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Abstract

A control system for composition control of a distillation column is developed. For sim-
ulations and controller synthesis, a simpli�ed �rst-principles distillation column model is
created. Model parameters are manually tuned to �t the model to data from an exper-
imental distillation column. For composition feedback to the controller, a temperature
based composition estimator is constructed from experimental data. Robustness proper-
ties of two composition controllers, a PI controller and an H∞ loop shaping controller,
are investigated. Simulations show that the H∞ controller is more robust to input gain
perturbations and time delays. The pre-compensator in the H∞ loop shaping design is
selected as a regular PI controller where controller gains are determined from the SIMC
PI tuning rules. This way of selecting a pre-compensator makes loop shaping easier for
the designer. Both of the controllers are successfully implemented on an experimental
column.
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1. Introduction

This chapter gives a brief description of the problems considered in this report and the
key results presented in each chapter.

1.1 What is this report about?
Distillation is probably the most widely used separation process in the chemical and
allied industries; its applications ranging from the recti�cation of alcohol, which has been
practiced since antiquity, to the fractionation of crude oil (Sinnot, 1999). Because of
its importance, distillation has been well studied over the years, several articles, ph.d.
theses and books have been written on topics like column design, distillation models,
product estimators and distillation control. Some of the existing theory is applied when
we in this report show an implementation of a control system on a continuous distillation
column. The work consists of the typical steps involved in developing a controller for any
experimental setup; �rst modeling, then iterations of simulation and controller synthesis,
and �nally implementation of the controller on a real system� frequently with subsequent
iterations of re-tuning and simulations. The results of the work is presented in this report.

1.2 Chapter outline
In chapter 2 we will start by looking at the experimental column we are trying to control
and then describe the column instrumentation and the di�erent control loops involved.

Next, in chapter 3, a dynamic column model is developed. Starting from �rst-principles
conservation laws, model assumptions are introduced to simplify the various equations.
The simpli�ed column model is �tted to experimental data and used subsequently for
controller synthesis and simulations.

A composition estimator is used to get feedback to the controller. Chapter 4 describes
how a temperature based composition estimator is constructed from experimentally ob-
tained composition and temperature data.

Chapter 5 is a theory chapter in which the idea of H∞ loop shaping is presented. H∞
loop shaping consists of two steps: First the open loop singular values are shaped by
placing pre- and post-compensators before and after the plant. Second, this shaped plant
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2 Introduction

is robusti�ed with respect to coprime factor uncertainty by adding an additional controller
in the feedback path. A particulary simple method for obtaining a pre-compensator is
proposed, where the diagonal elements are chosen as PI-controllers tuned by using the
SIMC PI-tuning rules.

In chapter 6 theory is brought to practice, and controllers are designed for a distillation
column. The improved robustness properties of the H∞ controller compared to a conven-
tional PI controller are shown through simulations with varying system gain and phase.
While the PI controller is clearly a�ected by perturbing these parameters, the H∞ con-
troller (with PI controller as pre-compensator) shows much less performance variations
with plant parameter variations. The controllers are also implemented on the experi-
mental column, which was the overall goal of this project. Both controllers are found
to perform satisfactory, as the nominal plant model matches well with the experimental
column, with less parameter uncertainty than simulated in the worst case scenarios.

Finally, chapter 7 summarizes the main conclusions of the previous chapters.



2. Experimental column setup

In this chapter a short description of the di�erent components in the experimental column
is given, together with an overview of inputs to and outputs from the system. The di�erent
control loops involved in the automatic control system are presented.

2.1 The column
Figure 2.1 shows a picture of the distillation column together with a �ow sheet. Table 2.1
gives the most important column data.

The column consists of two sections �lled with 6mm Raschig-rings unstructured pack-
ing. A condenser is connected to the top of the column. The condensate �ows into the
re�ux drum, from where a fraction is pumped back into the column as re�ux to get desired
composition. The distillate pumped out of the system and into the distillate product tank
is used to control the level in the re�ux drum.

Vapor is produced by heating coils in the boiler connected to the bottom of the column.
The boiler level is controlled through the bottoms �ow pumped out of the system and
into the bottoms product tank. For security, the boiler is protected with a plexi-glass
cover shield.

A feed mixture of methanol and water is pumped from the feed tank and into the
feed section approximately in the center of the column. To avoid spill after �nishing an
experiment, a manually controlled recycle pump is used to transfer distillate and bottoms
back into the feed product tank.

The entire system is mounted in an aluminum frame which can be moved as a single
unit.

2.2 Instrumentation
2.2.1 Actuators
Five pumps are connected to the column system to control the di�erent �ows. The re�ux
and feed pumps are continuous with 4-20mA input. The distillate and bottoms pumps
are on/o� pumps which are pulse width modulated to allow for di�erent pump rates.

3



4 Experimental column setup

(a) Experimental setup
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Figure 2.1: Distillation system

Table 2.1: Column data
Material: Glass and steel
Column height: 250cm
Diameter: 50mm
Condenser: 0.3m2 i.d.
Max boiler power: 3kW
Max re�ux rate: 4ml/s
Max feed rate: 5ml/s
Boiler volume: 10l
Re�ux drum volume: 5l
Product tanks volume: 25l
Frame dimensions: 120× 125× 285cm (l×w×h)
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The recycle pump is of on/o� type and is turned on manually by the operator when
recycling the products before a new experiment. This pump is not a part of the automatic
control system.

Four heating coils generate the vapor inside the column. Two coils are 1000W each,
the two other ones are 500W, giving a total of 3kW power input. The heating coils are
turned on and o� by relays, and are pulse width modulated.

2.2.2 Sensors
There are eight PT-100 temperature sensors inside the column to measure the temperature
pro�le. One of the sensors is in the boiler, the remaining ones are inserted via the feed
section and the top, and are held in place by the column packing. A Fieldpoint RTD I/O
module measures temperature sensor resistance and converts resistance to temperature.

Two pressure sensors are located at the top and at the bottom of the boiler respectively.
The pressure di�erence between the sensors is proportional to liquid level in the boiler
and is used as input to the boiler level controller. The column is open to air after the
condenser in the top, hence the absolute pressure above the liquid boiler holdup gives the
pressure fall over the column.

A level sensor is placed in the re�ux drum to give feedback to the re�ux level controller.
The cooling water is equipped with a �ow meter to assist the operator when turning

on cooling. The sensor output is also monitored during operation, and warnings are issued
if the cooling water for some reason should stop.

Flow meters are placed on the feed, re�ux and distillate �ows. These sensors gives
visual feedback to the operator through displays on the sensors. They are not used as
measurements in the control system for two reasons: The squeezing tube pumps produce
pulsating �ows which are below the measurement range of the �ow meters in parts of
the oscillation period. Hence the measurement signal is unsymmetrical and averaging or
possibly a notch �lter on the signal is not very suitable. The other reason why the �ow
meters are not used in the controller, is that especially the feed �ow meter quite often
gets stuck on a speci�c �ow value. The �ow meters use the angle of a small pendulum
as a measurement proportional to mass �ow rates. Small particles in the feed jam the
pendulum in a certain position thereby making the measurement signal useless. Instead
of using �ow meters, pump characteristics are used to give estimates of the actual feed
and re�ux �ows. To make use of the �ow meters one could mount equipment like pulse
dampers and �lters in the piping, but at least for control it works to instead use a one to
one relation between pump speed and �ow rate.

2.3 Control loops
As mentioned there are two level control loops in the system. A conventional LV-
con�guration is used where re�ux and vapor �ows are used for composition control, the
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level in the re�ux drum is controlled through the distillate �ow, and the boiler liquid level
is controlled through the bottoms �ow. Both of the level controllers are P-controllers
where suitable gains were found by trial and error. Steady state level o�sets are unimpor-
tant in this con�guration, which is why no integral terms are included in the controllers.

Some logical statements are included in the control software if unexpected situations
should occur. If the cooling water stops, the operator is given a warning on the screen. If
the cooling waters remains o� for more than �ve minutes, the column will be shut down.
The heating coils will be turned o� if the boiler level gets below a minimum value. If
the column pressure increases above the saturation point of the upper pressure sensor,
indicating high boiler liquid level or that signi�cant �ooding is present, the feed will be
turned o� to prevent more liquid from entering. No action is taken for extreme level
values in the re�ux drum, as no dangerous situations occur. If the drum gets full, the
content will begin to �ll the condenser and eventually �ow back into the column. If the
drum gets empty there will be no re�ux available, resulting in less pure distillate. This is
of course unfortunate, but not dangerous.

If all else fails, an emergency switch is placed on the aluminum frame. Pressing the
emergency switch cuts the main power supply and the column will be shut down.

With level loops closed, what is left to control are the compositions of the bottoms
and distillate �ows. The reminder of this thesis is basically concerned with �nding a way
of using the two free variables; re�ux �ow and vapor �ow, to control the concentration of
methanol in the product �ows.



3. Dynamic column model

In this chapter a general �rst-principles dynamic model of distillation columns will be
derived. First a rigorous model is presented, followed by model assumptions and simpli-
�cations to reduce the model complexity. The main goal is to derive a model suitable for
simulation of the experimental column presented in the previous chapter. The derivation
of a rigorous non-linear model and model simpli�cations is mainly based on a survey paper
by Skogestad (1997) and references therein. Other references are given in the text.

3.1 Rigorous model
The most common way of deriving a rigorous model of a distillation column is to divide
the column into stages and include mass- and energy balances on each stage. In addi-
tion one include models of the liquid �ow dynamics and possibly the pressure dynamics.
Nevertheless, even with a rigorous approach, model simpli�cations such as assuming a
thermodynamic vapor/liquid equilibrium (VLE) on each stage, are normally legible while
still capturing the dynamics important for control.

For a packed column, one may question using a staged model instead of partial di�er-
ential equations for describing the column dynamics. The packed column is most naturally
thought of as a distributed system and accordingly it may seem natural to use PDE mod-
els. However, over the years it has been established that the dynamics of packed columns
are quite similar to that of columns with trays. By adjusting the number of theoretical
stages in a staged model of a packed column one can obtain models that correlates well
with experimental setups. The staged model thus presents a convenient way of discretiz-
ing the system, and according to Skogestad (1997), presently there does not seem to be
any clear advantages in using PDE models for distillation.

Assume a two component system (e.g. water and methanol). Let stage i represent a
control volume with holdup Mi, and let the liquid �ow Li and vapor �ow Vi be the �ows
leaving stage i with compositions xi and yi respectively (see �gure 3.1). Mass- and energy
balances for the control volume with no feed or product streams give the following set of
di�erential and algebraic equations:

7
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Figure 3.1: Control volume on stage i. No feed or product streams.

(i) Component material balance (composition dynamics)

d

dt
Ni = Li+1xi+1 − Lixi + Vi−1yi−1 − Viyi, (3.1)

where Ni = M l
ixi+M v

i yi is the molar holdup of light component on stage i in liquid
phase (M l

ixi) and vapor phase (M v
i yi).

(ii) Overall mass balance (�ow dynamics)

d

dt
Mi =

d

dt

(
M l

i +M v
i

)
= Li+1 − Li + Vi−1 − Vi (3.2)

(iii) Energy balance

d

dt
Ui = Li+1h

l
i+1 − Lihli + Vi−1h

v
i−1 − Vihvi , (3.3)

where the internal energy Ui = M l
iu
l
i + M v

i u
v
i and u and h are the speci�c energy

and enthalpy of the di�erent phases.

(iv) Tray hydraulics
The liquid and vapor �ows leaving a stage is typically calculated from algebraic
equations relating the �ows to holdup and pressure drops:

Li = fl(Mi, Vi,∆Pi) (3.4)
Vi = fv(Mi,∆Pi). (3.5)

For feedback control, a linear relationship between �ows and liquid holdup is nor-
mally su�cient. Another approach would be to use e.g. the Francis weir formula.



3.2. Assumptions and simpli�cations 9

(v) Vapor-liquid equilibrium (VLE)
Assuming vapor-liquid equilibrium on each stage gives algebraic thermodynamic
equations for the relationship between vapor and liquid compositions yi and xi. For
relatively ideal mixtures, one can often simply assume constant relative volatility,
yielding a linear relationship yi = αxi. Else, if the vapor phase is assumed ideal,
the VLE for each component can be described by e.g. Raoult's law together with
an activity coe�cient model.

3.2 Assumptions and simpli�cations
The rigorous model presented above is solvable given the relationships for tray hydraulics
and VLE. However, a number of simpli�cations are possible to reduce the model complex-
ity while still capturing the important dynamics of a real column. In the following, step
by step, assumptions are made and the resulting simpli�cation to the balance equations
are discussed. In the end, we will end up with a simpli�ed, yet su�ciently complex model
to use for simulation of a distillation column.

3.2.1 Simpli�cation of energy- and mass balances
(i) Fixed pressure and neglecting vapor holdup

A common simpli�cation is to neglect the vapor holdup on each stage (M v
i = 0).

When vapor holdup is small compared to liquid holdup, this simpli�cation causes
no problems. The assumption may be poor for e.g. high pressure distillation or
for volatile components, where the ratio between vapor and liquid holdup becomes
larger. Choe and Luyben (1987) recommends including vapor holdup if it exceeds
20% of liquid holdup. Typically it can be neglected for column pressures below 10
bar.

Packed columns usually have low pressure drops. The experimental column is op-
erating at atmospheric pressure, with pressure drop over the column less than 40
mbar. It is therefore reasonable to assume constant pressure equal to 1 bar on all
stages.

These assumptions removes the need for a dynamic pressure model, and the mass-
and energy balances are simpli�ed slightly; the molar holdup of light component
Ni = M l

ixi, the total holdup Mi = M l
i and the energy Ui = M l

iu
l
i.

(ii) Speci�c energy equal to liquid enthalpy
After neclecting vapor holdup and assuming constant pressure, we next assume
ul ≈ hl which holds for liquids, such that Ui = M l

ih
l
i = Mih

l
i. The left side of the
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energy balance (3.3) then simpli�es to

d

dt
Ui =

d

dt

(
Mih

l
i

)
= Mi

dhli
dt

+ hli
dMi

dt
. (3.6)

Combining (3.6) and (3.3) with the overall mass balance (3.2) gives

Mi
dhli
dt

= Li+1(hli+1 − hli) + Vi−1(hvi−1 − hli) + Vi(h
l
i − hvi ). (3.7)

(iii) Constant and equal liquid enthalpy on all stages
The model can be further simpli�ed by assuming the liquid enthalpy to be constant,
dhli/dt = 0, and equal on all stages, hi = hi+1. This assumption is valid as long as
the di�erence in heat capacities for the components is not too big at the relevant
pressures. At one bar the molar heat capacity of water is cp,water ≈ 75 J

molK
while

methanol has cp,methanol ≈ 80 J
molK

, which is close. If the components have a large
heat of mixing or if pressure variations are large, one should avoid using the constant
enthalpy simpli�cation.
The energy balance with constant enthalpy reduces to an algebraic equation:

Mi
dhli
dt

= 0 = Vi−1(hvi−1 − hli) + Vi(h
l
i − hvi ). (3.8)

(iv) Constant molar vapor �ow
The last simpli�cation to the energy balance is to assume equal heat of vaporization
for both components, making hvi = hvi−1 = hvap. Substituting this into (3.8) and the
overall material balance (3.2) gives the popular constant molar vapor �ow model

Vi−1 = Vi, (3.9)

and the mass balance
d

dt
Mi = Li+1 − Li. (3.10)

In words, the vapor �ow up the column is equal on all trays. At steady state
the liquid �ow Li = Li+1, but dynamically these are not equal since the liquid
holdup varies. Equations (3.9) and (3.10) are the simpli�ed energy and overall mass
balances. The component mass balance remains unchanged.

3.2.2 Tray hydraulics
As noted previously it is, for feedback control, usually su�cient to assume a linear rela-
tionship between stage holdup and internal �ows

Li = Lnomi + λ(Vi − V nom
i ) +

1

τl
(Mi −Mnom

i ), (3.11)
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where τl is the hydraulic time constant and superscript nom denotes nominal values.
In a packed column one can set λ = 0 because the initial e�ect on the liquid �ow from

a change in vapor �ow is usually negligible. The linearized tray hydraulics then becomes

Li = Lnomi +
1

τl
(Mi −Mnom

i ). (3.12)

The hydraulic time constant τl ≈ θl/N . Here θl is the apparent delay for a step
increase in re�ux to reach the boiler and N is the number of stages between the boiler
and the re�ux entrance. Mnom

i and τl are model parameters and are most easily identi�ed
by implementing a step on the re�ux �ow and �tting the model temperature response to
the experimental temperature response.

3.2.3 Thermodynamic equilibrium
Methanol/water does not have a constant relative volatility, therefore more complex ther-
modynamic relationships are needed. By assuming ideal vapor phase behavior, the rela-
tionship between liquid and vapor mole fractions for component k(= {1, 2}) is modeled
by Raolt's law

Pkyk = xkγkP
sat
k . (3.13)

The vapor pressure P sat
k for each component can by found from the Antoine equation

logP sat
k = Ak − Bk

T + Ck
, (3.14)

and the activity coe�cients γk are found using Wilson's equation

ln γk = 1− ln

(∑
i

xiΛki

)
−
∑
j

(
xjΛjk∑
i xiΛji

)
, (3.15)

where i, j = 1, 2 and
Λij ≡ Vj

Vi
exp

(−Aij
RT

)
. (3.16)

The molar volumes Vi, the Wilson parameters Aij and the Antoine equation parameters
for a water/methanol mixture are found in chemical data tables (Gmehling and Onken,
1977). Wilson's equation is generally found to represent vapor-liquid equilibrium data
very well (Fredenslund et al., 1977).

3.2.4 E�ect of feed and re�ux conditions
The experimental column has no feed pre-heater, the feed enters at room temperature.
Some of the energy within the feed entering stage will therefore be used to heat the feed
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to its boiling point. The energy to heat the feed comes from the energy in the rising
vapor, and as a consequence a fraction of the rising vapor �ow will condense and return
as liquid �ow down the column from the feed section. Similarly the vapor �ow rising up
from the feed stage will decrease. To include the e�ect of cold feed, we �rst represent the
condition of the feed by the quantity q, which is de�ned as (Geankoplis, 1993)

q =
heat needed to vaporize 1 mol of feed at entering conditions

molar latent heat of vaporization of feed (3.17)

If the feed enters at its boiling point, the numerator of (3.17) equals the denominator
and q = 1. For cold liquid feed q > 1, if q < 1 it means that some of the feed is already
vaporized, while if q < 0 the feed is super-heated.

Equation (3.17) can also be written in terms of enthalpies:

q =
hV − hF
hV − hL , (3.18)

where hV is the enthalpy of the feed at the dew point, hL the enthalpy at the boiling
point and hF the enthalpy of the feed at its entrance condition.

The liquid and vapor streams leaving the feed stage NF at steady state becomes

LNF = LNF+1 + qFF (3.19)
VNF = VNF−1 + (1− qF )F (3.20)

Sub-cooling is present at the entrance of the re�ux �ow as well. The total condenser
cools the distillate vapor to liquid with a temperature well its dew point. For the �ows
leaving the re�ux entrance stage NT − 1 we get at steady state

LNT−1 = qLLNT (3.21)
VNT−1 = VNT−2 + (1− qL)LNT (3.22)

With a entering temperature of 20◦C, qF ≈ 1.1 and qL ≈ 1.1 for the feed and re�ux
respectively.

3.2.5 Volumetric and molar �ow
While it is convenient to use molar �ows in the balance equations, it is more natural to use
mass- or volumetric �ows as inputs to the column since most �ow-measurement devices
are for mass- or volumetric �ows, not molar �ows. Also the volumetric feed and re�ux
�ow rates are close to a�ne in the power input to the pumps.

For a binary mixture the transformation between volumetric re�ux, Lq, and molar
re�ux, L, is given by

Lq = LVmix; Vmix = ydV1 + (1− yd)V2, (3.23)
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where V1 and V2 are the molar volumes of the light and heavy components respectively,
and yd is the composition of the re�ux.

For the feed �ow the transformation is similar, just replace L with F and yd with zF ,
the composition of the feed, in the above equations.

3.2.6 Boiler input
Although feed and re�ux is measured on a volumetric basis, the molar vapor �ow from
the boiler, V , is assumed a�ne in heating power:

hvapV = uv −Q, (3.24)

where hvap is the heat of vaporization for the boiler content, uv is the power input from
the heating coils and Q is the net heat loss from the boiler to the surroundings. The heat
of vaporization for the boiler holdup is assumed constant since the boiler composition is
nearly constant. The heat loss Q is in addition dependent on boiler holdup and temper-
ature di�erence between the inside and the outside of the boiler, which is also subject
to only small variations. The heat loss is therefore assumed constant. In simulations
hvap = 4.07 · 104kJ/kmol and Q = 300W.

3.3 Summary of nonlinear simulation model
The column model consists of overall and component material balances and vapor/liquid
phase modeled by Wilson's activity coe�cient model. The resulting mathematical model
takes the form of a set of di�erential and algebraic equations (DAE system) with two states
for every stage. Below follows a summary of the model assumptions and the resulting
equations. The equations for stages with external product streams are written explicitly.

3.3.1 Model assumptions
1. Staged distillation column (numbered from bottom to the top)
2. Perfect mixing and equilibrium in all stages
3. No vapor holdup on stages
4. Liquid �ow linear in stage holdup
5. Constant molar vapor �ow in column sections
6. Constant pressure in column (P = 1 bar)
7. Total condenser
8. VLE calculations from Wilson's equation
9. Consider only normal operation (e.g. no �ooding, weeping etc.)
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3.3.2 Model equations
Regular stage

d

dt
Mi = Li+1 − Li + Vi−1 − Vi (3.25)

d

dt
(Mixi) = Li+1xi+1 − Lixi + Vi−1yi−1 − Viyi (3.26)

Vi = Vi−1 (3.27)

Condenser i = NT

d

dt
Mi = Vi−1 − L−D (3.28)

d

dt
(Mixi) = Vi−1yi−1 − Lxi −Dxi (3.29)

Re�ux entrance i = NT − 1

d

dt
Mi = Li+1 − Li + Vi−1 − Vi (3.30)

d

dt
(Mixi) = qLLi+1xi+1 − Lixi + Vi−1yi−1 − Viyi (3.31)

Vi = Vi−1 + (1− qL)Li+1 (3.32)

Feed stage i = NF

d

dt
Mi = Li+1 − Li + Vi−1 − Vi + F (3.33)

d

dt
(Mixi) = Li+1xi+1 − Lixi + Vi−1yi−1 − Viyi + FzF (3.34)

Vi = Vi−1 + (1− qF )F (3.35)

Reboiler i = 1

d

dt
Mi = Li+1 − V −B (3.36)

d

dt
(Mixi) = Li+1xi+1 − Viyi −Bxi (3.37)

Vi = V (3.38)
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VLE The algebraic relationship yi = f(xi, Ti) between the vapor composition yi and the
liquid composition xi and stage temperature Ti on all stages are found from Raoult's
law and Wilson's equation.

Tray hydraulics The liquid �ow deviation is linear in liquid holdup deviation for all
trays:

Li = Lnomi +
1

τl
(Mi −Mnom

i ). (3.39)

3.4 Experimental parameter �tting
3.4.1 Heat loss
The heat loss term Q included in the equation for the vapor �ow rate, hvapV = uv − Q,
was found by measuring the �ow rate with di�erent inputs uv to the boiler, which was
�lled with water. The �ow rate was measured by letting the vapor rise up the column,
with no re�ux, and through the condenser. The volume of the condensate was measured
over a time interval, and the heat loss calculated from the equation above. Doing this
with di�erent input values gave an average heat loss Q = 300W, which does not seem
unreasonable, considering that the boiler is not insulated.

3.4.2 Number of stages
Earlier experiments have shown that the column has 13 theoretical stages (Reppe, 2004).
This was found by driving both the experimental column and the column model to a steady
state and match the two temperature pro�les. The slope of the model temperature pro�le
can be made more steep or less steep by adjusting the number of theoretical stages, and
choosing the number of stages to be 13 gave the best match for the slope.

3.4.3 Nominal holdup and time constant for tray hydraulics
The two remaining key parameters for the system dynamics are the nominal liquid holdup
on the stages, Mnom

i , and the liquid time constant, τl, in the linear tray hydraulics rela-
tionship

Li = Lnomi +
1

τl
(Mi −Mnom

i )

Determining the two parameters is most easily (from a practical point of view) done by
recording the initial temperature response to a step change in external re�ux (Wittgens,
1999). The hydraulic time constant can be determined from the measurement of the
delay θ from a change in external re�ux until the liquid out�ow of tray N changes;
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Figure 3.2: Steps in re�ux. The �gure to the left shows the temperature response to a 5% step
increase in re�ux rate, the �gure to the right shows a similar response to a 10%
increase in re�ux rate. The solid lines are the measured temperatures along the
column, while the dashed lines are selected stage temperature outputs from the
model. Model parameters are given in Table 3.1

θ = τIN (this is an approximation of the e�ective delay of N �rst order �lters in series;
1/(τIs + 1)N ≈ e−τINs). The initial temperature response will indicate the time a re�ux
change needs to propagate through the column, and increasing τl in the model will increase
the propagation time.

The holdup on each stage a�ects the slope of the temperature response, and by adjust-
ing the nominal holdup level it is possible to match the slope of the temperature response
in the model with experimental data.

Figure 3.2 shows two comparisons of the experimental and model temperature re-
sponses from a step change in re�ux, where the model parameters are adjusted to yield a
reasonable match. Keep in mind that the temperature measurements in the experimental
column is not located on a particular theoretical stage. The model temperature response
for a particular stage should have the same shape as the measured temperatures in that
region, not necessarily the same absolute value.

Most of the experimental and model temperature responses have similar shapes. One
exception is the measured temperature initially at roughly 78◦C. The feed stream is
inserted directly above this sensor, which is why the measurement shows less movement
than what the model predicts. The temperature measurement starting at 90◦C in the left
plot is not completely steady initially, which causes a discrepancy between the measured
response and the model output. Note also that even though the sensors are located in the
same place physically in both of the step responses, it seems like the location relative to the
theoretical stages in the model changes. While, for instance, experimental temperature
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Table 3.1: Model parameters
Parameter Boiler Below feed Above feed Condenser
Stage # 1 2-5 6-12 13
τl [sec] 46.2 4.8
Mnom

i [mol] 332 0.162 0.772 12.2

number two from the top (starting at 97◦C) is located between model temperature two
and three for the large step shown in the left plot, it is equal to model temperature three
for the smaller step in the right plot. This illustrates that the physical height equivalent of
a theoretical stage varies as the composition inside the column changes. In one operating
point a temperature measurement may correspond to a given theoretical stage, while if in a
di�erent operating point, the measurement may correspond to the neighboring theoretical
tray. This is important if one tries to design a temperature based composition estimator
based not only on experimental data, but also on the model outputs, as is discussed in
chapter 4.

Both the time constant and holdup are chosen equal for all stages above the feed
entrance, and equal, but with a di�erent value, below the feed. The holdups in the
condenser and boiler were during experiments kept constant at the nominal levels of 0.5
and 6 liters respectively. When calculating the corresponding number of moles, it is
assumed pure water in the boiler and pure methanol in the condenser. Parameter values
for the simulation model are given in Table 3.1.

Nominal holdup above the feed is approximately 6% of total rectifying section volume,
the holdup below the feed is approximately 2% of total stripping section volume. (To
calculate the column holdup volume it is assumed an average composition of xi = 0.5 on
all stages, the percent values changes somewhat when other composition pro�les are used
since the molar volume of methanol is roughly twice as big as the molar volume of water.)
This is in good correspondence with numbers given by Skogestad (1997), which states
that typical holdup for packed columns is about 2.5-5% of the total column volume.

Skogestad further states that τl is typically 5 seconds for trayed columns, which is close
to the obtained parameter value τl = 4.8 seconds, above the feed, in the packed column.
Below feed entrance, the time constant is much larger than expected. This is probably
because the re�ux steps were done from steady state with feed turned on. The feed �ow
generates a pinch region around the feed entrance, which stops interactions between the
two column sections.

For both packed and trayed columns the overall liquid lag θ may be estimated from

θ = nMtot/L (3.40)

where Mtot is the total column holdup, and typically n = 0.67f for trayed columns. Here
f is the fraction of liquid holdup above the weir; typically f is about 0.5, but it may be
much smaller for small diameter columns. When combining this formula with θ = Nτl
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and with a nominal re�ux �ow of L = 0.97 mol/min used in the experiments we get, when
only considering the rectifying section,

f =
θL

0.67Mtot

=
τlL

0.67Mnom
i

=
4.8/60 · 0.97

0.67 · 0.772
= 0.15,

which is somewhat less then 0.5. This discrepancy may be contributed to the small
diameter of the experimental column. When doing the same calculations for the bottom
section, we get f ≈ 7, and summing over the whole column from re�ux entrance to above
the boiler we get f ≈ 1. These values of f are not close to the typical value, which again
is probably because of the pinch region generated by the feed.

To conclude, the experimental and model temperature responses show similar initial
dynamics and the values of the parameters obtained correlates well with the typical values
given by Skogestad when considering the section above the feed entrance. Below the feed,
there is basically no correspondence, mainly because the temperature responses where
recorded from a steady state with a pinch zone around the feed.



4. Composition estimator

It can be di�cult to obtain reliable and accurate measurements of product compositions
for distillation column control. Accurate measurements from e.g. a gas chromatograph
have measurement delays of several minutes or more. Other possible measurement devices
like infrared, ultraviolet or refractive index analyzers have shorter time delay, but may
need frequent calibration.

Temperature is frequently used instead of online composition measurement. Measur-
ing temperature is easy, and is both fast and reliable. The challenge is then to �nd a
relation between measured temperatures and product compositions, i.e. a composition
estimator. Product composition estimators based on temperature measurements have
been constructed in several ways, and Mejdell (1990) compares some of them. We will
here use a static linear estimator with logarithmical inputs and outputs, which gave good
results in Mejdell's comparison.

4.1 Problem de�nition
The following problem is treated: Given temperature measurements at several locations
within the distillation column, �nd a good static estimator of the product compositions.
The column considered has seven temperature sensors and separates a binary mixture of
methanol and water.

4.1.1 The estimation problem
Consider the case with binary mixture and constant pressure. The steady state tempera-
ture pro�le in the column is uniquely determined from the values of the feed composition
zF , distillate composition yd, and bottoms composition xb as

θ = f(zF , yd, xb), (4.1)
where θ is the temperature pro�le. We want to �nd the inverse relation to get the estimates

ŷ =

(
ŷd
x̂b

)
= g(θ7×1), (4.2)

where g is a nonlinear function of the 7 measurements of the temperature pro�le, θ7×1.

19
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4.1.2 Transformed variables
The composition and temperature pro�les are nonlinear functions of the operating vari-
ables. Logarithmic transformations are known to capture these nonlinearities and to
linearize the dynamic and static responses (see e.g. Skogestad and Morari, 1988). For
binary mixtures the distillate and bottoms composition transformations are

Yd = ln(1− yd); Xb = ln(xb). (4.3)

The temperature pro�le may also be linearized using a similar transformation:

LT = ln

(
θ − T bL
T bH − θ

)
. (4.4)

Here T bL and T bH are the boiling temperatures of the light and the heavy components
respectively. This transformation results in a nearly linear column pro�le, except from
possibly a pinch zone around the feed.

Day-to-day and during operation pressure variations will change the boiling tempera-
tures T bL and T bH . Therefore, instead of using boiling temperatures in the transformation,
we use the implicitly pressure compensated transformation

Lθ = ln

(
θ − θL
θH − θ

)
. (4.5)

The boiling temperatures are replaced with reference temperatures θL and θB selected
at the column ends, which is close to the boiling temperature of the pure components
regardless of pressure variations.

4.1.3 Linearized composition estimator
With logarithmical input temperatures and output compositions, the remaining part of
the estimator g in (4.2) is assumed locally linear

∆Ŷ =

(
∆Ŷd
∆X̂b

)
= K∆Lθ, (4.6)

where the ∆'s denote deviation variables. A calibration set with several parallels of
measured compositions and temperatures is used to �nd a suitable estimator K.

Because temperatures close to each other changes in nearly the same way, the tem-
perature data is likely to be collinear. A general least squares solution for �nding K
will because of the collinearity be badly conditioned, and hence sensitive to temperature
noise. To avoid the problem of dependent input variables, a better approach is to use
partial least squares (PLS) regression. In PLS regression a linear input projection is used
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to select directions in the input variables which have large covariance with the output
variables. The projected inputs are called the latent variables, spanned by linear combi-
nations of the temperatures. The latent variables are used as new estimator inputs and
are constructed to explain as much as possible of the output variation. (A di�erent and
well known method, principal component regression, on the contrary selects the main
directions of the input variables, the principal components, as latent variables, thereby
covering as much as possible of the input variations.) The latent variables should prefer-
ably be independent and contain all the original information relevant for estimating the
compositions. The reader is referred to Naes and Martens (1985) and de Jong (1993) for
more details on prediction and PLS-regression.

4.2 Calibration set
To obtain a calibration set for the estimator, the distillate and bottoms from the experi-
mental column were sampled under di�erent operating conditions (varying L, V , F and
zF ). The samples were analyzed by Statoil in their lab at Tjeldbergodden.

Data was collected from a total of 22 parallels. It turned out that 12 of the parallels
were too far away from the desired operating region, and were therefore not used. The
thrown-away parallels were pure in one of the products, while the other product would
be impure, e.g. xb = 0.001 and yd = 0.7. It was not possible, nor desirable, to get a good
�t to these parallels, and they were deleted from the calibration set.

The �rst parallels were done by manually adjusting the inputs and then let the column
settle to a steady state before product samples were taken. This was time consuming �
it takes hours for the open-loop column to settle. Therefore two proportional controllers
were added, between a temperature in the upper half of the column and the re�ux �ow,
and between a temperature in the lower part and the vapor �ow. The P-controllers
made the column reach steady state faster, and hence made it possible to take product
samples more frequently. The controllers also made it easier to make sure the steady-state
temperature pro�les ended up reasonably close to a nominal operating point.

The temperature pro�les used in the calibration set are shown in Figure 4.1, and are
the average of the measured temperatures at the sample time plus minus �ve minutes.

After an estimator had been created and used on the experimental column for a few
weeks, temperature sensor number 5 broke down and started to show a temperature
of 850◦C, in other words a broken circuit. Because of a somewhat unfortunate sensor
placement design, replacing the sensor can not be done without dismounting the top
column section and remove the packing. This will alter the position of the remaining
sensors in the top section, and a new set of calibration data may be needed if the sensor
positions change signi�cantly. Instead a new estimator was calculated using only the
seven remaining sensible temperature measurements, disregarding the broken one.

The column was not equipped with many temperature measurements in the �rst place,
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Figure 4.1: Temperature pro�les for the parallels in the calibration set. Feed enters at mea-
surement # 4.

and removing one turned out to make a signi�cant di�erence for the estimator quality.
Initially both the bottoms and the distillate composition estimates were dependent on all
measured temperatures. With eight sensors, the bottoms estimator gave more weight to
temperatures below the feed and the distillate composition estimator gave more weight
to temperatures high up in the column. With only seven temperatures, this separation
disappeared and suddenly the bottoms estimator became highly dependent on tempera-
tures above the feed and the distillate estimator dependent on temperatures close to the
boiler. This is both un-physical and makes control harder because of an increased time
delay between internal �ow changes and valid composition estimates.

To remove the dependency on temperatures far away, a new bottoms estimator was
calculated using only temperatures 1 to 4 in the calibration data and a new distillate
estimator was calculated using temperatures 6, 7 and 8. Temperatures 1 and 8 were still
used as reference temperatures in the temperature transformations.

The logarithmical calibration data was centered and scaled before used in the PLS re-
gression. Mejdell's proposed scaling method was used, where not only data variance, but
also residuals between the original calibration data and the latent variables are accounted
for: Wi = (σci − σeki)/σ2

ci. Here σci is the standard deviation of temperature i in the cali-
bration set, and σeki is an estimate of the additional noise error introduced by projecting
the temperature variables onto latent variables. When there is no noise (σeki = 0) this
weight scales the variables to unit variance, and if all variation is unexplained (σeki = σci),
measurement i is given zero weight. This scaling slightly improved the initial design where
K was calculated as a full 2× 8 matrix with all temperatures available, and provided for
a better estimator than when ignoring noise error in the scaling. With fewer temperature
measurements it made no di�erence, since the latent variables then basically spanned the
entire input temperature space.
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Figure 4.2: Composition estimates. Circles: estimator with nearby temperatures; x-mark: es-
timator with all 8 temperatures.

4.3 Results and discussion
Three latent variables were used when calculating the estimator with eight temperature
inputs. Increasing the number of latent variables gives a better �t to the calibration
data, but at the risk of over-parameterizing and becoming too sensitive to temperature
variations. Since the column itself has only three degrees of freedom, three factors would
account for 100% of the variance if the column was linear, which the linearizing transfor-
mations help to achieve. The three main factors are due to changes in external streams,
changes in internal streams, and changes in feed composition, which all a�ect the tem-
perature pro�le in distinct ways. When using a reduced number of temperatures, the
PLS regression becomes similar to ordinary least squares. The number of latent variables
then equals the number of temperature measurements, and the input projection does not
change the data in any way.

The N-way toolbox1 contains an implementation of the PLS regression algorithm and
was used when calculating the estimator. Figure 4.2 shows how the estimates correlates
with the actual compositions for the estimators calculated with all temperatures available
and when using only nearby temperatures. The straight lines indicate perfect correlation.
The top product compositions cover a wide range from yd = 0.9 to yd = 0.98, while the
bottom product compositions on the other hand cover a narrower region. With full tem-
perature information (marked x in �gure), the estimates generally �ts well to the actual
compositions, but still some estimates seem to su�er from too few temperature measure-
ments to capture the temperature pro�le. Four parallels, with distillate compositions
ranging from yd = 0.97 to yd = 0.98, basically give the same estimated value ŷd = 0.97,
and three parallels with xb = 0.003 have estimates varying from x̂b = 0.002 to x̂b = 0.004.

1http://www.models.kvl.dk/source/nwaytoolbox/index.asp
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Especially the distillate estimator yields larger errors with fewer temperature measure-
ments (marked o in �gure). The failing sensor was in the top section, and removing this
sensor hides vital information from the top composition estimator.

Originally there where several parallels with less pure bottoms compositions available
which could have been used to extend the bottoms range, however they were di�cult to
include in the calibration set. All the bottoms composition estimates x̂b became markedly
worse when parallels with less pure bottoms were included. The top product estimator
was not as sensitive to adding parallels. A reason may be that most of the temperature
variation in the calibration set is below the feed, and that most of the separation is done in
the bottom section. The pinch region generated by the feed may also to a higher extent
a�ect the bottoms estimator. Mejdell (1990) did also report a less accurate bottoms
estimator.

It is not possible to say much more on the quality of the estimator without cross-
validating the estimator with experiments not used in the calibration set. With few
parallels available it is not desirable to divide the data into one calibration set and one
cross-validating set; all the parallels are needed in the calibration to obtain a reasonable
estimator. More data should be collected to improve the estimator and allow for cross-
validating. A few samples were taken during column operation and analyzed using a
pycnometer. Even though not accurate enough to be used as calibration or validation
data, the distillate samples were all purer than the estimates said. The bottoms samples
were all pure, both according to pycnometer tests and according to the estimates.

One may question using a static composition estimator instead of a dynamic estimator.
The reason why a static estimator can be made to work, is that the compositions and the
temperatures have similar dynamic responses, even more so when only using temperature
measurements close to the product composition being estimated.

Collecting calibration data is a tedious and time consuming process. It would de�-
nitely be nice if one could use a model based estimator, e.g. simply use the temperature
and composition outputs from a dynamic column model in addition to experimental data
for the calibration described above. This turned out to be more di�cult than �rst ex-
pected. The main problem was that even though the shape of the model and experimental
dynamic temperature response could be made similar, it was not possible to consistently
�t the values of the actual temperature outputs to the model temperature outputs. The
model has 13 temperature outputs, one on each theoretical stage, while the actual column
has seven temperature measurements, each located somewhere between two neighboring
�stages�. When exciting a column input, a particular measured temperature θi would ap-
pear to be located somewhere between two theoretical stages in the corresponding model
output. These two model temperature outputs were then combined linearly to �t to θi,
which yielded a seemingly accurate model temperature for that particular step. However,
when doing a di�erent input step to cross-validate, θi could be located between two di�er-
ent model stages, and the linearly combined model temperatures would be too far away
from the actual temperature to be used for calibration data in a composition estimator.



5. H∞ loop shaping theory

So far we have looked at how to model the distillation system without explicitly con-
sidering uncertainty. It is not possible, nor even desirable, for a mathematical model to
capture everything a�ecting the system dynamics. It is not possible because we do not
know everything, it is not desirable because such a model would generally be far too com-
plex for our purposes. There are other reasons as well, the point is that there will always
be a mismatch between the real system and the system model � model uncertainty.

In robust control, explicit consideration is taken to make sure that the closed-loop
system is satisfyingly controlled even in the presence of uncertainty. H∞ is a method
used in robust control theory for designing controllers, where mathematical restrictions
are made on the size of transfer functions in the H∞ norm sense. The H∞ system norm
is the maximum ampli�cation a system can make to the energy of its input signal. In
the MIMO case, it is equal to the system's maximum singular value over all frequencies,
reducing to the maximum value of the frequency response magnitude in the SISO case.

To elaborate on typical H∞ analysis and synthesis problems, consider the general
system shown in Figure 5.1. Here P is the interconnection matrix, K is the controller, ∆
is the set of all possible uncertainties, w is a vector signal including noises, disturbances
and reference signals, z is a vector signal including all controlled signals and tracking
errors, u is the control signal and y is the measurement. Let Tzw be the transfer function
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Figure 5.1: General control con�guration
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Figure 5.2: The loop shaping design procedure

from w to z, and assume that the uncertainty ∆ satis�es ‖∆‖∞ ≤ 1/γu. The analysis
problem is then to answer if the closed-loop system is stable for all admissible ∆, and if
the H∞ norm of Tzw, ‖Tzw‖∞ ≤ 1/γp for some prespeci�ed γp. The synthesis problem is to
design a controller K so that these robust stability and performance conditions are met.
For more on di�erent H∞ problem formulations, see e.g. Skogestad and Postlethwaite
(1996) or Zhou and Doyle (1998).

H∞ loop shaping is, due to its simplicity, an appealing H∞ controller design method
proposed in the late eighties (see Glover and McFarlane, 1989; McFarlane and Glover,
1990). It di�ers from conventional H∞ design methods in that no uncertainty model is
required prior to the controller synthesis. Instead the controller is designed to maximize
the set of admissible uncertainties. The H∞ loop shaping design procedure consists of
two steps, as illustrated in Figure 5.2:

1. Loop shaping : A desired open-loop shape is obtained by adding pre- and post-
compensators to the nominal plant model. The nominal plant, G, and shaping func-
tions, W1 and W2, are combined to form a shaped plant, Gs, where Gs = W2GW1

(see Figure 5.2(a)). This step is used to obtain a desired level of performance.

2. Robust stabilization: The shaped plant Gs is robustly stabilized with respect to
coprime factor uncertainties using H∞ robust stabilization (see Figure 5.2(b)). This
step maximizes the admissible uncertainty set.

In the following we take a look at these two steps individually.
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Figure 5.3: Closed loop system

5.1 Loop shaping
Robust stabilization alone is not much use in practice because the designer is not able
to specify any performance requirements. McFarlane and Glover (1990) add pre- and
post-compensators to the nominal plant to shape the singular values of the compensated
subsystem, and thereby achieves a way of a�ecting the closed loop performance. The idea
of loop shaping is that the singular values of particular closed-loop transfer functions can
be determined by looking at the corresponding open-loop transfer functions, and these
singular values are physically meaningful. The classical paper by Doyle and Stein (1981)
gives a comprehensive introduction to multivariable loop shaping methods, and it is now
discussed in most textbooks on robust control (see e.g. Green and Limebeer, 1995; Zhou
and Doyle, 1998).

5.1.1 What is a desired loop shape?
To discuss the idea of loop shaping, consider the feedback system in Figure 5.3. For con-
venience de�ne the input loop transfer function, Li, and the output loop transfer function,
Lo, as

Li = KG, Lo = GK. (5.1)
Li is obtained by breaking the loop at the plant input u, while Lo is obtained by breaking
the loop at the plant output y. The input sensitivity matrix is de�ned as the transfer
function matrix from di to up:

Si = (I − Li)−1; up = Sidi. (5.2)
The output sensitivity matrix is de�ned as the transfer function matrix from d to y:

So = (I − Lo)−1; y = Sod. (5.3)
The input and output complementary sensitivity matrices are de�ned as

Ti = I − Si = Li(I − Li)−1, (5.4)
To = I − So = Lo(I − Lo)−1 (5.5)
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respectively.
Some calculations give the following equations for the closed loop system:

y = To(r + n) + SoGdi + Sod, (5.6)
r − y = So(r − d)− Ton− SoGdi, (5.7)

u = KSo(r + n+ d) + Tidi, (5.8)
up = KSo(r + n+ d) + Sidi. (5.9)

These equations reveal di�erent design objectives. Good disturbance rejection at the plant
output (y) and small tracking error (r− y) requires the output sensitivity transfer matrix
So and also SoG to be small in the frequency range where d and di are large respectively
(typically at low frequencies). Good disturbance rejection at the plant input (up) requires
the input sensitivity transfer matrix Si to be small where di is large and KSo small where
d is large (also typically at low frequencies).

These objectives can be transformed into objectives on the open-loop transfer func-
tions. Making the input and output sensitivities small in terms of singular values is
equivalent to making the loop gains large because

σ(Li)À 1⇔ σ̄(Si) = σ̄((I − Li)−1) = 1/σ(I − Li) ≤ 1/(σ(Li)− 1)¿ 1, (5.10)
σ(Lo)À 1⇔ σ̄(So) = σ̄((I − Lo)−1) = 1/σ(I − Lo) ≤ 1/(σ(Lo)− 1)¿ 1. (5.11)

Suppose further that G and K are invertible. Then (remember that Li = KG and
Lo = GK)

σ(Li)À 1 or σ(Lo)À 1⇔ σ̄(SoG) = σ̄((I −GK)−1G) ≈ σ̄(K−1) = 1/σ(K), (5.12)
σ(Li)À 1 or σ(Lo)À 1⇔ σ̄(KSo) = σ̄(K(I −GK)−1) ≈ σ̄(G−1) = 1/σ(G). (5.13)

Hence good disturbance rejection at plant output requires large output loop gain, σ(Lo)À
1, in the frequency range where d is signi�cant, and large enough controller gain, σ(K)À
1, in the frequency range where di is signi�cant. Similarly, good performance at plant
input up requires large input loop gain, σ(Li) À 1, in the frequency range where di is
signi�cant and large enough plant gain, σ(G)À 1, (which cannot be changed by controller
design) in the frequency range where d is signi�cant.

By making the sensitivity matrix So small we are at the same time making the com-
plementary sensitivity To large because So + To = I. In e�ect, the output becomes more
sensitive to measurement noise, n, when the e�ect of disturbances are desensitized. Typ-
ically measurement noise is at high frequency, while disturbances are at low frequency,
making it possible to have both disturbance- and noise rejection by designing So small at
low frequency and To small at high frequency.

Another tradeo� concerns command and disturbance error reduction versus stability
under model uncertainty. Assume the nominal model G is perturbed via a multiplicative
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output uncertainty to (I + ∆)G with ∆ stable, and assume that the nominal (∆ = 0)
closed-loop system is stable. The perturbed closed-loop system is stable if

det(I − (I + ∆)Lo) = det((I −∆Lo(I − Lo)−1)(I − Lo))
= det(I −∆To) det(I − Lo)

has no right-half plane zero. This also requires To to be small at frequencies where ∆ is
signi�cant, typically at high frequencies. To is small when the loop gain is small because

σ̄(Lo)¿ 1⇔ σ̄(To) = σ̄(Lo(I − Lo)−1) ≈ σ̄(Lo). (5.14)

Another issue is that large loop gain outside the bandwidth of G (i.e. Lo or Li large
at high frequency) can make the control activity quite unacceptable. If we assume G to
be square and invertible and large loop gain, this follows from (5.8):

u = KSo(r + n+ d) + Tidi

= K(I −GK)−1(r + n+ d) +KG(I −KG)−1di (5.15)
≈ G−1(r + n+ d) + di when σ(Li), σ(Lo)À 1.

Because σ(G−1) = 1/σ̄(G) À 1 at frequencies above the bandwidth of G, disturbance
and noise is ampli�ed at u when the loop bandwidth signi�cantly exceeds that of G. In
other words, it is not possible to make the closed-loop system signi�cantly faster than the
open-loop system by increasing the control gain without at the same making the actuators
more a�ected by noise and disturbances.

To summarize, we note that to get good disturbance rejection and tracking requires
in some frequency range, typically some low frequency range (0, ωL),

σ(Li)À 1 σ(Lo)À 1 σ(K)À 1.

Robust stability and sensor noise rejection require in some frequency range, typically some
high-frequency range (ωU ,∞),

σ̄(Li)¿ 1 σ̄(Lo)¿ 1 σ̄(K) ≤M,

where M is not too large.
Figure 5.4 indicates graphically how the requirements on these closed-loop objectives

constrain the shape of the open-loop singular values. The designer must choose K such
that the maximum and minimum singular values of Li and Lo avoids the shaded regions.
In addition, it may be necessary to further adjust σ(K) over (0, ωL) and σ̄(K) over
(ωU ,∞).

The singular value shaping seems like a simple approach to design. However, shaping
of the open-loop system does not guarantee that the closed-loop system will be internally
stable � which cannot be determined from the open-loop singular values. In the SISO
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Figure 5.4: Open-loop singular value shaping

case, it is well known that the phase at gain crossover in practical designs cannot exceed
180◦, or equivalently, the roll-o� rate should be less than 40 db/decade. In the MIMO
case there is a similar limitation on the roll-o� of the magnitude of the eigenvalues of
the loop gain (not the singular values) in the crossover region. The loop shaping gets
involved in the MIMO case because of this additional stability requirement. The designer
has to manipulate σ(L) and σ̄(L) to get the desired loop-shape, while at the same time
restricting the roll-o� rate of the eigenvalues of L to ensure closed-loop stability.

In section 5.2 a technique is presented to deal with the stability issue. First the
designer speci�es a desired loop shape, using pre- and post-compensators, while ignoring
closed-loop stability. Then this shaped plant is robustly stabilized using an additional
controller, K∞, in the feedback path as illustrated in Figure 5.2. This last step will
guarantee a certain level of robust stability of the closed-loop system.

Before proceeding to the stabilization step, a particulary simple method for obtaining
reasonably well shaped loops is presented.

5.1.2 Loop shaping using PI-controllers
Designing pre- and post-compensators to get a desired loop-shape typically involves several
iterations of trial and error, especially for the unskilled designer. A simpler method than
jumping directly to the selection of poles and zeros in the transfer functions within the
compensators, is to use PI(D)-controllers as the diagonal elements of the pre-compensator.
Generally speaking, selecting the PI-controller gains may be just as di�cult as selecting
a �lter directly, but if equipped with a set of descent tuning rules for the PI-controller
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gains, this is a straightforward way of obtaining reasonable loop shapes.
Normally the designer of the compensators would as a starting point chose a constant

post-compensator and a diagonal pre-compensator consisting of �rst- or second-order
transfer functions. This is also what one will get if using PI- or PID-controllers. With the
SIMC tuning guidelines given next, the designer easily obtains a �rst trial for a compen-
sator, which may be used directly or as a stepping stone to more re�ned compensators.
The compensated plant is then robustly stabilized usingH∞ theory. Of course one can also
look at it the opposite way, H∞ is applied to robustify an already existing PID-controller
design.

SIMC-PID tuning rules

Skogestad (2004) presents a set of tuning rules for the PID controller which are both easy
to use and work well on a wide range of processes. The procedure for selecting controller
gains consists of two steps. Firstly, a �rst- or second-order plus delay model i obtained.
Secondly, controller settings are derived based on the model parameters. PI-setting result
from a �rst-order model, whereas PID-setting result from a second-order model.

Given a process model

g(s) =
k

(τ1s+ 1)(τ2s+ 1)
e−θs, (5.16)

the recommended SIMC-PID settings for the controller

c(s) = Kc

(
τIs+ 1

τIs

)
(τDs+ 1) (5.17)

are

Kc =
1

k

τ1

τc + θ
(5.18)

τI = min{τ1, 4(τc + θ)} (5.19)
τD = τ2. (5.20)

The only tuning parameter is τc, and a good starting point is to select τc = θ, the
e�ective delay. A smaller value for τc yields a more aggressive controller with better
tracking and disturbance attenuation, but at the same time a controller more sensitive
to noise. From the equations it is clear that a �rst-order model (τ2 = 0) will result in a
PI-controller, whilst a second order model will result in a PID-controller.

In his paper, Skogestad also gives guidelines for how to reduce a higher-order transfer
function model into a �rst- or second-order model with dead-time in an easy way, the �rst
step for obtaining controller tunings. This is not pursued any further here.
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Figure 5.5: Coprime factor robust stabilization problem

5.2 Robust stabilization
In this section a method is presented for robust stabilization of a system with a coprime
factor uncertainty description, as illustrated in Figure 5.5. The method was �rst intro-
duced by Glover and McFarlane (1989).

We are considering perturbations to the normalized left coprime factors of a nominal
plant, the shaped plant from the previous section, and �nd the stabilizing controller which
allow the H∞ norm of the coprime factor perturbations to be as large as possible while
maintaining internal stability. This robust stabilization problem has a simple analytical
solution, not requiring any γ-iteration.

A normalized left coprime factorization of a nominal plant G is a left coprime factor-
ization (N , M) of G such that G = M−1N which satis�es

MM∗ +NN∗ = I ∀s ∈ j<, (5.21)

or equivalently, [N,M ] is co-inner.
We want to �nd a particular controller that stabilizes the perturbed plant model

G∆ = (M + ∆M)−1(N + ∆N) (5.22)

for the largest possible ball of uncertainty ‖[∆N ∆M ]‖∞ < ε = γ−1. The following theorem
gives necessary and su�cient conditions for the closed-loop stability of G∆.
Theorem 5.1. Given the perturbed plant model

G∆ = (M + ∆M)−1(N + ∆N)

with M,N,∆M and ∆N stable rational transfer functions. (M,N) is a stable left co-
prime factorization of G, and K internally stabilizes the nominal system G. De�ne
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∆ := [∆N ∆M ]. Then the closed loop system shown in Figure 5.5 is internally stable
for all ‖∆‖∞ < ε = 1/γ if and only if

∥∥∥∥
[
K
I

]
(I −GK)−1M−1

∥∥∥∥
∞
≤ γ

Proof. (⇔) From visual inspection of Figure 5.5 we see that
[
u
y

]
=

[
K
I

]
(I −GK)−1M−1ϕ

ϕ =
[
∆N −∆M

] [u
y

]

The uncertainty is bounded by ‖[∆N −∆M

]‖∞ = ‖∆‖∞ < 1/γ. According to the small
gain theorem, the closed loop system is internally stable for all admissible ∆ if and only
if the loop gain is less than one, which is satis�ed if and only if

∥∥∥∥
[
K
I

]
(I −GK)−1M−1

∥∥∥∥
∞
≤ γ

which completes the proof.

Glover and McFarlane (1989) show that the minimum γ (largest ε ) such that a single
�xed controller K stabilizes the perturbed plant G∆ for all ‖∆‖∞ < 1/γ is given explicitly
by

γmin = (1 + λmax(XY ))1/2 (5.23)
Given a minimal realization of the plant G s

= (A, B, C, D), X and Y are the unique
positive de�nite solutions to the Control Algebraic Riccati Equation and the Filtering
Algebraic Riccati Equation

(A−BS−1D∗C)∗X +X(A−BS−1D∗C)−XBS−1B∗X + C∗R−1C = 0 (5.24)
(A−BS−1D∗C)Y + Y (A−BS−1D∗C)∗ − Y C∗R−1CY +BS−1B∗ = 0 (5.25)

where S , I +D∗D and R , I +DD∗.
A particular controller, referred to as the central or maximum entropy controller,

guaranteeing that ∥∥∥∥
[
K
I

]
(I −GK)−1M−1

∥∥∥∥
∞
≤ γ (5.26)

for a selected tolerance level γ > γmin, is given by the state space realization

K
s
=

[
A+BF + γ2Q∗−1ZC∗(C +DF ) γ2Q∗−1ZC∗

B∗X −D∗

]
(5.27)

F = −S−1(D∗C +B∗X) (5.28)
Q = (1− γ2)I +XZ (5.29)
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Remark 5.1. Note that if γ = γmin, then Q becomes singular (Q = XZ − λmax(XZ) is
singular) and the controller K as given above cannot be implemented. The truly optimal
controller can still be constructed using a descriptor system approach (see Safonov et al.,
1989). For γ > γmin, K is sometimes referred to as a sub-optimal controller.

Remark 5.2. The two-block problem considered for robust stability above is equivalent to
a four-block problem; using the fact that [N M ] is normalized and co-inner, and since the
norm is invariant under right multiplication by a co-inner function, we have

∥∥∥∥
[
K
I

]
(I −GK)−1M−1

∥∥∥∥
∞
≤ γ

⇔
∥∥∥∥
[
K
I

]
(I −GK)−1M−1

[
N M

]∥∥∥∥
∞
≤ γ

⇔
∥∥∥∥
[
K
I

]
(I −GK)−1

[
G I

]∥∥∥∥
∞
≤ γ

Hence, the controller minimizing γ is also the controller minimizing a combination of the
closed-loop transfer functions K(I − GK)−1G, K(I − GK)−1, (I − GK)−1, and (I −
GK)−1G. In the previous section it was shown that (I − GK)−1 and (I − GK)−1G are
typically used as performance objectives to be kept small at low frequency, while K(I −
GK)−1 and K(I − GK)−1G re�ect robust stability and noise attenuation properties and
should be small at high frequency. A more e�ective design is one in which these transfer
function objectives are frequency weighted to trade-o� between performance and robust
stability over di�erent frequency ranges. This is exactly what is achieved by robustly
stabilizing the shaped plant Gs = W2GW1.

Remark 5.3. The controller given above is only one out of a set of stabilizing controllers
which achieves (5.26). The parametrization of all stabilizing controllers is possible, both
for γ = γmin and γ > γmin, using a Nehari extension. This is shown in McFarlane and
Glover (1990).

Remark 5.4. The H∞ loop shaping technique uses a normalized coprime factor uncer-
tainty description. This type of model perturbations is known to represent a wide range
of uncertainties, e.g. low frequency parameter errors, neglected high frequency dynamics
and uncertain right half plane poles and zeros (Zhou and Doyle, 1998).

We have now established the state-space solution to a particular controller achieving
a level ε of robustness to model uncertainty. In the previous section we looked at how to
set up the problem by using compensators to get a desired loop-shape. In the next section
some guidelines will be given for these two design steps, and for how to implement the
�nal controller.
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5.3 Design guidelines
As a summary of the H∞ loop shaping controller design the following guidelines are given,
mainly based on guidelines in Skogestad and Postlethwaite (1996):

1. Scale the plant inputs and outputs to enable meaningful analysis and improve con-
ditioning.

2. Make the system as diagonal as possible by ordering inputs and outputs. This makes
the design of pre- and post compensators easier, they can frequently be chosen to
be diagonal.

3. Select the elements of diagonal pre- and post compensatorsW1 andW2 such that the
singular values of W2GW1 are desirable. This means high gain at low frequencies,
roll-of rate of approximately 20dB/decade at unit gain crossover with higher roll-o�
rates at higher frequencies. The loop shaping is done without explicit regard for
the nominal plant phase information. A simple way of obtaining a diagonal pre-
compensator is to use PI-controllers as the diagonal elements, and use the SIMC
PID-tuning rules for the controller gain tunings.

4. Robustly stabilize the shaped plant W2GW1 using the formulas of the previous
section. First, calculate the maximum stability margin εmax = 1/γmin. Good ro-
bustness typically means εmax > 0.25. If the margin is too small, modify the com-
pensators W1 and W2. It is easier to get good margins if the slope at unit gain
crossover is kept reasonable (≈ −1). Chose a γ about 10% larger than γmin and
calculate the suboptimal controller K∞.

5. Analyze the design. The desired loop shape is speci�ed by W1GW2. After the
inclusion of K∞, the actual loop shape is given by W1K∞W2G at plant input and
GW1K∞W2 at plant output. It is therefore possible that the inclusion of K∞ in the
open-loop transfer function will cause deterioration in the open-loop shape speci�ed
by W1GW2. McFarlane and Glover (1990) show that the degradation in the loop
shape is limited at frequencies where the speci�ed loop shape is su�ciently large or
su�ciently small. In particular, ε can be interpreted as an indicator of the success
of the loop shaping in addition to providing a robust stability guarantee for the
closed-loop system. A small value of εmax always indicates incompatibility between
the speci�ed loop shape, the nominal plant phase, an d robust closed-loop stability.
Check that the controller gain is kept reasonable without large overshoots and sat-
uration, this check is easiest performed using simulations.

6. Implement the controller. The con�guration in Figure 5.6 is useful, because refer-
ences to not directly excite the dynamics of K∞ (derivative kick).
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Figure 5.6: Practical implementation of the loop shaping controller

Note that, in contrast to the classical loop shaping approach, the loop-shaping here
is done without explicit regard for the plant phase information, closed-loop stability is
disregarded at this stage and only elementary loop-shaping principles are needed. Also,
the robust stabilization is done without explicit frequency weighting, frequency dependent
performance/stability trade-o� is obtained implicitly through the loop shaping step. This
makes the design procedure both simple and systematic.



6. Distillation Control

In the following an H∞ loop shaping controller is designed for the high-purity distillation
column. A dynamic model was derived for the column in chapter 3. This model is now
used when designing the controller.

6.1 The control problem
A principal drawing of a distillation column system is shown in Figure 6.1. It contains a
series of trays that are placed along its length. The liquid in the column �ows over the
trays from top to bottom while the vapor rises from bottom to top. (The experimental
column is packed, not trayed, but this is unimportant at this stage.) The contact between
the vapor and liquid facilitates a mass transfer between the phases. This interchange
increases the concentration of the more volatile component in the vapor going up, while
simultaneously increasing the concentration of the less volatile component in the liquid
falling down.

The raw material, the feed, enters the column at a rate F with composition zF . The top
product, the distillate, is condensed and removed as liquid at a rate D with composition
yd. The bottom product, the bottoms, is removed as liquid at a rate B with composition
xb. The operation of the column requires that some of the bottoms is reboiled at a rate
V to ensure the continuity of the vapor �ow. Similarly, some of the distillate is re�uxed
to the top of the column at a rate L to ensure the continuity of the liquid �ow.

The main controlled variables are the compositions yd and xb. In addition the holdups
Md and Mb must be controlled to avoid over�ow. The manipulated variables are the
internal �ows L and V , and the external �ows B and D. The feed rate F and composition
zF are considered as disturbances. (Often pressure is considered a controlled variable and
the coolant �ow a manipulated variable. Here we only consider total condensers and no
direct pressure control.)

A control con�guration must be chosen for the distillation column; i.e. which inputs
are used to control which outputs. Normally two manipulated inputs are chosen for
composition control. The holdups Md and Mb are controlled with two SISO controllers
using the remaining manipulated variables.

The LV con�guration (i.e. L and V are used for composition control) is the only

37
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Figure 6.1: The distillation column system. Manipulated variables: L, V , B, D. Controlled
variables: yd, xb, Md, Mb. Disturbances: F , zF

con�guration considered here, mainly because this is one of the more frequent industrial
con�gurations, which is known to work reasonably well. Other used con�gurations are
the DV con�guration or ratio con�gurations like (L/D)(V/B). Di�erent con�gurations
have di�erent properties with regards to e.g. input uncertainty, feed disturbances and
dynamic considerations. Controllers using the LV con�guration are typically sensitive to
input uncertainty (especially inverse based controllers) and feed disturbances. However,
manipulating L and V directly favors a fast initial dynamic response. This is probably one
of the main reasons for the popularity of the LV con�guration. See e.g. (Skogestad and
Morari, 1987; Kjellerhaug, 1988) for more on properties of di�erent control con�gurations.

One of the control di�culties in the high purity distillation system is the ill-conditioned
gain at di�erent input directions (Skogestad et al., 1988). Increasing both of the internal
streams L and V leads to higher product purities xb and yd. This move is along the weak
input direction; the product compositions are quite insensitive to a simultaneous increase
(or decrease) in both internal �ows. On the other hand there is a large gain if the internal
�ows are moved along the complementary direction; increasing one internal stream while
reducing the other stream will cause the product purities to change by a large amount in
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opposite directions, i.e. one product purity increases while the other decreases.
Uncertainty makes control of ill-conditioned systems di�cult. There are always uncer-

tain model parameters dependent on operating points, frequency dependent, time varying
or other. Sensors and actuators are imperfect, giving rise to uncertainty on the manip-
ulated inputs implemented on the plant. For tight control of ill-conditioned plants the
controller should try to compensate for the strong directionality by applying large input
signals in the directions where the plant gain is low. However, because of uncertainty, the
direction of the large input may not exactly correspond to the low plant-gain direction,
and the ampli�cation of these large input signals may be much larger than expected from
the model. This will result in large values of the controlled variables, leading to poor per-
formance or instability. An implication is that it may be di�cult to signi�cantly increase
the closed-loop bandwidth of an ill-conditioned plant. Increasing the bandwidth requires
high actuator usage, which is undesirable because of uncertainty.

6.2 Design speci�cations
The column operating point for this design was chosen at yd = 0.97, xb = 0.01, which
is close to the center of the estimator calibration set (see Chapter 4). The column is
separating a binary mixture of water and methanol (zF = 0.31 corresponding to 50vol%)
at a feed rate of 3.6 l/hour. The operating conditions are summarized in Table 6.1.

Table 6.1: Column operating conditions
Inputs Compositions
Feed: 1.0ml/s yd = 0.97
Re�ux: 0.52ml/s xb = 0.01
Boiler: 1.68kW zF = 0.3095

The design objectives are:

1. The controlled column should remain stable for input gain perturbations of up to
±50% (±6dB) and time delays of up to 30 seconds on each input.

2. No steady state o�set.

3. The control action should not be oscillatory, and have little overshoot as this may
cause �ooding.

4. The response to steps in reference signals should be realistically fast, with no con-
troller saturation during transients.

5. Good disturbance attenuation.
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The input uncertainty in the design objectives is chosen because the inputs are believed
to be the most important uncertainty factors. There is a physical time delay in the
pipes from the re�ux drum to the top of the column, and from applying voltage to the
heating coils to actual temperature increase in the coils and increased vapor rate. The
input/output characteristics of the pumps and heating coils are also uncertain, giving
input gain uncertainties.

6.3 Linear system models
The nonlinear model from chapter 3 is described by the equations

ẋ = f(x, uL, uV , F, zF ); x ∈ R26 (6.1)
y = g(x, uL, uV , F, zF ); y ∈ R2, (6.2)

where the volumetric re�ux �ow uL and the boiler power uV are used as inputs instead
of the molar �ows L and V . Model outputs y = [Yd, Xb]

T are logarithmic compositions

Yd = ln(1− yd); Xb = ln(xb), (6.3)

which are known to linearize the initial dynamic response of the column. This model
was linearized numerically around the operating point given in Table 6.1 and reduced
from 26th order to 8th order using balanced truncation model reduction. The order of the
synthesized H∞ controller is equal to the order of the plant plus the order of the pre- and
post-compensators, and using a reduced order plant model prevents high controller order.
When the linear model was reduced to less than 8th order, the di�erences between the
full- and reduced-order model frequency responses increased markedly, and it was decided
not to reduce the model below eight order.

In Figure 6.2 is shown a step response in the nonlinear and the low order linear models.
The input step size is approximately 1% of the nominal value, and the di�erence between
the nonlinear and the linear models is small. The di�erence of course becomes smaller
with smaller steps. In Figure 6.3 is shown a similar step response, but now with a step size
ten times bigger . The nonlinear dynamics clearly becomes more dominating, especially
for steps in boilup, and steady state errors becomes rather large. Nevertheless, initially,
say the �rst 40 minutes, the linear and the nonlinear models still follow each other closely.

The SIMC-PI tuning rules requires a �rst-order plus delay model. Skogestad (2004)
describes how to obtain a �rst-order model from a higher order transfer function, however
he does not discuss how to deal with complex zeros or poles and his proposed model-
reduction method was therefore not used. Instead the full order linear model was excited
with white noise, and the input-output data (uL, Yd) and (uV , Xb) was used to identify
parameters in two �rst-order plus delay transfer function models between the column
inputs uL and uV and the logarithmic distillate and bottoms compositions respectively.
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Figure 6.2: Step response with step size 1% of nominal values. Solid line: linear model; +:
nonlinear model. Left plots: step in re�ux �ow; right plots: step in boilup.
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Figure 6.3: Step response with step size 10% of nominal values. Solid line: linear model; +:
nonlinear model. Left plots: step in re�ux �ow; right plots: step in boilup.
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plus delay linear model; +: 26th order linear model. Left plot shows response to
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Parameter identi�cation was done using the Matlab System Identi�cation Toolbox,
which contains a method for directly identifying process models with dead time to input-
output data. This gave the transfer function models

g11(s) =
−20.6

19.6s+ 1
e−1.49s; Yd(s) = g11(s)uL(s) (6.4)

g22(s) =
−145

184s+ 1
e−1.52s; Xb(s) = g22(s)uV (s) (6.5)

The time constant for the bottoms composition is almost ten times as large as the
time constant for the distillate composition. The physical explanation is that the bot-
toms holdup is about ten times larger than the re�ux drum holdup, and the outputs are
the compositions of the product �ows leaving the boiler and the re�ux drum. There is
therefore a mixing tank e�ect, which is bigger for the bottoms product because of the
larger bottoms holdup.

There is no explicitly modeled time delay, the delays in the �rst order models of
approximately 1.5 minutes, is there because of the model reduction. In other words,
the time delay acts as an approximation of the faster modes of the high order model.
The slowest mode of the high order model is located at p1 ≈ −0.005 min−1, with a
corresponding time constant of τ1 = −1/p1 ≈ 200 minutes, which is close to the time
constant in g22. The high order transfer function between uL and Yd has a zero at z1 =
−0.007min−1, which nearly cancels the slowest mode, p1. The next slowest mode, p2 =
−0.1min−1, with a corresponding time constant of τ2 = 10 minutes, is in the same order
of magnitude as the time constant in g11. The slowest zero between uV and Xb is at
z2 ≈ 0.1min−1 and does not cancel the slow pole p1 in the same way as what happens for
the top composition.

The �rst order model for the bottoms, g22, correlates well with the output from the
higher order models, which clearly is dominantly a �rst order process when applying small
steps (see Figure 6.4). The top composition response with step in re�ux is more di�cult
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to recreate with a �rst order model, but the initial response, which is more important for
control purposes, is still captured.

6.4 Controller design
We now have all which is needed to design the control system, and we can step through the
prescriptive design procedure in the previous chapter. Two controllers will be designed,
a conventional diagonal PI-controller, and an H∞ loop shaping controller, where PI-
controllers are used as loop shaping pre-compensators.

The inputs and outputs of the model are scaled by dividing each input by its maximum
allowed input change (the distance to closest saturation limit), and dividing each output
by a largest allowed control error corresponding to ∆yd = ∆xb = 0.005. More on di�erent
scaling methods is given in (Skogestad and Postlethwaite, 1996). (The gains in g11 and
g22 are already scaled, a reverse scaling was done for the simulations in Figure 6.4.)

The system is as diagonal as possible with uL and uV as the �rst and second input
respectively, and Yd and Xb as the �rst and second output respectively.

The post-compensator, W2, for the loop shaping is chosen as the identity matrix. The
pre-compensator is chosen as

W1 = diag(wtop, wbot) =


Kc11

(
τI11s
τI11s+1

)
0

0 Kc22

(
τI22s
τI22s+1

)

 , (6.6)

where Kcii and τIii are selected according to the SIMC-PI tuning rules; equations (5.18)
and (5.19), for the models g11(s) and g22(s) respectively. The compensator increases the
low frequency gain and the crossover frequency can be moved by adjusting the tuning
parameter τc for controller gains.

When using only the pre-compensator (PI control), the tuning parameter was selected
to τc = 0.5θ giving an integral time of approximately 9 minutes in both wbot and wtop. With
the robustifying H∞ controller wrapped around the compensated plant (see Figure 5.6),
the precompensator could be made more aggressive. A tuning value of τc = −0.5θ (integral
time of 3 minutes) for wtop and τc = 0 (integral time of 6 minutes) for wbot was found to
yield a good controller in the simulations.

The maximum uncertainty bound with this loop-shape was εmax = 1/γmin = 0.41, and
a robustifying controller K∞ was calculated for γ = 1.1γmin. The singular values of the
linear system model, G, the output loop transfer function with pure PI control, GW1,
and the robusti�ed output loop transfer function, GW1K∞, are shown in Figure 6.5(a).
Figure 6.5(b) shows the singular values of the pre�lter, W1, and the feedback part, K∞.
The pre-compensator, consisting of two PI-controllers, acts to increase the loop gain at
low frequencies, giving good performance and disturbance attenuation. K∞ alters the
loop shapes around the cross-over frequency to improve stability with respect to plant
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(a) Loop singular values. Solid line: GW1K∞;
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Figure 6.5: Singular value plots

parameter variations, and improves noise attenuation because of larger roll o� at high
frequencies.

From the singular value plots one would expect the PI-controller and theH∞ loop shap-
ing controller to perform similar on the nominal plant model, since the PI-compensator
speci�es the desired performance and the low frequency loop shapes are pretty much un-
changed by including K∞ in the feedback path. The H∞ controller should give a closed
loop system less a�ected by model perturbations, and also yield better noise rejection.

6.5 Simulations
Simulations were performed using the nonlinear column model with nominal plant pa-
rameters and with the four combinations of ±50% input gain perturbations with an input
time delay of 0.5 minutes. The reference values were �ltered with a �rst order �lter with
a time constant of �ve minutes to prevent high initial control action. Figure 6.6 and
Figure 6.7 show the output response to a small step change in the distillate and bottoms
composition references respectively. Figure 6.8 and Figure 6.9 show the response of the
column to a step change in the feed �ow rate and in the feed composition respectively.

Nonlinearities are more important when moving further away from the nominal oper-
ating point, and changes the plant behavior. This is illustrated in Figure 6.10 with larger
reference steps and nominal input gain and delay.

The simulations clearly demonstrates that the H∞ controller is less sensitive than the
PI controller to plant parameter variations. In the nominal case, and close to the lin-
earization point, the performance for the two controllers is similar, but the H∞ controller
generally yields better decoupling.
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tions; thick solid line: nominal response. Left plots: H∞ controller; right plots: PI
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Figure 6.8: Step in feed rate from F = 1ml/s to F = 1.3ml/s . Dashed line: reference; thin
solid line: response with plant perturbations; thick solid line: nominal response.
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6.6 Experimental results
The controllers designed with the simulation model were implemented in LabView and
connected to the experimental column. The controller gains were left unchanged from the
simulations, but for the PI controller a measurement noise �lter was necessary to obtain
a smoother control signal, also giving less oscillations in the controlled variables. The
noise �lter was implemented as a 5th-order �lter with cut-o� frequency wc ≈ 20rad/min,
one tenth of the sampling frequency. The H∞ controller showed, as expected from the
steeper controller gain roll-o� at high frequency, less sensitivity to high frequency noise
and needed no additional signal �ltering.

The experimental column was brought to steady state around the nominal operating
point with yd = 0.97 and xb = 0.01. Then composition references were changed around
the nominal values to demonstrate the performance of the system with the two di�erent
controllers. Figure 6.11 shows the controlled variables with the H∞ controller. Figure 6.12
shows the outputs with the diagonal PI-controller.

Feed composition and feed rate were changed one at a time to see how the controllers
reject disturbances. Figure 6.13 shows the response to disturbance step changes using
the H∞ controller. Figure 6.14 shows the response to disturbance step changes using
the diagonal PI-controller. To better show the trend lines, the composition estimates are
�ltered in these �gures.

There are only small di�erences in performance between the two controllers. The
top composition is better with the H∞ controller when far from the nominal operating
point, showing less oscillations than the PI controller when going to yd = 0.95, which
again demonstrates better robustness to plant parameter changes. There also seems to
be less coupling between the compositions with the H∞ controller when changing the
bottom composition, but the coupling is probably a�ected by initial conditions, yd is not
completely steady for neither of the controllers when stepping the bottoms reference.

TheH∞ controller on the other hand shows more variations in xb than the PI controller,
and also slower responses. The response in xb to references and disturbances with the H∞
controller appears somewhat sluggish with slower and larger oscillations. This was also
seen in the simulations with low gain in the bottoms pre-compensator, wbot. Di�erent
controller tunings may change the picture, but the H∞ controller bandwidth cannot be
signi�cantly increased without entering the cut-o� region of the noise �lter found necessary
with PI control. Thus, an H∞ controller with more aggressive tunings will become more
a�ected by noise.

Disturbance steps are not exactly equal for the two experimental runs. The steps in
feed composition were performed by pouring some methanol into the feed tank, and then
later pour some water into the feed to come back to the original composition. The actual
feed composition changes were found afterwards by analyzing the feed samples with a
pycnometer. Because of the higher feed methanol content it was necessary to reduce the
feed rate in the experiment with the H∞ controller to avoid saturation in the re�ux pump.
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Figure 6.11: Experimental response to changes in composition references with the H∞ con-
troller. Solid line: composition estimate (un�ltered); dashed line: reference value.
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Figure 6.12: Experimental response to changes in composition references with the diagonal PI-
controller. Solid line: composition estimate (un�ltered); dashed line: reference
value.
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Figure 6.14: Experimental response to step changes in feed rate and feed composition with
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6.7 Discussion
Because of the static composition estimator, composition changes seem faster on the
experimental column than in simulations. The bottoms composition estimate is only de-
pendent on temperature measurements close to the boiler, which change quite fast when
changing the vapor rate. Similarly, the distillate composition estimate is only depen-
dent on temperatures in the top section of the column and respond fast to re�ux rate
changes. The actual composition of the product �ows probably does not change as fast
as the estimator claims, but this predictive property of the estimator reduces the e�ective
delay between inputs and outputs and allows for apparently faster composition changes
experimentally than what is achieved in simulations.

Another di�erence found between the simulation model and the experimental column
is that more re�ux was used experimentally, the total re�ux rate was typically two to
three times as high. Of course the nominal rates are dependent on factors like feed rate
and composition, but these model inputs were changed quite a bit without the re�ux rate
reaching the level reached in experiments. With the experimental re�ux and vapor rate
values applied to the model, the model yielded higher distillate purity, and product sam-
ples analyzed with pycnometer showed the same thing (yd > 0.99). Although it is di�cult
to accurately measure the composition of high purity methanol with a pycnometer, the
method is good enough to conclude that the composition estimator is not very accurate.
The estimator, basically giving out a weighted average of temperature measurements, is
however good enough when the purpose is to stabilize the column.

An additional explanation for the discrepancy between required re�ux in simulations
and experiments is an inaccurate pump characteristic. After the experiments were �n-
ished, we had problems with the pump not pumping any re�ux even at full speed, and
this problem may have started gradually. Right now, the reason for this pump de�ciency
is not known, but it may be because the pump tube has been damaged or perhaps been
squeezed somewhat out of position. Also, air may have become trapped in the pump, but
we have tried to vent the tubes, and the problem persists.

Because especially the PI controller performs as good as it does experimentally, the
simulated worst case parameter variations seem restrictive. On the other hand high-
frequency noise and uncertainties were not even simulated, and it turned out that a low-
pass �lter was necessary in the experiments for the PI controller to perform satisfactory. It
turned out to be di�cult to simulate the system with measurement noise, the simulation
step size decreased to zero and the simulation stopped when adding noise, even when
using a sti� solver. Robustness could of course have been tested more rigorously both
in simulations and also experimentally by adding arti�cial perturbations. However, the
overall goal was to design an acceptable controller for the experimental column. Both of
the controllers control the experimental column quite well, and are thus, one may argue,
robust enough.

After all, there is little reason to use the H∞ controller instead of the PI controller
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on the experimental column. The di�erence in performance is just too small to justify
using the more complex H∞ controller. In simulations the H∞ controller is more robust
to plant parameter changes than the PI controller, but this level of robustness is hardly
necessary when running the column close to a nominal operation point, which is normally
the case. The PI controller is both much simpler to implement and to possibly re-tune
online in case of changes in operation conditions (the re-tuning would on the other hand
perhaps not be necessary with the more robust H∞ controller). Another, and perhaps
more important reason for choosing the PI controller, is the transition between manual
and automatic control. With the 2× 2 H∞ controller, both composition loops are closed
simultaneously and the column must be quite steady when turning on automatic control.
With the PI controller, this is less important. Instead of closing both loops, the operator
closes one loop, waits for the column to settle, and then closes the other loop. With
some training, neither of the controllers are di�cult to turn on, but for the unpracticed
operator, the switch from manual to automatic PI control is less prune to failure than the
switch to H∞ control.



7. Conclusion

7.1 Experimental setup

Generally, the experimental setup works quite well. It is unfortunate that the temperature
sensors are placed in a way which makes it di�cult to replace them in case of sensor failure.
Also the measurement range of the �ow meters is somewhat above the actual �ow rates,
this in combination with pulsating �ows, makes the �ow meters not suitable for controller
feedback if more accurate �ow control is desired. They do however provide meaningful
feedback in terms of �ow visualization to the operator.

Lately there has been a problem with the re�ux pump not pumping anything at all,
and the bottoms pump tube has been replaced once because of a hole in the tube. One
may argue that this is just the way it is with experimental equipment, it goes to pieces and
does not cooperate when you need it the most. However, the broken bottoms pump tube
was easily replaced, and replacing the re�ux pump tube will hopefully solve the problem
with the re�ux as well.

7.2 Column model

The derived column model gives a good description of the experimental column, and sim-
ulations with the non-linear column model match well with experimentally obtained data.
Obtaining the nominal holdup and the time constant for the linearized tray hydraulics
was straightforward using a step in the re�ux �ow to excite the temperature dynamics.
The obtained parameter values for the linearized tray hydraulics in the top section cor-
relates well with reported values in articles. The parameter values does not correlate
with reported values in the bottom section, which may be because of the sub-cooled feed
creating a pinch region a�ecting the dynamic coupling between the top and the bottom
sections.

53
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7.3 Composition estimator
The estimator su�ers from few parallels in the calibration data and few temperature
measurements in the column. The estimator is good enough to use for stabilizing the
column, but the accuracy is dubious to say the least. In particular, it has been veri�ed
using a pycnometer, that the distillate �ow is purer than what the estimates says.

The predictive property of the static estimator reduces the e�ective delay between
internal �ow changes and composition estimates. The estimates are a likely to be a little
ahead of actual composition changes, although this has not been experimentally veri�ed.
The reduced delay makes control easier.

7.4 Controller design
Simulations show that a conventional PI controller design can be made signi�cantly more
robust to parameter variations if adding an H∞ controller in the feedback loop. Seen
from a di�erent perspective, the SIMC PI tuning rules are quite useful when calculating
a pre-compensator in the H∞ loop shaping technique.

Experimentally there is little di�erence in performance with the PI-controller, if in-
cluding a noise �lter, and the H∞ loop shaping controller. The PI controller is preferred
for its lower complexity and because the operator can close one loop at a time, making
the transition from manual to automatic control easier.

7.5 Further work
The column is ready to be used as it is, but further improvements can be made especially
on the composition estimator. The plan is to keep the column here at NTNU for a little
longer to test it out with other operators than the author. As of now, the only one who
know the control program and its user interface is the author. A detailed manual is in
progress to explain and document the LabView control program, and hopefully give some
useful hints to the new operator running the system.
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