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Abstract

The possibility of using topside measurements in anti-slug control for a pipeline-riser system is studied.
Such systems have limited bandwidth due to right half plane zeros in the top-side measurement transfer
functions. Remedies to this limitation are discussed as well as the inherent limitations in performance.. A
cascade controller for anti-slug control based on top-side measurements is designed using a combination of
linear controller design techniques and nonlinear simulation. Cascade control is also tested experimentally
on a mini-plant.
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Chapter 1

Introduction

The phenomenon of pipeline-riser slugging has long been though of as an inherent part of the nature of
multiphase flow, and that this has to be accepted. In order to avoid problems due to varying flow in down-
stream equipment, large slug catchers have traditionally been built at the end of the line. This has several
downsides; it puts a lower bound on the operating pressure of the pipe, which again limits the flow from the
reservoir. It also increases the mechanical wear of the pipeline due to large oscillations in pressure. And
also important; the capital and maintenance costs of a slug catcher are relatively large.

Another traditional method for avoiding problems due to slugging, is to choke the flow using the valve.
If the valve opening is kept very low, the slug flow will cease. This too, of course, comes at the expense of
higher operating pressure.

It has been shown that the natural flow pattern at a certain valve opening can be changed using feedback
control, see for instance the PhD thesis of Storkaas (2005). This is fundamentally a different approach than
the two traditional methods; control moves the flow regime boundaries in the flow map and thereby causes
the flow to take place in a flow regime that is less problematic. This has been implemented in offshore
applications using upstream measurements. The aim of this work is to develop anti-slug feedback control
using topside measurements.

1.1 Pipeline-Riser Slugging

The phenomenon of pipeline-riser slugging can mathematically be described as a limit-cycle; these are
sustained periodic oscillations in a nonlinear system. Physically, the oscillations occur due to competing
forces. Liquid flows into the riser and fills it up. Eventually the weight of the liquid in the riser becomes
too high, and the pressure drop over the riser is not large enough to drive the flow. This blocking causes the
gas below the riser to compress. Eventually the pressure upstream the riser low-end reaches the hydrostatic
pressure due to the weight of the liquid in the riser, and the riser contents is blown out rapidly. Then the
liquid starts to build up again, and we have a limit cycle.

Below a certain valve opening, the riser slugging does not exist. Here the flow is steady, but the pressure
in the pipeline is considerably higher than what is wanted for optimal operation. This is the flow regime that
is being used when the choke valve is kept at a low opening, as described above.

The point where slugging starts in open loop is called a bifurcation point. A bifurcation point is a point (a
specific parameter value) where the qualitative behavior of a nonlinear differential equation system changes

1



2 CHAPTER 1. INTRODUCTION

markably, like the transition from an equilibrium solution to a periodic solution, see for instance (Verhulst,
1990).

It has been observed that an unstable equilibrium solution exists at the same boundary conditions as the
limit cycle. This unstable equilibrium is the operating point we wish to stabilize using feedback control.

A well-known mathematical example of this kind of behavior is the van der Pol equation;

ẍ + x = µ(1− x2)ẋ, µ > 0. (1.1)

We set the parameter toµ = 1 and produce the phase image (figure 1.1). A closed orbit in the phase plane
indicates the existence of a periodic solution. The system has an unstable equilibrium point at the origin; a
perturbation of the state causes the system to go into the limit cycle. This is the same situation as in the riser
slugging case.
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Figure 1.1: Phase plane of the van der Pol equation; a stable limit cycle

Some Remarks on Terminology

In the control literature, the notion of stability of a nonlinear system is mostly in the sense of Lyapunov; that
is, stability is a property of equilibrium points in state-space. In terms of dynamical systems, a limit cycle
is said to be stable if it is bounded and attractive. That means, a limit cycle is called stable if the oscillating
system returns to the limit cycle after a perturbation, as in the van der Pol equation example (figure 1.1). In
the sense of Lyapunov stability, however, every limit cycle is unstable.
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The limit cycle which exists in the pipeline-riser system is attractive, and because it is a physical system
it is of course also bounded. Therefore, the limit cycle is stable. We will, however, make the common
control engineering use of the term stability and call the limit cycle unstable, which is correct in the sense
of Lyapunov stability.

1.2 Previous work

Pipeline-riser slugging has been extensively studied from the fluid mechanics side, but the interest in this
phenomenon from the control point of view is relatively new. The use of bottom-side measurements for
stabilizing feedback control has been studied by Storkaas (2005), with focus on loop shaping controller
design and linearization based controllability studies.

Storkaas has also treated the use of top-side measurements, and shown in simulations using simplified
models that it should be possible to stabilize the flow using topside measurements only. He suggests using
flow control in the inner loop and either choke pressure drop or the valve opening as controlled variable for
the outer loop of a cascade control system.

Experimental work on anti-slug control has been done by different companies active in the offshore busi-
ness. Statoil and Norsk Hydro have investigated the use of cascade control based on top-side measurements
for anti-slug control, as well as industrial applications with upstream measurements since 2001, Godhavn
et al. (2005).

They also suggest a very simple first-order linear model to describe the bottomside pressure dynamics
near the pressure set-point.The model is meant to aid tuning of controllers.

1.3 The Storkaas Model for Severe Slugging

Most of the computer simulations and model based arguments in this work are done on basis of the Storkaas
dynamic model for riser slugging. The Storkaas model is semi-empirical, and aims to model two-phase flow
as a lumped system.

The model is fairly successful at modeling the slugging behavior, but its original form is in explicit
differential-algebraic (DAE) form. Numerical simulations based on the DAE description damends a DAE
solver. The problem is of index 1, and is solvable using one of theode23tor ode15sroutines in MatlabR©. 1

or the freely available FORTRAN routines DASSL/DASPK.
The model assumes that the system can be described by coupling of three balance volumes. The bottom-

side gas volume is assumed constant. The liquid holdup is modeled using one single volume for the pipeline
and the riser. The top-side gas volume and the liquid volumes are assumed dynamic. There are three
dynamic states in the model;

Liquid holdup mL

Bottom-side gas holdupmG1

Top-side gas holdupmG2

1Matlab is a registered trademark of MathWorks Inc.
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The state differential equations are as follows;

dmL

dt
= ṁL,in − ṁL,out (1.2)

dmG1

dt
= ṁG,in− ṁG1 (1.3)

dmG2

dt
= ṁG1− ṁG,out. (1.4)

The two flow terms with index “in” are disturbances and are assumed constant. The flows out of the riser
and between the feed pipeline and the riser are modeled by simple valve equations. The mixture density
in the riser is treated as an algebraic state in the model. The most crucial point if the treatment of phase
distribution. The traditional approach to this in fluid mechanics is to use a slip correlation to model the
difference between the phase velocities.The Storkaas model uses an entrainment model from distillation
theory to directly model the phase distribution in the riser.

The model has four tuning parameters, 3 valve constants to account for; flow of gas from pipeline to
riser, liquid from pipeline to riser and one for the flow of fluid out of the riser. In addition to this, there is
one parameter to tune the entrainment equation. Storkaas (2005) gives a procedure for tuning the model to
experimental data.

1.4 Experimental

The experiments are performed with a mini-loop. The fluids used are water and air. This gives a density
ratio quite different from that observed in petroleum systems, but the fundamental flow regimes observed
are the same as known from oil/gas systems.

The loop is equipped with two pressure measurements (one at the base and one at the top) as well
as a measurement of phase fraction. The phase fraction measurement is done using to light absorption
measurement cells. The piping consists of see-through silicon rubber tubes, and the water has been colored
with a blue coloring matter. The riser height is approximately 2.7 m. The light absorption sensors, from
now on referred to as slug sensors, are situated 10 cm from each other just upstream the choke valve. The
measurements are basically measuring if there is water in that section of the tube or not, and an average of
the two measurements is used as an indication of phase fraction.

The water is circulated from a feed tank using a continuous pump. There is a flow rate measurement on
the water feed to the system. Gas is supplied from an in-house pressurized air system. A simple process
flow chart is shown in figure 1.2. Most of the time during this work, a gas flow measurement at the inlet has
not been available, but a flow meter has been obtained towards the end of the project.

Data logging and controller implementation for the experimental rig are done using LabVIEWR© 2. The
most important program constructs are given in appendix A. For a more detailed description of the sensors
and equipment used with the mini-loop, see Baardsen (2003). The equipment which has been changed
since then is the pump for circulating the liquid and the gas flow meter. In the current set-up a Grundfos
(Denmark) resiprocating pump with a maximum head of 3.7 m is used and an air flow meter from the
Cole-Parmer Instrument Company (USA).

2LabVIEW is a registered trademark of National Instruments Inc.
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Figure 1.2: Flow chart showing experimental setup for anti-slug control experiments

1.5 Model Tuning

The Storkaas model is tuned to experimental data as described in the original work Storkaas (2005). The
tuning procedure in short is; first, identify the bifurcation point. Then, tune on the parameter in the entrain-
ment equation until the linearized system is marginally stable. After that, adjust other parameters until the
amplitude and frequency of oscillations fit the experimental data.

Open loop experimental data

A series of experiments with open loop was performed to create data material for model tuning. A typical
plot of upstream pressureP1 as a function of time is shown in figure 1.3.

A bifurcation plot was created from the experimental data to aid model tuning. Figure 1.4 shows a
bifurcation map of both experimental data (points) and from the tuned model (lines).

We observe that the model fit is quite good in open loop, especially at higher valve openings. Note also
how the amplitude of the oscillations is not very dependent of the valve opening forz > 30%.
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Figure 1.3: Typical behavior ofP1 at riser slugging conditions
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Chapter 2

SISO Feedback Control

Riser slugging can be considerably reduced or even completely eliminated by feedback control. This chapter
discusses controller design for anti-slug control where a bottom-side pressure measurement is available.
The system is unstable, but minimum phase, and stabilization using a simple PI controller in a SISO loop
is efficient and robust. Anti-slug control using bottom-side measurements has been tested successfully in
several offshore applications.

The process model developed by Storkaas is nonlinear, such that linearization is necessary in order to
apply standard design methods for PID control.The linearization point is the desired operating point, which
is the unstable equilibrium solution of the model equations mentioned in Chapter 1.

2.1 Model Tuning and Linearization

Experimental data have been obtained from experiments with the system in open loop. The following data
were collected. Using the data in Table 2.1, we estimate the bifurcation point to be atz = 0.13 (see also

z [%] Pmin [barg] Pmax [barg]
9 0.35 0.35

13.2 0.23 0.26
15.3 0.13 0.38
18 0.11 0.33
20 0.10 0.31
30 0.09 0.30
60 0.06 0.28

Table 2.1: Experimental data used to tune the Storkaas model; Bottomside pressure as function of valve
opening in open-loop operation.

Figure 1.4) and with a bottomside pressure of 0.27 barg. At the same time we estimate the topside pressure
to be 0.05 barg. Tuning on the entrainment equation parameter and the gas volume, we then manage to get
a good fit to the open-loop data using the Storkaas model.An example of the open-loop behavior atz=0.20
is shown in Figure 2.1.

7
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Figure 2.1: Simulation of pipeline-riser system in open loop at 20% valve opening.
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The simulation gives a somewhat too small amplitude; the real signal has its minimum atP1 = 0.10
barg, whereas the simulated signal has its minimum atP1 = 0.13 barg.

Linearization

The process model is now linearized around the expected operating point. We assume that the operating
pressure is 0.2 and that the topside pressure is 0.02 barg. Further, we expect the valve opening to be about
20%. This is well into the unstable area, as can be seen from Table 2.1. Linearization yields the following
transfer function model for the seabed pressure;

G =
P1

z
=

−0.17s− 0.02
s3 + 3.73s2 − 0.11s + 0.1

. (2.1)

The system has a pair of complex-conjugate unstable poles located at0.019±0.17j and one stable real pole
at s = −3.76. The zero is located in the left half plane, ats = −0.13 and poses no serious problem for
control.

2.2 Linear Controller Design and Simulation

The transfer function model developed in the last section will now be used to design a stabilizing controller.
The control objective is to suppress terrain slugging, and to keep the system close to the given set point.

The control objective should be obtainable with a well-tuned PI controller. Integral action is needed to
ensure good set point tracking. The transfer function of a PI controller with controller gainKc and integral
time τI is

K = Kc

(
τIs + 1

τIs

)
. (2.2)

We know that when the pressure is too high, the control valve should open. The control error is defined as

e(t) = r(t)− y(t), (2.3)

wherer(t) is the set point andy(t) the measurement. Therefore, we expectKc to be negative. In order to
go on with the design we form the closed loop transfer function fromr to P1;

Gc =
Kc(−0.17τIs

2 − (0.02τI + 0.17)s− 0.02
τIs4 + 3.73τIs3 − τI(0.17Kc + 0.11)s2 + (0.08τI − 0.17Kc)s− 0.02Kc

. (2.4)

The system has, as mentioned, a pair of complex-conjugate unstable poles. This imposes a lower bound
on the bandwidth we can allow for effective control, see Skogestad and Postlethwaite (2005);

ω∗B > 0.67(x +
√

4x2 + 3y2, (2.5)

where the complex-conjugate poles are located atp = x±yj. In our case, we then have that the closed-loop
bandwidth should be greater than 0.21 rad/s. Matlab was used to calculate the frequency response of the
closed-loop sensitivity function S,

S = (1 + GK)−1, (2.6)

and the design criteria chosen are;
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• the bandwidth must be greater than 0.21 rad/s

• the sensitivity peak has a given upper bound;||S(jω)||∞ < 2.

The design method is iterative, and different values of the controller parameters gave the following
results in terms of bandwidth and sensitivity peak (Table 2.2).

Kc [bar] τI [s] ωB [Hz] ||S(jω)||∞
-5 50 0.23 1.18
-5 25 0.23 1.25
-5 10 0.23 1.53
-10 10 0.30 1.63

Table 2.2: Performance indicators for PI controller design

The last design looks the most promising in terms of bandwidth, but it also has the most aggressive
settings. The Bode magnitude plot of the sensitivity function for that control configuration is shown in
Figure 2.2. Note the very low peak value of 1.63.

10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

Frequency [rad/s]

A
m

p
li

tu
d

e
 R

a
ti

o

Figure 2.2: Bode magnitude plot for sensitivity function withKc = −10 andτI = 10.
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Figure 2.3: Simulation results of test case using PI control (linear model).

Linear Simulation

To confirm the design we now perform a simulation based on the PI controller with settingsKc = −10 and
τI = 10. We simulate a set point change from 0.2 bar gauge pressure to 0.18 bar gauge pressure att = 0.
After 2 minutes a disturbance of magnitude0.01 bar is introduced in the measurement. The results are given
graphically in Figure 2.3

2.3 Nonlinear Simulation of PI Control

A PI controller has been designed using linear methods. Now we want to test the performance of this con-
troller using the nonlinear Storkaas model, which was also used to obtain the linear model by linearization.

The Storkaas model consists of three differential equations and a large set of state-dependent internal
variables. The model contains several hard nonlinearities, and this causes the problem to be relatively stiff
in certain ranges of the state-space. Therefore, the choice of the numerical method is important in order to
obtain reliable results. The problem is here solved using the ODE23T routine in Simulink. The ODE23T
routine can handle moderately stiff differential equation systems and also DAE systems. In the original
implementation of the model, the DAE structure is used. Simulink is, however, not able to handle problems
with a singular mass matrix, that is, problems on the form

M
dx

dt
= f(x, t),
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where M is a square singular matrix (it has zero rows for all algebraic equations).

The Storkaas model contains one algebraic equation. In the Simulink implementation of the model, the
algebraic state is calculated iteratively from time step to time step, and in that way the problem with the
mass matrix is solved. For details on the numerical considerations and on the model, see Appendix D.

Using the same test case as in the linear simulation, we discover that the controller is not able to handle
a set point change from 0.2 to 0.18 barg. After the set point change, the instability occurs again. The
result is shown in Figure 2.4. It seems the controller action is not fast enough to stop the limit cycle from
reoccuring. The controller does, however, reduce the amplitude of the oscillations markably, as can be seen
from comparison with data in Table 2.1 or from open-loop simulations with valve openings in the unstable
region (where the limit cycle is the stable solution).
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Figure 2.4: The design is not good for set point tracking due to nonlinear effects.

We now try to increase the gain in order to make the controller more efficient. Setting the gain to
Kc = −50 yields a much better response, as can be seen from the simulation output shown in Figure 2.5.
Note that the linear analysis indicated that this design has a lower sensitivity peak, which in general indicates
better performance.

The model shows a very large valve opening, and it is experimentally not possible to stabilize the flow
with such a high valve opening. This indicates that the tuning could be improved, because it is well possible
to stabilize the process at pressures lower than0.18 barg using much smaller valve openings than shown in
Figure 2.5.
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Figure 2.5: Increasing the gain allows for tight control

2.4 Experimental

Experimentally it has been shown that stabilization using a bottom-side measurement is easy. The process
performs well under simple proportional control. Under feedback control the flow regime is changed. The
flow pattern when the flow is stabilized is in the regime of hydrological slugging; much smaller and faster
slugs. These are not a problem for the separator tank because the oscillations in flow are much faster than
the residence time in the tank. Therefore, all of these high-frequency effects are completely levelled out by
the capacity of the tank.

Proportional Control

A simple proportional controller was applied to the experimental mini-loop described in Chapter 1. The
controller was well able of stabilizing the flow down to a set-point of 0.15 barg. Below that limit, the
slugging reoccurred.

Setpoint tracking was good. The limitP1 = 0.15 barg seems like a lower bound on effective stabilization
using proportional control.This corresponds to an average valve opening of 26 % which is well into the open-
loop unstable region, as seen from the data Table 2.1. The valve opening at the start of the experiment was
31%.
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Figure 2.6: Experimental results; Proportional control with gainKc = −10
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PI Control

A proportional-integral mode controller was also tested with the bottom-side pressure. The controller has a
simple anti-reset windup system obtained by resetting the integrand to zero if the controller output saturates.
This is described in detail in Appendix A.

Using a PI controller with gainKc = −4 and integral timeτI , the tracking performance of the system
was very good. The output and set point are shown in Figure 2.7.

Figure 2.7: The tracking ability of the PI controller is very good.

The output usage is moderate due to the low gain, but note the large changes in controller output needed
to stabilize the flow (Figure 2.8).

2.5 Summary

Stabilizing control using bottom-side pressure measurements has been discussed. Control using pressure
measurements at the seabed level is not limited by non-minimum phase behavior and is a simple and ro-
bust solution to the riser slugging problem, as long as such a measurement is available. These claims are
supported both by simulations and experiments
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Figure 2.8: Output usage from PI controller.



Chapter 3

Topside Measurements: Limited
Controllability

3.1 Introduction

When using topside measurements to control the system, we encounter fundamental limitations because of
RHP zeros. In the laboratory system the available measurements are shown in Figure 1.2. The use of two
independent measurements should be able of counter-acting the limitations of the RHP zeros, such that the
system can be stabilized.

It has been shown by others that total volumetric flowrate can be used for control, because the transfer
function of this measurement has no RHP zeros. It is possible to use a valve equation to estimate the flow,
but for that we need a measurement or an estimate of the density of the fluid flowing into the choke valve.
Inspired by the Bernoulli equation, we can hypothesize the following expression for the valve equation to
use;

Q̂ = K(z, α)

√
P2 − P0

ρT
, (3.1)

whereP0 is the separator pressure andρT the density we need to estimate. In our case,P0 can be assumed
to be atmospheric, because the tank at the top has an open vent.

The valve constant is dependent on the valve opening, this follows from the valve characteristics. The
valve constant will in general also depend on the fluid flowing through it. The phase distribution dependency
is assumed to be much smaller than the effects of pressure and valve opening.

A mass flow meter for air has been ordered, but has not arrived before very late in the project; therefore
it has until now not been possible to calibrate the valve equation for the gas flow.

TheρT estimate is calculated as follows;

ρT ≈ αLρL + (1− αL)ρG2. (3.2)

The measurement of phase fraction is based on light absorption in the fluid passing a sensor. The sensor is
located just upstream the choke valve, see Figure 1.2. The measurement is problematic to use for control
due to very large noise spikes. Using a smoothing filter helps, but comes at the expense of extra phase lag.

17
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The gas density upstream the valve is also a dynamic quantity. It depends on the mass holdup of gas
in the riser as well as the available volume. These quantities are unknown but determined by the states.
Therefore, a state observer might help in generating the necessary information.

The first approach taken here is to assume that the gas density is constant. The error introduced by this
should not be large, as the density of the two-phase mixture is completely dominated by the liquid even
at very small liquid fractions. Around the stabilized operating point, the flow is not slugging, such that
inaccuracies in volumetric flow calculations for pure gas flow should not be very important.

In the following, we look at non-minimum phase systems in general, and we will return to the slug flow
case afterwards. The next chapter discusses the design and use of a valve equation for flow estimation.

3.2 Case Study: Controllability of a Non-Minimum Phase System

The characteristic limiting property of the topside measurement dynamics is the existence of RHP zeros.
The following case study investigates the effect of RHP zeros on controllability and performance.

The following transfer function model of top-side measurements is used in the subsequent analysis;

G1 =
5(−4s + 1)
s2 − s + 1

(3.3)

G2 =
5(−6s + 1)
s2 − s + 1

. (3.4)

The system has a pair of complex-conjugate poles in the right half-plane (RHP), namely atpi = 0.5±0.87j.

Performance Limitations on SISO Control

Intuition tells us that a SISO controller cannot stabilize the process, because the inverse response is slower
than the instability; hence the instability is practically invisible to the controller when it occurs and the
controller reacts to late. This is also seen in the real system where the instability is an attractive limit
cycle. The controller action, when applied on basis of topside measurements is out of phase with the limit
cycle. That means, that the use of SISO feedback control with topside measurements would rather further
destabilize the process instead of forcing it to the sought-for unstable equilibrium solution.

State controllability is not of much use here, because a system might very well be state controllable
yet inherently difficult to control efficiently in practice. State controllability does not take input limitations
or causality in consideration, and for process control these are very important constraints on the controller
design.

That RHP zeros limit the bandwidth of the system seems like an intuitive notion. Now let the sensitivity
function be given byS = (I + L)−1, with L defined as in Theorem 1. The following theorem quantifies
the notion on sound theoretical arguments.

Theorem 1 (Waterbed formula)
Let L(s) be the loop transfer function of the feedback system. Suppose L(s) has a single RHP zero andNp

RHP poles. Then, for closed-loop stability the following integral equation must hold;

∫ ∞

0

2
z(1 + (ω/z)2)

ln |S(ωj)| dω = π ln
Np∏

i=1

∣∣∣∣
pi + z

p̄i − z

∣∣∣∣ .



3.2. CASE STUDY: CONTROLLABILITY OF A NON-MINIMUM PHASE SYSTEM 19

¤

.

For extensions and discussion of the theorem, see (Skogestad and Postlethwaite, 2005).
The result in Theorem 1 is often hard to apply in practice. A controller must be synthesized and then

the waterbed theorem can be applied to assure stability. The resulting integral equation more often than not
becomes too complicated to be of any convenience compared to using the poles of the closed-loop transfer
function. The theorem can however be the starting point for development of bounds on the sensitivity
function. It also shows that forcing the sensitivity function|S(jω)| down in some frequency region, causes
the sensitivity to increase in another frequency region.

Let wP be a performance weight on the sensitivity function, as used in loop shaping controller design.
Let theH∞ norm be given as the infinity norm of a Hardy space, which is defined as follows (Young, 1988);

Definition 1 (Hardy spaces)
Let f be a function inL2, whereL2 is the Hilbert space of Lebesgue square integrable complex-valued
functions on the unit disk with pointwise algebraic operations and inner product defined by

(f, g) =
1
2π

∫ π

−π
f(ejθ)ḡ(ejθ)dθ.

Further, letf̂(n) be the n’th Fourier coefficient off , given by

f̂(n) =
1
2π

∫ π

−π
f(ejθ)ejnθdθ.

Letp = 2 or p = ∞. The Hardy spaceHp is the closed subspace defined as;

Hp : {f ∈ Lp : f̂(n) = 0, ∀n < 0}.

¤

The definition of the Hardy space given in Definition 1 does not have any practical meaning for the concept
of controllability; all practically occurring signals belong to a Hardy space.

The infinity norm induced by the inner product on a Hardy space is called theH∞-norm;

H∞(f) = ||f ||∞ = max
ω
{f(ω)}, (3.5)

which is simply the magnitude peak of the transfer functionf .
Now we are ready to present a lower bound on the sensitivity. The following theorem is given by Sko-

gestad and Postlethwaite (2005), please see the cited book and references therein for proof.

Theorem 2 (Sensitivity peaks)
Let the open-loop process be described by the transfer functionG(s). For each RHP zeroz in G(s) the
following must hold;

||wP S||∞ ≥ |wP (z)|
Np∏

i=1

∣∣∣∣
z + pi

z − pi

∣∣∣∣
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wherepi are the RHP poles of the transfer function G(s). The weightwP is the performance weight used in
loop shaping design.

For the complementary sensitivity function, we have a bound for each RHP pole;

||wT T ||∞ ≥ |wT (p)|
Nz∏

j=1

∣∣∣∣
zj + p

zj − p

∣∣∣∣ |epθ|,

whereNz is the number of RHP zeros,θ is the time delay. The bound is tight if the transfer function has
only one RHP pole.

¤

An often applied weighting function for the sensitivity is given by

wP (s) =
s/M + ω∗B
s + ω∗BA

, (3.6)

whereω∗B is the required bandwidth, A is the low-frequency asymptote and M is the high-frequency asymp-
tote.

What is the Best We Can Do with a PI Controller?

It is interesting to see what the best control we can obtain with a simple PI controller is. The first question is,
whether it is possible at all to stabilize the process without using an improper controller (which is physically
unrealizable). The answer based on intuition is “no”, because the RHP zero lies further into the RHP than
the unstable poles.

The transfer function for the PI controller is for the most common implementation;

Gc = Kc
τIs + 1

τIs
. (3.7)

Then we obtain the following sensitivity function;

S =
τI(s2 − s + 1)

τI(s2 − s + 1) + 5Kc(τIs + 1)(−4s + 1)
. (3.8)

The first thing we do now, is to develop the lower bound on the sensitivity function magnitude,|S(jω)|.
There is only one RHP zero inG1, hence Theorem 2 guarantees a tight bound. The bound is given as

||S(jω)||∞ ≥
Np∏

i=1

∣∣∣∣
z + pi

z − pi

∣∣∣∣ , ∀z ∈ RHP.

Inserting the values on the right-hand side, we obtain;

||S(jω)||∞ ≥ 752 + 872

252 + 872
= 1.61.
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This peak is greater than 1, but does not seem very bad. However, there is no guarantee there exists a causal
controller that can achieve anything close to this. For a linear system there will always exist a controller that
can stabilize the system, if we allow the use of future information (future set point changes, for instance).

For a rigorous proof that the stabilization using a PI controller is indeed impossible, one could proceed
by application of theorem 1, where one would have to show that the integral equation has an empty solution
space. To show this is, however, very difficult because the integral has no analytical solution, or it is at least
very hard to obtain.

The integral is improper because the limit is infinity. One option to prove inequality could be to show
that the integral is divergent, whereas the right hand side of the equation is a finite number.

The simplest approach is taken here. Routh’s stability criterion states (Seborg et al., 2004);

Let the characteristic equation be written on the form
∑N

i=0 aix
n. If all coefficients are not

positive or all negative, at least one root of the equation lies in the right half plane or on the
imaginary axis1

Developing the closed-loop transfer function for a PI controller used with the process given by equa-
tion (3.3), we arrive at

Gclosed=
5Kc(τIs + 1)(−4s + 1)

τIs(s2 − 2 + 1) + 5Kc(τIs + 1)(−4s + 1)
. (3.9)

The characteristic equation is;

τIs
3 − (20KcτI + τI)s2 + (5Kc(τI − 4) + τI)s + 5Kc = 0. (3.10)

The Routh criterion allows us to state a sufficient test for instability as a system of inequalities. Assume that
all coefficients of the polynomial equation (3.3) are positive. Then;

τI > 0 (3.11)

20KcτI + τI < 0 (3.12)

5Kc(τI − 4) + τI > 0 (3.13)

Kc > 0. (3.14)

If τI andKc are positive, we have20KCτI + τI > 0, which contradicts the inequality in (3.12). Next,
assume that all coefficients are negative. Then, multiply the characteristic polynomial by(−1) and the same
argument holds to prove instability. Hence, it is not possible to stabilize the system with a PI controller.

¤

What Can be Obtained by Using Extra Measurements?

Feedback control cannot move zeros or eliminate time delays. This imposes serious limitations on stability
and performance of closed-loop systems. A non-minimum phase system with large dead-time or zeros to
the right of the fastest unstable pole is not possible to stabilize using a physically realizable controller.

1This follows from the sign rule of Descartes and in the Routh-Hurwitz stability criterion it is assumed that all coefficients have
the same sign.
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If we give up the SISO control paradigm and look at MISO controllers, the question is “how can extra
measurements change the numerator dynamics?”.

The answer is that the controlled variable can be selected to be any combination of the available mea-
surements. The zeros of a transfer function are the roots of the numerator polynomial. Linear systems have
the property of superposition, hence the input-output behavior of a linear combination of measurements is
given by the linear combination of the individual transfer functions. Say we have the measurementsy1 and
y2, the scalar inputu, and transfer functions fromu to y1 andy2 calledG1 andG2 respectively. Now we
want to form a new controlled variableξ = y1 + γy2, whereγ is a constant. Then, the transfer function
from u to ξ is Gξ = G1 + γG2. Assume further that the transfer functionsG1 andG2 have no time delays,
and that the numerator polynomial of transfer functionj can be written;

PNj =
N∑

k=0

aj
ks

k = 0,

whereN is the degree of the numerator polynomial. The zeros of the transfer function fromu to ξ are given
by the roots of the following polynomial equation;

PN1,1 + γPN2,2 = 0.

When designing a MISO controller based on some linear combination of measurements, a choice of design
objective must be made for the linear combination. For practical controllability we should choose a linear
combination such that the zeros are located at least to the left of the fastest unstable pole in the complex
plane. If a RHP zero lies to the right of the fastest unstable node, the instability is not observable. In
addition to this, we must demand that the slowest zero is sufficiently far from the fastest unstable pole. If
these dynamic nodes are close to each other, the sensitivity peak will approach infinity and control is lost.
This follows directly from Theorem 2. A straight-forward design criterion for the measurement combination
would then be to demand that the real part of the fastest unstable pole is at least a certain numberε greater
than the real part of the closest zero;

Re(pi)− Re(zi) ≥ ε, (3.15)

wherepi is the fastest unstable pole andzi is the zero closest to this pole, andε is a fixed positive number.
Note that the zero in consideration is the “worst” zero, meaning that no zeros are allowed to the right of this
zero in the complex plane.

Now we want to develop some guiding lines for testing whether a given linear combination satisfies the
criterion in equation (3.15). We already have the necessary criterion for all zeros to lie in the left half plane
(LHP); all coefficients of the polynomial equation must have the same sign. In order to utilize this here, we
must make a coordinate transformation; shift the coordinate system along the real axis such that the fastest
pole is located a distanceε from the origin. Then the Routh stability criterion can be used to determine if a
given linear combination guarantee a minimum distance ofε to the fastest unstable pole. If all coefficients
of the polynomial equation have the same sign, the Routh array give a sufficient test for the zero locations.
Let us state these notions in a theorem.

Theorem 3 (Worst Zero Position Theorem)
Let y be the measurement vector with components(y1, y2, . . . , yp). Let w ∈ Rp be a weighting vector.
Consider the linear combination of measurementsξ = wTy. Let ε be a fixed positive number. Then,
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introduce a coordinate transformation along the real axis;s′ = s − δ, such that the position of the fastest
unstable polep∗ of the system is located at Re(s′) = ε.

Further, letP(s′) denote the numerator polynomial of the transfer function from a scalar inputu to
the outputξ in the transformed coordinate system. Then, if the Routh criterion is satisfied forP(s′), the
distance between the slowest zero and the fastest unstable pole is at leastε.

¤

Proof
Let the zeros of the transfer function fromu to ξ be given by the solutionsλ of a polynomial equation of
degree n;

Pn(s) =
n∑

i=0

ais
i = 0,

whereai ∈ R ∀ i ∈ [0, n] ands ∈ C. Letδ be a given real scalar. Lets′ denote theδ-translation ofs along
the real axis;s′ = s− δ. Then we have;

Pn(s′) = Pn(s− δ) = 0.

If λ is a solution ofPn(s) = 0, thenλ + δ is a solution ofPn(s′) = 0. Further, letδ be such that the point
p∗′ representing the fastest unstable pole in the transformed coordinates has real partε. Then, if all roots
of the polynomial equationPn(s′) have negative real parts, all solutions ofPn(s) have real parts smaller
than the numberδ, which is equivalent to the following;

Re(λi) ≤ Re(p∗)− ε, ∀ i ∈ [0, n]. (3.16)

This completes the proof.

¤

The Worst Zero Position Theorem gives sufficient conditions for a linear combination not to be limited
by RHP zeros, but at the same time it gives sufficient conditions for infeasibility of the linear combination
approach. If the system is shifted in coordinates as described in Theorem 3, and the resulting numerator
polynomialP(s′) does not have the same sign for all its coefficients, we know that the zero lies to the
right of the numberp∗i − ε in the complex plane. This, again, follows from the Descartes rule of signs. In
other words, if we useε as a threshold for “practical controllability”, we have a test for controllability in
Theorem 3.

Linear Combination Control of Example Process

We will now investigate if it is possible to control the example process given in equations (3.3) and (3.4). As
mentioned, the system has a pair of complex-conjugate poles at0.5±0.87j. The transfer functions have ze-
ros at 0.25 and 0.17 respectively. When two transfer functions have only one zero each, it is always possible
to find a linear combination such that the instability is observable (in the practical sense as mentioned).

When the zeros are in the LHP but close to the imaginary axis, performance is often lost due to input
saturation. In order to avoid this, we demand the linear combination transfer function to have its zero at
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s = −1. In other words, findβ such that the transfer function fromu to ξ = y1 + βy2 has its zero at
s = −1. That is, solving the following system;

(−4s + 1) + β(−6s + 1) = 0
s = −1,

which yieldsβ = −5/7. In summary, we may decide to control the variableξ = y1 − (5/7)y2 which has
the transfer function

Gξ =
ξ

u
= G1 + βG2 =

10
7 (s + 1)

s2 − s + 1
.

Using a proportional controller with gainKc, we wind up with the closed-loop transfer function from refer-
encer to outputξ;

Gξc =
(10/7)Kc(s + 1)

s2 + (10
7 Kc − 1)s + 10

7 Kc + 1
.

This is a second order process which can be written on the form

K(s + 1)
τ2s2 + 2ζτs + 1

(3.17)

with the following parameter values (as functions of controller gainKc;

τ =
1√

10
7 Kc + 1

(3.18)

ζ =
10
7 Kc − 1

2
√

10
7 Kc + 1

(3.19)

K =
10
7 Kc

10
7 Kc + 1

(3.20)

A linear second order differential equation has only stable solutions if the damping coefficientζ is greater
than zero. That means, the closed-loop system is stable if and only if

10
7 Kc − 1

2
√

10
7 Kc + 1

> 0,

which is equivalent to

Kc >
7
10

.

Let us finish the example by designing a stabilizing controller and testing its effect on the original directly
measured outputsy1 andy2 by simulation.

The main control objective is to keep the process stable. Therefore, we choose a simple design method.
Starting with a damping ratio of 0.707 we design a simple proportional controller. Using the expression in
equation (3.19) for the damping coefficient, we end of with the following quadratic equation for the gain;

100
49

K2
c −

20 + 40ζ2

7
Kc + 1− 4ζ2 = 0. (3.21)
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With the given value ofζ, equation (3.21) has solutionsKc = 2.96 andKc = −0.17, and because the
system is only stable forKc > 7/10, we choose the positive solution. The following figure shows the
response of a unit step in the reference signal att = 1 ( Figure 3.1).
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Figure 3.1: Simulation of Linear Combination Control

The controller is efficient in stabilization. Set point tracking is poor due to no integral action. Note the
responses in the measurements; the RHP zeros yield inverse responses.

3.3 Case Study: The Storkaas Model

Although the linear combination approach used with the example process was successful in stabilizing the
system, the same approach might not be able of stabilizing the real pipeline-riser system due to higher order
numerator dynamics. We aim to investigate this by analyzing a linear model obtained by linearization of the
Storkaas model.

As mentioned earlier; the two measurements directly available are phase fraction and topside pressure.
Using the Storkaas model, we develop transfer functions from the valve openingz to these measurements.
The outputs arey1 = P1, y2 = P2 andy3 = α. Linearizing around z = 0.25 we obtain the following transfer
functions;

G1 =
y1

u
=

−0.21s− 0.034
s3 + 5.82s2 − 0.55s + 0.07

(3.22)
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G2 =
y2

u
=
−0.078s2 + 0.37s− 0.031
s3 + 5.82s2 − 0.55s + 0.07

(3.23)

G3 =
y3

u
=

11.25s2 − 0.68s− 0.0072
s3 + 5.82s2 − 0.55s + 0.07

. (3.24)

The system’s poles are located ats = −5.91 ands = 0.048 ± 0.095j. The zeros of the transfer functions
are;

G1 s = −0.1654; no problem.

G2 s = 4.65 ands = 0.09; Both zeros are located to the right of the unstable poles in the RHP.

G3 s=0.069 and s = -0.0092; the LHP zero is not a fundamental limitation, but in practice the closeness
to the imaginary axis may cause problems with input saturation. The RHP zero is slower than the
unstable poles.

Linear Combinations

A natural question that arises here is if it is possible to find a linear combination that is controllable as with
the example process. We define the linear combination of measurements as

ξ = y2 + γy3

and demand thatγ should be chosen such that all zeros of the transfer function fromu to ξ fulfill the
condition

Re(zi) < 0.048− ε.

We choose the “magic line” to lie at Re(s) = −1 as with the example process. Thus, our problem is to find
γ such that Theorem 3 is satisfied forδ = 1.048. Expressing the numerator dynamics ofξ as a function of
γ we get the following numerator polynomial;

P2(s; γ) = (11.25γ − 0.078)s2 + (−0.68γ − 0.37)s− (0.072γ + 0.031).

Introducing the coordinate transformation by subtracting the real numberδ from s, we arrive at;

P2(s′; γ) = P ′2(s; γ, δ) = (11.25γ − 0.078)s2

+(−22.5γδ + 1.156δ − 0.68γ + 0.37)s
+11.25γδ2 − 0.078δ2 + 0.68γδ − 0.37δ − 0.072γ − 0.31. (3.25)

We set as a design criterionδ = 1.048. Inserting this into equation (3.25), we arrive at;

P ′2(s, γ, δ = 1.048) = (11.25γ − 0.078)s2 − (0.68γ + 22.52)s + (13.07γ − 0.85). (3.26)

The task is now to selectγ such that all roots of the equationP ′2(s, γ, δ = 1.048) = 0 has negative real
parts. A necessary criterion for this, as discussed in the example process case study, is that all coefficients
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of the numerator polynomial have equal signs. To check this condition, we set up the following set of
inequalities;

11.25γ − 0.078 > 0
−0.68γ − 22.52 > 0

13.07γ − 0.85 > 0

By solving the second inequality forγ, we see thatγ < −33.2. This is in contradiction with both the other
inequalities; hence it is impossible to place the zeros at Re(s) = −1. The problem is so grave, that even
flacing the worst zero between the imaginary axis and the fastest unstable is impossible. Therefore; the
linear combination approach cannot be used for the problem at hand.

3.4 What Can be Done When Linear Combination Control Fails?

Since we have seen that the linear combination approach is not applicable to the current problem, we must
seek other options for topside stabilization. A typical solution used in the process industries to improve
performance of bandwidth limited systems is to use cascade control. It has been shown by among oth-
ers Storkaas (2005) that the volumetric flow rate has no RHP zeros. The problem with the flow dynamics is
that the transfer function fromz to Q has a very low gain; hence it is not possible to keep the process within
the linear range when disturbances occur. In order to remedy this problem, the cascade control approach is
to wrap another feedback loop around the flow controller, using the flow controller set point as the controller
output. Several cascade configurations for slug repression have been suggested, among them using topside
pressure, choke valve pressure drop and the valve opening as measurements for the outer loop. The cascade
approach is discussed in the next chapter.

Another possibility is to use a state observer. This approach demands a fairly accurate process model
with limited complexity. The latter because the model must be solvable faster than real-time. The observer
approach will be discussed in Chapter 5.
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Chapter 4

Cascade Control using Topside
Measurements

4.1 Introduction

The possibility of using cascade control based on topside measurements only for slug repression has shown
fruitful both theoretically Storkaas (2005) and experimentally Godhavn et al. (2005).

Two different schemes are tested here; both with an estimate of Q in the inner loop. This measurement
has a very low gain, but no RHP zeros. That indicates it should be possible stabilize the flow using a flow
controller, but the low gain causes poor robustness; the process is prone to drift away from the desired
operating point.

In order to increase tracking performance, a master loop is wrapped around the flow controller, where
the set point for the flow controller is set by the outer controller. Two different schemes are suggested
by Storkaas (2005);

• Q in inner loop andP2 in outer loop

• Q in inner loop andz (valve opening) in outer loop.

The last suggestion is rather exotic, but Storkaas claims a slow resetting of the valve opening to the desired
average value is a viable option to avoid drift.

Cascade implementation has been attempted, but the flow rate cannot be directly measured in the labo-
ratory setup. Therefore, the volumetric flow has to be estimated. This has been done using a simple valve
equation. The valve equation depends on an estimate of the mixture density, which is obtained using light
absorption in the fluid as an indicator of liquid fraction. This measurement is noisy, and therefore the flow
rate estimate is hard to obtain in a robust and reliable manner.

Before going to the experimental part, a short review on cascade control will be given.

4.2 Cascade Control Theory

For this section we assume that a reliable measurement of the volumetric flow through the choke valve is
available.

29
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The normal cascade control configuration has nested loops; where the slave loop is inside the master
loop. Then the inner loop is designed first. The closed-loop system is then regarded as the system we want
to control when designing the outer loop. The inner should must be significantly faster then the outer loop,
such that we may approximate the dynamics of the inner loop as infinitely fast when designing the outer
loop. The cascade structure is shown in Figure 4.1.

Figure 4.1: Block diagram of cascade control configuration

Cascade control is often used to improve disturbance rejection. Here we use the system for this purpose;
the inner loop is there to stabilize the system. The task of the outer loop is to ensure better performance at
lower frequencies such that the system does not start to drift, which would cause the instability to reoccur
when the state is outside the acceptable range for the flow controller.

Let Km be the transfer function of the master controller in Figure 4.1 andKs be the slave controller.
The first task in designing the cascade system is to stabilize the inner loop. The closed loop transfer function
from Qset to Q is

GInner =
KsG1

1 + KsG1
. (4.1)

When approximating the dynamics of the inner loop as infinitely fast, we simply setQ = Qsetwhen design-
ing the outer loop. This might be an over-simplification, and the correct transfer function fromP2,set to P2

is

GCascade=
KMGInnerG2

1 + KMGInnerG2
. (4.2)

4.3 Model-Based Analysis

The following analysis is based on a linearization of the Storkaas model around the desired operating point,
which is an unstable equilibrium point. We consider the following measurements to be available; total
volumetric flow through choke valve, downstream pressure and the valve position itself. The upstream
pressure may also be considered in a cascade loop, where flow control is used to increase the speed of
response.

A measurement of the gas flow has shown that the air feed to the experimental system has mostly been
approximately 9 L/min at STP, and therefore the Storkaas model is linearized again with this change to the
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setup. The desired operating point is a “seabed” pressure of 0.2 barg and topside pressure 0.02 barg. These
values have shown to be easily obtained experimentally when using feedback withP1 as the controlled
variable. Linearizing aroundz = 0.25 and the given pressures, we obtain the following transfer function
model.

G1 =
P1 [bar]

z
=

−0.88s− 0.21
s3 + 16.9s2 − 3.95s + 1.21

(4.3)

G2 =
P2 [bar]

z
=

−0.18s2 + 0.78s− 0.19
s3 + 16.9s2 − 3.95s + 1.21

(4.4)

G3 =
Q [L/min]

z
=

49.2s3 + 342s2 + 72s + 1.62
s3 + 16.9s2 − 3.95s + 1.21

(4.5)

Note that a direct measurement ofQ is not available in the laboratory, such that this variable has to be esti-
mated. This will be neglected in the following analysis, and the variable is treated as directly measureable.

The general trend is the same as mentioned before; we have a pair of complex conjugate unstable poles,
this time located ats = 0.12 ± 0.23j. In addition, we have a stable pole ats = −17.1. The upstream
pressure has a single zero ats = −0.24 and the topside pressure has its two zeros ats = 0.26 and4.01
respectively. Both zeros are here to the right of the unstable poles in the complex plane, and therefore the
instability is not observable in this measurement. The steady-state gain of the transfer function fromz to
P2 is -0.18. This shows that the variable might be suited for use in the outer loop to gain low-frequency
performance of an already stabilized system. The last measurement, volumetric flow, has no zeros in the
RHP and can therefore be used to stabilize the flow. On of the zeros is, however, close to the imaginary axis,
and this yields poor low-frequency performance; the stabilized system may very well drift out of the linear
region. Their zeros are located ats = −6.714, s = −0.20 ands = −0.025.

Controller Design and Simulation

First we design the inner loop usingQ as the measurement. Because of zeros close to the imaginary axis,
the system is prone to drift when stabilized by flow control. Therefore, a simple proportional controller is
used for the stabilization, and the outer loop improves low-frequency performance.

In order to design the controller, some considerations regarding valid ranges for the variables must be
made. The valve position is, of course, limited to the range 0 to 1. The system was linearized around
z = 0.25, which means in the linearized system we may only allow valve openings betweenz = −0.25
and z = 0.75. Further, we also need to consider the steady-state value ofQ. At steady-state we have
ṁL,in = ṁL,out = 3.5 kg/min. The water is considered incompressible, and with a density of approximately
1 kg/L, we haveQL,out = 3.5 L/min. The same relationship must be valid for the air flow (on mass basis),
and with an inflow of9 L/min at STP (corresponding to 10.6 kg/min), we can calculate the volumetric flow
rate of the gas through the choke by using the known pressureP2 = 0.02 barg. The ideal gas law yields;

ρ∗G2 =
P2Mw

RT
=

1.02 atm× 28.9 g/mol
0.08206 L atm/K mol× 298 K

= 1.21 g/L.

That givesQ∗
G = 8.78 L/min, and in total we haveQ∗ = 12.3 L/min or in SI units2.05 × 10−4 m3/s. On

a mass basis we may assume that the variation in flow through the choke valve in a stabilized regime is
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not more thanδṁ = ±0.5 kg/min, which at the given conditions (the linearization point) corresponds to a
volumetric flow variation of

δQ =
δṁ

ρ̄
=

0.5 kg/min
0.29 kg/L

= 1.7 L/min.

Slave Controller

The task of the inner controller is to yield stabilization by moving the poles into the LHP. Because of
two zeros located close to the imaginary axis, the poles cannot be moved far into the LHP. Hence, furher
stabilizing effect can be achieved by the outer loop using PI control to eliminate set point offset. Assuming
that the inner loop is very fast, we need to design a system that controlsP2 usingr1 as input.

The inner loop is controlled with a pure gain. Setting the gain toKc = 1 we get the following closed-
loop characteristic equation;

50.2s3 + 358.9s2 + 68.05s + 2.83 = 0,

with solutionss = −6.96, s = −0.13, s = −0.061. Hence, the system is closed-loop stable.

Master Controller

Seen from the Master Controller, the task is to control an open-loop stable system with only real poles and
zeros. Then, the first idea is to try SIMC design of a PI controller. The transfer function fromr1 to P2 is

GCV =
−0.067(s− 4.074)(s− 0.26

(s + 6.96)(s + 0.13)(s + 0.061)
. (4.6)

Using the “half rule” and the SIMC tuning rules by Skogestad and Postlethwaite (2005), we arrive at the
following first order approximation toGCV;

G̃CV =
−0.0671e

−8.1s

20.25s + 1
. (4.7)

The tuning relations yield;

Kc =
1
k

τ

τc + θ
= (1/− 0.0671)× 20.25

8.1 + 8.1
= −18.7

and
τI = min{τ, 4(τc + θ)} = min{20.25, 4× (8.1 + 8.1)} = 16.2,

where we have used the common choice of the tuning parameterτc = θ. Before testing the tuning with
simulations, consider the Bode diagram of the open loop system shown in Figure 4.2. We see that the phase
and gain margins are acceptable, and the system behavior can be expected to be good.

The phase margin using the SIMC controller is 43o. The gain margin is 3.45. Seborg et al. (2004) give
guidelines for designing PI controllers based on phase margin and gain margin criteria, and claim that a
well-tuned controller should generally have a gain margin between 1.7 and 4.0 and a phase margin between
30o and 45o. The SIMC controller is well into this interval, and we may therefore expect the system to be
well-behaved, at least within the validity region of the linearization.
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Figure 4.2: Bode plot for open loop transfer function fromr2 to P2 with SIMC PI controller

Linear Simulation

Let us consider a simulation of the closed-loop system based on the linear model. We assume a set point
change inP2 from 0.02 bar gauge pressure to 0.015 bar att = 0.

The set point tracking is good. The result is shown graphically in Figure 4.3. Note the offset in the inner
loop due to the pure gain controller. TheP2 set point tracking, however, is excellent.

Next, consider an output disturbance in the volumetric flow. Assume a disturbance of 0.1 L/min 4
minutes after a set point change. Figure 4.4 shows the result of the disturbance in flow rate and pressures.
We observe that the given tuning parameters are not able of stabilizing the plant with good robustness to
output disturbances.

As the SIMC controller was not robust enough, trial and error was used for tuning the controller. Using
Kc = −0.5 andτI = 2 we obtained acceptable set point tracking and disturbance rejection, as shown in
Figure 4.5.

4.4 Nonlinear Simulation of Cascade Control

Using a linear plant model, we have shown that it should be possible to obtain good anti-slug control using
cascade with flow rate in the slave controller and pressure in the outer loop. It is interesting to see how these
controllers perform with a more rigorous nonlinear model.
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Figure 4.3: Set point tracking is good when using a SIMC controller in the outer loop.

The Storkaas model is used for the simulations. When working with linear models we enjoy the nice
behavior of linear systems, most importantly the property of superposition. When working with nonlinear
systems, this is no longer so. Therefore, the effect of a disturbance cannot be predicted by simply adding an
extra term in the feedback loop.

Controller Design based on Nonlinear Model

The controller settings from the linear analysis were attempted used in a nonlinear model, but the system
was not solvable using the available methods in Simulink. Therefore, a new design based on the nonlinear
model was attempted.

First, the flow is stabilized by using a proportional controller. The set point for the controller was
estimated by stabilizing the system with bottom-side pressure control and looking at the average volumetric
flow through the choke. When stabilized to a set point ofP1 = 0.02 barg, the flow through the choke is
12.3 L/min, in agreement with the steady-state considerations made for the linear design earlier. The model
implemented in the S-function in Simulink operates with standard SI units. 12.3 L/min corresponds to a
flow of 2.05 × 10−4 m3/s. To have convenient numbers, we scale the flow measurement by multiplication
with 10000, such that we have an initial set point ofQ̃ = 2.05 .

Now we stabilize the flow using a pure gain ofKc = 4 in the feedback loop. Introducing a small step in
the controller reference signal makes it possible to identify a simplified first-order plus dead time model in
transfer function form from the flow controller reference to the variable chosen for the outer loop. We will

0This number has the rather special unit of kL/s (kiloliter per second).



4.4. NONLINEAR SIMULATION OF CASCADE CONTROL 35

250 300 350 400 450
−10

0

10
T

op
si

de
 P

re
ss

ur
e

[b
ar

g]

250 300 350 400 450
−500

0

500

V
ol

um
et

ric
 F

lo
w

[L
/m

in
]

250 300 350 400 450
−100

0

100

Time [s]

S
ea

be
d 

P
re

ss
ur

e
[b

ar
g]

Figure 4.4: Effect of disturbance in flow rate (Q)

consider both using the top-side pressure and the valve position itself.

Model Reduction; Estimating Transfer Function Models from Slave Reference to Master
Controlled Variables

We consider for the master loop the variablesP2 andz. Doing one at the time, we start with the pressure
measurement.

Master Controlled Variable: P2

Looking at the step response inP2, it seems natural that the measurement can be represented well with a
first-order linear model for a closed-loop system. The transfer function was estimated to

GP2 =
−0.43e−10s

45s + 1
. (4.8)

Using this transfer function, we get a good fit to the nonlinear model. The maximum residual norm
Residual = P2,linear − P2,nonlinear is 10−3, which should be good enough for engineering purposes. A
graphical representation of the step test is given in Figure 4.6.

Master Controlled Variable: z
Using the same procedure as for the pressure measurement is not very tempting because the measurement
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Figure 4.5: Low gain in outer loop; making the master controller slower improves robustness

in consideration is at the same time the manipulated variable of the inner loop. Consider the standard SISO
feedback system shown in block diagram form in Figure 4.7.

Assume for a moment that the controllerK and the plantG can be described by transfer functions. Then
we can express the input-output behavior fromr to z as a transfer function;

z

r
=

K

1 + G
. (4.9)

Using a step test in the input again, we can fit a first-order plus dead time model to the response. The fit is
not quite as good in the beginning of the response as for theP2 model, but the maximum residual is 0.011.
The residual converges to zero at the new steady-state, that is, the gain is correct. The residual plot is shown
in Figure 4.8.

The identified transfer function has a smaller time constant than the one fromQset to P2, which is
the expected behavior; the dynamic path from the reference signal to the controller output is much shorter
than from the reference signal to the pressure upstream the valve; in other words, the plantP2/Qset has
higher-order dynamics thanz/Qset. The identified transfer function is;

Gz =
1.594e−10s

33s + 1
. (4.10)

Design of the Master Loop

Now that we have transfer functions for our candidates as master controlled variables we may procede with
the master controller design. The slave stabilizes the system, hence we have no poles in the RHP. The
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Figure 4.6: The FOPDT model is well able of fitting the nonlinear model’s behavior when excited by a step
in the reference signal.

Figure 4.7: Standard SISO negative feedback loop where K is the controller and G is the plant.

identified transfer functions fit the behavior of the nonlinear system well, at least in the frequency range of
the step excitation, and the controller for the master loop may therefore be designed using the simple SIMC
method Skogestad and Postlethwaite (2005). The SIMC design rules were discussed in Section 4.3. We
first design the controllers for bothP2 andz in the outer loop, then we test their effect on the system by
simulation.

P2 in the outer loop
Using the recommendatino by Skogestad for fast and robust control and setting the tuning parameterτc of
the SIMC rules equal to the dead timeθ in the identified first-order model, we get the following results for
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Figure 4.8: Residual plot for identification of transfer function fromQset to z.

the PI controller;

Kc =
1
k

τ

τc + θ
=

1
−0.43

45
10 + 10

= −5.23

τI = min{τ, 4(τc + θ)} = min{45, 80} = 45.

z in the outer loop
From the identified model we get the following PI settings when usingz in the outer loop;

Kc =
1
k

τ

τc + θ
=

1
1.594

33
10 + 10

= 1.04

τI = min{τ, 4(τc + θ)} = min{33, 80} = 33.

Nonlinear Simulation Study

The tracking ability of the system is tested. First, we look at the control system whereP2 is the primary
controlled variable, and we use the PI controller developed above by the SIMC rules. First we allow the
system to stabilize atP2 = 0.02 and then introduce a step in the reference from0.02 to 0.015. The tracking
ability of the system seems to be very good. The primary controlled variable and the valve opening are
shown in Figure 4.9.
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Figure 4.9: Results of nonlinear simulation of cascade control withP2 in outer loop. The set point is shown
as the dashed line in the top plot. We see that the use of the SIMC controller yields tight reference tracking.

Now we turn to the other case, usingz as the primary controlled variable and at the same time as output
from the slave controller. As test case here, we want to simulate the system around approximately the same
state trajectory as in the case with control ofP2 directly, therefore we chose as test signal a step fromz = 0.2
to 0.24 in the reference signal to the master controller.

The result is remarkable; it is possible to stabilize the system without using a pressure measurement
(unless pressure is used to estimate the flow).The performance with regard to a step in the reference signal
is comparable to that of theP2-controlled system. The system response is shown in Figure 4.10.

By comparing to two responses we note that the tracking ability of theP2 system is slightly better than
thez system.
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Figure 4.10: Using the valve opening as the primary controlled variable seems a viable option as a substitute
for pressure control.

4.5 Remarks on Experimental Work

Experiments with cascade control based on top-side measurements only have been attempted by others, see
for instance Baardsen Baardsen (2003). That study showed that stabilization using the available top-side
measurements is very difficult. One measurement discussed by Storkaas for use as the controlled variable of
the slave loop is the volumetric flow rate of the two-phase mixture. This measurement is used in simulation
studies by Storkaas.

A direct measurement of the volumetric flow rate, or the mass flow for that matter, is not available in the
laboratory plant. Hence, the flow rate has to be estimated from available data. As discussed by Baardsen,
obtaining a good flow estimate is difficult. A simple valve equation based on a Bernoulli-like model of the
flow has been suggested;

Q ≈ K(z)× z
√

∆P/ρ, (4.11)

where theK(z) function is a function depending on the valve opening used to correct for neglected frictional
losses. The∆P quantity is the pressure drop over the valve and the densityρ is the density of the two-
phase mixture. The available measurements are the pressure upstream the choke valve, a light absorption
measurement used to estimate the phase distribution of the flow. The valve opening is not measured, but the
valve dynamics are assumed to be much faster than anything else in the system, such that the signal sent to
the valve is treated directly as the actual valve opening.

As we have to make the most out of the available information, a valve equation based on those mea-
surements is suggested. Experiments have shown that the friction correction (the valve constant) is not only
a function of the valve opening, but also of the pressure upstream the valve. The functional dependency is
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clearly nonlinear in both variables, such that the task of obtaining a reliable flow estimate from the available
measurements is indeed a challenge.

In the following, we first develop a valve equation by nonlinear regression. Then the implementation of
the cascade controller is discussed and experimental results are presented.

4.6 Two-phase Flow Estimation from a Valve Equation

Flow is to be estimated using a valve equation and measurements of phase distribution and pressure (or
pressure drop over the valve). The equation used for this has the following form (inspired by Bernoulli);

Q = f(z, P )z

√
P

ρ
, (4.12)

where the functionf(z, P ) is some function of valve opening and pressure describing all irreversible ele-
ments of the flow (friction, entropy production).

If we calculate the value ofK for different measurements of pure water flow;

K(z, P ) =
Q

z
√

P
(4.13)

we can plot the values ofK againstP for different valve openings. This is done in Figure 4.11. Observe the
different behavior with regard to z at valve openings below and above20%.

Looking at the low-opening data first, we observe that the shape of the data seems to resemble that of a
first-order process step response, but where the “gains” and the “time constants” vary with valve opening.

The data for high valve opening also exhibit this negative exponential behavior, and can probably also
be approximated by a lag-equation.

Curve Fitting

Low Valve Opening

We first try to fit an equation to the low-opening data. This was done in a very crude fashion by plotting the
data on paper and using a pencil and a ruler to “construct” first-order step response graphs. By forcing all
graphs to cross theK axis atK = 53, and using the initial tangent method to estimate the time constant, we
arrived at the following parameters ( 4.1).

z Kc τ

0.10 30 0.090
0.15 38.5 0.081
0.17 47.5 0.068

Table 4.1: Parameter values to estimate K-value in valve equation for valve openings below 20%.

The suggested equation is;

K(z, P2|z < 0.2) = K0 + Kc(z)(1− e−P/τ ). (4.14)
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Figure 4.11: Raw data: At low valve openings, the K value is a function of both z and P, but at higher valve
openings the dependency of z vanishes.

The data in Table 4.1 are used to fit theKc andτ dependencies onz to quadratic equations;

Kc = 4000z2 − 830z + 73 (4.15)

τ = −1.41z2 + 0.04s + 0.07. (4.16)

Using equation (4.14), we get the following fit to experimental data (Fig. 4.12).

As we can see from the Figure, the fit is good for the given data. The next step will be to model the K
values at higher valve openings, and then testing the equations as flow estimators. Lastly, the estimator will
be implemented in a laboratory data logging system and tested in real-time against measured flow rates for
pure water.
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Figure 4.12: Testing the K-value equation

High Valve Opening

As seen from Fig. 4.11, the variation of the data abovez = 20% is much smaller than the low-opening data.
The following equation is suggested;

K = 14 + K1(z)(1− e−(P−0.02)/0.0075) (4.17)

TheK1(z) function was found by fitting a quadratic equation to the data;

K1 = −150z2 + 63z + 79. (4.18)

Figure 4.13 shows experimental data and lines predicted by equation (4.17).

Summary

The following valve equation is suggested based on nonlinear regression;

If z < 0.2;

Q = [52.5 + (4000z2 − 830z + 73)(1− e−P/(−1.41z2+0.04s+0.07))]z

√
P

ρ

If z > 0.2;

Q = [13 + (−150z2 + 63z + 79)(1− e−P/0.0075)]z

√
P

ρ
. (4.19)



44 CHAPTER 4. CASCADE CONTROL USING TOPSIDE MEASUREMENTS

0.02 0.025 0.03 0.035 0.04 0.045
20

30

40

50

60

70

80

90

100

P [barg]

K
 (

L 
kg

/b
ar

)1/
2  m

in
−

1

 

 

Predicted
Experimental

z=0.25

z=0.40

z=0.60

Figure 4.13: Experimental data and predicted values

4.7 Controller Implementation and Testing

The controller was built in LabVIEW. The LabVIEW block diagram is reproduced in appendix A. Here, only
a short description of the workings of the cascade controller is given. A flow estimate using equation (4.19)
is used as the controlled variable for the slave loop. The controller in the inner loop is a simple proportional
feedback controller. The setpoint for the slave controller is set by a master controller. The primary controlled
variable is the pressure just upstream the choke valve (P2). The controller in the master loop is a PI controller
with a simple anti-reset windup scheme; the integrand is set to zero whenever the output saturates.

The controller was well able of stabilizing the flow at an average valve opening of about 19% after
tuning. This is well into the unstable region as can be seen from the bifurcation diagram in Figure 1.4. A
remarkable effect seen from the experimental data is that the topside-control achieves a lower bottom-side
pressure at the same average valve opening than does the bottom-side pressure control.The bottom-side
pressure when the system was stabilized by the cascade controller is shown in Figure 4.14.

Note how the well-known severe slugging behavior reoccurs shortly after the controller was turned off
at t=19 minutes. Let us also consider the behavior of the measurements used in the controller. First, take
a look at the estimate of volumetric flow in Figure 4.15. Note also here the amplitude increase when the
controller is turned off.

The set point for the flow was calculated by the master controller. The gain of the master controller was
low, such that the set point did not change much, it varied between 13 and 16 L/min. We see that there is
some offset from the set point; the average value of the estimated flow is slightly higher than the set point
range calculated by the master controller.

The primary controlled variable wasP2 as discussed. The upstream pressure did of course oscillate as
well as the other measurements, and also here the automatic to manual switch is distinctly visible on the
data chart shown in Figure 4.16.
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Figure 4.14: Bottom-side pressure under stabilizing feedback control using top-side measurements only.
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Figure 4.15: The secondary controlled variable; Estimate of volumetric flow rate based on equation (4.19).
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Figure 4.16: Primary controlled variable; top-side pressure (set pointP2 = 0.05).

Tuning and Operator Action

The tuning used in the cascade experiment was a gain ofKc = 0.35 for the slave controller andKc = −0.55
for the master controller. The integral time of the master controller wasτI = 100 seconds.

By visual observation it was clear that the stabilized regime was much smoother than the severe slugging
of the open-loop system. Further experiments have shown that it is possible to obtain a lower operating
pressure of the pipeline when using topside control instead of seabed pressure. The problem with the cascade
system is twofold; firstly, the tuning of the controllers is not easy due to ill-posedness of the system. As
discussed in the theoretical part of this chapter, when linearizing the Storkaas model it is apparent that the
volumetric flow has two poles fairly close to the imaginary axis, and these seriously limits the low-frequency
performance of the flow controller. Therefore, first tuning the flow controller and thereafter to use standard
methods for tuning PI controllers for stable systems on the open loop is not easily done. The controller
tunings described above were found by trial and error.

Another effect of the fact that the flow measurement is prone to drift out of the linear region makes
the switch from manual to automatic control hard if the system is initially at severe slugging condition. A
fruitful strategy was to put the system in automatic mode and use the gain of the master controller to help
the system into a state where flow control is effective. That means, some extra attention from operators is
necessary to force the system into the bandwidth of the inner loop. Here we understand by bandwidth the
range of frequencies where control is effective, as described by Skogestad and Postlethwaite Skogestad and
Postlethwaite (2005)1.

1The bandwidth has a lower limit because of zeros close to the imaginary axis; this makes tight control impossible as can be
verified by linear simulations.
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Further experimental results are shown in Appendix C.

4.8 Ideas for Improvement of Cascade Control System

Gain Scheduling

A possible solution to the switching problem may be to introduce a gain scheduling scheme to help the
system into the correct state.As described above, operator action can help the system into a state such that
the flow controller is efficient. It was found by trial and error that a low gain should be used in the outer loop
when the flow rate is high and a high gain when the flow rate is low2. This increases the response speed of
the controller. A division of the gain into three different regions can be foreseen, as depicted in Figure 4.17.

Figure 4.17: The gain of the master controller is increased when the flow is decreased and vice versa.

The gain scheduling scheme will have to be tested experimentally, because the Storkaas model does not
model hydrodynamic slugging (small pressure oscillations), and this phenomenon makes controlling the real
system harder than than controlling the model system in simulations. An experiment with gain scheduling
and topside flow control (not cascade) was done, and the results suggest that this may be a possibility for
improving performance of the cascade system. For the experimental data, see Appendix C.

2High and low refer to the absolute value; we call K = - 100 a larger gain than K = - 1.
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Extra Measurements

We have seen in terms of linear combinations that the use of extra measurements may yield improved control.
When using cascade control, one utilizes two measurements directly. In our case these wereQ andP2. The
third available measurement is the valve opening. It may be speculated whether a linear combination of
z andP2 in the outer loop can lead to better performance than the use of either one of them alone. This
question may be addressed through nonlinear simulation with the Storkaas model.



Chapter 5

Other Possible Control Configurations

5.1 Control Based on State-Observers

The system is state-observable, and a state observer should be a viable option of avoiding problems with
top-side measurements. The main problem in developing such an observer is the complexity of the available
model. A linear observer could also be an option, a linear model is well able to represent the dynamics
around the stabilized operation point, but a linear model cannot model a limit cycle.

Basing control on a linear observer, i.e. a Kalman filter, would probably be a possible solution, but the
controller might not be able of stabilizing a system which is already slugging.

In order to solve this problem several strategies can be foreseen;

• start by choking the system into stability, then turn the controller on

• use a nonlinear controller which is able of representing the limit cycle as well as the stabilized equi-
librium solution

• use a direct measurement of flow rate to first stabilize the process.

The choking option is maybe the simplest way to use the linear observer. As discussed by citep-
storkaas:antislug the unstable equilibrium solution which exists after the bifurcation point is a continous
extension of the steady-state regime below the bifurcation point. Therefore, it should be possible to improve
this approach considerably by making a piecewise affine model by linearizing around different operating
points along the equilibrium trajectory.

The nonlinear observer is maybe the most important solution, as it would be a solution possible to use in
the whole operating range. A nonlinear model is available in the Storkaas model, but designing an observer
based on this model is problematic due to several reasons. First of all, the model is in implicit DAE form,
and is numerically hard to solve. This makes it hard to solve the problem faster than real-time, which makes
the model unfit for implementation in a control system. Another problem is theoretical; due to several hard
nonlinearities it would be hard to prove stability of the observer, at least globally.
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5.2 On/off Control and Gain Scheduling

The non-minimum phase behavior of the topside measurement dynamics cause problems with a controller
that reacts to late; the control valve closes too late because the instability is not observable from the available
measurements.

Due to this, the following "gain scheduling" approach was tested; The flow estimate is controlled using
a P controller;u(t) = u0 + Kce(t). The bias is varied by an outer loop in a bang-bang control manner, i.e.;

• if water flows through the valve, setu0 = 0.7,

• else, setu0 = 0.2.

The experimental results are reproduced in Appendix C. The attempt showed some potential for the gain
scheduling approach, but the simple system outlined here was not successful in stabilizing the flow.

5.3 Partial Gas Lift

This section is only the outline of an idea, and to assess the feasibility of such an approach simulations based
on a more rigorous flow model should be used, for instance OLGA.

The problem with two-phase flow in pipeline-riser systems occurs when the pressure drop over the riser
is not large enough to counteract the forces of gravity. Using the choke valve as the only input adjusts the
flow resistance in order to stabilize the plant. The system is grossly underactuated as we have at least 3
states we want to control and only one input. The situation would be improved if we could add an extra
input with a relatively large gain.

One way of stopping the slugs from staying in the riser is to increase pressure and gas flow at the bottom
by pumping gas down to the base of the riser; a gas lift solution. This would change the composition of the
flow and hence the flow regime. This wonderful effect comes at a relatively high energy cost.

With partial gas lift, the idea is to inject the gas higher up in the riser, but low enough to penetrate some
of the fluid. When the gas and liquid flows from the reservior to the pipeline are relatively constant, there is
a critical height for the fluid in the riser, where the liquid level stops when the upstream pressure is not high
enough to drive the flow through the riser.

By injecting gas through nozzles at different positions along the riser the average density of the liquid
in the riser would decrease, and therefore also the hydrostatic pressure. That would make flow occur at a
lower base pressure than earlier. Figure 5.1 shows a schematic of the suggested design change.

Several control applications of the partial gas lift can be imagined but the most obvious is; when the
liquid fraction in the top section of the riser dies out, more gas is pumped into the riser at a lower point to
dillute the slug and make the bottom pressure able of forcing the liquid out of the riser, and thereby avoiding
excessive pressure buildup in the pipeline.

However, the system will have to be tested with simulations, and for this a more detailed model is needed
than the Storkaas model, because we want to change the flow properties, which cannot be described by a
simple lumped model.
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Figure 5.1: Partial gas lift: A fraction of the gas is compressed after the separator and returned to the riser
between the base and the top.
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Chapter 6

Discussion

This work started with a short introduction to pipeline-riser systems and modeling for applications in control,
followed by a description of the experimental facilities. The study was divided in three main parts; one for
experimental verification and simulation of feedback control using bottom-side pressure measurements, one
part for control using top-side measurements only and a section on controllability and performance using
top-side measurements only. A large part of the work consisted of implementation issues for the laboratory
mini-plant. The following discussion looks at each topic independently, with a unifying section at the end.

6.1 Implementation Issues for Laboratory Experiments

As mentioned in the experimental part and in Appendix A, the control system and data logging was done
using the software LabVIEW from National Instruments Inc. LabVIEW has a built-in graphical program-
ming environment with focuses on signal flow. The development of a control system in LabVIEW is very
similar to block diagram constructions in classical control theory, hence the implementation of controllers
in LabVIEW is a rapid process.

It was found that the use of LabVIEW for system design was convenient when implementing single
components like a controller or process data charts for the operator, but the maintenance of such a system is
cumbersome because the block diagram tends to become very cluttered.

The reuse of code is, however, not impractical, because collections of LabVIEW blocks can be collected
in a sub VI1, which corresponds to an external function or method in a traditional programming language.
Several sub VI’s have been created as a part of this work, and they are documented in Appendix A.

6.2 Bottom-side PI Control

Chapter 2 discusses the use of a PI controller for stabilization and shows experimental results verifying the
feasibility of slug repression using feedback. This is only a confirmation of earlier work and current offshore
applications. I found it surprisingly easy to obtain acceptable performance using a simple proportional
controller.

1VI stands for "Virtual Instrument" and is the term used for a LabVIEW program or module.
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When comparing experimental results with computer simulations based on the simple Storkaas model,
it is clear that the general characteristics of severe slugging are well represented by the model, but the actual
properties of the two-phase flow are not well represented; the hydrodynamic (small) slugs which occur
around the set point of the stabilized flow are not represented in the model. This is however not necessary
for controller design when the design objective is to suppress the large slugs. It does, however, pose a
problem when the model is being used for controller performance analysis; the small slugs lead to excessive
controller output usage when the gain is high. This is not detectable from simulations based on the Storkaas
model.

A PI cotroller is designed based on linearization of the Storkaas model around the desired closed-loop
operating point. The design is based on bounds on the bandwidth and sensitivity function, and the behavior
of the system seems to be nice when looking at a linear simulation. A nonlinear simulation using the
Storkaas model from which the linear model was obtained does however show a different picture, compare
Figures 2.3 and 2.4. This indicates that the region around the linearization point where the linear model can
be assumed good is smaller than allowed for a set point change of magnitude 0.02 bar for the controller. In
other words; if large deviations occur and the controller output changes markably, the linear process model
is not a good representation. We also observe that increasing the gain, one manages to keep the process
stable in the nonlinear case as well.

Another important thing to note is that the model tuning used for the simulations in Chapter 2 is not very
good; the average valve opening of the system as shown in Figure 2.5 is far larger than what is possible to
stabilize in practice. This is also commented in Chapter 2.

6.3 Controllability of Non-Minimum Phase Systems

Chapter 3 discusses the controllability of linear non-minimum phase systems. Especially, limitations due to
right-half plane zeros are discussed. Background theory on performance limitations is reviewed and an ap-
proach to work around the performance limitations using linear combinations of the available measurements
is developed.

The linear combination approach has been discussed in connection with self-optimizing control (Sko-
gestad and Postlethwaite, 2005). The use of linear combinations here is meant to make performance lim-
itations less severe by reducing the effect of right half plane zeros. A Theorem based on the principle of
superposition for linear systems and the Routh-Hurwitz theorem is developed and proved to evaluate the
feasibility of using linear combinations for performance improvements (the "Worst Zero Position Theorem,
given as Theorem 3 in Chapter 3). The theorem gives sufficient conditions for infeasibility of the linear
combination approach.

Two case studies are done, one on a "Toy Example" meant to illustrate the characteristics of right half
plane zeros, and one on a linearized model developed from the Storkaas nonlinear model for slug flow. The
result of the Toy Example was that the linear combination approach may drastically improve performance,
but tracking control is difficult using SISO control because we are not controlling the actual physical quan-
tities. This may be improved by wrapping another loop outside the linear combination loop, or with the aid
of a steady-state process model. Assume we have a system with one input, 3 states and 2 outputs. Let the
linear combination be given byξ = wT y, wherewT is a fixed weighting vector. Let the linear system have
state-space realization (A,B,C). At steady state we have;

x = −A−1Bu, (6.1)
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and inserting this into the measurement equationy = Cx we see that the output is uniquely determined by
the steady-state value of the system input;

y = Cx = −CA−1Bu (6.2)

Since the output is uniquely determined, the linear combination is uniquely determined as well, as we see
by inserting the fixed weighting vectorw;

ξ = wT y = −wT CA−1B︸ ︷︷ ︸
Scalar constant

u. (6.3)

Therefore, a table of corresponding values at steady-state can be set up for use by the operators.
The arguments above do of course only hold for processes where the linear combination approach is able

of making the system observable. The other case study, the Storkaas model, was for a more complicated
plant with multiple zeros. It was shown that this plant was not controllable using the linear combination
approach, at least for the directly measurable outputs.

6.4 Cascade Control Based on Top-Side Measurements

Chapter 4 discussed the possibility of using two top-side measurements in a cascade control system to
stabilize the plant. A flow controller has been suggested by others (Storkaas, 2005) for use in the inner loop
of the cascade system because the flow measurement does not have any right half plane zeros. The problem
with the flow measurement is still in the numerator dynamics; zeros close to the imaginary axis makes
low-frequency performance impossible. The practical implication is that it may be possible to stabilize the
system using flow control in a feedback loop, but the system will drift away from the set point and most
likely become unstable again.

Godhavn et al. (2005) have done experimental work on cascade control earlier. For experiments with
flow control, they concluded that finding a good set point was very difficult. This is in agreement with the
controllability arguments; the region in state-space where flow control is effective is relatively small.

For simulation studies, a cascade control system was designed on basis of the Storkaas model. The model
was re-linearized around a desired operating point and the inner loop was simply set to be a proportional
controller. For the linear case, this led to good stabilization.

To obtain acceptable tracking performance and to keep the process in the linear region a master controller
was designed, once with top-side pressureP2 as the controlled variable and once with valve openingz. Both
approaches seem interesting from the simulation results; their performances are comparable. This is very
interesting because the valve opening is used as output from the controller in the inner loop. In effect, this
reduces the number of measurements in the loop. Unfortunately, this option has not yet been investigated
experimentally, and because of the crude model experiments are necessary to conclude whether this is a
viable option for real pipeline-riser systems.

The controllers for the master loop were designed using the simple SIMC rules. This could be done
because the flow controller was able of stabilizing the plant. First-order plus dead time approximations to
step responses were identified from numerical experiments with the nonlinear Storkaas model. The model
fit seemed very good, and the designed controllers performed very well.

Experiments have shown that stabilization is possible using cascade control using only top-side mea-
surements. The system is however hard to stabilize and to force the system from the slugging condition into



56 CHAPTER 6. DISCUSSION

a steady flow regime requires some extra attention from the operator. Some ideas to improve this situation
have been suggested, but further work needs to be done in order to check the feasibility of the discussed
approaches.

Because stabilization of the flow was obtained by manually adjusting the gain for the outer loop such
that the valve opened more at high pressure/flow and back to a smaller valve opening when the slug passed
through, the use of gain scheduling seems like a way to automate the operator action.

6.5 Summary

This work has touched a lot of ideas regarding stabilization of severe slugging. We have shown that the
use of top-side measurements to stabilize the flow is indeed possible, but also that further work is needed
on this. Other possible approaches have been mentioned, both more advanced control strategies including
state-observers and design changes. It is, however, more interesting to use cascade control if the solution
proves robust enough. There are several good arguments for this;

• the system is easy and cheap to install,

• easy to understand for operators,

• standard controllers and algorithms can be used.

When it comes to robustness, however, the bottom-side solution is probably better. Stabilization using
bottom-side pressure as the controlled variable is easy and robust. The downside is that it requires equipment
to be placed at the seabed level, which in some cases is hard to do, or the environment at large depths can
be very hard on the equipment.

The use of top-side measurements and cascade control can be imagined also for systems where bottom-
side measurements are available. First of all, the dynamics for choke valve opening to a flow measurement
are much faster than the pressure dynamics. Therefore, when large transport delays are acting a system
using top-side flow and bottom-side pressure can also be foreseen. Another point is that the top-side cascade
system can be used as a backup in case of fallout of the bottom-side measurement.
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LabVIEW and MATLAB Source Code and
Comments

This appendix gives a short overview of code developed as a part of this work. The software is internally
documented and this appendix only serves to present the main ideas and workings.

LabVIEW Components

As described in the main part, controller implementation and data logging was done with LabVIEW. Lab-
VIEW is a program developed and marketed by National Instruments Inc. The VI’s shown here are de-
veloped and tested with LabVIEW Professional 8.0. There are several available versions of LabVIEW,
including different sets of components. Therefore, if one is using another version than the one mentioned
here, all pre-made libraries may not be available. For details, see the web site of National Instruments
(http://www.ni.com).

The hardware used for the experimental work was also delivered by National Instruments, and a con-
venient interface between the hardware and the computer comes "out of the box". For other solutions the
hardware follows the RS-232 electronic interface standard (IEEE).

PI Controller With Anti-Reset Windup

The PI controller has been described in the text. The anti-reset windup mechanism is very simple. The PI
controller has the following control algorithm in the time domain;

u(t) = Kc

(
e(t) +

1
τI

∫ t

0
e(τ)dτ

)
. (A.1)

The anti-reset windup scheme simply sets the integrand (e(τ)) to zero if the output saturates. In Lab-
VIEW block diagram form, the algorithm is shown in Figure A.1. The blocks are not so easy to see on a
small figure, the picture is included simply to show how programming is done in the LabVIEW environment;
by drawing.
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The integration is done with a built-in integration block from the LabVIEW library (Time Domain Math
Block). Labview operates on discrete signals (as all digital computing environments), and the integration is
approximated by a 3-point quadrature1;

∫
x(t)dt ≈ 1

6

n∑

j=0

(xj−1 + 4xj + xj+1)δt.

For detailed information on each block see the freely available LabVIEW documentation on the internet.

Figure A.1: PI Controller implementation.

Saturator

The saturator is a sub VI used to ensure that the signal sent to the hardware is within the allowable range.
If a labview program tries to send a signal outside the allowable range to the hardware, the software stalls.
The saturator takes as input a process variable and max and min limits. If the process variable is outside
the allowable range, the saturator resets the signal to the nearest limit. The outputs from the saturator are
the process signal (possibly reset to the given range limit) and a boolean signal used by other program
components to tell if the process variable is saturated.

Measurement

The measurement VI takes the signals sent from the hardware and transforms them to human-readable
form. The signal inputs are in the RS-232 standard range (either 0-5 V dc voltage or 0-24 mA current).
Factory calibrations are used and the instruments are considered linear in their respective reliable ranges.
The mathematical expressions are written in text form into C language formula nodes.

1Source:http://www.ni.com.
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MATLAB Files

The model was available from Espen Storkaas’s work and can be downloaded from the following web page;
http://www.chemeng.ntnu.no/ skoge. The Matlab files used in this work are basically the same as on that
page, but with parameters and geometrical description changed to fit the laboratory plant.
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Appendix B

Model Parameters (Tuning)

This chapter gives the parameters used in the Storkaas model for designing the controllers in Chapter 4
(Cascade Control). For significance of the parameters, please refer to the original work (Storkaas, 2005)

%All units are standard SI when not given below.
data.r=0.0195/2; %Pipe radius
L1=3; %Feed pipe length
FG=0.8; %Liquid fraction in feed pipe
data.V_G1=pi*data.r^2*L1*(1-FG); %Compressible volume upstream bend
data.V_G1=3.2*(data.V_G1+(0.315*pi*0.11^2/4));
data.rho_L=998; %Liquid density
data.theta=0.0087; %Feed pipe inclination towards bend
data.A2=data.r^2*pi; %Riser cross sectional area
data.H1=2*data.r/cos(data.theta);%Max liquid height low-point
data.H2=2.8; %Riser height
data.H3=2*data.r; %Pipe diameter
data.L3=0.1; %Pipe length from riser to valve
data.A1=data.A2/sin(data.theta); %Cross sectional area upstream riser
data.A3=data.H3*data.L3; %Cross sectional area upstream choke
data.R=8314; %Universial gas constant J/(K*Kmol);
data.T=298; %Temperature K
data.M_G=28.9; %Molecular weight of gas kg/Kmol;
data.g=9.81; %Gravitational acceleration
data.P0=1.013e5; %Separator pressure
data.V_T=data.A2*data.H2+data.A3*data.H3; %Riser volume
data.n=0.705; %2.55; %Tuning parameter for entrainment equation
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Appendix C

Experimental Results

This appendix summarizes some experimental results on anti-slug control.

Open Loop

The following data charts show the results from experiments used for tuning the model. The data were
obtained before the mini-loop was rebuilt, such that the accuracy of the tuning based on these data may be
questionable. The results are reproduced in Figures C.1 to C.3.

Top-side Feedback Control

This section shows a few experimental charts. The first one is from an experiment with cascade control,
where a flow estimate is used in the inner loop with gain 0.35 and top-side pressure in the outer loop with
gain -0.5 and integral time 100. The stabilization was successful and gave a very steady pressure trajectory.
The pressure chart is shown in Figure C.4.

The use of bottom-side pressure as indicator for controller performance when using top-side measure-
ment is recommended because the signal is much less distrubed by noise. This is natural, because the noise
creating element is the control valve, and the noise has to propagate through the whole riser and tube up till
the pressure measurement. This capacity has considrable damping effect.

An experiment with gain scheduling and top-side control was also done, to see if varying the bias could
help stabilize the flow using a flow measurement only (or really an estimate of the flow). The result is
shown in Figure C.5. Gain scheduling may be used in combination with multivariable control to improve
performance.
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Figure C.1: Open loop vave openings 9 and 13%.
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Figure C.2: Open loop vave openings 15 and 18%.
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Figure C.3: Open loop vave openings 31 and 40%.
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Figure C.4: The bottom pressure is a good indicator of controller performance. This is the seabed pressure
chart when the flow is stabilized byQ in the slave loop andP2 as controlled variable in the master loop.
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Figure C.5: Gain scheduling does help in stabilizing the flow, but due to zeros close to the imaginary axis in
the transfer function from valve opening to flow measurement, drift seem unavoidable.



Appendix D

Numerical Considerations for Simulations
in MATLAB

The Storkaas model is a rather complex differential-algebraic model with several hard nonlinearities of the
following type;

If θ > θ1

v = Kf(θ)z

√
P − P0

ρ
,

else

v = 0, (D.1)

whereθ is some model parameter. This kind of nonlinearity may lead to very large and fast changes in state
derivatives. This again, may lead to numerical instability. This is not a problem when the model is in such
a state that the parameter does not vary a lot; that is, when the system has been stabilized. This is a reason
why a variable step-length method is crusial in this kind of simulations.

Another "feature" of the model, is that it resides in a differential-algebraic form. The solution of Index-1
DAE problems may lead to very stiff problems. Matlab offers two routines for solving stiff problems and
problems on DAE form; the ODE23T routine and the ODE15S routine. Experience has shown that the
ODE23T routine is faster for the Storkaas model.

The DAE routines for use in the Matlab environment take as input models on the form

M(x, t)
dx

dt
= f(x, t). (D.2)

The Storkaas model has a constant mass matrix with a zero row for the algebraic state. The algebraic
state in the model is the mixture density in the riser. Hence, the mass matrix is a constant singular square
matrix. The problem with the DAE formulation occurs when the problem is implemented in an S-function
for inclusion in Simulink models; Simulink does not have any obvious way of utilizing the mass matrix
notation. Therefore, the calculation of the algebraic state is done iteratively by letting the variable be persis-
tent in the S-function. This works well as long as the density does not change too fast. When the gas flow
rate fed to the system is very low (or really, the ratio of gas input to liquid input), the system becomes very
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stiff and the resulting oscillations take the form of relaxation oscillations. Such systems are characterized
by extremely fast changes in state. In our case, this means a large change in mixture density may happen in
a shorter time interval than the minimum time step used by the integration method. Matlab will then most
often stall with the following exit information;

Unable to meet integration tolerances without reducing the step size
below 1E-10.

Therefore, it is important to investigate the stiffness properties when numerical problems occur in
Simulink. Adding some extra dynamics may be a possible option (it would not allow infinite rates of change
in physical variables).
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