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X [tmﬁl <u) + E” ) Abstract—For a linear multivariable plant, it is known from earlier work
V/3b 6 that the easy computable pole vectors provide useful information about in

It follows from (17) that a plot of% (T, 7) as a function ofl” may WhtiChtinf?m chla(nnel (a;t_ltj_atorg a giveb? rT;O(tjr(]e_ is C(:ntrollable %nd in_which
: ; : * output channel (sensor) it is observable. In this note, we provide a rigorous
.be qbtamed by plotting against,. Severa.l of these plots .are Showr} eoretical basis for the use of pole vectors, by providing a link to previous
in Fig. 2. Note that the bound on the relative undershoot increases fQfits on performance limitations for unstable plants.
fagt sett“.ng. times anq smallgr(slower zero dynaml/\cls)' Th!s is quali- Index Terms—Actuator selection, control structure design, H -infinity
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for fast settling and slow zero dynamics. sensor selection.

IV. CONCLUSION
I. INTRODUCTION

NMP behavior can be understood in the linear and nonlinear cast?vI . . . -
using the zero-dynamics formulation. In this formulation, the “con- ost available control theories consider the problem of designing
straints” imposed by plant NMP behavior can be examine’d In partl%o optimal multivariable controller for a well-defined case with given
ular, the permissible output behavior must drive the state of the zé?gms’ outputs, measurements, perf_or_mance specifications, and so on.
dynamics onto the stable manifold. Furthermore, in cases where \I\J%e following |mport§1nstructural decision¢14] that come before the
wish to achieve this in a finite time, a lower bound on the require?]':tuall contrc_)ller d§5|gn are thgrefore not c.on5|dered.
output deviation is imposed. For the case of scalar nonlinear NMP zerol) Selection of inputs (manipulated variables, actuators).
dynamics, we show fast settling and small undershoot are incompatible?) Selection of primary outputg : controlled variables with spec-
requirements. This is consistent with linear system conclusions for real  ified reference values.

NMP zeros. 3) Selection of secondary outputs (measurements, sengers)
Extra variables that we select to measure and control in order to
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4) Selection of control configuration: Structure of the subcorposes limitations on the achievable control performance [19], [7], [6],

trollers that interconnect the above variables. [5], [10], including a bound on the minimum norm &fS. The min-
5) Selection of controller type (control law specification, e.g., PIDimum value of theH..-norm of K'S is equal to its Hankel singular
control, LQG, etc.) value [7], [6].

Most industrial control systems are hierarchically structured with at In summary, the main contribution of this note is to provide a rig-
least two layers. In the lower (secondary, regulatory) control layer, vous link between the concept of pole vectors and previous work on
have local control of the selected secondary controlled variaples control performance limitations. The presentation in this note is brief
The controllers at this level are in most cases single-input—single-outpuplaces, and for detailed proofs and additional examples we refer to
(SISO) controllers. The reference values) for these secondary [8, Ch. 6].

variables are degrees of freedom (inputs) for the upper (primary,Notation is fairly standard. We consider a linear plant with state-
master, supervisory) control layer which deals with the control of tHgace realization

primary outputsy; . The primary control layer may use multivariable da(t) _ ) A )
or decentralized controller. The relative gain array (RGA) [2] is a dt Ax(t) + Bu(t) y = Cx(t)+ Du(t)
simple and popular tool for evaluating whether to use multivariable ¢ time;

control, and to assist in the possible selection of input—output pairingsz(t) € R" state;
for decentralized control. Specifically, pairing on negative steady-stateu(t) € R™ input;
RGA-elements should be avoided, because otherwise the sign of the(t) € R output;
steady-state gain will change if a loop is somehow taken out of 4, B,C,D  real matrices of appropriate dimensions.
service, which leads to instability if the loop contains integral actiof.he corresponding transfer function matrix from inputs outputs
However, this note deals with the input—output pairing problem for

the secondarycontrol layer, with focus on stabilizing control. Here G(s)=C(sI—-A)'B+D=
the RGA is not usually a very useful tool, because: 1) interactions

in this layer are usually small; 2) stabilizing loops are not takefye will use the following indexes (subscriptsor the statesy, j for
out of service; and 3) output performance is not an important issy inputsu, andk for the outputsy. We letp; = A,(A) denote the
in this layer. i'th pole of G(s), where);(4) is thei’th eigenvalue ofd. When we

The objective of this note is to find a simple tool for selecting inputgfer to the “mode’s; we mean the dynamic response associated with
u (actuators) and outputs(sensors) for stabilizing control, whichis a;,. The#__-norm of the systend/ is

subproblem of decisions 1) and 3) as listed earlier. Intutively, the clas-
sical concepts of state controllability and observability seem useful,
since we want to select inputs such that the unstable states are eagily theH.-norm of M is
controlled (excited), and select outputs such that the unstable states are /=
easily observed. This leads one to consider the easily computable input |M(s)|]2 = \/2 / tr(M(jw)? M(jw))dw.
pole vectors (directions), and output pole vectorg, as a tool for oo
selecting inputs and outputs for stabilizing control. This approach also
makes it possible to consider the inputs (state controllability) and out- Il. POLE VECTORS
puts (o_bservability) separately. Such ideas have be_en _around inthe ”te_rlfor a polep; the corresponding right eigenvector(‘output state
ature since the 1960s, and, alt_hc_)ugh we could n_ot finditclearly Stateddi'tlection”) and left eigenvectar, (“input state direction”) are defined
has surely been used by practicioners. The basis for our work, was an at- )
tempt to design a stabilizing control system for the Tennessee—Eastman
challenge problem [4], where we found that the pole vectors provided At =piti; ¢ A=piq)’.
very useful information for selecting inputs and outputs. This led us
to search for a more rigorous basis for the use of pole vectors, aig usually normalize the eigenvectors to have unitlength||ég}. =
we were able to derive a direct link between the pole vectors and thand||g;||. = 1. Theinput pole vectomassociated with the poje is
minimum norm of the transfer functiali' S from plant outputs (noise, defined as
disturbances) to plant inputs, both in terms ftie- and 7 ..-norms. -
This is clearly relevant, since an important issue for stabilizing con- upi = B7g; @)
trol is to find an input—output pairing such that the input usage is min- . )
imized. First, thispreducez thF; Iikeﬁhood for input sgturatiogn (whicﬁnd theoutput pole vectors defined as
most likely will result in instability), and second, it minimizes the “dis- Y, = Cti. o)
turbing” effect of the stabilization of the remaining control problemEor a given realizationA, B, C, D) and normalized eigenvectors, the
More specifically, for a plany = Gu + Gad with feedback control pole vectors corresponding to a distinct ppleare unique up to the
u = —K(y + n — r) the closed-loop input signal is multiplication of a complex scalar of length 1(|c| = 1). For a re-
. , peated pole; (not distinct) there may be more than one linearly inde-
u=-KS(n+Gqd —7) . . . .

—_——— pendent eigenvector, in which case the eigenvectors and pole vectors

unavoidable associated with; are matrices. (These technical issues are not impor-
whereS = (I+GK )t Thus, to minimize the required (unavoidablefant for this note, since all theorems are for distinct poles). To motivate
input usagéw ) due to measurement noige) and disturbances!), we the introduction of pole vectors, consider for the case when pliles
should choose input—output pairings for stabilizing control such thate distinct the following dyadic expansion of the transfer function:
we minimize the resulting magnitude of the stabilized transfer func- "1 Ctiqf{B
tion [I£ S];x from the selected outpyt. to the selected input;. Note Gls) = Z a7t e N +D
that the transfer functiod’S should also be minimized in order to ijl ' -
maximize the robustnes with respect to additive uncertainty (e.g., [7]). — L Yy ity +D. 3)
However, the presence of an unstable [right-half plane (RHP)] pole im- — qfti s—\i

[|M(s)||oo = supa M (jw)
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Note here that;¢* is a rank-one: x » matrix andy,, ,u’.,

».iUp,i isarank-one a complex eigenvalue into a single column. The first column corre-
I x m matrix, whereas the inner produgf ¢; is a scalar. Douglas and sponds to the polg; = 0, the second column corresponds to the pole
Athans [3] note that, ; = B¢, is “an indication of how much the p> = 0.001, the third column corresponds to the complex conjugate
i'th mode is excited by the inputs”, and thg; = Ct; is “an indi-  pairps 4+ = 0.023+0.156;, and the fourth column corresponds to the
cation of how much thé'th mode is observed in the outputs.” Indeedcomplex conjugate pajrs ¢ = 3.066 £ 5.079;. From the output pole
the pole vectors may be used for checking the state controllability aneictors, we see that the poleat = 0 is observable in output 7

observability of a system, and from linear system theory we have timeoutputs 5 and 7ps 4 mostly in outputs 5 and 7, ang s mostly in

following [20, p. 52]. output 10. The input pole vectors are
« The modep; is controllable if and only if, ; = B g; # 0 (for [ 6.815 6.909 2.573 0.964]
all left eigenvectorg, associated witp;). 6.906 7.197 2.636 0.246
+ The modep; is observable if and only i, , = Ct; # 0 (for all 0.148 1.485 0.768 0.044
right eigenvectors; associated witlp; ). 3.973 11.550 5.096 0.470
It follows that a system is controllable (observable) if and only if every 0.012  0.369 0.519 0.356
modep; is controllable (observable). Furthermore, a mpgés con- 0597  0.077 0.066 0.033
trollable from an inpute; if the j’th element inu,, ; is nonzero, and |Up| =

0.132  1.850 1.682 0.110

observable from an outpyt. if the k'th element iny,, ; is nonzero. 99.006  0.049 0.000 0.000

From the latter results it seems clear that the magnitudes of elements .
in the input pole vectos, ; give information about from which input 0'00: 0'(354 0-0090.013
thei’th mode is most controllable, and that the magnitude of the ele- 0.247  0.708  1.501 2.020
ments in the output pole vectgy, ; give information about in which 0.109  0.976 1.446 0.753
output thei'th mode is most observable. The objective of this note is to L 0.033  0.094 0.201 0.302 ]
confirm this intuition in terms of which input and output to select foFrom the input pole vectors, we see that the polg;at= 0 is most
stabilizing control. easily controllable from input &- from input 4,ps3 4 from input 4,

Remark 1: The pole vectors are easy to compute as part of @mdps ¢ from input 10.
eigenvalue computation, but one needs to be a bit careful to get th&Vhen designing a stabilizing control system, we normally start by
same order for the left and right eigenvectors. Matlab routines fstabilizing the “most unstable” (fastest) mode with the largest absolute
their calculation are available from the home page of S. Skogestadlue, i.e., poleys s in this case. From the pole vectors, this mode is
http://www.chemeng.ntnu.no/~skoge. most easily stabilized by use of input 10 (reactor cooling water flow) to

Remark 2: The inner producy,’t; of the eigenvectors influences control output 10 (the reactor cooling water outlet temperature). We de-
the magnitude of the transfer function and thus the magnitude of tsigned a simple Pl-controller for this loop and recomputed the poles. In
input usage, but does not influence the relative ranking of candidaigdition to stabilizing the mode correspondingtg;, the recomputa-

inputs and outputs. tion of the system poles shows that the closing of this single loop also
The following example illustrates how the pole vectors may be usefstabilizes the mode correspondingtos, which is reasonable since
for practical applications. the the pole vectors show that this mode is observable in output 10 and

Example 1: The Tennessee Eastman chemical process [4] was goentrollable from input 10. The stabilization of the two remaining in-
troduced as a challenge problem to test methods for control structtegrators 4, andp:) requires the closing of two additional loops (two
design. The process has 12 manipulated inputs and 41 candidate rtigaid level loops). For more details, see [8] and [9].
surements, of which we here consider 11. The open-loop process ihe above example demonstrates the practical usefulness of pole
unstable, and the first step in a control system design for this processtors. The objective of the remaining of this note is to rigorously
is to design a stabilizing control system. To assist in this step, we colimk the pole vectors to existing results on achievable performance.
pute the pole vectors. The model has six unstable poles in the operating

point considered lll. STABILIZING CONTROL WITH MINIMUM INPUT ENERGY
p; =[0 0.001 0.023+0.1565 3.066=+5.0795]. (H2-NORM)
The inner products of the left and right eigenvectors correspondingAe SISO Control
the unstable modes are A critical issue is usually to avoid saturation of the input used
gt = [0.3209 0.0467 0.0210 0.0074]. for stabilization, bec_a_use_ otherwise the system e'ffe_ctively' becomes
open-loop and stability is lost. More generally, it is desirable to
The output pole vectors are minimize the input usage required for stabilization, and this motivates
r0.000 0.001 0.041 0.1127 the following problem:
0.000 0.004 0.169 0.065 Problem 1 (SISO Input Energy for Stabilization; see
0.000 0.000 0.013 0.366 Fig. 1): Consider a plan& with a singlé modep € C+ (Rep > 0)
0.000 0.001 0.051 0.410 and white measurement noisg of unit intensity in each outpujy..
0.009 0.580 0.488 0.315 Find the best pairing.; < y., such that the plant is stabilized with

v, = [0.000 0.001 0.041 0.115 minimum expected input energy

1.605 1.192 0.754 0.131 TG k) = E { i L[ u?(t)dt} . @)

0.000 0.001 0.039 0.107 T—eo T Jg

0.000 0.001 0.038 0.217 At first sight, it is not clear that the output selection problem is in-

0.000 0.001 0.055 1.485 cluded at all, since the outputs do not enter into the objective (4) ex-
L0.000 0.002 0.132 0.272] plicitly. However, the output selection problem is included implicitly

where we have taken the absolute value to avoid complex numbers inye consider a specific polp = p. and the subscripi is omitted in the
the vectors, and we have combined eigenvector pairs correspondinéptiowing.
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at _?/1 B. Multiple-Input—Multiple-Output (MIMO) Control
G(s) : We here consider the same problem as before, but with multivariable
T» (MIMO) control.
u; m Theorem 2 (MIMO Input Energy for Stabilization)Consider a plant
G with a single unstable mode € C. and with white measurement
K-k(s) noisen,, of unit intensity in each outpuf,. The minimal achievable
J input energy required for stabilization
S B
Fig. 1. PlantG with stabilizing control loopu; « y. J=F {TIE;O T/o w (t)“(t)dt} (8)
is given in terms of the pole vectors
through the measurement noise and the expectation ope&fafbhnis 803 - (g 1)2
. . S . o _ 8- (gt
important problem has attracted little attention in the system theory lit- Tmin = 9

erature, although there is some related work [1], [13], [16]-[18]. For . . e 12 Hyf’HQ .
this problem, an analytical solution can be found in terms of the pole By comparing the minimum value df(j, ) (SISO control) with the

vectors. minimum value of/ (MIMO control), we can quantify the extra input
Theorem 1 (Solution to Problem 1)The minimum input energy, —€nergy needed to stabilize the plant using SISO control compared to full
for a specific inpuj and output is multivariable control. As expected, this is directly given by the relative
(g2 magnitudes of the elements in the pole vectors
. 8p(q''t)”
J(.)ak)min =5 35 5 J .ak min Up||2 *
2 g ) GeFain _ ol Ny, ll2 (10

X . . . . V Jnﬁn o |u1)yj| ‘ |yp;k| -
wherep is the poleyu, ; is thej’th element in the input pole vector,
Yp.k IS thek’th element in the output pole vector, apcandt are the Interpretation in Terms of thi&t,-Norm

left and right eigenvectors corresponding to the madgtabilization is . ) ) .
impossible for the pait;, k), even with infinite input energy, i, ; = The aforementioned theorems may alternatively be interpreted in

0 (the mode is not controllable from inpuf) or y,.» = 0 (the modey terms of the?{,-norm of the clo§ed-loop trgnsfer functidnS from
is not observable from outp&). The numerator in (5) is independent ofP/ant inputs to plant outputs. This follows since (e.g., [20]):

the selection of input and output. Hence, to minimize the input energy min || K Skr(s)|l2 =v/J(j, k)min where
required for stabilization with SISO control, one should Kk
« select the inpuj corresponding to the largest entny, ;| in the Sir(s) =(1+ Gr; Kjn(s) ™" 11)
input pole vectotu,,; min [|K°S(s)]|2 =+/Trnin Where

* select the output corresponding to the largest entgy «| in the
output pole vectoy,,.
Proof of (5): Because of the separation theorem we may prove
(5) by first finding the best input using state feedback (LQR) underthe |V. STaBILIZING CONTROL WITH MINIMUM -INPUT USAGE
assumption of perfect measurement of all states, and then constructing (H oo -NORM)
the optimal state observer (LQE).

LQR: Optimal state feedback to inpuj. In this case, the problem
is to minimize the input usage due to nonzero initial statgsi.e.,
minimize the deterministic cosfLqr(j) = [~ u3(t)dt. The cor-
responding Riccati equation with zero weight on the states and uni
weight on the inputbecomes’ X + X A—X Be,e! B' X = 0,where
e; is a unit vector with 1 in positiofi and 0 in the other elements. With
a single real polg the solution isX = (2p/u2 ;)gg¢’ > 0 and the
optimal state feedback gain becomes

S(s) =(I+GK)". (12)

Interestingly, almost identical results can be derived in terms of
the Ho.-norm. Thus, theH.- and H..-norms give the same best
input—output pairing for stabilizing a pladt with a single unstable
de.

Theorem 3 (Stabilizing SISO Control With Minimdia and H
Input Usage): Consider a plan& with a single unstable mode €
C.. The minimum achievabl&{,- and’H,-norm of the closed-loop
transfer function(';, S, from outputy, to the inputu; is then

1 . .
—— min || K;jpSti(s)]2
\/ |2p| Kji(s)

=|(Gr;)s ()]

min || K;255%(5)||eo =
Kj(s)

Kj=e'B'x = L' (6)

Up, 5

LQE: Kalman filter (state observer) based @n There is no process

15
noise and the Riccati equation becoriie” +A4Y —Y C7e;e/ CY = _ 12pl-la7t] (13)
0. The solutioni§™ = (2p/y?2 ;. )tt" > 0 so the optimal feedback gain [ap.5] - 1y ]
from outputy, to the state estimate becomes Whereup,j is thej’th element in the input pole Vectay, is thek’'th
5 element in the output pole vectgrandt are the left and right eigenvec-
Ky, = YC e, = 2Py (7) tors of A corresponding to the pole S (s) = (1+ G Ik (s)) 7",
Yp.k and the notation(Gy;); ' (p) means: Find the stable version of
Finally, to obtain the value of the expected input enefgwe use [12, Gi; with the RHP-pole ats = p mirrored across the imaginary
Th. 5.4 part (d), pp. 394-395] axis, i.e.,(G;(s))s = (s—p/s+p)Gk;(s), take its inverse, i.e.,
, (Grj(s))7" = ((Gij(s)),)™", and evaluateGy;(s)): ' ats = p.
J(j. k) =tr {‘X’I{f‘k[(}:k} Remark 1: When minimizing the input usage, both in terms of the
9 22 2 1 8p° o ‘H.- andH . -norms, the unstable open-loop peles mirrored into the
—fr{ug aq ——t—t } =7 (¢ t)". left-half plane for the closed-loop system.
pa o Yek Upk pi¥p.k Remark 2: The'H . -controller that achieves the bound in (13) is in

OO0 general improper.
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Proof of Theorem 3:The identitymins, (s [ Kk Ski(s)]|lee = Fy, 24, T
[(Gr;)7 " (p)| follows from [10, Th. 4 and eq.(26)]. Similar and more
general results in terms of the Hankel singular valu& éfare given in Ving,ng,n F, T
[6, Sec. 5.1]. The last identity is proved as follows: Sipds the only A(l) = B() {

unstable mode, it follows from (3) that a partial fraction expansion of
G contains the following two terms: Fig.2. Chemical reactor (CSTR).

1 yu, ;
G(s) = - 2+ N(s
) =gm 5=, TN

Vv
reactor volume (level) and the reactor temperatyres { . The

T
whereN (s) is stable. Alsof7x;(s))s = et (s—p/s+p)G(s)e; and  appropriately scaled linear model is i
sincey,, » = ¢fy, andu, ; = u}'e; we have

0 0 -1 0]
1 yprtp,  S—0D . —20 0 1s[70 35 0 20
(Grj)s(p)| = |75 222 + Nij(s) G(s)=| _3 2 = -
¢t stp st = o3 =3s 20 0 0 0
_ Lyl vl 0 1 00
2] - g™t

The pole at the origiip: = 0) is due to the integrating level, and

The relationship to thét,-norm follows from Theorem 1 and (111  the unstable pole at: = 3.5 is due to the exothermic reaction. The
corresponding pole vectors are

V. ACTUATOR/MEASUREMENTSELECTION FORSTABILIZING CONTROL

0.9988 0
0.9988 1

Yo =ly,, 9,:]= [

Theorem 3 has the following implication for actuator/measurement ~1 —0.9988
selection for a plant with a single unstable mode. Up =[up1 up2]= { 0 0.9988 }

The required input usage for stabilization, both in terms of the
H,- andH .-norms, is minimized by selecting the output (mea- and the inner products of the corresponding eigenvectorgare =

surementy. corresponding to the largest element in the output 0.05 andgt't; = 0.05. Fromy, , we see that the unstable mode at
pole vectory,,, and the input (actuator), corresponding to the  p» = 3.5 is only observable in output 2 (this is also seen easily from
largest element in the input pole vectgy. G(s)), and fromu, > we see that the unstable mode is equally con-

More precisely, we propose the following procedure for designingtepllable in both inputs. Thus, to minimize the input usage required for
SISO stabilizing controller, assuming that input usage is a concern.stabilization we should use output 2 and any of the two inputs.

1) Scale the plant inputs and outputs such that a unit change in eacifommentWe note from,,; that the pole at the origitp, = 0)
inputw, is of equal importance, and a unit change in each outpl?ton'y controllable from input 1, but observable in both outputs. This

ys is of equal importance. Specifically, we have suggest that we may be able to move both the poles into the LHP if we
design a controller using input 1 and output 2. This is indeed confirmed,
G = D;lépu for example, by designing a LQG-controller for the elemen((s).

Remark: For this simple example, we reach the same conclusion
whereG denotes the original (unscaled) model, and the diagoredsily by looking at the elements 6f(s), and indeed, an evaluation

scaling matrices are of the poles and zeros of the transfer function elements yields valuable
insight. However, for more complicated cases the use of pole vectors
D, = diag{fr,max} Du = diag{d; max}- avoids the combinatorial complexity of considering input—output pairs

and is also more reliable numerically.
Typically, @ ; max denotes the maximum allowed input deviation,
for example, the distance from the nominal input value to its
saturation limit. Typicallygi max denotes the magnitude of the VI. DISCUSSION

measurement nois) plus the expected output deviation dues = siaple Poles: Pole Placement With Minimum Feedback Gains
to disturbances (process noig€j.d).

2) Compute the pole vectos, andy,. The pole vector results in this note, in terms of minimum input usage,

3) Select an input;; corresponding to a large element in the inpu@PPly only to an unstable (RHP) pole, because for a stable plant the
pole vectoru,. minimum input usage is zero. However, from (6) and (7), we note that

4) Selectan output, corresponding to a large elementin the outpt@” alterna_tiv_e i_nterpretation _is that pairing on large glements in the pole
pole vectory,. vectors minimizes the required state fgedback gé_}nand observer

5) Design a controller for this input/output pairing. gain Ky x, and this result also generalizes to moving a stable (LHP)

. . . . ole.
Obviously, the input magnitude is not the only concern when P[ State feedback to inputw;. We want to move the distinct real

comes to selecting an input—output pairing for stabilizing control, and .
L ) N N . » -open-loop polep to the closed-loop locatiop by the use of state

this is the reason for using the term “large” rather than “largest” i : . . .

steps 3) and 4) eedback from input ;. The required state feedback gain vector is

Example 2 Stabilization of Chemical Reactofhe objective is to . p—p oy
design a stabilizing SISO controller for the exotermic continuously K= Up. 1 (14)
stirred tank reactor (CSTR) in Fig. 2 using a SISO controller. The '
candidate actuators (inputs) are the outflow and inlet temperatupdlereu, ; is thej’th element in the input pole vector corresponding
F . 0 the polep andgq is the corresponding left eigenvector. Here only
CE ATl and the candidate measurements (outputs) are thnee scalat,,; depends on the choice of inpiitso it follows that any
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matrix norm ofk{; is minimized by selecting the inpgittorresponding H..-norms of the closed-loop transfer functifinS from plant outputs

to the largest element magnitude in the input pole veetor to plant inputs as given in Theorem 3
State observer based ory,. Similarly, we want to move the ob- . " 1 . -
L . ' K, o =—— K;
server polep to the desired locatiom by feedback from outpug:.. 1«%(11) 55 Sk ()] V12p] 1\1?:?) 155 Sk ()2
The required observer feedback gain vector is 120] - l¢™'t|
=|(Gey) ()] = 2L
Ko b7, (15) [upjil |Yp.kl
ik = o whereu,, ; is thej’th element in the input pole vector, ang ;. is the

k'th element in the output pole vector. Input usage is thus minimized
wherey, i is thek’th element in the output pole vector correspondingy selecting an actuator (input) with a corresponding large value of
to the polep andt is the corresponding right eigenvector. Thus, thﬁip,j| and a sensor (output) with a corresponding large Vah*gpgﬂ
norm of Ky . is minimized by selecting the outpkitcorresponding to Furthermore, if one element in the pole vector dominates [see (10)],

the largest element magnitude in the output pole vegfor there is little loss imposed by selecting only one actuator or one sensor.
Our results thus provide some theoretical basis for using the pole
vectors as a tool selecting an input/output pair for moving a stable pole, REFERENCES
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