-optimal controller
K ∗.

From classical control theory we know that integral action lowers the phase and
hence the obtainable bandwidth, while derivative action lifts the phase and in-
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creases the obtainable bandwidth. Hence, we expect that J∗PI ≥ J∗P ≥ J∗PID ≥ J∗PD ≥
J∗LQR, where J∗ = ||Fl (P,K ∗)||2 is the H2 norm of K ∗. It is well-known that when
ζ = 0 the system cannot be stabilized by a P or PI controller. This is most easily
seen from the eigenvalues (λi =±p1+K i ) which moves along the imaginary axis
for gains K =>−1 and as K <−1 one eigenvalue becomes positive. Thus we expect
numerical problems as ζ→ 0 and the algorithm tries to tune the P or PI controller.

Below we present the controller gains for ζ = 0.8, ζ = 0.5, and ζ = 0.2. The re-
sults from the convex optimizations are represented by the worst-case loss Lwc =
σ̄(M)/2. We could alternatively have used the open-loop objective function value
Jol = ||HF̃ ||F as both rank the controllers equal.

Table 5.2: Controllers for ζ= 0.8

Control law Lwc ||Fl (P,K ∗)||2 Controller

uk =−0.4050y p
k −0.0060y i

k −0yd
k 0.7555 3.9535 First-move PID

uk =−0.4169y p
k −0.0310y i

k −0.2433yd
k − 3.7423 PID

uk =−0.3973y p
k −0yd

k 0.7171 3.6627 First-move PD
uk =−0.3787y p

k −0.2229yd
k − 3.6066 PD

uk =−0.4050y p
k −0.0060y i

k 0.7555 3.9535 First-move PI
uk =−0.3247y p

k −0.0255y i
k − 3.7850 PI

uk =−0.3973y p
k 0.7171 3.6627 First-move P

uk =−0.2945y p
k − 3.6434 P

uk =−[0.2389 0.3973]xk − 3.5974 LQR

Before presenting the results for ζ = 0.5 and ζ = 0.2 we comment the numbers in
Table 5.2. First, we see that the initial convex optimization ranks the first-move P
and PD controller over the PI and PID controller, i.e. LPD

wc = LP
wc = 0.7171 < 0.7555 =

LPID
wc = LPI

wc. We also have that the closed-loop norms satisfy ||Fl (P,K )||PD
2 = ||Fl (P,K )||P2 =

3.6627 < 3.9535 = ||Fl (P,K )||PI D
2 = ||Fl (P,K )||PI

2 for the first-move controllers. A
closer look reveals that the open-loop optimization sets the derivative gain to zero,
so that the PID controller equals the PI controller, and PD the P controller. This
owes to the zero weight on the derivative output yd .

The gain on the integrated output y i is small (which is the same as a high time
constant) in both the PID and PI case because of the low weight. If more integral
effect is desired one could increase the weight on y i , however, in this example we
weight it low so that we can compare the different controllers from their respecive
norms (since we have zero weight on yd the norm of each controller is mainly
decided by the weight on y p , which is equal for all controllers).

After the closed-loop optimization the controllers are ranked as J∗LQR < J∗PD < J∗P <
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J∗PID < J∗PI. As expected, controllers with integral effect has a higher closed-loop
norm than the P and PD controller. Further, we see that the PD controller comes
very close to the LQR controller which measures both states. This is confirmed by
a simulation of the system with a disturbance x0 = [1 0]> in the initial state. The
different closed-loop optimal controllers perform according to their H2 norm as
seen from Figure 5.1b.
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(a) Closed-loop responses for ζ= 0.8.
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(b) Close-up of the responses for ζ= 0.8.

Figure 5.1: Output resulting from a disturbance x0 = [1 0]> in the initial state (ζ=
0.8). The low gain (high time constant) on the integrated output for the PID and PI
controller results in an output that does not reach zero within the simulation time
of 10s.

A last comment on the data in Table 5.2 is that the first-move P controller equals

KLQRC † = KLQR

[
0 0
0 1

]
= −0.3973, as expected from Eq. (3.23) in Section 3.2. We

proceed by presenting the optimization results for ζ= 0.5 and ζ= 0.2.

Table 5.3: Controllers for ζ= 0.5

Control law Lwc ||Fl (P,K ∗)||2 Controller

uk =−0.3956y p
k −0.0062y i

k −0yd
k 1.5234 4.0032 First-move PID

uk =−0.3846y p
k −0.0308y i

k −0.3509yd
k − 3.7353 PID

uk =−0.3895y p
k −0yd

k 1.4774 3.8400 First-move PD
uk =−0.3575y p

k −0.3301yd
k − 3.6459 PD

uk =−0.3956y p
k −0.0062y i

k 1.5234 4.0032 First-move PI
uk =−0.2619y p

k −0.0197y i
k − 3.9009 PI

uk =−0.3895y p
k 1.4774 3.8400 First-move P

uk =−0.2414y p
k − 3.7966 P

uk =−[0.3485 0.3895]xk − 3.6259 LQR
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Table 5.4: Controllers for ζ= 0.2

Control law Lwc ||Fl (P,K ∗)||2 Controller

uk =−0.3776y p
k −0.0063y i

k −0yd
k 6.3544 5.3924 First-move PID

uk =−0.3301y p
k −0.0303y i

k −0.5826yd
k − 4.1747 PID

uk =−0.3728y p
k −0yd

k 6.2945 5.2894 First-move PD
uk =−0.3114y p

k −0.5617yd
k − 4.1157 PD

uk =−0.3776y p
k −0.0063y i

k 6.3544 5.3924 First-move PI
uk =−0.1743y p

k −0.0087y i
k − 5.2684 PI

uk =−0.3728y p
k 6.2945 5.2894 First-move P

uk =−0.1599y p
k − 5.1585 P

uk =−[0.5845 0.3728]xk − 4.0630 LQR

From Tables 5.3 and 5.4 we see that as ζ gets smaller the controllers with deriva-
tive action gains an advantage over the ones without. For both ζ= 0.5 and ζ= 0.2
the controllers are ranked JLQR < JPD < JPID < JP < JPI by their closed-loop norm.
As ζ decreases from 0.5 to 0.2 the proportional and integral gain lowers, while the
derivative gain increases to compensate for the fall in loop phase. This is illus-
trated for the PID controller in Figure 5.2 underneath.
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(a) H2-optimal PID controller gains.
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Figure 5.2: Plot of the H2-optimal PID controller gains as a function of ζ. The
right plot shows the bandwidth, gain margin, and phase margin for the different
PID controllers.

The closed-loop responses with the different controllers are presented in Figure
5.3. When ζ= 0.2 the controllers without derivative action (P and PI) struggle with
controlling the system, resulting in undesired oscillations in the output.

A motivation behind this example was to study how close the open-loop controller
(K0) is to the closed-loop H2-optimal controller (K ∗) for the general second-order
SISO system in (5.1). For the ζ values we have looked at the closed-loop optimiza-
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(a) Closed-loop responses for ζ= 0.5.
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(b) Closed-loop responses for ζ= 0.2.

Figure 5.3: Output resulting from a disturbance x0 = [1 0]> in the initial state (ζ=
0.5 and ζ= 0.2).

tion converges and we suspect that K0 is fairly close to K ∗. Table 5.5 confirms
that the global minimum was found in all cases.1 However, the PI controller runs
into trouble as ζ→ 0 and from Figure 5.3b we see that the closed-loop response is
pretty bad for ζ= 0.2. We pursue the question about the closeness of K0 to K ∗ by
considering the closed-loop norm for a range PI controller parameters.

Figure 5.4 shows the closed - loop norm as a

PID PD PI P

ζ= 0.8
p p p p

ζ= 0.5
p p p p

ζ= 0.2
p p p p

Table 5.5: Global optimality?

function of the PI controller gains, Kp and Ki ,
for ζ = 0.5 and ζ = 0.2. For values over 10 the
closed-loop norm is replaced by 10. Most of the
replaced values are infinity due to an unstable
closed-loop system. The contours show the set
of parameters that give a closed-loop norm be-
low 10, i.e. give a stable closed-loop system. For
ζ= 0.2 this set shrinks considerably, along with the allowable values for K0. In both
cases the open-loop controller is close to the minimum and the closed-loop opti-
mization converges to the global minimum, giving the H2-optimal gains in Tables
5.4 and 5.3 for the PI controller. With ζ ≤ 0.05 the open-loop controller supplied
by Algorithm 3.1 fails to initialize the closed-loop optimization. However, these
values give a system which is close to impossible to control with a PI controller,
and P controller for that matter. And, the failing of Algorithm 3.1 is caused by a
badly conditioned optimization problem.

We conclude this example by noting that Algorithm 3.1 succeeds in finding a good
starting point for the closed-loop H2 optimization when the system is of second-
order SISO and controller is of type PID, PD, PI, or P.

1The global minima were found by calculating the H2 norm for all possible gains.
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(a) ||Fl (P,K )||2 for ζ= 0.5.

(b) ||Fl (P,K )||2 for ζ= 0.2.

Figure 5.4: Plots of the H2 norm (closed-loop objective) for ζ= 0.5 and ζ= 0.2 and
PI controller. The initial controller guess from the open-loop optimization (K0) is
marked by an encircled cross.
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5.2 Study of the thermal/optical plant uDAQ28/LT

In this example we study the thermal-optical laboratory plant uDAQ28/LT, re-
ferred to as udag from here on [Jelenčiak et al., 2007].2 The plant consists of 3
inputs and 2 ouputs, described in Tables 5.6 and 5.7.

Figure 5.5: The uDAQ28/LT

Table 5.6: Plant inputs

Input Description Range
u1 Bulb voltage (heater & light source) 0−5V
u2 Fan voltage (temperature decreaser) 0−5V
u3 LED (diode) (light source) 0−5V

Table 5.7: Plant outputs

Output Description Unit
y1 Temperature measurement ◦C
y2 Light intensity measurement Not known3

2The thermal-optical laboratory plant (uDAQ28/LT) was developed and tested at the Faculty
of Electrical Engineering and Information Technology in Bratislava by M.Huba and M. Kamensky in
cooperation with the company Digicon (P. Kurcik). The plant is used for teaching purposes at several
universities, including: FernUniversität in Hagen (prof. Gerke), University of Split (prof. Stipanicev),
University of Ancona (prof. Longhi), and NTNU (prof. Skogestad). The plant will facilitate the course
”TKP4140 - Process Control” at NTNU, next Fall.

3The signal from the photodiode used to measure light intensity is scaled in hardware.
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Sensors

b

Bulb

LEDLED

Fan

1

Figure 5.6: Schematic drawing of the
uDAQ28/LT showing the three inputs
and the placement of the sensors.
The red, wavy lines illustrate heat and
the dashed lines light emittance.

As illustrated in Figure 5.6 on the right-
hand side the udaq has three inputs avail-
able for control: a bulb, two LED’s, and
a fan. The bulb is a source for both light
and heat. The LED’s are primarily a light
source as they give off little heat. The
fan is used to lower the temperature by
transporting heat out of the system. Us-
ing these inputs we seek a control scheme
for setpoint control of our two measure-
ments; temperature and light intensity.

The udaq also supports measurements
of temperature outside the system (room
temperature) and fan velocity. In addi-
tion, filtered measurements of the tem-
perature and light intensity are available.
These measurements can be used to im-
prove control, e.g. via feed-forward of
outside temperature. However, in this ex-
ample we only take advantage of the un-
filtered measurements in Table 5.7.

5.2.1 Model identification and scaling

A 5-state model for the thermal plant was identified in [Manum, 2008]. The iden-
tification was performed with a sampling time of Ts = 0.5s using an inverse re-
peated input sequence around the operation point u∗ = [2 2 2]>, with a room tem-
perature of about 21C◦. The steady-state output, y∗, may change with changing
disturbances such as a varying room temperature. Plant measurements indicate
that y∗ ≈ [38 22]> under the mentioned conditions.

A simulation with positive and negative unit steps in each input spread over a time
span of 30min show that the identified model is poorly scaled (the states was of
magnitude 10−3 to 10−2). Using the maximum variation in each state a diago-
nal scaling matrix is constructed. The proposed state scaling is x̄ = Z x, where
Z = diag(0.02, 0.01, 0.04, 0.02, 0.02) and x is the new state vector.4 Note that all

4We here use the notation A = diag(a), which is short for a diagonal matrix A ∈ Rn×n with the

elements of a ∈Rn on its diagonal, i.e. A =


a1 0 0

0
. . . 0

0 0 an

.
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properties of the system (e.g. eigenvalues) are preserved under any equivalence
transformation x̄ = Z x, [Chen, 1999]. The inputs and outputs remain unscaled.
Denoting the un-scaled model (Ā, B̄ , C̄ , D̄), we obtain the scaled model

xk+1 = Z−1 ĀZ︸ ︷︷ ︸
A

xk +Z−1B̄︸ ︷︷ ︸
B

∆uk (5.4)

∆yk = C̄ Z︸︷︷︸
C

xk + D̄︸︷︷︸
D

∆uk (5.5)

with matrices

A =


0.9884 −0.0053 0 0 0
−0.0326 0.9710 0 0 0

0 0 0.4841 0.1691 −0.0105
0 0 −1.1736 −0.2854 0.5170
0 0 0.4652 0.3695 0.8394

 (5.6)

B =


0.0050 −0.0050 0
0.0100 −0.0200 0
0.1375 0 0.0425
1.2400 0 0.3750
−0.4150 0 −0.1250

 (5.7)

C =
[

10.5011 −0.0198 0 0 0
0 0 30.9550 −3.0647 1.1134

]
(5.8)

D = 0ny×nu (5.9)

The model describes the plant behaviour around the nominal points u∗ and y∗.
With deviation variables ∆y = y − y∗ and ∆u = u −u∗, where u = [u1 u2 u3]> and
outputs y = [y1 y2]>, we have that

xk+1 = Axk +B∆uk (5.10a)

∆yk =C xk (5.10b)

where we have omitted the D matrix since it is full of zeros.

To increase the plant interactions we can couple the LED to the fan, so that u3 =
α·u2. This makes the plant more difficult to control as the fan now influences both
temperature and light intensity. Introducing the relationship

∆u =
1 0

0 1
0 α


︸ ︷︷ ︸

B̃

∆ũ, ∆ũ =
[
∆u1

∆u2

]
, (5.11)
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we can rewrite our model, so that the new (coupled) model becomes

xk+1 = Axk +BB̃∆ũ (5.12a)

∆yk =C xk (5.12b)

The models in 5.10 and 5.12 will later in this example be referred to as model 1 and
model 2, respectively. We will set α = 1, note that this makes the plant somewhat
harder to control, but since the LED has such weak effect on the light intensity the
plant should still be relatively easy to control. The plant interactions are discussed
in more detail in the next section. We summarize the two models in Table 5.8
below.

Table 5.8: udaq models.

# inputs # outputs Equation
model 1 3 2 (5.10)
model 2 2 2 (5.12)

5.2.2 Analysis of dynamics

Let A1 be the upper left 2× 2 part of A, and let A2 be the lower 3× 3 part. We
then have that the eigenvalues of A1 are eig(A1) = {0.996, 0.964}, and eig(A2) =
{0.020±0.041i , 0.999}. The eigenvalues are within the unit circle and the system
is stable. Unfortunately the model is fairly stiff with eigenvalues close to zero and
near the unit circle. This may pose some numerical problems in the ODE solver.

A closer look at the matrices shows that the temperature y1 is determined by the
states x1 and x2, while the light intensity y2 is given by x3, x4, and x5. From the
eigenvalues we thus conclude that the light intensity dynamics are fast and tem-
perature dynamics slow, as expected from a physical point of view. The eigenvalue
belonging to x5 shows that this state is very slow and further contributes little to
the light intensity. The state has no physical meaning as the model is obtained by
identification, but it is likely that it attempts to model a slowly varying nonlinear-
ity.

The system is both controllable and observable. To study the two-way interactions
in the plant we perform a relative gain array (RGA) analysis. Lets start by present-
ing the calculated RGA elements for model 1 and model 2 in Figure 5.7. The RGA
elements are described in Table 5.9.

From the pairing rules in [Skogestad & Postlethwaite, 2005] we know that input-
output pairs with an RGA element close to one is desired, and that pairing on neg-
ative or zero RGA elements should be avoided. Thus, for model 1 we can exclude
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(a) RGA elements for model 1.
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(b) RGA elements for model 2.

Figure 5.7: Frequency-dependent RGA for model 1 and model 2.

pairing on λ13 and λ22 (which is reasonable since pairing the fan with light inten-
sity and LED with temperature obviously would not work). This leaves us with four
RGA elements. A steady-state analysis (ω= 0) indicate that pairing on λ11 and λ23

is the best alternative (i.e. bulb and LED to control temperature and light, respec-
tively). However, with a bandwidth higher than 0.2rad/s it is clearly best to pair on
λ12 and λ21, meaning that we (with decentralized control) would want to pair the
bulb with light intensity and fan with temperature. These results are consistent
with [Osuský & Hypiusová, 2009], where the topic is robust control design for the
udaq.

The RGA elements for the square plant (model 2), in Figure 5.7b, suggest an off-
diagonal pairing. So, we still want to pair the bulb with light intensity and the
fan with temperature. Note that the RGA element (1−λ11) is further from one,
meaning that model 2 has more two-way interaction than model 1.

Table 5.9: Description of RGA elements for model 1 (left) and model 2 (right).

u1 u2 u3

y1 λ11 λ12 λ13

y2 λ21 λ22 λ23

u1 u2

y1 λ11 1−λ11

y2 1−λ11 λ11
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5.2.3 Analysis of measurement noise

This section gives an analysis of the measurement noise present in the thermal-
optical plant. A one hour long measurement sequence obtained around steady-
state (when u = u∗ = [222]>) is used as a basis for this analysis and it is assumed
that the measurement noise is generated by an ergodic process.5 A portion of the
measurement sequence is presented below.
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Figure 5.8: Measurement sequence of temperature (y1) and light intensity (y2)
around steady-state.

Figure 5.8 clearly shows that the measurements are riddled with high-frequency
noise. The peak in the light intensity are due to an disturbance in input voltage
owing to internal variations in the power supply. A power spectral density (PSD)
plot of the two signals shows the distribution of power at the different frequencies.
The mean value of the sequences was removed before calculating the PSD using
the fast Fourier transform (FFT). Note that the measurement sequence is sampled
with a frequency of 2Hz (sample time of 0.5sec). From the Nyquist sampling the-
orem [Ljung, 1999] we know that frequencies below 1/(2Ts) = 1Hz (the Nyquist
frequency) are captured, and that frequencies over 1Hz are aliased and concieved
as frequencies below 1Hz.

5A stochastic process is said to be ergodic if its statistical properties (such as its mean and vari-
ance) can be deduced from a single, sufficiently long sample of the process.
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Figure 5.9: PSD of measurement sequences.

The PSD plot for the temperature measurement in Figure 5.9a tells us that most
of the signal power lies at frequencies below 0.3Hz. It is assumed that noise con-
tributes to the signal at frequencies over 0.3Hz and we note that a peak stands out
at a frequency of about 0.91Hz. With this assumption we can say that the temper-
ature measurement noise is generated by a zero-mean stochastic process.

Figure 5.9b shows a rather flat power spectra for the light intensity measurement,
which is expected due to the fast dynamics of the light. However, this makes it
hard to determine if the power contribution comes from the plant response or
measurement noise. Assuming that the noise is ergodic we can use the measure-
ment sequence in Figure 5.9b to calculate a noise variance of 1.5 ·10−4 for the light
intensity.6 As for the temperature measurement noise it is assumed that the light
intensity noise has a mean of zero. Assuming otherwise would not help us since
we by no means can detect a bias of the measurements using only the two mea-
surement devices at hand.

To analyze the effect of noise on the temperature measurement we try to high-pass
filter the measurement sequence. This will remove the low frequencies and show
the high-frequency part of the signal. An Equiripple high-pass FIR filter of order
56 was created using the Matlab filter design & analysis tool (fdatool). The filter
parameters was chosen to attenuate frequencies below 0.3Hz – 0.4Hz, as shown
by the frequency response in Fig. 5.10a.

A close-up of the high-pass filtered temperature measurement is given in Fig. 5.10b.
From this (high-pass filtered) measurement we calculate a noise variance of ap-
proximately 1.6 ·10−3 for the temperature measurement.

6The variance is calculated using the var() command in Matlab™. The standard deviation is
found by taking the square root of the variance.
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From this short analysis we have gained knowledge of the measurement noise in
the udaq. We know that the temperature measurement is more noisy than the
light intensity, and we have observed input disturbances causing large peaks in
the light intensity measurements. Table 5.10 shows the calculated variance and
standard deviation of the noise on the two measurements.

Table 5.10: Noise properties for the udaq measurements.

Temperature (y1) Light intensity (y2)
Noise mean 0 0
Noise variance 1.6 ·10−3 1.5 ·10−4

Noise standard deviation 0.04 ∼ 0.012
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5.2.4 Controller synthesis

We want to control the plant using MIMO PID control. We will consider the MIMO
versions of the PID controller in 2.13 and the low-pass filtered PI controller in
(2.15), i.e.

u =
(
Kp +Ki

1

s
+Kd

s

εs +1

)
y = Kp y p +Ki y i +Kd yd , (PID) (5.13)

u =
(
Kp

1

εs +1
+Ki

1

s(εs +1)

)
y = Kp y p, f +Ki y i , f , (low-pass filtered PI) (5.14)

The latter is included in this example to see if the low-pass filter improves control
when we have measurement noise. As described in B.4 we augment model 1 and
model 2 with the controller states and choose y p , y i , and yd as outputs for the
PID case, and y p, f and y i , f for the PI case.7 The PID and PI controller are both
of order 2 ·ny = 4 (since we low-pass filter the input to the PI controller). Using
our knowledge from the noise analysis we set the low-pass filter coefficient ε = 2,
which attenuates noise at frequencies f ≥ 1/ε= 0.5Hz.

The PID and PI controller are tuned by using Algorithm 3.1 (with noise weights)
where we first obtain the open-loop optimal controller and then improve it by
performing a closed-loop optimization. The controllers are then compared to the
discrete-time LQG controller. To be able to compare the controllers we will use
the same weight matrices in the objective function and construct the LQG con-
troller with integral action, as outlined in 2.3.8. The LQG controller is then of order
nx +ny = 5+2 = 7. The objective function we attempt to minimize is

J = x>
N P xN +

N−1∑
i=0

x>
i Qxi +u>

i Rui (5.15)

with Q = diag(25, 10−3, 15, 5, 10−3), R = R1 = diag(0.1, 2, 1), P = Q, and a horizon
length N = 120 (which equals 1min). We have denoted the input weight matrix R1

to emphasize that this weight belongs to model 1. For model 2 we will use R2 =
diag(1, 2). The state weight matrix Q is chosen to preferre states that affect the
outputs most, e.g. x1 and x3. The bulb is the input with greatest effect on the states
and we give it a low weight to assure that the controller has the freedom to use it.
To keep the input effect low we weigh the fan and LED more, forcing them to be
used only when needed. E.g. we do not want the fan to be used too much since it
transports heat out of the system. The weights was chosen by analyzing the scaled
state-space model and with experience from simulations using different weight
matrices.

7We perform the augmentation of model 1 and model 2 with the controller states in continu-
ous time. We then discretize the augmented models before using them to find optimal controller
tunings. The models are brought to and from discrete-time using the Matlab™ functions d2c() and
c2d().
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As mentioned we consider the state-space models in 5.10 and 5.12 augmented
with the states of the PID and low-pass filtered PI controller. In the LQG case
the model is augmented with the integrated outputs. This introduces new states
which we have to weight by expanding Q. To fairly compare the controllers we
weight the integrated outputs y i (and y i , f ) equal in all cases. We include the new
weights by expanding Q with Qi = diag(0.01, 0.01), so that

QLQG =QPI =
[

Q 0
0 Qi

]
. (5.16)

The new states, representing the integrated outputs, are the same for the LQG and
PID controller. However, for the low-pass filtered PI controller these states rep-
resent a low-pass filtered version of the integrated outputs and we cannot expect
an exact comparison between the controllers. Further, the PID controller intro-
duces states for the derivative outputs yd , in addition to y i . These states are given
a weight of zero so that they do not contribute to the objective function. This
means that we do not constrain the use of derivative action through Q. Defining
Qd = diag(0, 0) we have that

QPI D =
Q 0 0

0 Qi 0
0 0 Qd

=
Q 0 0

0 Qi 0
0 0 0

 . (5.17)

We choose the disturbance and noise weight matrices to be W = I and V = I . The
noise weight E {wn w>

n } = V was found in the noise analysis, but to guard against
model uncertainty, input disturbances, and unknown noise we set V = I .8 We
summarize the weight matrices for model 1 and model 2 in Tables 5.11 and 5.12.

Table 5.11: Weight matrices for model 1

Q R = R1 P W V

LQG

[
Q 0
0 Qi

] 0.1 0 0
0 2 0
0 0 1

 [
Q 0
0 Qi

]
I I

PID

Q 0 0
0 Qi 0
0 0 Qd

 0.1 0 0
0 2 0
0 0 1

 Q 0 0
0 Qi 0
0 0 Qd

 I I

PI

[
Q 0
0 Qi

] 0.1 0 0
0 2 0
0 0 1

 [
Q 0
0 Qi

]
I I

8The weights from the noise analysis, V = diag(1.6 ·10−3, 1.5 ·10−4), give almost identical con-
trollers as for V = I . However, reducing V increases the controller gains and hence the noise ampli-
fication in the controllers, in agreement with our intuition and (3.31). This has been confirmed by
optimizations and simulations with low values for V .
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Table 5.12: Weight matrices for model 2

Q R = R2 P W V

LQG

[
Q 0
0 Qi

] [
0.1 0
0 2

] [
Q 0
0 Qi

]
I I

PID

Q 0 0
0 Qi 0
0 0 Qd

 [
0.1 0
0 2

] Q 0 0
0 Qi 0
0 0 Qd

 I I

PI

[
Q 0
0 Qi

] [
0.1 0
0 2

] [
Q 0
0 Qi

]
I I

Following the procedure in Section 3.2 we specify the measurement candidates
to be used in the open-loop optimization of the PID and PI controller. Assum-
ing that all inputs are measured we choose the measurement candidates to be
yc = [y0, u]>, where u = [u0, u1, . . . , uN−1]> and N is the horizon. y0 represent the
outputs of the augmented system at time k = 0, i.e. y p

0 , y i
0, and so on. With d = x0

we get

G y =
DPID 0nu×nu (N−1)

Inu 0
0 Inu×(N−1)

u, G y
d =

[
CPID

0nu×(nx+2ny )

]
d , (5.18)

where CPI D and DPI D belongs to the respective model augmented with the PID
controller. These matrices are replaced with CPI and DPI in the PI controller case.
As before we use 3.5 and 3.6 to find Juu and Jud . The noise and disturbance weight
for the measurement candidates are:

Wd =W, Wny =
[

V
0nu ·N

]
. (5.19)

We have now performed steps 1-4 in Algorithm 3.1 and we can use the open-loop
model yc =G y u+G y

d d to find the optimal measurement combination H. From the
measurement combination H we obtain the ”first-move” controller (first invariant
from H) which we enhance by performing a closed-loop optimization

min
K

Jcl = ||Fl (P,K )||2,

with P representing the generalized plant (Fig. 2.5) of the augmented model and
K the constant gain matrix. The results from the last two steps of the algorithm
is summarized in Table 5.13 below. The optimal objective function value of the
open-loop optimization, J∗ol = ||HF̃ ||F , is presented for the PID and PI controller.
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Table 5.13: Objective function values for model 1 and model 2.

Controller J∗ol = ||HF̃ ||F J∗cl = ||Fl (P,K ∗)||2

model 1
LQG − 73.91
PID 139.79 79.70
PI 607.96 96.17

model 2
LQG − 63.28
PID 140.07 68.35
PI 611.16 83.90

The LQR law and the two closed-loop optimal controllers for model 1 are:

LQR: uk =−
 2.3780 −0.2356 0.7140 0.2226 0.0882
−8.0456 0.6889 0.1699 0.0824 0.1263
−6.9993 0.7409 0.2479 0.1562 0.3237

 x̂k

−
 0.0116 0.0320
−0.0436 0.0052
−0.0311 0.0065

 y i
k ,

PID: uk =−
 0.2332 0.0027
−0.7930 −0.0042
−0.7065 −0.0193

 y p
k −

 0.0278 0.0384
−0.0821 0.0491
−0.0692 0.1296

 y i
k

−
 0.3553 0.0235
−0.7089 0.0987
−1.0523 0.2730

 yd
k ,

PI: uk =−
 0.1345 0.0417
−0.6432 −0.0011
−0.5109 0.0007

 y p, f
k −

 0.0187 0.0119
−0.0618 0.0237
−0.0525 0.0615

 y i , f
k ,

The LQR law and the two closed-loop optimal controllers for model 2 are:

LQR: uk =−
[

2.8647 −0.2288 0.7234 0.2372 0.1340
−8.6805 0.7258 0.2189 0.1094 0.1750

]
x̂k

−
[

0.0168 0.0320
−0.0486 0.0066

]
y i

k ,

PID: uk =−
[

0.2790 −0.0006
−0.8667 −0.0108

]
y p

k −
[

0.0355 0.0552
−0.0957 0.0829

]
y i

k

−
[

0.3167 0.0604
−0.9657 0.1717

]
yd

k ,

PI: uk =−
[

0.1873 0.0414
−0.6776 0.0004

]
y p, f

k −
[

0.0235 0.0198
−0.0683 0.0384

]
y i , f

k ,
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With W =V = I the steady-state Kalman filter gain becomes

K f =


0.0944 −0.0000
−0.0086 −0.0000
−0.0000 0.0314
0.0000 0.0005
0.0000 0.0253

 (5.20)

for both model 1 and model 2 (independent of the B-matrix).

5.2.5 Implementation

The controller synthesis gave us a PID controller on the form:

uk = Kp y p
k +Ki y i

k +Kd yd
k (5.21)

To implement this discrete controller we need to discretize the expressions y i =
(1/s)y and yd = s

εs+1 y . Using the bilinear transform, i.e. the approximation s =
2

Ts

z−1
z+1 , with the sampling time Ts = 0.5s we get

y i
k =G i (z) · yk , G i (z) ,

Ts

2

1+ z−1

(1− z−1)
, (5.22)

yd
k =Gd (z) · yk , Gd (z) ,

2

Ts

1− z−1

(1+2ε/Ts)+ (1−2ε/Ts)z−1 . (5.23)

The discrete PID controller can then be implemented as

uk =
(
Kp +Ki G i (z)+KdGd (z)

)
yk . (5.24)

The PI controller with a low-pass filter is discretized in the same manner. Defining
the discrete low-pass filter as

G f ,
1+ z−1

(1+2ε/Ts)+ (1−2ε/Ts)z−1 (5.25)

gives us the relations

y p, f
k =G f (z) · yk (5.26)

y i , f
k =G i (z) ·G f (z) · yk , (5.27)

and the discrete PI controller is implemented as

uk =
(
Kp +Ki G i (z)

)
G f (z) · yk . (5.28)
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The discrete LQG controller is implemented as outlined in Chapter 2.3.8, by com-
bining a discrete steady-state Kalman filter (2.3.4) and discrete LQR 2.3.2. The
controllers (LQG, PID, and PI) are all implemented as 2-degree controllers with
the reference signal entering only at the integrated output. As discussed in Chap-
ter 2.2 this setup avoids derivative and proportinal kick when the reference signal
is stepped. The diagrams in Appendix D.2 show how the discrete controllers are
implemented in Simulink™.

5.2.6 Experiments

The udaq experiments are divided into two parts, one for model 1 and one for
model 2. These parts consist of three runs, one for each controller, resulting in a
total of six data sets.

The experimental results for the case with three inputs (model 1) are presented
first, before the case with two available inputs (model 2). To ease comparison of
the controllers’ performance we gather the plant responses in one figure. The con-
troller outputs for both cases (model 1 and model 2) are then presented together in
one figure. This makes it more easy to study how much the increased interaction
(in model 2) affects control. The results are discussed in the next section.

Before the experiments are run the plant is driven towards steady-state with 2V
on all inputs. When the plant is sufficiently close to the operating point where
the model was identified and controller designed for, control is turned on. This
prevents input saturation during warmup. Since anti-windup is not implemented
we only consider moderately large reference steps, keeping the inputs within the
constraints and the states inside the operating region.
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Figure 5.10: Temperature and light intensity measurements from the udaq using
LQG, PID, and PI control (model 1, three inputs available). The reference signal is
represented by a dashed, red line.
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Figure 5.11: Temperature and light intensity measurements from the udaq using
LQG, PID, and PI control (model 2, two inputs available). The reference signal is
represented by a dashed, red line.



5.2. STUDY OF THE THERMAL/OPTICAL PLANT UDAQ28/LT 73

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [min]

In
pu

t [
V

]

 

 
u

1
: Bulb

u
2
: Fan

u
3
: LED

(a) LQG controller outputs (model 1)
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(b) LQG controller ouputs (model 2)
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(c) PID controller outputs (model 1)
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(d) PID controller outputs (model 2)
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(e) PI controller outputs (model 1)
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Figure 5.12: Controller outputs for the two cases (model 1 and model 2) of LQG,
PID, and PI control of the udaq.
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The Kalman filter estimation error e = y − ŷ for model 1 and model 1 is plotted in
Figure 5.13 below.
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(b) Estimation error with model 2

Figure 5.13: Kalman filter estimation error with LQG control of the udaq.

To measure robustness and performance we have included a plot of the maximum
singular values of the sensitivity functions for LQG, PID, and PI control of model
2. We have denoted the sensitivity functions SLQG = (I +GKLQG )−1, where G rep-
resent model 2 and KLQG the LQG controller. We use the same notation for SPI D

and SPI , and plot the maximum singular values σ̄(S) in Figure 5.14.
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Figure 5.14: The maximum singular value of the sensitivity function with LQG,
PID, and PI control of model 2.
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5.2.7 Discussion of simulation results

Here we provide a discussion of the simulation results presented in the previous
section. The controllers are measured up against eachother and we discuss in
what degree the optimally tuned PID and PI controller performs in this practically
example.

First of all we observe that the removal of one degree of freedom, i.e. the removal of
u3, giving model 2, has little affect on the controllers’ performance. Consequently,
we will consider the results for the case with three inputs (model 1), as they apply
to the two-input case (model 2) aswell.

Second, the irregularity in input voltage gives spikes in the measurements. This
disturbance shows up especially in the light intensity measurement because of
the fast dynamics, see for example Figures 5.10b and 5.10d. The temperature dy-
namics is slow and filters out the spikes, hence we do not observe them in the
temperature measurement plots. The input plots show the controller outputs and
not the real voltage applied to the udaq, therefore the spikes does not show in
these plots.

We start our comparison by studying the performance of the LQG controller, using
Figures 5.10a, 5.10b, and 5.12a. The LQG controlled system follows both reference
signals without overshooting, and the light intensity response is faster than the
temperature, as expected. The spike in input voltage, presenting itself just before
reaching two minutes in Fig. 5.10b, is filtered out and does not affect control worth
mentioning. The controller outputs is reasonable smooth, as desired. We also see
from Fig. 5.13 that the Kalman filter estimation error in both cases converges fast
and then follows the measurement noise.

The PID controller, presented by Figures 5.10c, 5.10d, and 5.12c, does not filter
the measurements (only the derivative part is filtered) and the controller outputs
are noisier than with LQG control. The PID controller performs more aggressively
than the LQG controller, reaching the reference faster at the cost of a small over-
shoot. The same holds for the PI controller, which overshoots even more when
the temperature reference is stepped (Figures 5.10a, 5.10c, and 5.10e). Comparing
with Figures 5.10e, 5.10f, and 5.12e we see that the PI controller also gives fast tem-
perature control compared to the LQG. We further observe from the light intensity
measurement (Figure 5.10f) that the PI controller applies smoother controller out-
puts (Figure 5.12e) than both the LQG and PID controller. The result is less noise
amplification and a better light intensity response. Except from this the controller
outputs for the PID and PI controller are similar in amplitude.



76 CHAPTER 5. EXAMPLES

The maximum singular values in Figure 5.14 tells us that the closed-loop band-
width (where σ̄(S) crosses 1/

p
2 ≈ −3dB from below) is a little bit higher for the

LQG controller, but closely followed by the PID and PI controller. σ̄(SPI D ) and
σ̄(SPI ) both have a peak of over 12dB, exceeding the recommended bound on
σ̄(S) ≤ 2 ≈ 6dB [Skogestad & Postlethwaite, 2005]. In a real application it would
be desirable to lower these peaks, gaining more robustness against model uncer-
tainty.

Better performance can be obtained by further tuning of the controllers, chang-
ing Q, R, W , and V . However, this example was constructed not to obtain ”per-
fect” control, but to compare the controllers tuned by Algorithm 3.1 with the LQG
controller. This example proves that the tuning algorithm can be used in prac-
tice to obtain good controller parameters. It is by far more easy to tune a MIMO
controller, e.g. a MIMO PID controller, by specifying the weight matrices, to the
contrary of tuning each PID controller individually. Take for example a 4-input
4-output system to be controlled with a MIMO PID controller. Lets say that each
controller has 3 parameters, resulting in a total of 3 · 16 = 48 parameters to find.
Throw some interaction into the mix and this tuning problem becomes difficult,
to say the least. The tuning algorithm on the other hand requires 4 output weights,
4 input weights, and the specification of disturbance and noise weights, W and V .

The controller structure is an important part of any controller design. As this ex-
ample shows, a low-pass filtered PI controller may perform better than a PID con-
troller with a low-pass filter only on the derivative part. The lesson to be learned
is that controller tuning is not the only important part of control design, choosing
the right controller structure is just as important.
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5.3 Robustness properties of LQG

As stated and proved by example in [Doyle, 1978] the LQG controlled system with a
combined Kalman filter and LQR control law has no guaranteed stability margins.9

As pointed out in [Athans et al., 1981] and by many other authors the LQR con-
trolled system (with all states available and no stochastic inputs) has good stability
margins when R is diagonal, with a gain margin equal to infinity, a gain reduction
margin (lower gain margin) of 0.5, and a phase margin of 60◦. In fact, when V is
diagonal the Kalman filter enjoys the same margins as the LQR. However, when
coupled together there are no guarantees for good robustness properties.

It seems that this knowledge often is forgotten in the control community. Model
errors are inevitable and controller design using the separation theorem may give
an unstable system in practice. The confusion is strenghtened by simulations us-
ing a perfect model, which give no indication of instability. The following example
serves as a reminder to LQG designers that the robustness properties of a LQG
controlled system always should be checked.

5.3.1 Example: LQG control of an unstable SISO system with one
RHP-zero

In this example we try to design an LQG controller for the following plant

g1(s) = −1

s −1
, g2(s) = s −0.5

s +0.5
, G(s) = g1(s) · g2(s), (5.29)

where G(s) is the transfer function of the plant. The plant has poles at s = {−0.5, 1}
and a RHP-zero at s = 0.5. The proximity of the RHP-zero to the RHP-pole makes
the plant difficult to control. The control goal in this example is to keep the output
at zero by counteracting measurement noise and input disturbances. A minimal
realization (i.e. controllable and observable model) of the plant is

A =
[

0.5 0.5
1 0

]
, B =

[
1
0

]
, C = [−1 0.5

]
, D = 0. (5.30)

9Stability margins or simply margins refers to the (upper and lower) gain margin and (upper
and lower) phase margin of a system. The stability margins tells us how close a stable closed-loop
system is to instability. More precisely, the gain and phase margins of the open-loop system tells us
by how much the gain and phase of the open-loop system can be increased or decreased before the
closed-loop system becomes unstable. The phase margin translates directly to the delay margin,
which is the maximum time delay that can be introduced to the loop before the closed-loop system
becomes unstable.
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Including input disturbance and measurement noise gives the model

ẋ = Ax +Bu +B wd (5.31)

y =C x +wn (5.32)

Chosing the weights Q =
[

10 0
0 10

]
and R = 1 gives the LQR law Kr = [4.70 3.70].

With both states available the closed-loop poles become s = {−3.20, −1.00} us-
ing the LQR law. The Kalman filter is constructed with the power spectral density
weights W = 1 and V = 0.01, with W and V as defined in Section 2.3.6. With these
weights the Kalman gain is K f = [−22.10 −22.10], giving the Kalman filter poles
at s = {−10.05, −0.50}. By the separation theorem we combine the LQR law and
Kalman filter as shown in the Simulink™ schemes in Appendix D.1.

The LQG transfer function KLQG (s) is given by Eq. (2.40) and the open-loop trans-
fer function is Gol (s) =−KLQG (s) ·G(s) (using negative feedback). Gol has poles at
s = {−21.1601, 5.9087, 1.0000, −0.5000} and we imidiately identify two RHP-poles.
We investigate the closed-loop stability by using the Nyquist stability criteria for
negative feedback systems:

For the closed-loop system to be stable, the open-loop system Gol (s)
with Np poles in the right-half plane must have Np counterclockwise
encirclements around the point (−1+0 j ) when s runs clockwise through
a contour which encompasses the right-half of the complex plane.
[Balchen et al., 2003]

With two RHP-poles we thus need two counterclockwise rotations around the point
(−1+0 j ). The Nyquist diagram of the open-loop transfer function Gol (s) is plotted
in Figure 5.15.

We observe that we have two counterclockwise rotations and conclude that the
closed-loop system is stable according to the Nyquist stability theorem. The Nyquist
diagram also provide information about the system margins. From the diagram in
Fig. 5.15 we read a phase margin of pm = 24.7◦ at the frequency ωp = 5.92rad/s.
This can be translated into a (time) delay margin of θmax = πpm

180ωp
≈ 0.07s (assum-

ing that pm is given in degrees and ωp in rad/s). In other words, adding a time
delay higher than 0.07s will render the closed-loop system unstable. Unmodeled
dynamics are often introduced via time delays, and with such low margins the
controller would probably not work in practice.

Tuning the LQR and Kalman filter more agressively (by increasing ||Q||
||R|| and ||W ||

||V || ,
respectively) would result in even lower margins. For example; with V = 0.001 and
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Figure 5.15: Nyquist diagram of Gol (s)

R = 0.1, Q and W as before, the phase margin becomes 25.9◦ at the frequency
15.3rad/s, which translates to a delay margin of poor 0.0295s.

The plant with the designed LQG controller is simulated for 10s with a measure-
ment noise power E {w2

n} = 0.01 and input noise power E {w2
d } = 0.01. Figure 5.16

shows the response without time delay, i.e. perfect model. Next, the system is sim-
ulated with a time delay θd = 0.08s, which exceeds the calculated delay margin of
0.07s. The response with time delay is presented in Figure 5.17.

From Fig. 5.17 it is evident that even small model errors, contributing with extra
phase lag, can make the system unstable. The moral of this example is that LQG
designers must check margins for each specific case they work with. MPC design-
ers, being less lucky in that they do not have access to the transfer function matrix
of the controller, should at least check margins in the most important regions.
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Figure 5.16: Simulation of LQG controlled plant without time delay. The plant is
excited by measurement and input noise with power E {w2

n} = 0.01 and E {w2
d } =

0.01, respectively.
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Figure 5.17: Simulation of LQG controlled plant with a time delay of 0.08s. The
plant is excited by measurement and input noise with power E {w2

n} = 0.01 and
E {w2

d } = 0.01, respectively.



Chapter 6

Final discussion

After all the examples in Chapters 4 and 5 it now seems fit to provide the reader
with a final discussion. The discussion deals with the results that has been ob-
tained and the knowledge that has been gained through these examples.

With the theory from Chapter 2 in place we were able to review the recently pro-
posed initialization scheme for the H2-optimal static output feedback problem
[Manum et al., 2009]. The initialization scheme consists of formulating a convex
problem using theory from self-optimizing control. By solving the convex pro-
gram we find a static controller that in the open-loop sense is closest to the LQ-
optimal state feedback controller. This controller is used as the starting point for
a closed-loop H2 optimization with the goal to improve control. The H2 problem
is formulated to represent the LQG problem, or LQR problem in the deterministic
case, and we can specify performance weights in the same manner as with LQG or
model predictive control.

After the review we put the H2-optimal static output feedback problem under the
scope. Facing the new optimization problem we tried to answer the question of
convexity. More precisely, we wanted to know when it is convex. The investigation
started by recalling the advice from [Syrmos et al., 1997]; look at specific systems
and exploit their structure when confronting a static output feedback problem.
With this in mind we set out by looking at some interesting examples where the
optimization problem becomes non-convex. The system in one of these exam-
ples was found by a brute-force algorithm which was designed to find SISO systems
giving a non-convex problem. From these simple, but yet attractive examples we
understood that the convexity property is decided by the system’s closed-loop be-
haviour, which is an intricate function of the controller parameters, in addition to
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the usual demand on controllability and observability. With the knowledge of this
complexity and that some systems may give a non-convex optimization problem,
we ended the search for necessary and sufficient conditions for convexity, and fo-
cused on the next important question; how good is the initial controller guess from
the convex optimization?

With several local minima it is imperative to guess on a controller gain that is close
to the global minimum, or else the optimization may converge to a suboptimal
solution. In addition, the guess must be on a stabilizing controller. From Chapter
2.1 we know that in the discrete case there exists a stabilizing gain that minimizes
the infinite-horizon LQ problem locally under certain conditions. We also know
from [Syrmos et al., 1997] that a direct procedure for finding such a controller was
unknown at that time.

This motivated Example 5.1, ”H2-optimal control of a second-order system”, where
we investigated the initialization procedure for the general class of stable second-
order SISO systems. We considered PID, PD, PI, and P control, and the example
showed that for this class of systems the initial controller guess was close enough
for the closed-loop optimization to converge to the global optimum in all cases.
By plotting the H2 norm versus the controller parameters we confirmed that the
initial controller guess was close to the globally optimal controller for the case with
PI control. This gave us the confidence to move on to testing the algorithm on a
more complicated system.

In Example 5.2 we applied the algorithm to the thermal/optical plant, uDAQ28/LT.
This is a MIMO plant with three inputs and two noisy measurements. We obtained
a 3-input 2-output model and a 2-input 2-output model with increased interac-
tions for the plant. The interactions was analyzed using RGA and measurement
noise studied using a long measurement sequence taken when the plant was close
to the steady state. A MIMO PID and low-pass filtered MIMO PI controller was cre-
ated and tuned using Algorithm 3.1. We also designed a discrete LQG controller
(Kalman filter and LQR) for comparison. All controllers were given the same de-
sign weights; Q, R, W , and V .

With the controllers in place we conducted three experiments for each model, one
per controller. The result from the experiments was that the MIMO PID and PI
controller performed almost as good as the LQG controller, even being of three
orders less than the LQG. Of the two controllers found using the algorithm the PI
controller performed best because of the low-pass filtering of the measurements.

We ended the example by underlining that it always is important to use a con-
troller structure that fits the problem at hand. We also noted that it is much sim-
pler to tune a MIMO PID controller by specifying design weights over the more
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conventional tuning method where each PID controller is tuned one at the time
(and then retuned because of plant interactions).

The last example in Chapter 5, Example 5.3, stands out as it is not connected to the
H2-optimal static output feedback problem in any way. The example is named
”Robustness properties of LQG” and it was included in this thesis to remind the
reader that even full order controllers such as the LQG may give unacceptable sta-
bility margins for some systems.

In the next chapter we summarize the results that have been obtained in this the-
sis. The thesis is then wrapped up by a list of suggestions for further research.





Chapter 7

Conclusion

The initialization scheme for the H2-optimal static output feedback problem [Manum
et al., 2009] has been reviewed and tested in practice on several SISO and MIMO
systems. We were motivated by the search for simple, low-order controllers, as an
alternative to full-order model-based controllers. In this thesis we used the LQG
controller as reference for comparing with the syntesized low-order controllers.
Based on the examples we have given, we draw the conclusion that the initializa-
tion scheme is suitable for many interesting systems. This is the main conclusion of
this thesis.

The value of the results in [Manum et al., 2009] is directly related to the convexity
of the H2-optimal static output feedback problem. The simple counterexamples
provided in this thesis show that the problem is non-convex in certain cases. From
these examples we also observed that the convexity property, when the controller
gains are the degrees of freedom in the optimization problem, is a function of the
system’s closed-loop dynamics. E.g. the set of stabilizing controller gains must
be a connected set, if not, the optimization problem has more than one minima.
However, from the investigation of the convexity we learned that the problem is
convex for most SISO systems of order three or less.

On the examples considered the initialization procedure gave initial controller
guesses sufficiently close to the global optimum for the closed-loop optimization
reach it. With further research this procedure, which has the advantage that it is
convex, may fill an empty space in available algorithms for static output feedback
design.

MIMO controllers were syntesized and tested on the thermal/optical plant with
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good results. The synthesized controllers had a lower order than the LQG con-
troller, but still performed almost as good. We concluded this example by remark-
ing that; the algorithm in [Manum et al., 2009] handles noise, gives acceptable
control compared to the LQG controller, and can be utilized to tune MIMO con-
trollers, such as the MIMO PID controller.

In the search for simple, low-order controllers several interesting observations
were made. The author hopes these observations can be used as a starting point
for further research on the initialization procedure.

The author is confident in that the static output feedback problem some time in
the future again will entize the control community, if it is in the search for simple
controllers or related to other problems.

7.1 Summary

The reader will find a list of the most important contributions from thesis below.
The author has tried to sort them from most to least significant.

• The initialization procedure in [Manum et al., 2009] has been verified and
tested on several examples.

• The convexity of the H2-optimal static output feedback problem has been
analyzed, mainly through examples.

• The thermal/optical plant uDAQ28/LT was studied. MIMO controllers were
synthesized using the algoritm in [Manum et al., 2009] and compared against
the LQG controller by performing experiments.

• A Matlab™ framework implementing the theory from self-optimizing con-
trol and for solving Algorithm 3.1 was developed. The code may be useful in
fascilitating later research.

• A literature study was conducted on the topics: static output feedback, PID,
LQG and H2-optimal control, and self-optimizing control.



7.2. FUTURE RESEARCH 87

7.2 Future research

Here, the author shares his thoughts on what future research on the initialization
scheme in [Manum et al., 2009] and the H2-optimal static output feedback prob-
lem may bring. The list presented below is intended for researches who may be
interested in taking the ideas in [Manum et al., 2009] and this thesis further.

• By further classification of system-controller pairs that give a convex opti-
mization problem, Algorithm 3.1 can be developed as a tuning tool for SISO
and MIMO controllers. More importantly, for these system-controller pairs
the algorithm is a complete static output design tool as it is.

• The algorithm can be extended to include constraints. One must then use
the finite-horizon impulse-response formulation/approximation, and as-
sure that the constraints are convex in the controller gains. Only then, can
the algorithm compete with more advanced control techniques, such as MPC.

• Further investigate how the algorithm can be altered to make more robust
controllers, e.g. by extending the performance criterion (objective func-
tion).
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[Jelenčiak et al., 2007] Jelenčiak, F., Kurčík, P., & Huba, M. (2007). Thermal plant
for education and training. In Proceedings for ERK, B, 318–321.

[Kalman, 1960] Kalman, R. (1960). A new approach to linear filtering and predic-
tion problems. Journal of basic Engineering, 82(1), 35–45.

[Keerthi & Gilbert, 1988] Keerthi, S. & Gilbert, E. (1988). Optimal infinite-horizon
feedback laws for a general class of constrained discrete-time systems: Stabil-
ity and moving-horizon approximations. Journal of Optimization Theory and
Applications, 57(2), 265–293.

[Levine & Athans, 1970] Levine, W. S. & Athans, M. (1970). On the determination
of the optimal constant output feedback gains for linear multivariable systems.
IEEE Trans. Automatic Control, 15, 44–48.

[Ljung, 1999] Ljung, L. (1999). System Identification, Theory for the User. Prentice
Hall PTR.

[Manum, 2008] Manum, H. (2008). Thermal/Optical Plant. Identification and
noise study of the uDAQ28/LT. Internal report, Department of Chemical En-
gineering, NTNU.

[Manum et al., 2007] Manum, H., Narasimhan, S., & Skogestad, S. (2007).
A new approach to explicit MPC using self-optimizing control. Inter-
nal report, Department of Chemical Engineering, NTNU. Available at:
http://www.nt.ntnu.no/users/skoge/publications/2007/.

[Manum et al., 2009] Manum, H., Skogestad, S., & Jäschke, J. (2009). Convex ini-
tialization of the H2-optimal static output feedback problem. In Proceedings of
the American Control Conference, (pp. 1724–1729).



REFERENCES 91

[Moerder & Calise, 1985] Moerder, D. & Calise, A. (1985). Convergence of a numer-
ical algorithm for calculating optimal output feedback gains. IEEE Transactions
on Automatic Control, 30(9), 900–903.

[Naidu, 2003] Naidu, D. (2003). Optimal control systems. CRC Press.

[Nocedal & Wright, 2006] Nocedal, J. & Wright, S. J. (2006). Numerical Optimiza-
tion. Springer.

[Osuský & Hypiusová, 2009] Osuský, J. & Hypiusová, M. (2009). Robust Control
Design for Thermo-Optical Plant uDAQ28/LT. In M. Fikar & M. Kvasnica (Eds.),
Proceedings of the 17th International Conference on Process Control ’09 (pp. 341–
345). Štrbské Pleso, Slovakia: Slovak University of Technology in Bratislava.

[Skogestad, 2003] Skogestad, S. (2003). Simple analytic rules for model reduction
and pid controller tuning. Journal of Process Control, 13, 291–309.

[Skogestad, 2009] Skogestad, S. (2009). Feedback: Still the simplest and best so-
lution. Available at: http://www.nt.ntnu.no/users/skoge/publications/2009/.
IEEE Conference on Industrial Electronics and Applications.

[Skogestad et al., 2003] Skogestad, S., Halvorsen, I. J., Morud, J. C., & Alstad, V.
(2003). Optimal selection of controlled variables. Ind. Eng. Chem., 42, 3273–
3284.

[Skogestad & Postlethwaite, 2005] Skogestad, S. & Postlethwaite, I. (2005). Multi-
variable Feedback Control. John Wiley & Sons, Ltd.

[Syrmos et al., 1997] Syrmos, V., Abdallah, C., Dorato, P., & Grigoriadis, K. (1997).
Static Output Feedback: A survey. Automatica, 33, 125–137.

[Wang, 1996] Wang, X. A. (1996). Grassmannian, Central Projection, and Output
Feedback Pole Assignment of Linear Systems. IEEE Trans. Automatic Control,
41, 786–794.

[Wiener, 1948] Wiener, N. (1948). Cybernetics: or Control and Communication in
the Animal and the Machine. New York: Wiley.

[Ziegler & Nichols, 1942] Ziegler, J. & Nichols, N. (1942). Optimum setting for PID
controllers. Transactions of ASME, 64, 759–768.





Appendix A

Linear system theory

This appendix gathers some basic linear system theory that the author did not see
fit in the main text.

A.1 The generalized plant

The generalized plant is a general control problem formulation in which any con-
trol problem can be formulated. The general configuration is depicted in Figure
A.1 below.

P

K

w z

vu

1

Figure A.1: General control configuration
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The general configuration shown in A.1 is described by[
z
v

]
= P (s)

[
w
u

]
=

[
P11(s) P12(s)
P21(s) P22(s)

][
w
u

]
, (A.1)

u = K (s)v, (A.2)

with a state-space realization of the the generalized plant P given by

P
s=

 A B1 B2

C1 D11 D12

C2 D21 D22

 . (A.3)

In this setting u are the control variables, v the measured variables, w the exoge-
nous signals such as disturbances and reference signals, and z are the so-called
"error" signals which are to be minimized in some sense to meet the control ob-
jectives. The closed-loop transfer function from w to z is given by the linear frac-
tional transform

z = Fl (P,K )w. (A.4)

A.2 Linear fractional transformations

Linear fractional transformations (LFTs) are a useful tool in many control analy-
sis and design problems. Consider a matrix of dimension (n1 +n2)× (m1 +m2)
partitioned as follows:

P =
[

P11 P12

P21 P22

]
. (A.5)

Let the matrices Kl and Ku have dimensions m2 ×n2 and m1 ×n1, respectively. Kl

and Ku are then compatible with the lower and upper partition of P , respectively.
Adopting the notation used by [Skogestad & Postlethwaite, 2005] we define the
lower and upper LFT as:

Fl (P,Kl ) , P11 +P12Kl (I −P22Kl )−1P21, (A.6)

Fu(P,Ku) , P22 +P21Kl (I −P11Kl )−1P12. (A.7)

The lower fractional transformation Fl (P,Kl ) is the transfer function Rl from w to
z in Figure A.2a. Fl (P,Kl ) results from wrapping feedback Kl around the lower part
of P .

z = P11w +P12u, v = P21w +P22u, u = K v. (A.8)
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P

Kl

w z

vu

Rl

1

(a) Rl as lower LFT in terms of Kl

P

Ku

w z

vu

Ru

1

(b) Ru as upper LFT in terms of Ku

Figure A.2: Illustration of lower and upper LFT

Eliminating u and v from these relations yields

z = Rl w = Fl (P,Kl )w = [
P11 +P12Kl (I −P22Kl )−1P21

]
w, (A.9)

where Rl is written as a lower LFT of P in terms of Kl . Similarly, we obtain the
upper LFT, Ru = Fu(P,Ku), by wrapping feedback Ku around the upper part of P ,
as illustrated in Figure A.2b. Note the important property that an interconnection
of LFTs results in a LFT [Skogestad & Postlethwaite, 2005].





Appendix B

Derivations

This appendix holds several of the derivations used in the mathematical frame-
work of this thesis.

B.1 Truncation of prediction horizon

To enforce optimality on the infinite horizon with a finite number of optimization
variables we employ the usual trick of truncating the prediction horizon (referred
to as horizon hereafter). This section shows how to truncate or split the horizon of
a QP problem by assuming a given control law after the horizon. When constraints
are added to the QP problem the finite-horizon formulation becomes an approx-
imation of the infinite-horizon problem. This is because the constraints only are
considered a finite number of steps ahead. However, the approximation becomes
better as the prediction horizon increases. We will first consider the discrete-time
QP problem, then we treat the continuous case.

B.1.1 Discrete-time case

The discrete-time process model is

xk+1 = Axk +Buk (B.1)
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and the infinite-horizon objective function is

J =
∞∑

k=0

(
x>

k Qxk +u>
k Ruk

)
. (B.2)

We start by splitting our infinite sum into two parts. The horizon is denoted N .1

J =
∞∑

k=N

(
x>

k Qxk +u>
k Ruk

)+N−1∑
k=0

(
x>

k Qxk +u>
k Ruk

)
. (B.3)

We wish to optimize over the infinite horizon with a finite number of optimization
variables. That is, we seek a matrix P so that

∞∑
k=N

(
x>

k Qxk +u>
k Ruk

)= xT
N P xN . (B.4)

This enables us to write the infinite horizon problem as an finite horizon problem

J =
∞∑

k=0

(
x>

k Qxk +u>
k Ruk

)= N−1∑
k=0

(
x>

k Qxk +u>
k Ruk

)+xT
N P xN , (B.5)

where P is dependent on which control scheme we apply after the horizon. If we
choose uk = −K xk , ∀k ≥ N , where K is the LQR controller, P solves the Ricatti
equation as we will see. Denoting Γ= (A−BK ) andΨ=Q +K >RK we get

xk+1 = Γxk , ∀k ≥ N , (B.6)

and the sum becomes

∞∑
k=N

(
x>

k Qxk +u>
k Ruk

)= x>
N

(
Ψ+Γ>ΨΓ+ (Γ>)2ΨΓ2 + . . .

)
xN , (B.7)

which converge as long as Γ has eigenvalues inside the unit disc. This holds if
K is the LQ optimal controller, under stabilizability of (A,B). We now derive the
expression for P by observing that

∞∑
k=N

(
x>

k Ψxk
)= xT

N P xN , (B.8)

and by starting at k = N +1 we get

∞∑
k=N+1

(
x>

k Ψxk
)= xT

N+1P xN+1 = xT
NΓ

>PΓxN . (B.9)

1With MPC we often distinguish between the control horizon and prediction horizon. Here we
have assumed that the control horizon equals the prediction horizon for simplicity.
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We have that
∞∑

k=N

(
x>

k Ψxk
)= ∞∑

k=N+1

(
x>

k Ψxk
)+xT

NΨxN (B.10)

⇒xT
N P xN −xT

NΨxN =
∞∑

k=N+1

(
x>

k Ψxk
)= xT

NΓ
>PΓxN (B.11)

which means that we must have

P −Ψ= Γ>PΓ (B.12)

⇒ P = (A−BK )>P (A−BK )+Q +K >RK . (B.13)

Eq. (B.13) becomes the well-known discrete-time algebraic Ricatti equation (DARE)
when K is the LQ optimal controller (i.e. K = (R+B>PB)−1B>PA). We further note
that if uk is set to zero after the control horizon we get the discrete Lyapunov equa-
tion

P = A>PA+Q. (B.14)

Summing up we see that if LQR control is desired after the control horizon we
simply choose P as the solution of the Ricatti equation (B.13), which already is
calculated when finding the LQ optimal controller K . If control is set to zero we
have to solve (B.14). Note that assuming zero control action only make sense for
open-loop stable systems, otherwise the sum in (B.7) will not converge.

B.1.2 Continuous-time case

We now consider the continuous case with the process model

ẋ(t ) = Ax(t )+Bu(t ) (B.15)

and the infinite-horizon QP problem

J =
∞∫

0

x(t )>Qx(t )+u(t )>Ru(t )d t (B.16)

=
∞∫

t̄

x(t )>Qx(t )+u(t )>Ru(t )d t +
t̄∫

0

x(t )>Qx(t )+u(t )>Ru(t )d t , (B.17)

where the horizon is denoted t̄ . Again we choose the control law u(t ) = −K x(t )
and denoteΨ=Q +K >RK and Γ= (A−BK ). As before we wish to find the matrix
P so that

∞∫
t̄

x(t )>Ψx(t )d t = (
x(t )>P x(t )

)
t=t̄ . (B.18)
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The integral in Eq. (B.18) converge if x(t ) → 0 as t →∞. Hence, we must require
that all eigenvalues of Γ lies in the left half-plane. This holds for the LQ optimal
controller, under stabilizability of (A,B). Differentiation of Eq. (B.18) gives[

x(t )>Ψx(t )
]∞

t̄ = d

dt

(
x(t )>P x(t )

)
t=t̄ . (B.19)

Under the assumption of an asymptotically stable closed-loop system we have
that [

x(t )>Ψx(t )
]∞

t=t̄ =−x(t̄ )>Ψx(t̄ ). (B.20)

Further we have that

d

dt

(
x(t )>P x(t )

)
t=t̄ = ẋ(t̄ )>P x(t̄ )+x(t̄ )>P ẋ(t̄ ) (B.21)

= x(t̄ )>Γ>P x(t̄ )+x(t̄ )>PΓx(t̄ ). (B.22)

Substituting into (B.19) and rearranging gives

x(t̄ )>
(
Γ>P +PΓ+Ψ)

x(t̄ ) = 0 (B.23)

and we obtain

(A−BK )>P +P (A−BK )+Q +K >RK = 0, (B.24)

which becomes the well-known continuous-time algebraic Ricatti equation (CARE)
when K is the LQ optimal controller, i.e. K = R−1B>P . With zero control action
after the horizon, that is u(t ) = 0, (B.24) simplifies to the continuous Lyapunov
equation

A>P +PA+Q = 0. (B.25)

As in the discrete-time case, assuming zero control action after the horizon only
make sense for open-loop stable systems.

B.1.3 Static output feedback case

With static output feedback we have that y =C x (assuming D = 0), u =−K y y , and
Γ= (A−BK yC ). Following the derivations presented above it is rather easy to show
that Eqs. (B.13) and (B.24) become

P = (A−BK yC )>P (A−BK yC )+Q + (K yC )>R(K yC ) (Disc. case) (B.26)

0 = (A−BK yC )>P +P (A−BK yC )+Q + (K yC )>R(K yC ) (Cont. case) (B.27)

with static output feedback. These equations does however require that the sys-
tem is output stabilizable and that the static feedback law implemented after the
horizon stabilizes the system.
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B.2 Deriving Juu and Jud

In [Manum et al., 2007] the second-order derivatives of the infinite horizon open-
loop objective function are derived. The expressions for the second-order deriva-
tives Juu and Jud are used extensively in this thesis and the derivation is repeated
here for validation and completeness.

Given the stable process model (A has all eigenvalues within the units circle)

xk+1 = Axk +Buk (B.28)

with x0 given, and consider the open-loop optimization problem:

min
u

J =
∞∑

k=0

(
x>

k Qxk +u>
k Ruk

)
, (B.29)

where the N first inputs are gathered in the optimization vector u = [u0, u1, . . . , uN−1]>.
We now rewrite J by splitting the infinite horizon into two parts and setting the
prediction horizon equal to the control horizon, i.e.

J =
N−1∑
k=0

(
x>

k Qxk +u>
k Ruk

)+ ∞∑
k=N

(
x>

k Qxk
)

=
N−1∑
k=0

(
x>

k Qxk +u>
k Ruk

)+x>
N P xN

= x>
0 Qx0 +

N−1∑
k=1

(
x>

k Qxk
)+N−1∑

k=0

(
u>

k Ruk
)+x>

N P xN . (B.30)

Here, P solves discrete Lyapunov equation P = A>PA+Q, which means that con-
trol is switched off after the horizon N (as discussed in B.1). This is reasonable
since A is assumed stable. From the process model we derive the following rela-
tionship:

xk = Ak x0 +
k−1∑
j=0

A j Buk−1− j (B.31)

⇓
x1 = Ax0 +Bu0

x2 = A2x0 + ABu0 +Bu1

...

xN−1 = AN−1x0 + AN−2Bu0 + . . .+BuN−2 (B.32)
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Assembling the future states in a vector x = [x1, x2, . . . , xN−1]> enables us to write
the predictions on the compact form

x =


A

A2

A3

...
AN−1


︸ ︷︷ ︸

a

x0 +


B 0 0 . . . 0 0

AB B 0 . . . 0 0
A2B AB B . . . 0 0

...
...

. . .
. . .

...
...

AN−2B AN−3B . . . AB B 0


︸ ︷︷ ︸

Â

u. (B.33)

To simplify the notation we assume that the weight matrices Q and R is diagonal
and constant throughout the horizon, and we write

Q̂ = diag(Q,Q, . . . ,Q), (B.34)

R̂ = diag(R,R, . . . ,R). (B.35)

Further we have that

N−1∑
k=1

x>
k Qxk = x>Q̂x = (ax0 + Âu)>Q̂(ax0 + Âu)

= x>
0 a>Q̂ax0 +2u> Â>Q̂ax0 +u> Â>Q̂ Âu (B.36)

and

N−1∑
k=0

u>
k Ruk = u>R̂u. (B.37)

Using (B.31) we get that the final state is

xN = AN x0 + AN−1Bu0 + . . .+BuN−1

= AN x0 +
[

AN−1B AN−2B . . . AB B
]︸ ︷︷ ︸

Λ

u (B.38)

and the term x>
N P xN can be written

x>
N P xN = (AN x0 +Λu)>P (AN x0 +Λu)

= x>
0 (AN )>PAN x0 +2x>

0 (AN )>PΛu +u>Λ>PΛu. (B.39)

Comparing (B.36), (B.37), and (B.39) with (B.30) we easily see that

Juu = 2
(

Â>Q̂ Â+Λ>PΛ+ R̂
)

, (B.40)

Jud = 2
(

Â>Q̂a +Λ>PAN )
. (B.41)
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We now focus on calculating the Juu matrix. We observe that Â and Λ can be
partitioned into Â = ÃB̃ and Λ = Λ̃B̃ , where B̃ = diag(B ,B , . . . ,B) with a correct
dimension. This allows us to write:

(Â>Q̂)Â = B̃>(Ã>Q̂)ÃB̃ (B.42)

= B̃>



Q A>Q (A2)>Q . . . (AN−2)>Q
0 Q A>Q . . . (AN−3)>Q

0 0 Q . . .
...

...
...

. . .
. . .

...
0 0 . . . 0 Q
0 0 . . . 0 0


︸ ︷︷ ︸

Ã>Q


I 0 0 . . . 0 0
A I 0 . . . 0 0

A2 A I . . . 0 0
...

...
. . .

. . .
...

...
AN−2 AN−3 . . . A I 0


︸ ︷︷ ︸

Ã

B̃ .

(B.43)

We proceed by finding

Λ>PΛ=


B>(AN−1)>P
B>(AN−2)>P

...
B>A>P

B>P


[

AN−1B AN−2B . . . AB B
]

. (B.44)

The first block element of Juu , lets denote it Juu,11, is then

Juu,11 = B> [
Q + A>Q A+ (A2)>Q A2 + . . .+ (AN−2)>Q AN−2]B

+B>(AN−1)>PAN−1B +R (B.45)

= B>
(

N−2∑
i=0

[
(Ai )>(P − A>PA)Ai

]
+ (AN−1)>PAN−1

)
B +R

= B>
(

N−1∑
i=0

(Ai )>PAi −
N−1∑
i=1

(Ai )>PAi

)
B +R

= B>PB +R, (B.46)

where we have used the relation P = A>PA +Q to substitute for Q. Continuing
with the next elements we observe a pattern on the upper and lower triangular
part of the matrix. The result is:

Juu = 2


B>PB +R B>A>PB . . . B>(AN−1)>PB

B>PAB B>PB +R . . . B>(AN−2)>PB
...

...
. . .

...
B>PAN−1B B>PAN−2B . . . B>PB +R

 . (B.47)
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We now try to find Jud and we start by expanding the expression for Â>Q̂a in Eq.
(B.41).

Â>Q̂a = B̃>(Ã>Q̂)a (B.48)

= B̃>



Q A>Q (A2)>Q . . . (AN−2)>Q
0 Q A>Q . . . (AN−3)>Q

0 0 Q . . .
...

...
...

. . .
. . .

...
0 0 . . . 0 Q
0 0 . . . 0 0




A

A2

...
AN−1

 (B.49)

= B̃>


Q A+ A>Q A2 + . . .+ (AN−2)>Q AN−1

Q A2 + A>Q A3 + . . .+ (AN−3)>Q AN−1

...
Q AN−1

0

 (B.50)

= B̃>


PA− (AN−1)>PAN

PA2 − (AN−2)>PAN

...
PAN−1 − A>PAN

0

 , (B.51)

where we again have utilized P = A>PA +Q to substitute for Q. Continuing we
have that

(AN )>PΛ=Λ>PAN = B̃>Λ̃>PAN = B̃>


(AN−1)>PAN

(AN−2)>PAN

...
A>PAN

PAN

 . (B.52)

Finally, summation of (B.51) and (B.52) yields the result:

Jud = 2


B>P

B>PA
...

B>PAN−1

 A. (B.53)
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B.3 Approximation of the H2-optimal static output
feedback problem

In Chapter 2.3.9 we saw how the H2 problem can be formulated to represent the
deterministic initial value problem (LQR problem). An interpretation of this is that
the H2 norm may be viewed as the 2-norm of the impulse response resulting from
applying unit impulses to each initial state. Consider the LTI system

xk+1 = Axk +Buk , (B.54)

yk =C xk , (B.55)

we then have that

J = E

{ ∞∑
i=0

x>
i Qxi +u>

i Rui

}
= ||Fl (P,K )||22, (B.56)

when the generalized plant P is defined as in Chapter 2.3.9.

With the above knowledge we now present an approximation of the H2 problem
in the deterministic case (without stochastic signals). By adding the system con-
straints in Eqs. (B.54) and (B.55), and the constraint uk =−K yk to the cost function
above we get the optimization problem:

min
K

J =
∞∑

i=0
x>

i Qxi +u>
i Rui (B.57)

s.t. xi+1 = (A−BKC )xi . (B.58)

From the theory in Chapter 2.3 we know that the solution to the LQR problem lies
on the constraint uk =−K xk , that is, the solution is a static state feedback. Thus,
when C = I the above optimization problem gives the same solution as the LQR
problem. When C 6= I we no longer have the equivalence and we have to solve
the above optimization problem to find the H2-optimal controller (static output
feedback).

The infinite-horizon problem can be approximated by a finite-horizon problem of
length N , i.e.

min
K

J = x>
N P xN +

N−1∑
i=0

x>
i Qxi +u>

i Rui (B.59)

s.t. xi+1 = (A−BKC )xi . (B.60)
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From the derivations in Appendix B.1 we know that the relation between the finite-
horizon and infinite-horizon problem is exact when the terminal state weight ma-
trix P solves

P = (A−BKC )>P (A−BKC )+Q + (KC )>R(KC ). (B.61)

To remove the unwanted dependance of P on K we choose K = 0 in the above
equation, meaning that we turn off control (i.e. u = 0) after the horizon. P is then
the solution of the discrete Lyapunov equation P = A>PA+Q. This approximation
of the infinite-horizon problem gives a suboptimal solution, but as the horizon
length is increased the approximation is improved. When N →∞ we retrieve the
infinite-horizon problem.

Using the relation xi = (A−BKC )i x0 we get by substitution that

J = x>
0 M(K )x0, (B.62)

where, by defining Ac = (A−BKC ),

M(K ) = (AN
c )>PAN

c +
N−1∑
i=0

(Ai
c )>(Q + (KC )>R(KC ))Ai

c . (B.63)

The impulse-response objective function is then

Ji r =
nx∑

i=1
e>i M(K )ei = trace(M(K )), (B.64)

where ei is a vector of length nx with a 1 in it’s i’th place. To summarize we have
that the alternative closed-loop formulation

min
K

trace(M(K )) (B.65)

is the same as minimizing the ||Fl (P,K )||22 when N → ∞. We further have that
minimizing ||Fl (P,K )||2 is the same as minimizing

p
trace(M(K )).



B.4. MODEL AUGMENTATION 107

B.4 Model augmentation

This section shows how a continuous-time state-space model can be augmented
with the dynamics of a MIMO PID controller. Consider the following MIMO PID
controller on parallel form with limited derivative action

u(s) = (Kp +Ki
1

s
+Kd

s

εs +1
)e(s) (B.66)

= Kp y p +Ki y i +Kd yd , (B.67)

where y p = e, y i = 1
s e, yd = s

εs+1 e, and e = r − y . The new variables represent e,∫
e d t , and ė, respectively. Please note that yd is an approximation of ė since a

filter is included. Kp , Ki , and Kd are nu ×ny matrices.

We now want to augment the linear system

ẋ = Ax +Bu, (B.68)

y =C x +Du, (B.69)

with the controller states and choose the desired outputs:y p

y i

yd

=
 e

1
s e
s

εs+1 e

 . (B.70)

The integral action is included through the state σ, that is

y i =σ=
∫

e d t ⇒ σ̇= e = r − (C x +Du), (B.71)

where we have used (B.69) to substitute for y . To include limited derivative action
we study the expression

yd = s

εs +1
e = s

εs +1
(r −C x −Du) (B.72)

=− C s

εs +1
x − Ds

εs +1
u + s

εs +1
r (B.73)

=−C (Ax +Bu)

εs +1
− Ds

εs +1
u + s

εs +1
r, (B.74)

where we have used the relation s · x = Ax +Bu from (B.68). The last two terms in
(B.74) can be written

D
s

εs +1
u = 1

ε
D(1− 1

εs +1
)u (B.75)

s

εs +1
r = 1

ε
(1− 1

εs +1
)r, (B.76)
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which gives

yd =−C (Ax +Bu)

εs +1
− 1

ε
D(1− 1

εs +1
)u + 1

ε
(1− 1

εs +1
)r (B.77)

=−1

ε

(
εC Ax + (εC B −D)u + r

εs +1

)
− 1

ε
Du + 1

ε
r (B.78)

=−1

ε
δ− 1

ε
Du + 1

ε
r, (B.79)

where we have defined the new state δ. Continuing we have that

δ=
(
εC Ax + (εC B −D)u + r

εs +1

)
(B.80)

(εs +1)δ= (εC Ax + (εC B −D)u + r ) (B.81)

and moving over to the time domain gives

δ̇=−1

ε
δ+ 1

ε
(εC Ax + (εC B −D)u + r ) (B.82)

=C Ax − 1

ε
δ+ 1

ε
(εC B −D)u + 1

ε
r. (B.83)

Augmenting the system with σ and δ, and chosing y p , y i , and yd as outputs givesẋ
σ̇

δ̇

=
 A 0 0
−C 0 0
C A 0 −1

ε I

x
σ

δ

+
 B 0

−D I
1
ε (εC B −D) 1

ε I

[
u
r

]
(B.84)

y p

y i

yd

=
−C 0 0

0 I 0
0 0 −1

ε I

x
σ

δ

+
 −D I

0 0
−1
εD 1

ε I

[
u
r

]
, (B.85)

where r is regarded as a new input. The augmented system has eigenvalues at
λ = {

eig(A), 0, . . . , 0, −1
ε , . . . , −1

ε

}
, with ny zeros coming from the integrators and

ny eigenvalues at −1
ε resulting from the filter on the derivative action. PI control

is obtained by removing δ and the lower yd part of (B.85). PD control is obtained
by removing σ and y i from (B.84) and (B.85). Additionally, we can exclude deriva-
tive action on the reference signal r by setting the bottom right r -part ( 1

ε I ) in Eqs.
(B.84) and (B.85) to zero, hence removing it from δ and yd . To examplify; without
derivative action on r and D = 0 the system simplifies toẋ

σ̇

δ̇

=
 A 0 0
−C 0 0
C A 0 −1

ε I

x
σ

δ

+
 B 0

0 I
C B 0

[
u
r

]
(B.86)

y p

y i

yd

=
−C 0 0

0 I 0
0 0 −1

ε I

x
σ

δ

+
0 0

0 0
0 0

[
u
r

]
. (B.87)
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With the PID dynamics included in the model the feedback law is u = [Kp Ki Kd ] ·
[y p y i yd ]>. When negative feedback is desired we can simply choose the outputs
to be −[y p y i yd ]> by using the alternative modely p

y i

yd

=
C 0 0

0 −I 0
0 0 1

ε I

x
σ

δ

+
 D −I

0 0
1
εD −1

ε I

[
u
r

]
, (B.88)

where the states are the same as in Eq. (B.84).

Some notes are appropriate at this point. First of all we observe that the system
is augmented with 2 · ny states, i.e. the PID controller is of order 2 · ny . When
2 ·ny < nx the system with controller can be interpereted as a static output feed-
back problem (as discussed in section 2.1). Further, the PID controller with limited
derivative action approximates the derivative of y by filtering the output through
a low-pass filter. This means that it never can be as optimal as the LQR, where all
states available, even with an order 2 ·ny ≥ nx .

B.4.1 Model augmentation - special cases

Next we will consider a few other cases, starting with a MIMO PI controller with
low-pass filtered output. The controller is on the form:

u =
(
Kp +Ki

1

s

)(
1

τs +1

)
y = Kp y p, f +Ki y i , f , (B.89)

with y p, f = 1
τs+1 y and y i , f = 1

s(τs+1) . As before Kp and Ki are nu ×ny matrices.

We augment the state-space model with the following controller states:

ζ1 = 1

τs +1
y ⇒ ζ̇1 =−1

τ
ζ1 + 1

τ
(C x +Du), (B.90)

ζ2 = 1

s
ζ1 ⇒ ζ̇2 = ζ1, (B.91)

where we have utilized the relation y =C x+Du. With y p, f and y i , f as outputs the
augmented model becomes ẋ

ζ̇1

ζ̇2

=
A 0 0

C − 1
τ I 0

0 I 0

 x
ζ1

ζ2

+
B

D
0

u (B.92)

[
y p, f

y i , f

]
=

[
0 I 0
0 0 I

] x
ζ1

ζ2

+
[

0
0

]
u. (B.93)
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We now outline how a discrete-time state-space model can be augmented with the
discrete version of the MIMO PID controller in (B.67). The proportinal, integrative,
and derivative outputs are approximated as follows

y p
k = yk (P), y i

k = Ts

z −1
yk (I), yd

k = z −1

Ts z
yk (D), (B.94)

where Ts is the sampling time and z is the time-shift operator. Augmenting the
system with y p

k is trivial as it equals the output yk . The integrated output y i
k is

introduced by defining the new state

σk+1 = Ts

k∑
j=0

y j = Ts yk +σk = Ts(C xk +Duk )+σk , (B.95)

and we have that y i
k = σk . We proceed by rewriting the expression for the deriva-

tive output yd
k so that

yd
k = 1

Ts
(yk − yk−1) = 1

Ts
(C xk +Duk − yk−1). (B.96)

The last term, yk−1, is included through the state δ as follows:

δk+1 =C xk +Duk ⇒ δk =C xk−1 +Duk−1, (B.97)

which gives

yd
k = 1

Ts
(C xk +Duk −δk ). (B.98)

Using the derived expressions for the new outputs y p
k , y i

k , and yd
k we augment the

system using the introduced states σk and δk , yielding:xk+1

σk+1

δk+1

=
 A 0 0

TsC 0 I
C 0 0

xk

σk

δk

+
 B

TsD
D

uk (B.99)

y p
k

y i
k

yd
k

=

 C 0 0
0 I 0

1
Ts

C 0 − 1
Ts

I


xk

σk

δk

+

 D
0

1
Ts

D

uk . (B.100)



Appendix C

Proof of convexity

This appendix is dedicated to the proof of convexity of the impulse-response rep-
resentation of the H2-optimal static output feedback problem. In Appendix B.3
we showed that minimizing

J = trace(M(K )) (C.1)

is the same as minimizing ||Fl (P,K )||22 when the horizon length N goes to infinity
(in the deterministic case). We also derived that

M(K ) = (AN
c )>PAN

c +
N−1∑
i=0

(Ai
c )>(Q + (KC )>R(KC ))Ai

c , (C.2)

where Ac = (A−BKC ) and P solves the discrete Lyapunov equation. To prove that
(C.1) is convex in K we will try to show that the Hessian of J is positive semidefi-
nite.1 We denote the Hessian JK K , where the subscript refers to the second deriva-
tive of J with respect to K .

Problem: Show that J is convex with respect to K , i.e. JK K = ∂2 J
∂K 2 > 0, ∀K ∈Rnu×ny ,

where nu and ny are the number inputs and measurements respectively.

We will study this problem under the following assumptions:

1. Q ≥ 0 and R > 0,

2. (A,B ,C ) is output stabilizable, and

1A function is strictly convex if its Hessian is positive definite.
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3. P = P> ≥ 0 solves the Lyapunov equation P = A>PA+Q.

Notice the assumption that (A,B ,C ) is output stabilizable, which implies that there
exists a controller K that makes the closed-loop system (A −BKC ) stable (plac-
ing all eigenvalues within the unit circle). This assumption cannot be efficiently
tested, as mentioned in Chapter 2.1.

C.1 SISO systems with a single state

We first try to prove convexity for SISO systems with a single state, where static
output feedback is the same as state feedback. For this proof we change the nota-
tion from upper to lower case to underline that we are manipulating scalars. From
Assumption 2 we require that b 6= 0 and c 6= 0. Using the lower case notation we
have that

J = p(a −bkc)2N +
N−1∑
i=0

(q + r (kc)2)(a −bkc)2i . (C.3)

We differentiate (C.1) two times with repect to k and obtain the Hessian Jkk :

Jkk = p ·2N (2N −1) · (bc)2 · (a −bkc)2N−2

+
N−1∑
i=0

q ·2i (2i −1) · (bc)2 · (a −bkc)2i−2

+
N−1∑
i=0

2r · c2 · [(a − (2i +1)bkc)2 − (2i +1)i (bkc)2] · (a −bkc)2i−2 (C.4)

= p ·2N (2N −1) · (bc)2 · ((a −bkc)N−1)2

+2c2
N−1∑
k=0

[
qb2(2i −1)i + r (a − (2i +1)bkc)2 − r (2i +1)i (bkc)2] · ((a −bkc)i−1)2.

(C.5)

We observe that the first term is positive if p is positive. From the assumptions
we know that p solves the Lyapunov equation and is non-negative. Thus we can
eliminate this term from Jkk and write

Jkk ≥ 2c2
N−1∑
i=0

[
qb2(2i −1)i + r (a − (2i +1)bkc)2 − r (2i +1)i (bkc)2] · ((a −bkc)i−1)2.

(C.6)

For i = 0 the term inside the sum reduces to 2c2 · r (a −bkc)2 · (a −bkc)−2 = 2c2r ,
which clearly is positive. Hence, we remove this term and start the index i at 1. We
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now have that

Jkk > 2c2
N−1∑
i=1

[
qb2(2i −1)i + r (a − (2i +1)bkc)2 − r (2i +1)i (bkc)2]︸ ︷︷ ︸

>0?

· ((a −bkc)i−1)2︸ ︷︷ ︸
>0

.

(C.7)

The last term inside the brackets poses a problem in showing that the Hessian is
positive. We rewrite the terms inside the brackets so that

qb2 (2i 2 − i )︸ ︷︷ ︸
≥i

+r (a2 −2(2i +1)abkc + (2i 2 +3i +1)︸ ︷︷ ︸
≥5i+1

(bkc)2) (C.8)

≥ qb2i + r (a2 −2(2i +1)abkc + (5i +1)(bkc)2), (C.9)

where we have used the fact that i 2 ≥ i , ∀i ∈ {1, 2, . . .}. We now collect all terms
with the factor i :

(qb2 −4r (abkc)+5r (bkc)2)i + r (a2 −2abck + (bkc)2) (C.10)

= (qb2 −4r (abkc)+5r (bkc)2)i + r (a −bkc)2 (C.11)

≥ (qb2 −4r (abkc)+5r (bkc)2)i . (C.12)

To delete the term−4r (abkc) we will use the relation r (a−2bkc)2 = r a2−4r (abkc)+
4r (bkc)2. Substitution yields

qb2 −4r (abkc)+5r (bkc)2 = qb2 + r (a −bkc)2 − r a2 + r (bkc)2 (C.13)

≥ qb2 − r a2, (C.14)

where the index i has been omitted. We now wish to answer for which values of q
and r the expression in (C.14) is non-negative, i.e.

qb2 − r a2 ≥ 0. (C.15)

All the values in this inequality are positive and we easily see that we must have

q

r
≥ (

a

b
)2. (C.16)

By requiring (C.16) we have proven that the objective function (C.3) is convex with
respect to the controller k. Note that the requirement is not an absolute lower
bound, but simply a sufficient condition that ensures a convex objective function
for SISO systems with one state.
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C.2 The general case – Finding an approach

We now consider the general case of MIMO systems with any number of states.
Switching back to upper-case notation we have that the objective function is

J = trace

(
AN >

c PAN
c +

N−1∑
i=0

Ai >
c (Q + (KC )>R(KC ))Ai

c

)
(C.17)

= trace
(
(A−BKC )N >P (A−BKC )N )

+
N−1∑
i=0

trace
(
(A−BKC )i >Q(A−BKC )i

)
+

N−1∑
i=0

trace
(
(A−BKC )i >((KC )>R(KC ))(A−BKC )i

)
. (C.18)

Some comments on the above objective function and the problem of minimizing
it are given next:

• J is a scalar function. When K is a vector, JK is a vector, and JK K is a matrix.
When K is a matrix, JK is a matrix, and JK K becomes a 4-th order tensor.

• The author has tried several approaches in the search for convexity condi-
tions for J , namely: vectorization combined with the kronecker product, el-
ementwise calculation of the derivatives, and diagonalization of the terms
in J . None of these gave any results, mainly because they ended up with
equations difficult to solve. For example, the idea of the diagonalization ap-
proach was to write terms on the form (A −BKC )N as Z−1ΛN Z , where Λ is
a matrix with the closed-loop eigenvalues at its diagonal. Then, we get that
trace

[
((A−BKC )N )>Q(A−BKC )N

] = trace
[

Z>ΛN Z−>Q Z−1ΛN Z
]
. How-

ever, finding Z and Λ requires difficult eigenvalue and eigenvector calcula-
tions. Moreover, this formulation clouds the dependance on the parameters
in K , rendering the new problem formulation useless.

• In the continuous case the optimal feedback can be found by solving Eqs.
(2.10), (2.11), and (2.12). These equations are derived from choosing P as
the solution of the Riccati equation (B.27) and differentiating the objective
J = trace(P ). Notice that in this case M(K ) = P , and the finite-horizon for-
mulation is no longer an approximation.

• A promising alternative that the author did not get time to look into is ge-
ometric programming [Boyd & Vandenberghe, 2004]. The idea is basically
to build the objective function from the bottom up using convex building
blocks. This way, the convexity property is maintained from the start.



Appendix D

Simulink schemes

The Simulink diagrams belonging to the examples in Chapter 5 are gathered here.

D.1 Robustness properties of LQG: Simulink schemes

u y

y vs yhat

g2

s-0.5

s+0.5

g1

-1

s-1

Transport

Delay

To workspace

uout

Observer

u

y

xhat

yhat

Band -Limited White 

Measurement Noise

Band -Limited White 

Input Noise

-Kr

K*u

 To workspace 

yout

Figure D.1: Simulink scheme of noisy plant and LQG controller.
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Figure D.2: Observer scheme (continuous steady-state Kalman filter).
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D.2 Thermal/Optical Plant: Simulink schemes

The Simulink schemes for the thermal/optical plant example are presented here.
Recall that the example studies two plant models for the uDAQ28/LT, one model
with 3 inputs and one with 2 inputs. Separate Simulink schemes was used for these
models, but the schemes only differ in that the 2-input model contains an input
convertion block (from two controller outputs to the three physical plant inputs).
Thus, we will only present the Simulink diagrams for the 3-input model.

y*

ys

y

u*

us

u

temp reference

r1

light reference

r2

Thermal plant

u1

u2

u3

y 1

y 2

Switch 1

Switch

PID /PI switch

-C-

PID controller

y

r
u

PI controller

with filter

y

r
u

LQG /PID switch

-C-

2 degree LQG

y

r
u

toggle

Figure D.3: Simulink scheme of the three controllers and thermal/optical plant.
Several switches are included to ease the replacement one controller with another.
The reference signal enters at the right-hand side of the scheme.
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Figure D.4: Simulink scheme showing the internals of the thermal plant subsys-
tem. The ”Optical-Thermal Plant I/O Interface” block is responsible for real-time
communication with the uDAQ28/LT. Saturation blocks are included to prevent
inputs higher than 5V, which could damage the actuators/electronics.
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Figure D.5: Simulink scheme of the LQG controller. The controller consists of a
discrete steady-state Kalman filter and a LQR.
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Figure D.6: Simulink scheme of the PID controller.
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Figure D.7: Simulink scheme of the low-pass filtered PI controller.


	Abstract
	Preface
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation & goals
	Document structure
	Code library

	Theoretical background
	Static Output Feedback
	PID control
	Linear Quadratic Optimal Control
	Self-optimizing Control

	Review of literature
	Introducing the problem
	Finding the optimal measurement combination H
	Closed-loop optimization
	Initialization of the H2-optimal static output feedback problem

	Convexity of the H2-optimal static output feedback problem
	Convexity of optimization problems
	Examples
	Discussion

	Examples
	H2-optimal control of a second-order system
	Study of the thermal/optical plant uDAQ28/LT
	Robustness properties of LQG

	Final discussion
	Conclusion
	Summary
	Future research

	References
	Linear system theory
	The generalized plant
	Linear fractional transformations

	Derivations
	Truncation of prediction horizon
	Deriving Juu and Jud
	Approximation of the H2-optimal static output feedback problem
	Model augmentation

	Proof of convexity
	SISO systems with a single state
	The general case -- Finding an approach

	Simulink schemes
	Robustness properties of LQG: Simulink schemes
	Thermal/Optical Plant: Simulink schemes


