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Abstract 

 

Diabetes mellitus is a disease characterized by elevated levels of glucose in the blood. People 

with diabetes either do not produce insulin, produce too little insulin, or the cells in the body are 

unable to respond to the insulin signal. The consequence of this is that the glucose is unable to 

enter the cells and remains in the blood.  

 

Type 1 diabetes mellitus (T1DM) is one category of diabetes mellitus. T1DM is characterized by 

the destruction of pancreatic β-cells that are responsible for producing insulin that are necessary 

for maintaining normoglycemia (normal condition with glucose concentration in the 70-100 

mg/dl range) [2, 3]. People with T1DM depend upon subcutaneous or intravenous insulin 

injections to control their blood glucose concentration. 

 

The short term danger in T1DM is that the glucose concentration goes lower than 60 mg/dl 

(hypoglycemia), which causes impaired brain functions [5]. At the same time there are several 

long term complications connected with high glucose concentration (hyperglycemia) over time. 

Examples of these are diseases such as retinopathy (blindness), nephropathy (kidney disease), 

neuropathy (nerve problems) and cardiovascular disease (heart and blood vessel diseases). This 

implies that better control of the disease would be preferable in an attempt to avoid long term 

complications caused by hyperglycemia and at the same time avoid the short term danger of 

hypoglycemia. 

 

The development of an artificial β-cell is a challenging engineering task. The nature of the 

problem is that there can be a substantial mismatch between the controller model and the real 

patient dynamic which can cause over dose of insulin. A novel way to address this is the use of 

insulin-on-board (IOB) together with clinical parameters such as the insulin to carbohydrate ratio 

(I:C) and the correction factor (CF) to constrain the insulin delivery.  

 

An in silico simulation study of T1DM subjects based on the Dalla Man et al. model [9] was 

performed in MATLAB® and Simulink® (The MathWorks, Inc., Natick, MA). The controllers 



 

 

were developed using the MATLAB® MPC toolbox with IOB to update the maximum insulin 

delivery at each time step. Five different controller structures have been tested. The first two are 

MPC- controllers developed on linearized models of the Dalla Man et al model [9]. In this 

category both control with and without IOB has been evaluated. The third control structure is 

based on a modified IOB- controller that solely uses the IOB- calculations for the meal rejection. 

There is no quadratic programming (QP) problem involved in this controller structure. The two 

final controller structures are part of an in silico evaluation of a clinical trial. Here the models for 

the MPC- controllers are ARX-models that are developed with open-loop data of the in silico 

patients. Also here the MPC- controller has been evaluated with and without IOB. 

 

The results for the first two control structures showed that the MPC- controller with IOB reduced 

the time spent in the hypoglycemic range from 14.4% to 1.5% compared to the MPC- controller 

without IOB. This was achieved without any significant increase of time spent in the 

hyperglycemic range. The modified IOB- controller approved the performance for time spent in 

the hyperglycemic range, without any significant increase of time spent in the hypoglycemic 

range. Also, in the in silico evaluation of a clinical trial the MPC- controller with IOB was shown 

to be better at preventing hypoglycemic events compared to the MPC- controller without IOB. 

 

The weakness of the MPC- controller with IOB is that it makes the controller more conservative 

than the most effective treatment. It delivers the insulin in a way that corresponds to the 

traditional way of treating T1DM, but that does not mean that this necessarily is the most 

effective way to treat the disease.  

  

The best results were achieved with a modified IOB- controller that did not include the MPC 

algorithm. A modified IOB- controller could therefore be used for meal rejections, while another 

algorithm could be used during night time and other periods with no meals, to manage basal 

control. 

 

I declare that this is an independent work according to the exam regulations of the Norwegian 
University of Science and Technology. 
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1 Introduction 

 
Glucose is our major source of energy, and enters the body as carbohydrates from food. In a 

healthy person the β-cells in the pancreas detect a rise in blood sugar. This make them start 

producing the hormone insulin that promotes the uptake of glucose into hepatic and muscle 

tissue. 

 

Diabetes mellitus is the medical term for diseases characterized by elevated levels of glucose in 

the blood. It could be caused by several different factors, which lead to many categories of 

diabetes mellitus. People with diabetes either do not produce insulin, produce too little insulin, or 

the cells in the body are unable to respond to the insulin signal. The consequence of this is that 

glucose is unable to enter the hepatic and muscle tissue and remains in the blood. 

 

Diabetes is emerging as a major public health concern in the modern western world. An elderly 

population, increasing obesity, and more physical inactivity are contributors to this. It is 

estimated that 18.2 million people in the U.S. have diabetes, and it is the sixth leading cause of 

death in the country. The disease is also expensive, and diabetes cost the US $132 billion in 2002. 

[1]. 

 

1.1 Type 1 diabetes mellitus (T1DM) 

 

Type 1 diabetes mellitus (T1DM) is one of the categories of diabetes mellitus. Around 5-10 

percent of all with diabetes have this variety of the disease [1]. T1DM is characterized by the 

destruction of pancreatic β-cells, which are responsible for producing the insulin that is necessary 

to maintain normoglycemia (normal glucose concentration in the 70-100 mg/dl range) [2, 3].  

 

People with T1DM depend upon subcutaneous or intravenous insulin injections to control their 

blood glucose concentration. This is traditionally administered in an open-loop manner with help 

of insulin-to-carbohydrate ratios (I:C) and correction factors (CF). The I:C describes how much 

insulin the patient should inject for a certain amount of carbohydrates, and the CF corresponds to 
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the amount of insulin that should be given to lower the glucose concentration by a certain level 

(this could be recognized as the process gain in control theory). These are individual factors, and 

are found by performing special tests. There is an increased use of insulin pumps in the treatment 

of T1DM, but these are not closed-loop, as many individuals without diabetes think when they 

hear about insulin pumps [4]. 

 

1.2 Motivation for better control of T1DM 

 

The short term danger in T1DM is when the glucose concentration drops below 60 mg/dl 

(hypoglycemia), which causes impaired brain functions [5]. This problem; however, has 

decreased significantly with more knowledge about insulin therapy, and the long term 

complications of the disease have become of greater concern.  

 

The long term complications include the development of diseases such as retinopathy (blindness), 

nephropathy (kidney disease), neuropathy (nerve problems) and cardiovascular disease (heart and 

blood vessel diseases). These diseases are caused by high glucose concentration (hyperglycemia) 

over longer periods of time. A large study known as the Diabetes Control and Complications trial 

[6], showed that maintaining near normoglycemia by intense therapy “...effectively delays the 

onset and slows the progression of diabetic retinopathy, nephropathy, and neuropathy...”. The 

chief adverse effect of intensive care was that it gave a two-to-threefold increase of severe 

hypoglycemic events. This study showed that better control of the disease would be preferable in 

an attempt to avoid long term complications caused by hyperglycemia and at the same time avoid 

the short term danger of hypoglycemia.   

 

1.3 Previous research on diabetes control 

 

Hovorka [7], Bequette [4] and Parker et al. [3] have written review papers that overview the 

previous work on diabetes control. The first glucose monitoring study was reported in 1960, and 
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set the stage for closing the loop [7]. This has proven to be a challenging task and after over 40 

years of research, the artificial β-cell for the common T1DM patient is still to be developed. 

 

One of the main problems in developing an artificial pancreatic β-cell has been the lack of proper 

technology. The total system would contain three major components: a mechanical pump, an in 

vivo glucose sensor, and a control algorithm [3]. The pump is the furthest developed component 

today, and is used by thousands of patients in an open-loop manner. Recent advances have also 

made available pumps that are programmable and variable-rate [3]. Glucose monitoring has seen 

a remarkable progress over the last decade, and a reliable real-time sensor is very close. The 

technical advances on the hardware part of the problem have made the control algorithm the 

weakest link [5]. 

 

To design a specific controller for each subject would be both time consuming and expensive, 

and is probably not a feasible solution. It would be preferable to have a controller that required as 

little information about each subject as possible. This makes it easier for the physician when a 

new patient is present, but gives high demands on the adaptive abilities of the controller. 

 

Model predictive control (MPC) has received more attention lately in diabetes control. It is a 

controller that has an internal model that is used to predict the future behavior of the plant. The 

MPC- controller has some characteristics that make it especially attractive: the ability to use a 

linear algorithm to control a nonlinear system, inherent input constraint handling, and the 

prediction of future behavior based on past manipulated variable moves [3]. As with other 

controllers, one of the major challenges is to make the MPC- controller robust to uncertainty 

between the model and plant (patient).  

 

1.4 Insulin on board (IOB) to constrain insulin infusion rate 

 

Insulin on board (IOB) is the amount of active insulin remaining in the body from previous 

insulin injections. It is calculated in almost all insulin pumps available on the market today to 

make insulin dosing easier, more accurate and predictable for pump users [8]. For example, a 
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person might observe that a correction bolus of 1 insulin unit1 is needed two hours after a meal, 

and could be informed by the pump that 0.3 insulin units are still active in the body. The patient 

would then give a bolus of 0.7 insulin units for the correction, and hopefully avoid postprandial 

hypoglycemia.  

 

The objective of this work is to include IOB in an MPC- controller. I:C ratios and CF are going to 

be used as a measure of how much insulin the respective patient needs, and IOB- calculations are 

going to tell the controller how much insulin is still active from previous deliveries. From this 

information, a constraint on the maximum insulin delivery at the present time could be 

calculated. The result is a controller that uses common clinical measures to prevent over delivery 

of insulin. 

                                                
1 The insulin unit (U) is the basic measure of insulin, and is equivalent to 1/6000 pmol of insulin. 
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2 A brief review of the T1DM simulator 

 

Dalla Man et al. [9] have developed a mathematical model that describes the physiological events 

occurring after a meal in normal humans. Small changes were later performed such that the 

model better fits T1DM characteristics. The authors of [9] also implemented the T1DM model in 

a MATLAB® and Simulink® (The MathWorks, Inc., Natick, MA) environment, and this 

simulator has been used in this work both to develop the MPC- controller and to simulate patients 

with T1DM. A total of ten different parameter sets that represent adult T1DM patients have been 

available for the author of this thesis. The “patients” values for the I:C ratio and the CF were 

predefined by the authors of [9], and has not been recalculated in this work.  

 

2.1 The mathematical model 

 

This section gives a brief description of the mathematical model for the T1DM simulator given in 

Dalla Man et al. [9]. The reader is referred to their article for a more detailed description of the 

model, but it should be noted that the changes to obtain a subject with T1DM are not included. 

 

A schematic view of the complete mathematical model is shown in Figure 2.1. The two main 

sections of the model are the glucose subsystem and the insulin subsystem. There are several 

other sections that are not described in detail here, but the purpose of these sections is only to 

calculate the different inputs and outputs to the main sections. It should be noted that there is no 

direct connection between the glucose subsystem and the insulin subsystem (see Figure 2.1). 

Insulin only influences the glucose concentration through reduced glucose production in the 

pancreas or increased glucose utilization in muscles and adipose tissues.   
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Figure 2.1: A schematic view of the mathematical T1DM model (Modified 

figure from Dalla Man et al. [9]. Used with permission from authors) 

  

 

2.1.1 Glucose subsystem 

 

A schematic view of the glucose subsystem is shown in Figure 2.2. It is a two compartment 

model that contains the glucose masses in the blood plasma and the slowly-equilibrating tissues. 

The equations for the glucose subsystem are: 

 

 

 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )
p ii p t

G t EGP t Ra t U t E t k G t k G t= + − − − ⋅ + ⋅�  (2.1) 

 1 2( ) ( ) ( ) ( )
t id p t

G t U t k G t k G t= − + ⋅ − ⋅�  (2.2) 
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 ( )
p

G

G
G t

V
=  (2.3) 

 
 

where 
p

G  and 
t

G  (mg/kg) are glucose masses in plasma and rapidly-equilibrating tissues, and in 

slowly-equilibrating tissues, respectively, G  (mg/dl) plasma glucose concentration, EGP  

(mg/kg/min) endogenous glucose production, Ra  (mg/kg/min) glucose rate of appearance in 

plasma, E  (mg/kg/min) renal excretion, 
ii

U  and 
id

U  (mg/kg/min) insulin independent and 

dependent glucose utilization, respectively, 
G

V  (dl/kg) distribution volume of glucose, and 1k  and 

2k  (min-1) rate parameters. 

 

There are two inputs to the model, the rate of glucose appearance and the endogenous glucose 

production. The former is glucose absorbed by the gut and is calculated by a nonlinear model. 

The latter is glucose production in the liver and is a linear function of glucose in the blood plasma 

and a delayed signal of insulin concentration in the blood plasma. 

 

 

 

Figure 2.2: A schematic view of the glucose subsystem 

 

 

The three outputs from the glucose subsystem are the renal glucose excretion, and the insulin 

dependent and independent glucose utilization. The former is glucose excretion by the kidney and 

occurs only if the plasma glucose exceeds a certain level. Insulin dependent glucose utilization is 

calculated by a nonlinear Michaelis-Menten equation, and is a function of glucose in the slowly-
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equilibrating tissues and insulin in the interstitial fluid. Insulin independent utilization is constant 

and describes glucose uptake by the brain and the erythrocytes. 

 

2.1.2 Insulin subsystem 

 

A schematic view of the glucose subsystem is shown in Figure 2.3. It is a two compartment 

model that contains the insulin masses in the blood plasma and the liver. The equations for the 

insulin subsystem are: 

 

  

 1 3 2( ) ( ( )) ( ) ( )
l l p

I t m m t I t m I t= − + ⋅ + ⋅�  (2.4) 

 2 4 1( ) ( ) ( ) ( ) ( )
p p l i

I t m m I t m I t R t= − + ⋅ + ⋅ +�  (2.5) 

 ( )
p

I

I
I t

V
=  (2.6) 

 

 

where 
p

I  and 
l

I  (pmol/kg) are insulin masses in plasma and in liver, respectively, I  (pmol/l) 

plasma insulin concentration, 
i

R  (pmol/kg/min) rate of insulin appearance in plasma, 
I

V  (l/kg) 

distribution volume of insulin, 1m , 2m , 3m  and 4m  (min-1) rate parameters. 

 

 

 

Figure 2.3: A schematic view of the insulin subsystem 
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There are two outputs from the insulin system, and they are both linear in describing the 

degradation of insulin. The only input to the insulin subsystem is the rate of insulin appearance in 

the blood plasma. This variable was also the most important change to the original model given 

in Dalla Man et al. [9]. Because persons with T1DM do not produce insulin by themselves, 

insulin secretion from the β-cells was removed from Equation (2.4) and the insulin rate of 

appearance added to Equation (2.5). The rate of insulin appearance is a linear function of non-

monomeric insulin that is injected into the subcutaneous tissue, and monomeric insulin that 

equilibrates with the non-monomeric insulin. The equilibration process and the rate of insulin 

appearance into the blood stream are calculated by a subcutaneous insulin model that also was 

added by Dalla man et al. to modify the model in [9] to describe a T1DM patient. This model is 

represented in Figure 2.1 by the block called the subcutaneous tissue. 
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3 Model predictive control 

 

Most of the reported applications of MPC are in the petrochemical industry, but it has lately 

started to achieve attention in other areas as well. One of these areas is diabetes control, where 

researchers are using MPC in an attempt to develop a controller for T1DM. 

 

3.1 Review of concept 

 

An MPC- controller uses an internal model to predict the effect of current and future inputs on 

the future outputs. There are several ways to develop the model, ranging from simple step 

response models to a model based on a physical understanding of the controlled process.  

 

The controller uses the predictions to minimize a quadratic cost function with the future inputs as 

variable. The objective of the cost function could vary from application to application, but 

usually includes a cost on the output’s deviation from the set points as a minimum. The optimal 

inputs for the next time step is given to the process, and then the cycle repeats itself as new 

measurements are collected.  

 

One of the strengths for an MPC- controller is the inherent handling of constraints. If there are 

constraints on the inputs (and there usually are), they are simply added as inequality constraints 

to the quadratic cost function problem.  

 

It is also possible to add constraints on the rate of change for the inputs. This is practical if, for 

example, a compressor or a pump has a maximum rate of change during a time step.  

 

Another possibility is to add constraints on the outputs, but this is not recommended since a 

violation of these constraints could result in an infeasible programming problem. To avoid this 

problem, the output constraints could be added to the cost function itself with help of slack 

variables that are penalized if violated (softening of the constraints).         
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3.2 Theoretical details [10] 

 

The most basic formulation of the cost function is given in Equation (3.1). Here ŷ is a vector of 

the predicted outputs, r  is a vector of their respective set points and Q  is a weighting matrix. 

The notation 2|| ||
Q

x  is called quadratic form and could also be written as Tx Qx . Normally Q  is a 

diagonal matrix such that the weighting of the outputs are independent of each other. The 

notation ( | )x k i k+  means the value of x  at time k i+  predicted (in case of outputs) or decided 

(in case of reference trajectory) at time k .  

 

    

 2

( )
ˆ( ) || ( | ) ( | ) ||

p

w

H

Q i

i H

V k y k i k r k i k
=

= + − +∑  (3.1) 

 

 

The optimal inputs are simply calculated by finding the future inputs that minimizes the cost 

function given in Equation (3.1). This problem is a linear least-squares problem and has an 

analytical solution (when there are no constraints). 

 

A controller developed with the cost function in Equation (3.1) could be rather aggressive. There 

are no terms that restrict the usage of the inputs, and a change from one time step to the next 

could be as large as the controller prefer. An extra term is commonly included in the cost 

function to have the ability to penalize large movements on the inputs. This is shown in Equation 

(3.2). Here û∆  is a vector with the rate of change for the inputs and R  is a weighting matrix.  

 

 

 
1

2 2

( ) ( )

0

ˆ ˆ( ) || ( | ) ( | ) || || ( | ) ||
p u

w

H H

Q i R i

i H i

V k y k i k r k i k u k i k
−

= =

= + − + + ∆ +∑ ∑  (3.2) 
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If the rate of change is weighted heavily compared to the output’s deviation from their set points, 

the controller becomes more conservative. In the opposite case the controller would be more 

aggressive.   

 

It is worth noticing that there are different “horizons” for the two terms in Equation (3.2). 
p

H  

denotes the prediction horizon and 
u

H  denotes the control horizon. The former is how far into 

the future the controller should predict at each time step, while the latter is how many control 

moves into the future the controller should optimize to obtain the best solution. Only the inputs 

for the next time step would be given to the plant, but different values for 
u

H  affects the result 

and it is an important tuning parameter.    

 

If constraints are added to the inputs and/or the outputs, the problem becomes a constrained least-

square problem that needs some form of iterative optimization algorithm. This does not create a 

significant problem as long as the constraints are linear, since the resulting quadratic 

programming problem is easily solved.
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4 Insulin-on-board 

 

Insulin on board is an approximation of remaining insulin in the body from previous insulin 

deliveries. The basal insulin requirement is not included in these calculations.2  

 

Insulin pumps have become more advanced in the recent years, and are now commonly 

manufactured including a bolus calculator. The objective of this calculator is to help the patient 

with calculation of the insulin dosing. The pumps use information about the patients such as the 

I:C ratio and the CF together with IOB to approximate how much insulin that is proper for the 

patient [8]. See Appendix A for an illustration of how the IOB- calculations could be used in an 

insulin pump to help a patient with the insulin dosing.  

 

4.1 The insulin action curve 

 

The decomposition of insulin in the body varies between individuals, but also within each subject 

during a day. These uncertainties make it impossible to find a “correct” function for insulin 

action, and there are several different approaches among the different pump manufacturers. In 

some pumps the percentage of active insulin is assumed linear with time, while others use a 

nonlinear prediction [8]. The latter type of curves is a better description of the pharmacokinetic 

actions of insulin (see Figure 4.1 for an example of typical curves in this category), but one can 

argue that the overall uncertainties for insulin action is more significant than the actual shape of 

the curve.  

 

Another important question, and more important than choosing the correct shape of the insulin 

action curve, is to choose the duration of insulin action. There are pumps that let the user choose 

between a value of 2 and 8 hours of insulin action.  

 

                                                
2 Basal insulin is the amount of insulin that is needed to keep the patient at “steady-state”.” (i.e., non-meal related). 
The basal rate changes during a day and over time, and it is also sensitive to factors like physical activity, stress, 
illnesses and more. 
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Representative curves are given in Figure 4.1. These are also the actual curves that are 

implemented in the MPC- controller in this work. 
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Figure 4.1: An example of nonlinear insulin action curves. These are also 

the curves that are implemented in the MPC- controller in this work (The 

data for the curves are taken from [11]).  

 

 

4.2 IOB in MPC 

        

In this work, IOB- calculations have been included in an MPC- controller to constrain the 

maximum allowed insulin delivery rate at each time step. The principle is just the same as what is 

done in modern insulin pumps, but now the calculations are performed at every sampling instant. 

I:C ratios and CF’s are used to inform the controller how much insulin the patient need at the 

present time, while IOB is calculated to include insulin that is already in the body. If the need of 

insulin is higher than what is “on board”, the MPC- controller is constrained to an allowable 

delivery rate.  
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4.2.1 Calculation of needed insulin 

 

The I:C ratio and the CF are used to estimate the amount of needed insulin. If the blood glucose 

concentration is higher than the set point, the need of insulin is calculated based on the CF. The 

I:C ratio is used to calculate the amount of insulin needed for an announced or detected meal. 

This makes two categories of needed insulin, insulin needed for correction and insulin needed for 

meals. 

 

Insulin needed for correction 

The CF is defined as how much one insulin unit could lower the blood glucose level, and the 

amount of insulin needed for correction is calculated by Equation (4.1). 

 

 

 

( ) ( )
if ( ) ( )

( )

0 otherwise

m
m

fCF

y k r k
y k r k

CI k

−
>

= 



 (4.1) 

 

 

Here 
CF

I  (U) is the insulin needed for correction, 
m

y  (mg/dl) is the current measured blood 

glucose value, r (mg/dl) is the desired blood glucose value, 
f

C  (mg/dl/U) is the correction factor 

and k  denotes the current time. 

 

Insulin needed for meals 

If the patient consumes a meal, the controller should be allowed to give a larger amount of insulin 

at an early stage to compensate for this. The meal could be flagged to the controller either by the 

patient (meal announcement) or by an algorithm that detects the meal (meal detection). The 

amount of insulin that is needed could then be estimated by the patient’s I:C ratio. This is shown 

in Equation (4.2). 
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: : :

IF ' '

( ) ( 1)
I C I C I C Meal

Meal YES

I k I k C U

=

= − + ⋅
 (4.2) 

 

 

Here :I C
I  (U) is the insulin needed to compensate for meals, :I C

C  (U/g) is the I:C ratio, 
Meal

U  (g) 

is the amount of CHO in the meal, and k  denotes the current time. 

 

As can be seen from Equation (4.2), the calculations also include insulin that is needed to 

compensate for earlier consumed meals. This is important in case the MPC- controller does not 

want to give the insulin injection at the time of the meal, which is a likely scenario if the blood 

glucose level is low at the time of the meal. Hence the controller should not “forget” about the 

meal, but be able to compensate for it later. 

 

The formula that keeps track of insulin delivered for earlier meals is given in Equation (4.3). In 

this equation there is assumed that all the delivered insulin above basal requirement after a meal 

is given to compensate for the meal, and not given for correction. This applies until the total 

amount needed to compensate for the actual meal is given. 

 

 

 

:

: :

:

IF ( 1) 0

( ) max( ( 1) ( ( 1) ),  0)

ELSE

( ) 0

I C

I C I C h

I C

I k

I k I k u k B

I k

− >

= − − − −

=

 (4.3) 

 

 

Here u  (U/h) is the infusion rate over the sampling period k and 
h

B  (U/h) is the nominal basal 

insulin requirement. It should be noticed that Equation (4.2) overrides Equation (4.3).    
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4.2.2 Calculation of IOB 

 

The IOB- calculations are based on the history of previous delivered insulin that covers the 

duration of insulin action. This is expressed as  

 

 

 ( ) ( 1) ( 2) ...
60

sDA
a a a a

s

TT
I k u k  u k   u k

T  min

  
= − − − ⋅  

  
 (4.4) 

 ( ) max( ( ) ,0), 1, 2, , DA
a h

s

T
u k i u k i B  i  ... 

T
− = − − =  (4.5) 

 

 

where 
a

I  (U) is the total amount of insulin delivered above the basal insulin requirement during 

the time of insulin action, ( )u k  (U/h) is the infusion rate over the sampling period k , 
h

B  (U/h) is 

the nominal basal insulin requirement, 
s

T  (min) is the sampling period, 
DA

T  (min) is the duration 

of action and the scaling factor is to convert from an infusion rate to the total amount of insulin 

delivered within each sampling period. 

 

The MPC- controller could also deliver an infusion rate of insulin that is under the basal rate. 

This would happen if the blood glucose values are lower than the set point or if the controller 

predicts that this would happen in the future. A period of under delivery of insulin would result in 

less insulin on board for the patient, and would normally require a small bolus of insulin when 

the blood glucose rises to set point again. Without this bolus, the blood glucose would be very 

likely to have an undesirable overshoot.  

 

IOB, as it is defined in Equation (4.4) and Equation (4.5), does not take into account insulin 

infusion under the basal rate. It would therefore not allow any small bolus when the blood 

glucose rises to set point after being low. To compensate for this, “negative IOB” has been 

introduced in the controller algorithm. This is a vector that collects all insulin deliveries under 
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basal as a negative deviation from basal infusion rate. This is shown in Equation (4.6) and 

Equation (4.7). 

 

 

 ( ) ( 1) ( 2) ...
60

sDA
u u u u

s

TT
I k u k  u k   u k

T  min

  
= − − − ⋅  

  
 (4.6) 

 ( ) min( ( ) ,0), 1, 2, , DA
u h

s

T
u k i u k i B  i  ... 

T
− = − − =  (4.7) 

 

 

Here 
u

I  (U) is the total amount of insulin delivered under the basal insulin requirement during 

the time of insulin action, while the rest of the variables are the same as in Equation (4.4) and 

Equation (4.5).     

 

The IOB could then be calculated by multiplying the history of previous insulin deliveries with 

vectors that contains information about the insulin action. These vectors could be constructed 

from linear or more complicated insulin action curves (see Figure 4.1), and the duration of insulin 

action must be chosen. It is possible to choose different curves for the insulin delivery above the 

basal and the insulin delivery under the basal. The general expression is 

 

 

 ( )
a uOB a fr u fr

I k I I I I= ⋅ + ⋅  (4.8) 

 

 

where 
OB

I  (U) is a scalar containing IOB, 
afr

I  (-) is a vector containing information about how 

large fraction of the previous delivered insulin above basal that is left after each time step and 

ufr
I  (-) is a vector containing information about the effect of deliveries under basal. 
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4.2.3 Calculation of maximum allowed infusion rate 

 

When both the needed insulin and the IOB are calculated, the maximum infusion rate for the 

present time step could be calculated as 

 

 

 ( ):

60
( ) max ( ) ( ) ( ) ,max CF I C OB h

s

 min
u k I k I k I k  B

T

 
= + − ⋅ 

 
 (4.9) 

 

 

where 
max

u  (U/h) is the maximum infusion rate.
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5 Simulation studies with MPC 

 

Two different MPC- controllers have been studied. The first MPC- controller is without IOB to 

constrain maximum insulin delivery. This is done to show how good the controller could perform 

in the ideal case, but also to illustrate what could happen if there is large mismatch between the 

model for the controller and the actual plant, or if the MPC- controller is tuned badly. 

 

The second MPC- controller includes the constrained insulin delivery through IOB- calculations. 

A larger study has been performed in this case, and both model/plant mismatches have been 

introduced, as well as uncertainties that could occur in the real world. 

 

5.1 Development of models for the MPC- controller 

 

The models for the MPC- controller are linearized models of the plant at its nominal condition. 

The 10 different parameter sets gave the possibility to make up to 10 different linear models for 

the controller. If the same parameter set is chosen for both the controller model and the plant 

model, the “nominal” case is studied. Model/plant mismatches could simply be introduced by 

using different parameter sets for the controller model and the plant model. 

 

Figure 5.1 shows a simple illustration of the plant and the MPC- controller. The MPC- controller 

has three inputs, the glucose measurement, the glucose set point trajectory and the glucose rate of 

appearance into the glucose compartment. The last input is only present if the meal is announced 

or detected [2]. To avoid the nonlinearities in the stomach compartment, the model for the 

controller was linearized without this compartment present. As a consequence of this, the meal 

disturbance has to be given as a filtered response into the glucose compartment and not as a step 

response into the stomach compartment.  
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Figure 5.1: A schematic view of the MPC- controller. The model for the controller is a linearized 

model of the plant at the nominal condition, but not necessarily with the same parameter set. The 

stomach compartment is not included in the linearization of the plant in an attempt to avoid the 

nonlinear behavior of this compartment. Ra is the rate of glucose appearance, Yopt is the 

predicted future glucose concentration, Uopt is the predicted optimal insulin delivery and Y is the 

measured glucose concentration. 

 

  

5.2 MPC without IOB 

 

Two different cases have been simulated with the MPC- controller without IOB. The first case is 

the nominal case, while the second case includes some model/plant mismatch. The disturbance 

(meals) is measured in both cases.  

 

5.2.1 Experimental 

 

Meal scenario 

A 24-hour period with three meals is used as the scenario for all the studies performed in this 

work. The simulation starts from steady state at 07:00 in the morning. The patient consumes a 

small breakfast with 20 grams of carbohydrates (CHO) at 08:00, then a lunch with 40 g of CHO 

at noon and finally a dinner with 70 g of CHO at 18:00. A summary of the scenario is given in 

Table 5.1. 
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Table 5.1: The meal scenario for all the simulations in this thesis 

Event: Time: Time from start: 

Simulation starts (steady state) 07:00 0 hours 

Breakfast with 20 g of CHO 08:00 1 hour 

Lunch with 40 g of CHO 12:00 5 hours 

Dinner with 70 g of CHO 18:00 11 hours 

Simulation ends 07:00 the next day  24 hours 

   

 

Choice of patients  

Two “patients” from the library with typical values for the I:C ratio and the CF were chosen for 

the study. Their values for the I:C ratio and CF are given in Table 5.2. For the nominal case both 

the linearized model for the MPC and the plant model come from Patient #1, while Patient #7 

was used for the plant in the case with model/plant mismatch. 

 

 

Table 5.2: I:C ratios and CF’s for Patient #1 and #7 

Patient #: I:C ratio: (U/g) CF: (mg/dl/U) 

1 0.044 11.2 

7 0.044 18.3 

 

 

Disturbance trajectory 

In the nominal case the correct disturbance trajectory (Ra in Figure 5.1) was given to the MPC- 

controller, while the disturbance trajectory for Patient #1 was given to the controller in the case 

where Patient #7 was the plant. This adds an additional factor of uncertainty to the case with 

model/plant mismatch. 

 

Controller tunings 

The tuning parameters were kept constant for the two cases, and are given in Table 5.3. Because 

this is a simple system with just one measured input and one measured output, the tuning of the 
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controller becomes straightforward. It can be seen from Equation (3.2) that the weight on insulin 

infusion rate and the weight on glucose set point tracking are relative numbers. A higher relative 

weighting on set point tracking compared to the weight on change in insulin infusion rate would 

result in more aggressive control. The tuning parameters in this section were chosen to achieve as 

aggressive control as possible without hypoglycemic events for the nominal case, and this is 

shown in the high relative weight on set point tracking compared to the weight on change in 

insulin infusion rate. 

  

It was also introduced a soft constraint on glucose values under 90 mg/dl. This constraint would 

not make an infeasible solution for the QP solver if violated, but would give the controller a 

strong signal to counteract the low glucose values. The set point for the simulations was 100 

mg/dl. 

 

 

Table 5.3: Tuning parameters for the MPC- controller without IOB 

Tuning parameter: Value: 

Sample time 5 minutes 

Prediction horizon 50 sample intervals 

Control horizon 5 sample intervals 

Weight on change in insulin infusion rate 1 

Weight on glucose set point tracing  20 

Lowest allowable insulin delivery 0.5 times basal rate 

 

 

5.2.2 Results 

 

Nominal case 

Figure 5.2 shows the result for the nominal case. The effort on finding good tuning parameters 

for the nominal case resulted in tight control without any hypoglycemic events, while the highest 

glucose measurement were no higher than 158 mg/dl. The dashed black lines in the upper plot 
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show that the future predictions follow the actual glucose measurements almost exactly. This 

shows that the linear prediction model is adequate for the nonlinear plant as long as the system 

does not drift too far from the nominal condition. 
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Figure 5.2: MPC without IOB to constrain maximum insulin delivery, the nominal case. 

Aggressive tuning results in tight control without any hypoglycemic events. The small window in 

the lower graph shows how the controller delivers insulin under basal requirement for a long 

period of time after a meal. Upper plot: Plot showing the glucose concentration, the set point 

trajectory, the high level (definition of hyperglycemia is set to 180 mg/dl), and the low level 

(definition of hypoglycemia is set to 60 mg/dl). Lower plot: Plot showing the maximum delivery 

of insulin the MPC- controller can give, actually delivery rate, and the basal insulin requirement. 

   

 

A physician would be very pleased if shown the glucose trajectory in Figure 5.2. It shows a very 

good clinical result for the meal scenario given in Table 5.1. It is a completely different question 

if the physician would accept the insulin delivery in this case. A summary of the total insulin 

injections to compensate for each of the meals are given in Table 5.4. Basal requirement is not 

included in these calculations. 
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Table 5.4: Insulin delivered for meals in the nominal case, compared to what would be given 

if the insulin delivery were based on the I:C ratio 

Meal: Amount of CHO (g) Insulin delivered (U): Insulin required based on I:C (U): 

Breakfast  20 7.1 0.9 

Lunch 40 9.6 1.8 

Dinner 70 15.9 3.1 

 

 

Table 5.4 shows that the MPC- controller gives up to 7 times more insulin for a meal than what is 

recommended by the I:C ratio for the patient. These deliveries would never been approved by a 

physician during a clinical trial. The MPC- controller accepts these values, because it can deliver 

under the basal requirement for some time after the meal. This is also illustrated in the small 

window at the bottom plot in Figure 5.2.  

 

It is impossible to find out if the delivery scheme proposed by this MPC- controller would work 

in a real case, because no doctor would approve such an aggressive controller. Another open 

question is if the T1DM simulator makes accurate predictions in these extreme cases.  

 

Case with model/plant mismatch 

Figure 5.3 shows the result for the case with model/plant mismatch. As can be seen from Table 

5.2, Patient #7 is more sensitive to insulin than Patient #1. This causes the MPC- controller to 

under-predict the insulin delivery compared to the actual case. This is confirmed by the dashed 

black lines in Figure 5.3 that shows future predictions for some sample points. The consequence 

of this is over delivery of insulin, followed by a postprandial hypoglycemic event after dinner. 

 

One could argue that the model should be improved in this case, and this is also correct. The 

problem is that there are so many patients with T1DM and it would be both expensive and time 

consuming to develop a good model for each patient. It would also demand that the common 

physician had good knowledge about control theory and tuning. Another problem is that patients 

change behavior over time. 
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Figure 5.3: MPC without IOB to constrain maximum insulin delivery, the case with model/plant 

mismatch. The prediction model is less sensitive to insulin than the plant, and this causes over 

delivery of insulin and a hypoglycemic event. Upper plot: Plot showing the glucose 

concentration, the set point trajectory, the high level (definition of hyperglycemia is set to 180 

mg/dl), and the low level (definition of hypoglycemia is set to 60 mg/dl). Lower plot: Plot 

showing the maximum delivery of insulin the MPC- controller can give, actually delivery rate, 

and the basal insulin requirement. 

 

 

5.3 MPC with IOB 

 

A more detailed study has been performed on the MPC- controller with IOB. The first part 

compares the performance of the constrained problem to the case where there is no constraint on 

maximum insulin delivery. The study also includes some simulations that are using different set 

point trajectories, as well as looking on the case with unmeasured meals. The main goals for this 

part are to check the robustness against model/plant mismatches for the constrained MPC- 

controller and to compare its performance to the MPC- controller without IOB.  
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The second part focuses on the ability of the MPC- controller with IOB to handle uncertainties in 

meal sizes, meal times, as well as measurement noise. 

 

5.3.1 Experimental 

 

Controller tunings 

The basic controller tunings for the MPC- controller were kept constant through all the 

simulations in this section. Their values are summarized in Table 5.5.  

 

 

Table 5.5: Basic controller tunings for the MPC- controllers in this 

section 

Tuning parameter: Value: 

Sample time 5 minutes 

Prediction horizon 50 sample intervals 

Control horizon 5 sample intervals 

Weight on change in insulin infusion rate 1 

Weight on glucose set point tracing  1 

Lowest allowable insulin delivery 0.5 times basal rate 

 

 

For the controller configurations with IOB to constraint maximum insulin delivery, the choice of 

duration for the insulin action becomes a new tuning parameter. Some early preliminary studies 

showed that the curves with the fastest insulin action would be too aggressive for MPC- control 

on the T1DM simulator. It was therefore chosen to use the 6 hour curve (see Figure 4.1) as the 

most aggressive curve.  

 

Different insulin action curves are used dependent on the blood glucose measurement. If the 

measurement is high, a fast insulin action curve is used to achieve a more aggressive control. As 
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the glucose values get lower, the insulin action curve changes stepwise against slower and more 

conservative curves. This would make the controller more aggressive on high glucose values and 

more conservative when the blood glucose values are closer to the set point. The specific curves 

that are used for different blood glucose ranges are given in Table 5.6. 

 

 

Table 5.6: The active insulin action curve for different 

blood glucose ranges for the MPC- controllers with IOB  

Blood glucose range (mg/dl): Active insulin action curve: 

<100 8 hour curve 

100-140 7 hour curve 

>140 6 hour curve 

 

 

Section 4.2.2 explained how insulin deliveries under basal requirement were handled as “negative 

IOB”. To avoid “negative IOB” to have influence on the controller for a long time, the fastest 

insulin action curve is chosen for these insulin deliveries. The “negative IOB” is an important 

part of the algorithm because it gives the controller the possibility to give a small stabilizing 

bolus when the blood glucose level is on its way back from low values. The fast insulin action 

curve for the “negative IOB” is chosen to avoid over dosing that could cause hypoglycemia.   

 

Announced meals 

Figure 5.4 shows an example of how an announced meal is fed to the controller. All the ten 

patients have completely different parameters for their meal absorption model. It is not possible 

to predict the actual absorption of glucose from the gut into blood stream for a real patient, and a 

standard absorption profile is therefore given to the controller. This mimics the real world better 

than giving the correct absorption profile in each case.  
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Figure 5.4: The figure shows an example on how the glucose absorption profile given to the 

MPC- controller could differ from the actual glucose absorption for the patient. This is done by 

purpose to simulate a more realistic situation. 

 

 

Simulation study without measurement noise and meal uncertainties 

Six different controller configurations have been studied in this category, and they are listed in 

Table 5.7. The goal is to see how the constrained MPC- controller performs compared to the 

controller without any constraint on maximum insulin delivery. A secondary objective is to see if 

a trapezoidal set point trajectory for meal rejection performs better than a constant set point 

trajectory. The trapezoidal set point trajectory is added to mimic the normal glucose profile to a 

meal intake, and thus avoid too aggressive control. 

 

Model/plant mismatches has been introduced by running each of the 10 available “patients” as 

model for the MPC- controller against all the 10 “patients” as plant. This makes a 10 by 10 

matrix and a total of 100 simulations for each configuration. The meal scenario is the same as in 

Table 5.1. 
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Table 5.7: Overview of the different controller configurations in the simulation 

study without measurement noise and meal uncertainties 

Configuration #: Constraint on 
max

u : Disturbance (Meals): Set point trajectory: 

1 No Unmeasured Constant 

2 Yes Unmeasured Constant 

3 No Announced Constant 

4 No Announced Trapezoidal 

5 Yes Announced Constant 

6 Yes Announced Trapezoidal 

 

 

Simulation study with measurement noise and meal uncertainties 

This study is performed to further check the robustness of the MPC- controller with IOB. 

Controller configuration #5 in Table 5.7 has been investigated further for this part, and three 

common uncertainties for the T1DM controller problem have been introduced. These are 

measurement noise, uncertainties in the meal sizes and meals that are consumed earlier or later 

than announced to the controller. A summary of the different cases is given in Table 5.8. 

 

The measurement noise is assumed to have a normal distribution, with zero mean and the given 

error as 3 standard deviations. In Case #4 to Case#11 all the meals are subject to the same 

uncertainty, while in Case #12 to Case #14 all the meals are subject to a random uncertainty that 

have a normal distribution, with zero mean and the given error as 3 standard deviations.   

 

The actual meal scenario is still the same as in Table 5.1, but the meal sizes and/or meal times 

given to the MPC- controller would differ from the actual meals.  

 

 

 

 

 



5    Simulation studies with MPC                                                                          31 

    

 

Table 5.8: Overview of the different cases in the simulation study with 

measurement noise and meal uncertainties 

Case #: Measurement noise: Announced meal sizes: Announced meal times: 

1 5 % 0 0 

2 10 % 0 0 

3 20 % 0 0 

4 0 + 10 % 0 

5 0 + 20 % 0 

6 0 + 40 % 0 

7 0 - 10 % 0 

8 0 - 20 % 0 

9 0 - 40 % 0 

10 0 0 - 60 min 

11 0 0 + 60 min 

12 5 % Random: ± 10 % Random: ± 30 min 

13 10 % Random: ± 20 % Random: ± 60 min 

14 20 % Random: ± 40 % Random: ± 60 min 

 

 

5.3.2 Results 

 

Simulation study without measurement noise and meal uncertainties 

An example simulation result is given in Figure 5.5. The plot at the upper left corner shows the 

glucose concentration, the set point trajectory and the boundaries for high and low glucose 

concentrations. Throughout this study the boundaries are defined to be 60 mg/dl for 

hypoglycemia and 180 mg/dl for hyperglycemia. The plot at the upper right corner shows the 

amount of insulin that is needed for correction, the amount of insulin that is needed for food, and 

the amount of insulin that is “on board”. If the IOB is higher than what is needed, the controller is 

not allowed to give more than the basal insulin requirement. The plot at the lower left corner 

shows the constraint on maximum insulin delivery, the amount that the controller is delivering 



5    Simulation studies with MPC                                                                          32 

    

 

and the basal insulin requirement. The plot at the lower right corner shows which insulin action 

curve that is used for the different time of the simulation. 

 

0 5 10 15 20

50

100

150

200

Time [hr]

G
lu

c
o
s
e
 [
m

g
/d

l]

 

 

Glucose concentration

Set point

High and low levels

Predicted outputs

0 5 10 15 20
0

100

200

300

400

500

600

700

Time [hr]

In
s
u
lin

 [
m

U
/m

in
]

 

 

Insulin delivery

Umax

Basal insulin

0 5 10 15 20
0

2

4

6

8

10

Time [hr]

IO
B
 [
U
]

 

 

Insulin on board

Insulin for correction

Insulin for food

0 5 10 15 20
2

3

4

5

6

7

8

Time [hr]

IO
B
 c
u
rv

e
 [
x
 h

o
u
r 
c
u
rv

e
]

 

Figure 5.5: An example of a result with MPC with IOB to constrain maximum insulin delivery. 

The example is taken from Configuration #6 in Table 5.7 with Patient #1 as both the model for 

the controller and the plant. Upper left: Plot showing the glucose concentration, the set point 

trajectory, the high level (definition of hyperglycemia is set to 180 mg/dl), and the low level 

(definition of hypoglycemia is set to 60 mg/dl). The plot also shows three prediction trajectories 

for the MPC- controller. Upper right: Plot showing the insulin needed for correction, insulin 

needed for food, and how much insulin there is “on board”. Lower left: Plot showing the 

maximum delivery of insulin the MPC- controller could give, actual delivery rate, and the basal 

insulin requirement. Lower right: Plot showing which insulin action curve that is used for the 

IOB- calculations during the simulation. 

 

 

The simulation showed in Figure 5.5 is taken from Configuration #6 in Table 5.7 with Patient #1 

as both the model for the MPC- controller and the plant. The result could therefore be directly 

compared with the result in Figure 5.2 for the MPC- controller without IOB. It is clear that the 

MPC- controller without IOB performs better in this exact case. It has a lower high blood glucose 
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value and it rejects the meals faster. The positive about the MPC- controller with IOB is that it 

gives the insulin in a much more traditionally and acceptable way. It does not give the large 

amount of insulin at the meal time and it is guaranteed that the amount of insulin delivered for a 

meal does not exceed the amount given by the I:C ratio. The result given in Figure 5.5 would be a 

tremendous improvement for a patient that stays at high blood glucose values for a long time of 

each day, and at the same time the insulin delivery is safe against over dosing.  

 

The acceptable result in Figure 5.5 was also achieved without using much effort on tuning the 

basic tuning parameters for the MPC- controller. All that was needed was to add information 

about the patients I:C ratio and CF. This is an important result when it is taken into account that it 

is the physicians who most likely have to implement controllers on T1DM patients. They have 

little experience on tuning an MPC- controller, but they are much more familiar with I:C ratios 

and CF’s. Insulin action curves are also something they know about, and by choosing different 

action curves they have the ability to tune the controller.    

 

A summary of the overall results for the 6 configurations in Table 5.7 are given in Table 5.9. The 

two first configurations are with no meal announcement. It is clear that the MPC- controller with 

IOB perform much better in preventing hypoglycemia than the MPC- controller without IOB. 

This scenario would most likely not be present in a real artificial β-cell, because there would be 

algorithms that would detect meals if there is no announcement [2]. The result is still promising 

as a safety feature if other safety algorithms fail. 

 

Configuration #3 and #4 are those with measured meals and the MPC- controller without IOB. 

The only difference between the two configurations is the set point trajectory. There are many 

incidents of hypoglycemia in these simulations and the patients spend a lot of the time in the 

hypoglycemic range. This is significantly improved for Configuration #5 and #6 where the meals 

are measured and the MPC- controller with IOB is used. Only 10 of the 100 simulations go into a 

hypoglycemic event, and the time spent in hypoglycemic range is decreased significantly. At the 

same time the period spent in the hyperglycemic range only increases slightly. Further 

investigation of the results showed that 9 out of the 10 hypoglycemic incidents for Configuration 

#5 and #6 came 
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Table 5.9: Results for the simulation study without measurement noise and meal uncertainties. 

The table shows how many of the hundred simulations in each controller configuration that 

went hypo- and hyperglycemic. Further it shows the total time of all the 100 simulations that 

were spent in the hypo- and hyperglycemic ranges. As a measure of performance the time spent 

in the blood glucose range of 60-140 mg/dl is given. The table also shows how much insulin the 

different controller configuration gave to each of the patients in average through the day. 

Config.: 

# of 

hypoglycemic 

events: 

%  of time  

< 60 mg/dl 

# of 

hyperglycemic 

events 

% of time   

> 180 mg/dl 

% of time 

in 60-140 

mg/dl range 

Averagely 

delivered 

insulin (U) 

1 90 33.7 4 0.08 64.1 74.5 

2 16 1.9 57 3.4 76.8 52.4 

3 52 19.2 11 0.5 75.2 61.7 

4 48 14.4 24 1 77.5 58.7 

5 10 1.5 47 2.4 76.3 50.2 

6 10 1.5 52 2.8 75.8 49.8 

 

 

with Patient #6. This indicate that the suggested values for the I:C ratio and the CF for this patient 

is too aggressive. If this was a real situation the physician would improve those parameters, or an 

adaptive function in the controller could improve them.  

 

The different set point trajectories did not give any significant different results. The trapezoidal 

set point trajectory tends to give a little more time spent in hyperglycemic range. This could be 

because the controller is slightly less aggressive with the trapezoidal set point trajectory.  

  

Simulation study with measurement noise and meal uncertainties 

Table 5.10 shows the overall results for the cases in the simulation study with measurement noise 

and meal uncertainties. Most of the hypoglycemic event throughout these simulations comes from 

Patient #6.   
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Table 5.10: Results for the simulation study with measurement noise and meal uncertainties. 

The table shows how many of the hundred simulations in each of the cases that went hypo- 

and hyperglycemic. Further it shows the total time of all the 100 simulations that were spent 

in the hypo- and hyperglycemic ranges. As a measure of performance the time spent in the 

blood glucose range of 60-140 mg/dl is given. The table also shows how much insulin the 

different controller configuration gave to each of the patients in average through the day. 

Case: 

# of 

hypoglycemic 

events: 

%  of time  

< 60 mg/dl 

# of 

hyperglycemic 

events 

% of time   

> 180 mg/dl 

% of time 

in 60-140 

mg/dl range 

Averagely 

delivered 

insulin (U) 

1 10 1.6 51 2.4 76.3 50.3 

2 9 1.6 47 2.1 76.9 50.6 

3 9 1.8 40 1.8 78.9 51.4 

4 9 1.4 47 2.3 75.8 50.1 

5 9 1.3 47 2.2 76 49.9 

6 6 0.8 48 2.2 77.5 49.6 

7 10 1.7 49 2.5 76.6 50.4 

8 11 1.8 50 2.6 77.1 50.6 

9 11 1.9 52 2.7 77.5 51 

10 13 1.6 64 3.2 80 52.3 

11 10 1.8 32 1.7 78.7 50.7 

12 10 1.5 50 2.5 76.9 50.3 

13 10 1.6 48 2.2 77.7 50.7 

14 9 1.8 39 1.8 79.5 51.5 

 

 

The three first cases are the results with measurement noise introduced. It is interesting to 

discover that the number of hyperglycemic events is going down with more measurement noise, 

at the same time as there is only an insignificant increase in time spent in the hypoglycemic 

range. This is probably caused by the freedom the measurement noise gives the controller to 

deliver small amounts of insulin to the “patients” even at times where he/she is at target. The 

positive effect of these small deliveries is that they contribute as “pre-boluses” for food, and the 



5    Simulation studies with MPC                                                                          36 

    

 

meals get rejected faster. At the same time the noise is not large enough to create any over 

delivery of insulin. This is illustrated in Figure 5.6 for Case #3 with Patient #1 as both the 

controller model and the plant.  
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Figure 5.6: This figure shows how the measurement noise gives the controller larger freedom to 

deliver insulin even when the patient is at the target. The positive effect of this is that the meals 

get rejected faster as there is delivered larger amount of insulin ahead of the meals. The 

measurement noise is not large enough to cause any hypoglycemic event for this patient. The 

example is taken from Case #3 in Table 5.8 with Patient #1 as both the model for the controller 

and the plant. Upper left: Plot showing the glucose concentration, the set point trajectory, the 

high level (definition of hyperglycemia is set to 180 mg/dl), and the low level (definition of 

hypoglycemia is set to 60 mg/dl). Upper right: Plot showing the insulin needed for correction, the 

insulin needed for food, and how much insulin there is “on board”. Lower left: Plot showing the 

maximum delivery of insulin the MPC- controller could give, actually delivery rate, and the basal 

insulin requirement. Lower right: Plot showing which insulin action curve is used for the IOB- 

calculations during the simulation. 
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Case #4 to #6 is where the meals are smaller than announced and Case #7 to #9 is where the 

meals are larger than announced. One would expect that when the meals are smaller than 

announced, there would be more hypoglycemic incidents because of over dosing of insulin. In 

fact the number of hypoglycemic incidents and time spent in hypoglycemic range goes down. 

One would also expect that when the meals are larger than announced, there would be less 

hypoglycemic incidents, but also here the results are slightly opposite of what is expected. 

 

The corresponding results are given in Figure 5.7 and Figure 5.8. Figure 5.7shows the result from 

Case #6 with Patient #1 as model for both the controller and the plant and Figure 5.8 shows the 

result from Case #9 with Patient #1 as model for both the controller and the plant. Figure 5.7 

clearly shows that the boluses given for the meals are larger for Case #6 than they are for Case #9 

in Figure 5.8. This is also expected when it is known that the controller thinks the meals are 

larger in Case #6 than in Case #9. 

 

The differences lay in what happens after the meals. In the upper plot in Figure 5.7, the first black 

dashed line show the prediction of the MPC- controller at the time of the breakfast. As expected, 

this prediction goes higher than what actually happens. But the third prediction line from the left 

goes lower than the actual glucose measurements, and this indicates that the controller thinks the 

unknown disturbance is going to continue in the future. To compensate for this the controller turn 

the insulin delivery to the minimum at an earlier stage than for Case #9 in Figure 5.8. Here the 

opposite happens. The controller correctly underestimates the contribution from the first meal, 

but already at the second prediction line, the controller predicts the unknown disturbance to last 

into the future. It therefore keeps the maximum possible delivery for a longer period of time. The 

difference in Figure 5.7 and Figure 5.8 is easy to see by comparing how the blue insulin delivery 

line follows the dashed green maximum insulin delivery line in the two cases. In Case #6 the 

insulin delivery is lower than the maximum insulin delivery constraint for a longer period of time 

than in Case #9. The consequence of the controller predictions of future disturbances is that the 

lowest glucose measurement is lower for the case with underestimated meals in Figure 5.8 than it 

is for the case with overestimated meals in Figure 5.7.  
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Figure 5.7: Figure showing how the MPC- controller behaves when the meals are overestimated. 

At the time of the meal the controller correctly predict the glucose to go higher than expected, but 

over time the Matlab® MPC Toolbox takes the disturbance error into account and predicts the 

error to last into the future. This makes the controller more conservative, and the result get 

opposite than expected for an overestimated meal. The example is taken from Case #6 in Table 

5.8 with Patient #1 as both the model for the controller and the plant. Upper plot: Plot showing 

the glucose concentration, the set point trajectory, the high level (definition of hyperglycemia is 

set to 180 mg/dl), and the low level (definition of hypoglycemia is set to 60 mg/dl). The plot also 

shows three prediction trajectories for the MPC- controller. Lower plot: Plot showing the 

maximum delivery of insulin the MPC- controller can give, actually delivery rate, and the basal 

insulin requirement.  
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Figure 5.8: Figure showing how the MPC- controller behaves when the meals are 

underestimated. At the time of the meal the controller correctly predict the glucose to go lower 

than expected, but over time the Matlab® MPC Toolbox takes the disturbance error into account 

and predicts the error to last into the future. This makes the controller more aggressive, and the 

result gets opposite than expected for underestimated meals. The example is taken from Case #9 

in Table 5.8 with Patient #1 as both the model for the controller and the plant. Upper plot: Plot 

showing the glucose concentration, the set point trajectory, the high level (definition of 

hyperglycemia is set to 180 mg/dl), and the low level (definition of hypoglycemia is set to 60 

mg/dl). The plot also shows three prediction trajectories for the MPC- controller. Lower plot: 

Plot showing the maximum delivery of insulin the MPC- controller can give, actually delivery 

rate, and the basal insulin requirement. 

 

 

The MATLAB® MPC Toolbox has a state observer built in its controller algorithm, and if no 

disturbance model is added by the user, it uses an integrator as disturbance model for each output. 

When unmeasured disturbances are present in the system, the state observer tries to estimate the 

unmeasured disturbances for the future. The controller does not know that the meals were over- 
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or under estimated, and predicts the error to last into the future. This makes the controller more 

conservative when the meals are overestimated and more aggressive when the meals are 

underestimated.  

 

Case #10 and #11 in Table 5.10 are when the meals are either announced later or earlier than the 

actual meals. If the meal is announced later the result shows a significant increase in 

hyperglycemic events, which was expected. There was also expected that an earlier announced 

meal would result in less incidences in hyperglycemic events, but it was surprising that this did 

not give more hypoglycemic events. If a meal could be announced as much as one hour ahead of 

a meal without increased danger of hypoglycemia, it would be very positive for the artificial β-

cell.  

 

Case #12 to #14 is with measurement noise, and random numbers for announced meal sizes and 

announced meal times. None of the cases show any alarming results and do mostly follow the 

result for the rest of the cases. Again there is evidence that larger measurement noise gives the 

MPC- controller more freedom to prevent hyperglycemia, and that without any significantly 

increase in hypoglycemic events. 
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6 Modified IOB- controller 

 

The results achieved with the constrained MPC- controller in Chapter 5 raises the question of 

whether the MPC- controller with IOB is too conservative. It would therefore be interesting to 

see the performance of the most aggressive controller based on IOB- calculations. This is studied 

in this section by delivering the maximum allowed insulin delivery rate at every sample time 

during the daytime portion of the simulation. During the night, the MPC- controller with IOB 

gets turned on again. This is because the IOB- calculations are developed to handle meal 

rejections and not small fluctuations from basal at night. 

 

6.1 Experimental 

 

In this study the regular MPC- controller gets turned of during the daytime of the simulation. 

That means that when the simulation start at 07:00 in the morning, the controller action is solely 

based on the maximum insulin delivery rate defined by the IOB- calculations given in Chapter 

4.2. This implies that there are no other tuning parameters than the I:C ratio, the CF, and the 

choice of insulin action curves. The values for these parameters and the meal scenario are still the 

same as given in the simulation studies in Chapter 5.  

 

The MPC- controller with IOB is turned on 3 hours after the last meal and stays on for the rest of 

the simulation. The tuning parameters for the MPC- controller are the same as in Table 5.5. All 

the cases with measurement noise, uncertainties in meal sizes and uncertainties in meal times that 

are given in Table 5.8 are carried out, as well as the case without these uncertainties (denoted as 

Case#0). Patient #1 is used as model for the nighttime MPC- controller in all the simulations, 

while all the patients have been used as the plant. This gives a total of 10 simulations for each 

case. 
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6.2 Results 

 

Table 6.1 shows the result for the modified IOB- controller. The trends in the results are the same 

as in the results for the MPC- controller with IOB given in Table 5.10. There is seen a slight 

increase in time spent in the hypoglycemic range, and this was also excepted because the 

modified IOB- controller is more aggressive.  

 

An interesting observation is that there are only two “patients” that go hypoglycemic in the 

simulations, and that is Patient #3 and Patient #6. This shows that these patients need to 

recalculate their I:C ratios and CF’s, or they have to choose more conservative insulin action 

curves for their modified IOB- controller.  

 

As a result of the more aggressive insulin delivery, there are less hyperglycemic events and the 

“patients” reduce their time spent in the hyperglycemic range. At the same time they increase 

their time spent in the acceptable 60-140 mg/dl range. All the results make sense when it is 

observed that the average daily insulin delivery is slightly increased with the modified IOB- 

controller compared to the MPC- controller with IOB.  

 

Also in these simulations the time spent in hypoglycemic range decreases with larger announced 

meals (as seen in Case #4 to Case #6). One could think that the effect of the Matlab® MPC 

Toolbox state observer would disappear when the MPC- controller is shut down for most of the 

simulation time, but Figure 6.1 and Figure 6.2 shows how the MPC- controller affect the results 

when it is turned on 3 hours after the last meal. Figure 6.1 is taken from Case #0 with Patient #6 

and Figure 6.2 is taken from Case #6 with Patient #6. Both figures show how the insulin delivery 

goes under basal requirement at 14 hours when the MPC- controller gets turned on. The 

difference is that the MPC- controller stays under basal requirement for a longer period of time in 

the case where the announced meals where larger than the actual meals, and it does not give the 

same amount of insulin around 15 hours that is the case for the correct announced meal in Figure 

6.1. The reason for this behavior is that the MPC algorithm in this application runs in the 

background during the day time, and therefore collects the data. This causes the controller to take 

into account the errors in the meal announcements. When the controller then gets turned on, the 



6    Modified IOB- controller                                                                                 43 

    

 

state observer estimates the disturbance for the future, and do it wrong because there have been 

so many overestimated meals during the day. The effect is a more conservative controller, which 

was luckily a good thing for the “patient” in Figure 6.2. 

 

 

Table 6.1: Results for the modified IOB- controller. Case #0 denotes the case with no 

measurement noise and no meal uncertainties, while the rest of the cases are those given in 

Table 5.8. The table shows how many of the 10 simulations in each of the cases that went 

hypo- and hyperglycemic. Further it shows the total time of all the 10 simulations that were 

spent in the hypo- and hyperglycemic ranges. As a measure of performance the time spent 

in the blood glucose range of 60-140 mg/dl is given. The table also shows how much insulin 

that was given to each of the patients in average through the day. 

Case: 

# of 

hypoglycemic 

events: 

%  of time  

< 60 mg/dl 

# of 

hyperglycemic 

events 

% of time   

> 180 mg/dl 

% of time 

in 60-140 

mg/dl range 

Averagely 

delivered 

insulin (U) 

0 2 2.2 1 0.5 80.9 52.8 

1 2 2.4 1 0.5 81.5 53.2 

2 2 2.7 1 0.5 82.8 53.8 

3 2 3.2 1 0.4 84.3 54.9 

4 2 2.1 1 0.5 81.6 52.7 

5 2 1.2 1 0.5 83.2 52.7 

6 1 1 1 0.4 84.3 52.8 

7 2 2.4 1 0.5 80.1 52.9 

8 2 2.5 2 0.8 79.3 53 

9 2 2.6 4 1.4 78.6 53.3 

10 1 1.1 4 1.4 82.8 53.4 

11 2 2.6 1 0.4 83.1 52.8 

12 2 2.4 1 0.5 82 53.3 

13 2 3.1 1 0.5 82.6 54.1 

14 1 1.5 1 0.4 86.5 54.8 
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Figure 6.1: This figure shows an example of what could happen if the patient has too aggressive 

values for the I:C ratio and the CF. The IOB- constraint does not prevent the controller in giving 

too much insulin for the last meal, and a postprandial hypoglycemic event occur. The example is 

taken from Case #0 in Table 6.1 with Patient #6 as the plant. Upper plot: Plot showing the 

glucose concentration, the set point trajectory, the high level (definition of hyperglycemia is set 

to 180 mg/dl), and low level (definition of hypoglycemia is set to 60 mg/dl). Lower plot: Plot 

showing the maximum delivery of insulin the MPC- controller can give, actually delivery rate, 

and the basal insulin requirement. 

 

 

 

  

.     
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Figure 6.2: This figure shows how the Matlab® MPC Toolbox state observer affect the result 

when the MPC- controller gets turned on three hours after the last meal. Because the MPC- 

controller has run in the background during the whole day, it has collected data about the over 

overestimated meals during the day. This causes the state observer to predict that there is a 

disturbance going on that causes the blood glucose to go lower than predicted, and the controller 

estimates this to continue in the future. The consequence is a more conservative controller, which 

in this case prevent the patient to go hypoglycemic as was the case in Figure 6.1. The example is 

taken from Case #6 in Table 6.1 with Patient #6 as the model for plant. Upper plot: Plot showing 

the glucose concentration, the set point trajectory, the high level (definition of hyperglycemia is 

set to 180 mg/dl), and the low level (definition of hypoglycemia is set to 60 mg/dl). Lower plot: 

Plot showing the maximum delivery of insulin the MPC- controller can give, actually delivery 

rate, and the basal insulin requirement.
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7 In silico evaluation of a clinical trial 

 

The first thing necessary when making an MPC- controller for a T1DM patient is to develop the 

prediction model that describes the behavior of the patient. This could be done by collecting 

input/output data and then develop an ARX model from this data. The ARX model would then 

serve as the prediction model for the MPC- controller. In this section there is performed an in 

silico evaluation of a clinical trial. 

 

7.1 Experimental 

 

Development of ARX models 

Four days with open loop data for insulin delivery, meals and glucose measurements were 

collected by running the T1DM simulator. The data was used to develop an ARX model for the 

“patient” with insulin delivery as manipulated input, meals as measured disturbance and blood 

glucose as measured output. This was performed for all the ten available patients. The models 

where then used as prediction models for the MPC- controller, and the T1DM simulator were 

again used as the in silico patients. 

The ARX models are developed on data without measurement noise on the blood glucose, no 

noise on insulin delivery, and the correct estimations of CHO in the meals. 

 

Controller tuning 

The basic tuning parameters for the MPC- controller are given in Table 7.1. They are relaxed 

compared to the tuning parameters given in Table 5.5 in an attempt to get safer control in the 

cases without IOB, and because there is no soft constraint on low blood glucose values in this 

section. The insulin action curves are chosen as in Table 5.6. 
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Table 7.1: Basic controller tunings for the MPC controllers 

used in the in silico evaluation of clinical trial 

Tuning parameter: Value: 

Sample time 5 minutes 

Prediction horizon 50 sample intervals 

Control horizon 5 sample intervals 

Weight on change in insulin infusion rate 10 

Weight on glucose set point tracing  1 

Lowest allowable insulin delivery 0.5 times basal rate 

  

 

Simulation studies 

The meal scenario in this study is the same as before, and is given in Table 5.1. No studies with 

measurement noise and meal uncertainties were performed for this part. 

 

Two different controller configurations have been evaluated. The first is an MPC- controller 

based on the ARX models without IOB. The second configuration is an MPC- controller based 

on the ARX models, but this time with IOB to constrain the maximum insulin delivery. All the 

ten patients are run in each configuration.  

 

7.2 Results 

 

The in silico evaluation of a clinical trial gave some good examples of how different the results 

could be when developing a model from clinical data. Figure 7.1 shows a closed-loop simulation 

of Patient #1 with an unconstrained MPC- controller. The insulin delivery in the lower plot is not 

especially aggressive, but the controller fails to avoid a postprandial hypoglycemic event after the 

dinner. This result could be avoided by relaxing the tuning parameters for the MPC- controller, 

but it would be better if the controller could be tuned in front of the first implementation and 

based on some simple clinical tests. 
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Figure 7.1: This is an example where the MPC- controller delivers too much insulin to the 

patient as a result of aggressive tuning of the MPC- controller and model/plant mismatch. The 

example is taken from Patient #1 and the unconstrained MPC- controller in the in silico 

evaluation of a clinical trial. Upper plot: Plot showing the glucose concentration, the set point 

trajectory, the high level (definition of hyperglycemia is set to 180 mg/dl), and the low level 

(definition of hypoglycemia is set to 60 mg/dl). The plot also shows three prediction trajectories 

for the MPC- controller. Lower plot: Plot showing the maximum delivery of insulin the MPC- 

controller can give, actually delivery rate, and the basal insulin requirement. 

 

 

Figure 7.2 shows the same patient when using the MPC- controller with IOB. The patient avoids 

any hypoglycemic events by giving the controller the I:C ratio and the CF. These values are 

known to the patient in advance of the implementation, and were easy to implement in the 

controller. The controller performance is slightly reduced in the case of high blood glucose 

values, but the critical hypoglycemic events are avoided. 
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Figure 7.2: The figure is showing the same patient as in Figure 7.1 with the same tuning 

parameters for the MPC- controller, but this time the algorithm also include IOB to constrain the 

maximum insulin delivery. No hypoglycemic events are observed, and the performance is still 

acceptable. The example is taken from Patient #1 with the constrained MPC- controller in the in 

silico evaluation of a clinical trial. Upper plot: Plot showing the glucose concentration, the set 

point trajectory, the high level (definition of hyperglycemia is set to 180 mg/dl), and the low level 

(definition of hypoglycemia is set to 60 mg/dl). The plot also shows three prediction trajectories 

for the MPC- controller. Lower plot: Plot showing the maximum delivery of insulin the MPC- 

controller can give, actually delivery rate, and the basal insulin requirement. 

 

Figure 7.3 shows Patient #7 and is an example of a patient that was fortunate with the tuning 

parameters. The figure is taken from the unconstrained MPC- controller and shows much better 

results than the constrained MPC- controller in Figure 7.4. The result in Figure 7.3 is also an 

example on a case where the controller performs well, but the insulin deliveries for the meals 

would be to concern for the physicians. To avoid any postprandial hypoglycemic events after the 

large insulin deliveries for the meals, the controller lowers the insulin delivery to half the basal 
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insulin requirement for a long period of time. This contradicts to the traditional way of treating 

T1DM, and has never been tried out in practice. The result in Figure 7.4 does not have the same 

performance as for the unconstrained MPC- controller, but the insulin delivery would deemed 

acceptable. 
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Figure 7.3: This is an example where a good performance is achieved without IOB. The 

controller is aggressive, but do not cause any over delivery of insulin. The example is taken from 

Patient #7 with the unconstrained MPC- controller in the in silico evaluation of a clinical trial. 

Upper plot: Plot showing the glucose concentration, the set point trajectory, the high level 

(definition of hyperglycemia is set to 180 mg/dl), and the low level (definition of hypoglycemia is 

set to 60 mg/dl). The plot also shows three prediction trajectories for the MPC- controller. Lower 

plot: Plot showing the maximum delivery of insulin the MPC- controller can give, actually 

delivery rate, and the basal insulin requirement. 
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Figure 7.4: The figure is showing the same patient as in Figure 7.3 with the same tuning 

parameters for the MPC- controller, but this time the algorithm also include IOB to constrain the 

maximum insulin delivery. The performance is reduced compared to the unconstrained case, but 

is still acceptable. The example is taken from Patient #7 with the constrained MPC- controller in 

the in silico evaluation of a clinical trial. Upper plot: Plot showing the glucose concentration, the 

set point trajectory, the high level (definition of hyperglycemia is set to 180 mg/dl), and the low 

level (definition of hypoglycemia is set to 60 mg/dl). The plot also shows three prediction 

trajectories for the MPC- controller. Lower plot: Plot showing the maximum delivery of insulin 

the MPC- controller can give, actually delivery rate, and the basal insulin requirement. 

 

Table 7.2 shows the result for all the “patients” with the MPC- controller without IOB, while the 

results for the constrained MPC- controller are given in Table 7.3. By comparing the values in the 

two tables, it could be observed that the MPC- controller with IOB prevent any hypoglycemic 

events Patient #1, Patient #2, Patient #8 and Patient #9. The MPC- controller with IOB also 

reduces the time spent in the hypoglycemic range for Patient #3 and Patient #6. These two 
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“patients” should recalculate their I:C ratios and CF’s in order to avoid hypoglycemic events with 

the MPC- controller with IOB.  

 

 

Table 7.2: The table gives the results for the unconstrained MPC- controller in the in silico 

evaluation of a clinical trial.  

 

Patient #: 

Hypo- 

glycemia: 

%  of time  

< 60 mg/dl 

Hyper- 

glycemia: 

% of time   

> 180 mg/dl 

% of time in 

60-140 

mg/dl range 

Delivered 

insulin (U) 

1 Yes 11.9 No 0 82.0 55.2 

2 Yes 42.8 No 0 51.6 39.2 

3 Yes 16.8 Yes 0.6 75.2 154.3 

4 No 0 No 0 100.0 33.1 

5 No 0 Yes 1.9 89.5 56.8 

6 Yes 85.6 No 0 14.4 66.5 

7 No 0 No 0 94.4 35.4 

8 Yes 25.9 No 0 74.1 38.8 

9 Yes 8.3 No 0 86.4 85.6 

10 No 0 No 0 93.9 53.5 

 

 

Patient #4, Patient #5, Patient #7 and Patient #10 reduces their performance with the MPC- 

controller with IOB. They did not have any hypoglycemic events with the unconstrained 

controller, and because of the conservative nature of the MPC- controller with IOB, they increase 

their time in the hyperglycemic range with the constrained controller. This makes the MPC- 

controller with IOB to look worse than the MPC- controller without IOB from a controller 

engineer prospective. If one look at the performances from a clinical prospective the performance 

are acceptable with both the controllers for these “patients”. A physician would probably 

consider the MPC controller with IOB as the preferable controller because it guarantee insulin 

deliveries that corresponds to the patient’s I:C ratio and CF.  
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Table 7.3: The table gives the results for the constrained MPC- controller in the in silico 

evaluation of a clinical trial. 

Patient #: 

Hypo- 

glycemia: 

%  of time  

< 60 mg/dl 

Hyper- 

glycemia: 

% of time   

> 180 mg/dl 

% of time in 

60-140 

mg/dl range 

Delivered 

insulin (U) 

1 No 0 No 0 79.7 45.6 

2 No 0 No 0 83.1 30.7 

3 Yes 9.4 Yes 4.9 75.3 131.1 

4 No 0 Yes 4.9 65.7 29.9 

5 No 0 Yes 5.8 80.6 50.2 

6 Yes 12.7 No 0 49.1 47.1 

7 No 0 Yes 3.8 83.7 31.8 

8 No 0 No 0 84.2 33.1 

9 No 0 No 0 90.3 61.8 

10 No 0 Yes 1.3 81.3 47.1 

 

 

The summary of the results from the in silico evaluation of a clinical trial is given in Table 7.4. 

Again the constrained MPC- controller shows significant better results for preventing 

hypoglycemia, and this without spending very much time in the hyperglycemic range.  
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Table 7.4: Summary of the results for the in silico evaluation of a clinical trial. The table 

shows how many of the 10 simulations in each of the cases that went hypo- and 

hyperglycemic. Further it shows the total time of all of the 10 simulations that were spent in 

the hypo- and hyperglycemic ranges. As a measure of performance the time spent in the 

blood glucose range of 60-140 mg/dl is given. The table also shows how much insulin the 

different controller configuration gave to each of the patients in average through the day. 

IOB: 

# of 

hypoglycemic 

events: 

%  of time  

< 60 mg/dl 

# of 

hyperglycemic 

events 

% of time   

> 180 mg/dl 

% of time in 

60-140 

mg/dl range 

Averagely 

delivered 

insulin (U) 

No 6 19.1 2 0.3 76.2 61.8 

Yes 2 2.2 5 2.1 77.3 53.8 
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8 Discussion 

 

The simulations studies performed in this work show that the novel approach of MPC- control 

with IOB is a safe and reliable algorithm to prevent hypoglycemia. It is easy to understand for 

physicians because it corresponds with the traditional treatment of T1DM. The tuning parameters 

for the approach is the patients I:C ratio, CF and the choice of insulin action curves. If these 

tuning parameters are set conservatively enough, the controller would be safe in respect to 

hypoglycemia also in the worse cases of model/plant mismatch.  

 

One could argue that the model should be improved when the model/plant mismatch is large, but 

because diabetes is a large and growing problem, one could not expect that this would be 

practical. It would be much more realistic that there were some models available for the 

physicians to choose. The tuning parameters should be something they are familiar with (i.e. I:C 

and CF), and this is the strength of MPC- controller with IOB. 

 

The weakness of the MPC- controller with IOB is that it makes the controller more conservative 

than would be the most effective treatment. It deliver the insulin in a way that correspond to the 

traditional way of treating T1DM, but that does not mean that this is the most effective way to 

treat this disease. The insulin delivery for a healthy person is much more aggressive than the 

traditional way of treating T1DM, and in the long-term one should aim at more aggressive 

algorithms to treat T1DM. To achieve this, the controller must be able to give a larger delivery 

rate in advance of and/or during meals, and then relax the basal insulin delivery for some time 

after the meal to avoid hypoglycemia. This does not sound safe for all people involved in the 

development of the artificial β-cell, and the development should therefore take small and safe 

steps towards better and more aggressive controller algorithms.  

 

Although the MPC- controller with IOB is a conservative controller; it would make a huge 

difference for many patients with T1DM as the majority of them have elevated blood glucose for 

long periods of time. This especially includes children and adolescents that are not capable of or 

do not want to take care of their disease. For these patients it would be a tremendous 
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improvement to have a controller that could bring their blood glucose values down to lower 

levels without danger of hypoglycemia.  

 

For the controllers studied in this work, the modified IOB- controller had the best performance 

without any significant increase in hypoglycemic incidents and time spent in the hypoglycemic 

range. This suggest that the modified IOB- controller could be used for meal disturbances during 

the day and that another control algorithm could take care of the periods with less contribution 

from meals. There is no reason that a more complicated algorithm such as the MPC- controller 

with its QP solver would be necessary, as long as the modified IOB- controller guaranteed the 

most aggressive control achievable with the IOB- constraint. 

 

There are many challenges that have to be overcome to achieve an artificial β-cell, and the MPC- 

controller with IOB can not solve all of them alone. The complete artificial pancreas would 

contain a set of different algorithms to secure a safe insulin delivery for the patient. It is well 

known that within an individual, insulin sensitivity varies over time, and also during each day. 

This is something the controller must be able to handle, and adaptive algorithms have to be 

included to achieve this. One possibility could be to use Iterative Learning Control (ILC) [12] to 

update values for the I:C ratio and the CF. ILC is an algorithm developed for batch processes, 

where information from earlier batches are used to update some parameters for the future. In 

T1DM, each day could be seen as a batch process, and this is something that open up for the 

possibility to include an ILC algorithm in the controller.  

 

Another main problem in diabetes control is the meal disturbance. MPC- controller with IOB has 

shown good results in rejecting meals in this work, but the meals have been announced to the 

controller. This would not necessarily be the case in the real world, and there should be an 

algorithm included in the controller that detects any meal that is not announced. Dassau et al. [2] 

have proposed an algorithm that detects meals using continuous glucose monitoring (CGM). This 

could be used in a controller to flag a meal, and then turn on the modified IOB- controller.
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9 Conclusion 

 

The MPC- controller with IOB to constrain maximum insulin delivery shows good results on 

preventing hypoglycemia when there are large mismatches between the model for the MPC- 

controller and the actual plant (patient).  

 

The best results were achieved with a modified IOB- controller that did not include the MPC- 

controller. This configuration did not give any significant increase in time spent in hypoglycemic 

range, at the same time as the time spent in hyperglycemic range was reduces compared to the 

MPC- controller with IOB. The modified IOB- controller should therefore be used for meal 

rejections, while another algorithm could be used overnight and during other periods without 

meals. 

 

It is a complex task to achieve an artificial β-cell, and the work presented in this thesis is only 

part of the solution. A complete artificial β-cell must include several safety features; IOB to 

constrain the maximum insulin delivery should be one of them. It is essential to include adaptive 

algorithms that could address the dynamic nature of a T1DM patient. It would also be necessary 

to have an algorithm that detects meal disturbances that are not announced by the user. This 

algorithm would also serve as a flag for the controller to turn on the modified IOB- controller for 

meal rejection.
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Appendix A – Example on insulin on board calculations 

 

The purpose of this appendix is to illustrate in more detail how the Insulin on Board (IOB) 

calculations are carried out. The example shows an open-loop scenario of a Type 1 Diabetes 

Mellitus (T1DM) “patient” that is using information about his Insulin to Carbohydrate (I:C) ratio 

and Correction Factor (CF), together with information about IOB in an attempt to achieve better 

control of his disease. 

 

The I:C ratio and CF for our imagined “patient” is given in Table A.1, and are chosen such that 

they could be the values for a real patient. The “patient’s” basal insulin requirement is set to 1 

U/hr. 

 

 

Table A.1: I:C ratios and CF’s for the “patient”  

I:C ratio: (U/g) CF: (mg/dl/U) 

0.1 20 

 

 

Two insulin action curves are given in Figure A.1. These are the two curves that are used in the 

calculations executed in this appendix. Insulin action curves give information about how many 

percent of an earlier insulin injection that is still active in the body x  hours after the injection.  

 

 



 

II 

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Time [hr]

IO
B
 [
%

]

 

 

2 hour curve

3 hour curve

 

Figure A.1: The figure shows the two insulin action curves that are used for the IOB- 

calculations in this appendix
3
. 

 

  

An overview of the different events for the example is given in Figure A.2. The upper plot shows 

the glucose measurements the patient achieves by doing finger pricks. It also shows the desired 

glucose concentration and the thresholds for hypo- and hyperglycemia. The middle plot shows 

the insulin boluses given for food and for correction, and the basal insulin delivery. The lower 

plot shows how much insulin the patient calculates is needed, and how much insulin that is “on 

board”. 

 

The patient does the finger prick every hour, and is therefore able to make a new decision on how 

much insulin he should deliver at these times. This is comparable to the MPC- controller with 

IOB, but then the measurement is taken every fifth minute and it is therefore able to correct at an 

earlier stage.  

                                                
3 The data for the figure is taken from: Walsh, J., R. Roberts, Pumping Insulin, Torrey Pines Press, fourth ed., 2006, 
J., R. Roberts, Pumping Insulin, Torrey Pines Press, fourth ed., 2006 
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Figure A.2: The figure gives an overview of the different events for the example on IOB- 

calculations. The upper plot shows the glucose measurements the patient achieves by doing 

finger pricks. It also shows the desired glucose concentration and the thresholds for hypo- and 

hyperglycemia. The middle plot shows the basal insulin delivery, and insulin boluses given for 

food and correction. The lower plot shows how much insulin the patient calculates is needed, and 

how much insulin that is “on board”.  

 

 

Detailed description of every sampling instant 

 

0 hours: 

The “patient” does a finger prick, and the glucose reading shows 100 mg/dl. This is right on 

target and he does no changes to the basal infusion rate and decides not to give any extra insulin 

in form of an insulin bolus. 



 

IV 

1 hour: 

The “patient” is planning a meal that is containing 60 g of carbohydrates (CHO). He does another 

finger prick, and the glucose reading still shows 100 mg/dl. This means that he only needs to give 

an extra insulin bolus for the meal. By using his I:C ratio, he finds out that a insulin bolus of  

0.1 / 60 6 U g   g  U⋅ =  should cover for the meal. This amount is given by the pump as an 

increased insulin delivery of 
6

72 /
 U   60 min/hr

 U hr
5 min

⋅
= for five minutes and is illustrated as 

the first extended insulin bolus given in the middle plot in Figure A.2.  

 

2 hours: 

The “patient” does a new finger prick to check his glucose concentration one hour after the meal. 

His glucose reading shows 160 mg/dl, and by using the CF the “patient” finds out that it would 

require an extra insulin delivery of 
160 100

3
20

 mg/dl
 U

 mg/(dl  U)

−
=

⋅
 to lower the glucose concentration 

back to the normal value. This information is given to his insulin pump, but by using the 3 hour 

curve in Figure A.1, the pump calculates that 6 66.4 4 U   %  U⋅ =  is already “on board”. The 

recommendation from the pump is not to give any extra insulin bolus, and the “patient” follows 

this advice.  

 

3 hours: 

This is really a “patient” that likes to take control over his disease, and after 3 hours he takes 

another finger prick. This time the glucose reading shows 140 mg/dl. The CF says that this would 

an extra insulin delivery of 
140 100

2
20

 mg/dl
 U

 mg/(dl  U)

−
=

⋅
. This time the IOB remaining from the meal 

bolus is 6 .8 1.4 U  22  %  U⋅ = , and the pump therefore recommends an extra insulin delivery of 

0.6 U . This amount is given by the pump as an increased insulin delivery of 

0.6
7.2 /

 U   60 min/hr
 U hr

5 min

⋅
= for five minutes and is illustrated as the second extended insulin 

bolus given in the middle plot in Figure A.2. 

 

 

 



 

V 

4 hours: 

The “patient” knows that his insulin sensitivity changes during the day, and in anxiety that too 

much insulin has been delivered he does another finger prick after 4 hours. The glucose reading 

shows 80 mg/dl, and in a normal situation a patient would eat something that contains CHO to 

raise the glucose concentration. Unfortunately our “patient” is at a mountain trip for the moment, 

and he forgot to bring anything to eat or drink. He therefore decides to lower his basal insulin 

delivery to half the basal insulin requirement in an attempt to get the glucose concentration to 

rise. This is also what an MPC- controller with insulin as the only input would do in a situation 

like this. 

 

5 hours: 

The “patient” wants to see if the lowering of the basal insulin delivery really managed to raise the 

glucose concentration. The glucose reading shows 100 mg/dl and is right on target, but this 

“patient” is an experienced T1DM patient, and he knows that the glucose concentration might 

still be rising as a result of the under delivery of insulin that has been going on for the last hour. 

He therefore checks the IOB- calculations on his pump, and it tells him that there is 0.2  U− of 

insulin “on board”. Insulin pumps that are on the market today do not include anything called 

“negative IOB”, but it has been included for the MPC- controllers that are implemented in this 

work. The “negative IOB” is a result of the insulin delivery under basal requirement, and is 

included such that the MPC- controller are able to give a small stabilizing “bolus” when the 

glucose concentration is on its way up again after being low. 4 hours after the first extended 

bolus, no insulin is “on board” from this insulin delivery. It is still 0.6 .8 0.137 U  22  %  U⋅ = left 

“on board” from the second extended bolus given after 3 hours. The insulin delivery under basal 

requirement was delivered for the last hour, and the deliveries are divided into five minute 

samples and multiplied with a vector that contains information about the amount of earlier insulin 

doses that are still active. It is not preferable to have too much “negative IOB” because this could 

result in an overcorrection, and the 2 hour curve in Figure A.1 is used for all insulin deliveries 

under basal requirement. The under deliver of 0.5  U/hr−  correspond to a under delivery of 

0.5 5
0.04

60

 U/hr   min
 U

 min/hr

− ⋅
= −  per sampling instant. The “negative IOB” could then be calculated 

as: 
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The total insulin “on board” is then 0.137 ( 0.364 ) 0.2 U   U  U+ − = − . Insulin needed for 

correction is 0 U  because the glucose concentration is at 100 mg/dl. The “patient” decides to 

deliver the stabilizing insulin delivery of 0 ( 0.2 ) 0.2 U  U  U− − =  in an attempt to avoid high 

glucose values later as a consequence of the under delivery of insulin. 

 

6 hours: 

The last finger prick show that the small stabilizing bolus prevented any high glucose 

concentrations as a consequence of the under delivery during the mountain trip.     
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Appendix B – Abstract for the Diabetes Technology Meeting 
 
This is an abstract that is going to be submitted for the Diabetes Technology Meeting (DTM) in 
Bethesda, Maryland in November this year.  
 
 
 

Safety constraints in an artificial ββββ-cell: an implementation of 

Model Predictive Control (MPC) with Insulin-on-Board (IOB) 

C. Ellingsen
1,3

, E. Dassau
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,  M. W. Percival
1, 3

, 

H. Zisser
1,3
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, and F. J. Doyle III
1,2,3

 

1 Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara 

2 Biomolecular Science & Engineering Program, University of California Santa Barbara, Santa Barbara 
3Sansum Diabetes Research Institute, Santa Barbara 

 

Objective 

An artificial β-cell controller should regulate both the basal insulin delivery and overcome 
disturbances such as meals without excessive delivery of insulin that can cause severe 
hypoglycemia. The nature of the problem is that there can be a substantial mismatch between the 
controller model and the actual patient’s dynamic behavior that can result in an overdose of 
insulin. A novel way to address this potential risk is the use of adaptive insulin-on-board (IOB) 
together with clinical parameters such as the insulin to carbohydrate ratio (I:C) and the correction 
factor (CF) to constrain the insulin delivery.  

Method 

A simulation study of T1DM subjects based on the Dalla Man et al (2007) model was performed 
in MATLAB® and Simulink® (The MathWorks, Inc., Natick, MA). The controller was developed 
using the MATLAB® MPC toolbox with IOB to update the maximum insulin delivery at each 
time step. Ten in silico subjects were used to evaluate the algorithm and the controller for a given 
patient was evaluated against all ten patient models to evaluate the robustness of the approach. 

Result 
 
Following 100 simulation scenarios, we observed that the proposed methodology decreased the 
incidence of hypoglycemia from 48% (without IOB constraint) to 10% (IOB constraint 
implemented). It should be noted that 90% of the observed hypoglycemic incidents are related to 
the same in silico patient, suggesting incorrect I:C and/or CF values in the original publication. 



 

VIII 

Conclusion 

Constrained insulin delivery by IOB calculations provides a safe and robust insulin delivery and 
generalizes, in an intuitive manner, the current practice implemented on most pumps. This is an 

essential component of any future artificial β-cell for a safe and effective therapy.  

 


