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CLASSICAL FEEDBACK
CONTROL

Exercise 2.1 Use (2.36) to compute K, and P, for the process in (2.31).

Note:

3(—2s+1)
(55 +1)(10s + 1) |

G(s) = (2.31)

K, =1/|G(w.)l, P, = 2r/w, (2.36)
where w,, is defined by ZG(jw, ) = —180°.
Solution. According to (2.31), the following equation can be obtained:
/G (jwn) = tan™ ' (—2w,,) — tan™ " (5w, ) — tan™ ' (10w, ) = —180°

Hence,
tan(180° + tan™ ' (—2w,)) = tan(tan "' (5wy ) + tan™ " (10w, ))

leads to
_ bwy 4+ 10w,

o, = = T o
v = T 50wz

which gives the solution of

ik,

REEET)
and

1 (1 + 25 x 17/100)(1 + 100 x 17/100)

Ko = Ty 9(1 + 4 x 17/100) =25
|G(Jw)|

Zm_ 20T _ 503

Wy N V17

Exercise 2.3 Derive the approximation for K,, = 1/|G(jw..)| given in (5.96) for a first-
order delay system.

P, =
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Note: A first-order delay system can be represented by G(s) = ke~%2/(1+7s), and

|G(jwu)| ~ =k

3
N

(5.96)

Solution.
LG (jwy) = —0wy — L(1 4 jw,r) ' = —7

Assume 7 3> 6. Then w,,7 > 1 and Z(1 + jw, 7)™ &~ —m/2. Hence, w, ~ (7/2)/6 and

1 o TWu T
|GGwy)] ~ kT 2k6

K, =
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INTRODUCTION TO
MULTIVARIABLE CONTROL

Exercise 3.1 Derive the cascade and feedback rules.

Solution.

Cascaderule Asshown in Fig. 3.1(a), let the signal from G to G2 be z, then z = Gz and
z = Ghu, thus, z = G2G1u = Gu, i.e. G = G1Ga.

Feedback rule As shown in Fig.3.1(b), we have, v = u + z = u + G2y = u + G2G1v, or,
(I — G2G1)v = u. Let L = G>G1, we can obtain, v = (I — L) 'u.

Exercise 3.3 Use the MIMO rule to show that (2.19) corresponds to the negative feedback
system in Figure 2.4.

Solution. InFig. 2.4, from point y the loop transfer function is K G and exiting the loop gives
the term (I + KG)~". Therefore, the transfer function from r to y is KG(I + KG)™' =
(I+KG)™'KG,fromdtoyis(I + KG) 'Ggandfromntoyis —(I + KG) ' KG. So
(2.18) represents the negative feedback system in Fig. 2.4.

Exer cise 3.5 Compute the spectral radius and the five matrix norms mentioned above for the
matrices in (3.29) and (3.30).

Solution.
Matrix (3.29):
G = [g 3]
p(G1) = 7.2749
|Gillr = 7.3485
IG1llsum = 14
IGillin = 8
IGillic = 9

[|Gilli2 = 7.3434
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Matrix (3.30):
0 0

oo o

p(G) = 0
IGllr IGllsum = [|Glli1 = [|Glli2 = [|Gllico = 100

Exercise 3.7 Design decentralized single-loop controllers for the plant (3.65) using (a) the
diagonal pairings and (b) the off-diagonal pairings. Use the delay 8 (which is nominally 5
seconds) as a parameter. Use PI controllers independently tuned with the SIMC tuning rules
(based on the paired elements).

0.01e™% [—34.54(3 +0.0572) 1.913

T (5+1.72-10-%)(4.325 + 1) —30.22s —9.188(s +6.95 - 107%)
(3.65)

G(s)

Solution. For tuning purposes the elements in G(s) are approximated using the half rule (see
page 58) to get

_ e—0s e~ (6+2.16)s
Gls)y e | 00828 o 0.019137;_95
—0.302275 5  —0.09188 75—

For the diagonal pairings this gives the Pl settings
Key = —12.1/(1e1 + 0), 711 = 4(1c1 + 6); Keo = —47.0/ (102 + 0), 712 = 4.32
and for the off-diagonal pairings (the index refers to the output)
K1 = 52.3/(7e1 +042.16), 711 = 4(7e1 +0+2.16); Ko» = —14.3/(7e2 +6), 772 = 4.32

For improved robustness, the level controller (y1) is tuned about 3 times slower than the

pressure controller (y2), i.e. use 7.1 = 36 and .o = 6. This gives a crossover frequency

of about 0.5/6 in the fastest loop. With a delay of about 5 s or larger you should find, as

expected from the RGA at crossover frequencies (pairing rule 1), that the off-diagonal pairing

is best. However, if the delay is decreased from 5 s to 1 s, then the diagonal pairing is best, as

expected since the RGA for the diagonal pairing approaches 1 at frequencies above 1 rad/s.
Figures 3.7a and b present the simulations for these pairings.

Exer cise 3.10 Design a SVD-controller K = Wy KW for the distillation process in (3.93),
i.e. select Wy = V and Wo = UT where U and V" are given in (3.46). Select K, in the form

c 75s+1 0

K, = s
s 0 ca 75‘?‘94—1

and try the following values:

1. ec1=ca = 0.005;
2. ¢1 = 0.005, c2 = 0.05;
3. ¢1 =0.7/197 = 0.0036, c2 = 0.7/1.39 = 0.504.
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Y1

Y2

. .
50 100 150 200
(a) Diagonal pairing

. .
100 150 200
(b) Off-diagonal pairing

Fig. 3.7a. Simulation for § = 1 (Exercise 3.7).

s ]
Y1
0 ]
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(a) Diagonal pairing

7T

> Y,
_2 . 4
_4 ‘ ‘ ‘ ‘
0 200 400 600 800 1000
(b) Off-diagonal pairing
Fig. 3.7b. Simulation for 8 = 5 (Exercise 3.7).
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Simulate the closed-loop reference response with and without uncertainty. Designs (a) and
(b) should be robust. Which has the best performance? Design (c) should give the response
in Figure 3.14. In the simulations, include high-order plant dynamics by replacing G(s) by
W;H)KG(S)' What is the condition number of the controller in the three cases? Discuss
the results. (See also the conclusion on page 251).

Solution. The simulation results of designs (a) and (b) are shown in the following figures.

25 4 250

0 10 20 30 40

70 80 9 100 0 10 20 30 40 60 70 80 90 100

50 60 50
TIME (min) TIME (min)

(a) Design (a) (b) Design (b)

Design (b) is the best if we want a fast settling time. By increasing c2 we increase the loop
gain in the weak direction.
The condition number of the controller:
Design (a): v(K) =1and y; (K) = 1;
Design (b): v(K) = 10 and ;7 (K) = 1.0045;
Design (c): v(K) = 197/1.39 = 128.777 and ~; (K) = 1.0049.
From this, design (a) is always robust with respect to uncertainty, whereas designs (b) and (c)
are potencially sensitive to uncertainties.

Exercise 3.12 Consider again the distillation process G(s) in (3.93). The response using
the inverse-based controller K, in (3.95) was found to be sensitive to input gain errors.
We want to see if the controller can be modified to yield a more robust system by using
the Glover-McFarlane H . loop-shaping procedure. To this effect, let the shaped plant be
Gs = GKiny, i.6. Wi = Kiny, and design an Ho, controller K, for the shaped plant
(see page 370 and Chapter 9), such that the overall controller becomes K = Kin, K. (You
will find that v, = 1.414 which indicates good robustness with respect to coprime factor
uncertainty, but the loop shape is almost unchanged and the system remains sensitive to input
uncertainty.)

Solution. The following MATLAB script could be used to do this exercise. (To use these
commands it is necessary to have the old u-toolbox)

GO = [87.8 -86.4; 108.2 -109.6];
dyn = nd2sys(1,[75 1]); Dyn = daug(dyn,dyn);
G = mmult(Dyn,GO);

% Inverse-based controller
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dynk = nd2sys([75 1],[1 1.e-6],0.7);
Dynk = daug(dynk,dynk);
Kinv = mmult(Dynk,minv(G0));

% Try to robustify with respect to coprime uncerainty
Gs = mmult(G,Kinv);

[a.b,c,d]=unpck(Gs);

gamrel=1.1;

% gammin=1.4142:
[Ac,Bc,Cc,Dc,gammin]=coprim(a,b,c,d,gamrel);

% Change from positive to negative feedback:
Ks=pck(Ac,-Bc,Cc,-Dc);

K = mmult(Kinv,Ks);

% TIME simulation

% Nominal

GK = mmult(G,K); I12=eye(2); S = minv(madd(12,GK));
T = msub(12,S);

kr=nd2sys(1,[5 1]); Kr=daug(kr,kr); Tr = mmult(T,Kr);
y = trsp(Tr,[1;0],100,.1);

u = trsp(mmult(K,S,Kr),[1;0],100, .1);

% With 20% uncertainty

Unc = [1.2 0; 0 0.8]; GKu = mmult(G,Unc,K);

Su = minv(madd(12,GKu)); Tu = msub(12,Su);

Tru = mmult(Tu,Kr);

yu = trsp(Tru,[1;0],100,.1);

uu = trsp(mmult(K,Su,Kr),[1;0],100, .-1);
subplot(211);vplot(y,yu,’--");title(COUTPUTS?)
subplot(212);vplot(u,uu,’--");title(C INPUTS?);
xlabel(CTIME (min)?);

Exercise 3.14 Cascade implementation. Consider further Example 3.21. The local
feedback based on y- is often implemented in a cascade manner; see also Figure 10.11. In
this case the output from K enters into K» and it may be viewed as a reference signal for y».
Derive the generalized controller K and the generalized plant P in this case.

Solution. The cascade structure is shown as follows.
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d
Y
Kq
+
+ + y2  yt
T—p Kr —h-ﬁ?—b K1 K2 > u G2 io—b Gl yl:

Sinceu = KzKlKTT—KzKlyl—szQ—FKdd, we getK = [KzKlKT —KsKy —K2 Kg4 ]
Also, we can get

Y1 —1r G1 —I GlGQ
r 0 I 0 d
Y1 =|Gi 0 G1G2 |i1“‘| .
Y2 0 0 G2 u
d I 0 0
Thus,
Gi1 -1 Gi1G:
0 I 0
P=|Gi 0 GiG2
0 0 G2
I 0 0

Exercise 3.16 Mixed sensitivity. Use the above procedure (page 111) to derive the
generalized plant P for the stacked V in (3.105).

W.KS
N = | WpT

WeS |

Solution. In (3.105),

1. Let K =0in N, we get,

P11 =N(K=O)

I
T 1
o o
—_—

Wpl

2. From
N — Py
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, We get,
W.KS W.K(I+GK)™!
Q=N-P;; = WrT = | WrGK(I +GK)™!
Wp(S —1I) —-WpGK(I+ GH)™!

The common factor is R = K (I + GK)™'. Thus, G22 = —G.
3. Since Q = P12 RP>1, we have,

W
Py = WrG |,
—WpG
and Py =1.
As conclusion, we get,
0 Wa
p= 0 WrG
T | Wpl —WpG
I -G

Exercise 3.18 Consider the performance specification ||jwp S||cc < 1. Suggest a rational
transfer function weight wp(s) and sketch it as a function of frequency for the following two
cases:

1. We desire no steady-state offset, a bandwidth better than 1 rad/s and a resonance peak
(worst amplification caused by feedback) lower than 1.5.

2. We desire less than 1% steady-state offset, less than 10% error up to frequency 3 rad/s, a
bandwidth better than 10 rad/s, and a resonance peak lower than 2. Hint: See (2.105) and
(2.106).

Solution. wp1 = L5, and wps = 3 - <Sj}§-1f. Comment; In the latter case we
require that the magnitude should increase by a éactor 10 when the frequency increases by

approximately a factor 10%/2 (from 3 rad/s to 10 rad/s).

Exercise 3.20 What is the relationship between the RGA-matrix and uncertainty in the
individual elements? Illustrate this for perturbations in the 1, 1-element of the matrix

A= [190 g] (3.114)

Solution. The inverse of the RGA-element directly gives the relative change in the element
that gives singularity.

—80 81

RGA(A) = [ 81 —80]

RGA-matrix has 1,1-element of -80, so G becomes singular if 1,1-element is perturbed from
10 to 10(1+1/80)=10.125.
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Exercise 3.22 Compute ||A||i1, 7(A) = || Alls2, [|Allico, |AllF, || Allmax and || Al|sum for
the following matrices and tabulate your results:

10 11 11 10
Ar=1 AQ_[O 0]’A3_[1 1]’A4_[0 0]"45_[1 0]

Show using the above matrices that the following bounds are tight (i.e. we may have equality)
for 2 x 2 matrices (m = 2):

5(4) < ||Allr < v/m 5(A)

[ Allmax < 3(4) < m|Allmax
1]l /v < 3(A) < Vamll Al
1 Allioo/v/m < 5(4) < vl Allico
141l < || Allsum

Solution. The result table is as follows:

A | Alln o(A) = [|Allie ([ Allicc 1Al [[Allmax [ Allsum

10

1. 0 1] 1 1 1 14142 1 2
10

2. 0 o 1 1 1 1 1 1
11

3|1 1| 2 2 2 2 1 4
S

4 o o 1 1.4142 2 14142 1 2

5. } 8 2 1.4142 1 14142 1 2

From the table, the above bounds can be checked:
7(A2) = || Az|lr, |A1]lF = V25 (A1)
|Aillmaz = 5(A1), 5(As) = V2| Ad|mae
| Asli1/v2 = 3(A4s5), 3(As) = V2||Adlln
| Aallico /V/2 = &(A4), 3(As) = V2|| As]lico
||A2”F = ||A2||sum

Exercise 3.24 Do the extreme singular values bound the magnitudes of the elements of a
matrix? That is, is (A) greater than the largest element (in magnitude), and is o (A) smaller
than the smallest element? For a non-singular matrix, how is o(A) related to the largest
element in A=1?

Solution. The answer for the first question is “yes”, because || A|/max < &(A). But for the
second question, the answer is “no”. As an example, consider A = I for which g(A4) = 1,
but the smallest element is 0. For a non-singular matrix, a(A) is smaller than inverse of the
largest element in A™", because g(A) = 1/5(A™) < 1/||A™ | max-
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Exer cise 3.26 Find two matrices A and B such that p(A + B) > p(A) + p(B) which proves
that the spectral radius does not satisfy the triangle inequality and is thus not a norm.

&mmnuuhzu HAMB:[ig}mmzpwyﬂmmmA+m:3>
p(A) +p(B) =2.

Exercise 3.28 Write K as an LFT of T = GK(I + GK)™', i.e. find J such that
K =F(J,T).

Solution. T = GK (I + GK)™*! gives T as an LFT of K, but we want the inverse. We get
K=G'TI-T)"! s0
J_FJG*]

I 1

Exercise 3.30 Show that the set of all stabilizing controllers in (4.94) can be written as
K = Fi(J,Q) and find J.

Solution. In (4.94), K = (V, — QN;) (U, + QM;).

K = (Vi —QN) " (Ur + QM)
= V7'U + (Ve —QN)7'Q(M, + NiV;T'U)
= VU + VT - QN TIQM + NVTUR)
VU + VU - NVTIQ) T (M + NV,

We get

-1 -1
J= V. Ur \z

= | M+ NVU, NV (3.115)
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4

ELEMENTS OF LINEAR
SYSTEM THEORY

Exercise 4.1 We want to find the normalized coprime factorization for the scalar system in
(4.22). Let N and M be as given in (4.23), and substitute them into (4.24). Show that after
some algebra and comparing of terms one obtains: k = £0.71, k1 = 5.67 and k2 = 8.6.

Solution. Since M*(s) = M(—s), (4.24) can be written as M (—s)M(s) + N(—s)N(s) =
1. Thus:
k2(2s* — 3052 + 148)
st — (k? — 2ko)s? + k2
By comparing the terms of the denominator and numerator, it can be obtained that:

=1

26 =1 = k==0.71,
148k = kI — ky = 8.60,
30k = k? — 2k» = ki =5.67.

Exercise 4.3 (a) Consider a SISO system G(s) = C(sI — A)™" B + D with just one state,
i.e. A isa scalar. Find the zeros. Does G(s) have any zeros for D = 0? (b) Do GK and KG
have the same poles and zeros for a SISO system? Ditto, for a MIMO system?

Solution. (a) Zero at z = A — (CB)/D. When D — 0 the zero moves to infinity, i.e. no
zero.
(b) Yes, for SISO systems, GK = K G have the same poles and zeros.

For MIMO systems, the poles are the same, but the zeros may be different, at least for
cases where K and G are non-square. For cases where K and G are both square, we have that
det(KG) = det(GK) = det(G) - det(K) and it follows that the zeros are generally the
same (provided care is taken for pole-zero canvellations; see "important remark” no. 4.

For the non-square case, consider the following example, based on comments by Dr.
Matthias Heller.

G = [ 1/(s+2); 1/(s+1)]
K=[1 (s+3)7/(s+4)]

The resulting 2x2 transfer function GK has no (MIMO) zeros, but the 1x1 transfer function
KGis
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2s2+ 10 s + 10

sSS3+7s2+14s + 8

which has two zeros at -3.62 and -1.38, respectively. The poles for both GK and KG are the
same; the two poles of G plus the pole of K.

Exercise 4.5 (a) Given y(s) = G(s)u(s), with G(s) = };j, determine a state-space
realization of G(s) and then find the zeros of G(s) using the generalized eigenvalue problem.
(b) What is the transfer function from w(s) to z(s), the single state of G(s), and what are the

zeros of this transfer function?

Solution. (a) A state-space realization of G(s) is

r = —xz+4+2u

= r—u

and
P(s) = [Sil :ﬂ

Thus, zero at s = 1.
(b) From wu(s) to z(s), the polynomial system matrix is:

P(s) = [51’1 _02]

and the corresponding transfer function is G(s) = ¢+ s, there are no zeros in this
transfer function.

Exer cise 4.7 For what values of ¢; does the following plant have RHP-zeros?

_ |10 O _ _ |10 e 10 0
A_[O _1], B=1, C—[m 0], D_[O 1} @.1)
Solution.
s—10 0 -1 0

0 s+1 0 -1
10 c1 0 0
10 0 0 1

If s = ¢1 —1, the sum of the 2nd and 4th rows of P(s) is equal to the 3rd row. Thus z = ¢; —1.
So the plant has RHP-zero if ¢; > 1.

P(s) =

Exercise 4.9 Use (A.7) to show that the signal relationships (4.83) and (4.84) may also be
written as

[s]=me[&]: we=[2% §] (4.85)

From this we get that the system in Figure 4.3 is internally stable if and only if M (s) is stable.


skoge
Sticky Note
Misprint: should be 2/(1+s)


ELEMENTS OF LINEAR SYSTEM THEORY 15

Solution. Signal relationships (4.83) and (4.84) are:
u=(I+KG) 'de — K(I+GK) 'd, (4.83)
y=G(I+KG) 'd, + (I + GK) 'd, (4.84)
Which can be written as:
w] [ U+KG)™?' —-K(UI+GK) '] [du
y|  |GU+K®)™ (I+GK)! dy
Noting that G(I + KG)™' = (I+ GK)™'Gand I+ KG)™' =I - K(I+ GK)™'G:

_[I-K(I+GK)™'G —-K(I+GK)™*

[ RN _K(I+GK)_1] [du] - [ (I+GK)™'G (I+GK)™!

GI+KG)™" (I+GK)™! dy
Since X = I + GK and using (A.7):
I+KXY(-@) -kx '] _[1 K] Y
-X1(-G) X1t |7 |-G I -
Exercise 4.11 Given the complementary sensitivity functions

2s+1 To(s) = —2s+1
$2+08s+1 /T 241085 +1

what can you say about possible RHP-poles or RHP-zeros in the corresponding loop transfer
functions, Li(s) and La(s)?

T1 (S) =

Solution. Assume internal stability:

1) Compute S; =1 —T; = ;% Since S; has a RHP-zero, we conclude that L; is
unstable with a RHP-pole at s=1.2 (and also with a pole at s = 0).

2) T, has a RHP-zero, so L has a RHP-zero at s = 0.5.

Exercise4.13 Show that the IMC-structure in Figure 4.5 is internally unstable if either Q or
G is unstable.

Solution. In Figure 4.5, it can be derived that uw = K(r — y) where K = (I — QG)™'Q,
i.e. equation (4.89). Thus, @ = K (I + GK)~'. According to Lemma 4.6 if either Q or G is
unstable then the IMC system is internally unstable.

Exercise 4.15 Given a stable controller K. What set of plants can be stabilized by this
controller? (Hint: interchange the roles of plant and controller.)

Solution. The set of the plants can be parameterized as:

G=(I-QK)'Q=Q(I-KQ)™",

where “parameter” @) is any stable transfer function matrix.
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5]

LIMITATIONS ON
PERFORMANCE IN SISO
SYSTEMS

Exercise 5.1 Kalman inequality The Kalman inequality for optimal state feedback, which
also applies to unstable plants, says that | S| < 1 Vw, see Example 9.2. Explain why this does
not conflict with the above sensitivity integrals.

Solution. 1. Optimal control with state feedback yields a loop transfer function with a pole-
zero excess of 1 so (5.5) does not apply.
2. There are no RHP-zeros when all states are measured so (5.9) does not apply.

Exercise 5.3 Consider again the plant (5.24) from Example 5.2. Compute the bounds
on [|S]leos ITlloo, || K S||ee and ||SG||ee using Table 5.1. Do you expect any difficulties in
controlling this plant?

Solution. The plant

-2
has a RHP-zero at z = 2 and RHP-poles as p = 1 + 32.
From (5.15):
Np . .
lz+pil _ 2+1-42)2+1+,2) _
=== e me-1-m =20 &9
N————
Mzp;
From (5.22):
lz+pil _ 2+1-352)(2+1+52)
T|loo > M7 min =2. 5.22
e 2 2 H nl - @112 o0 P
W—’
M:p;
From (5.30):

IKSlloo 2 1/ay (U(G)") = 0.5908 (5.30)



18 MULTIVARIABLE FEEDBACK CONTROL

From (5.28):
o Lz + il +2
Z+pi 5 |
[} > ms : T = m =1 > o = = 9. .28
1SGlloe 2 |Gms(2)] i1;[1|z_177;| |G (2)] 0(82_2”5)3:2 3.07¢ ) (5.28)
N———
szi

As the minimum bounds Ms = 2.6 and M7 min = 2.6 are larger than the typical
maximum allowed value of about 2, it is expected that this plant will be difficult to stabilize
and control from a practical point of view.

Also, ||SG|| > 3.0¢ ich may not be acceptable if it is required to keep ||y||2 < 1 for all
input disturbances less than 1 (this would require [|SG||c < 1]

Exer cise 5.6 Consider the weight wp(s) = = + (%)” which requires |.S| to have a slope
of n at low frequencies and requires its low-frequency asymptote to cross 1 at a frequency wx.
Note that n = 1 yields the weight (5.49) with A = 0. Derive an upper bound on wz when the
plant has a RHP-zero at z. Show that the bound becomes wg < |z| asn — oo.

Solution. When z > 0 is real, from |wp (2)| < 1 we have:
* 1/n

wp < z(1—1/M)™"".
When z is imaginary, we get:
l2| (1 - )" n=2%k-1,k=1,2,...

ENANA

|z|(1—T) n=2kk=12,...
In all these cases, wp < |z| asn — oo.

Exercise 5.9 Consider the case of a plant with a RHP-zero z where we want to limit the

sensitivity function over some frequency range. To this effect let
1000 1 /(M

(25 + )Gy +1)

Wy +DEE+1)

wp(s) = (5.59)

This weight is equal to 1/M at low and high frequencies, has a maximum value of about 10 /M
at intermediate frequencies, and the asymptote crosses 1 at frequencies wx /1000 and wip.
Thus we require “tight”” control, | S| < 1, in the frequency range between wg; = wp /1000
and wpy = wp.

a) Make a sketch of 1/|wp| (which provides an upper bound on |S]).

b) Show that the RHP-zero z cannot be in the frequency range where we require tight
control, and that we can achieve tight control either at frequencies below about z/2 (the usual
case) or above about 2z. To see this select M = 2 and evaluate wp (z) for various values of
wp = kz,e.9. k =0.1,0.5,1, 10, 100, 1000, 2000, 10000. (You will find that wp (z) = 0.95
(= 1) for k = 0.5 (corresponding to the requirement wpy < z/2) and for & = 2000
(corresponding to the requirement wx, > 22))


skoge
Sticky Note
Misprint. The answer is 8.

Note that this agrees with following: Gms(z)|=3.0769 and Mzpi=2.6 (from above) and 3.0769*2.6=8.

Thanks to Ian Craig for pointing out this
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Fig. 5.9. Figure for exercise 5.9

Solution. a)The asymptotic magnitude Bode-plot is shown as follows (see Figure 5.9):
b) In the above plot betweem w3 /1000 and wp 1/wp(w) < 1. Hence to satisfy the
condition |wp(z)| < 1, z cannot be in the frequency range from w3 /1000 to wji where

we require tight control.

The values of wp(z) via k = wp/z for M = 2 are shown in the following table:

k

wp(z)

0.1

0.5

1.0

10.0
100.0
1000.0
2000.0
10000.0

0.59350
0.94788
1.3508
4.7966
4.7966
1.3508
0.94788
0.59350

Exercise 5.10 For purely imaginary poles located at p = +j|p| a similar analysis of the
weight (5.68) with M7 = 2 shows that we must at least require wp, > 1.15|p|. Derive this

bound.
i — /1p? 1 * My _
Solution. [wr(p)| = \/ e + 7z < 1= whr > \/% =1.1547p|.

Exercise 5.11 For a system with a single real RHP-zero z and N,, RHP-poles p; and tight
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control at low frequencies (A = 0 in (5.50) derive the following generalization of (5.52):

|z — pi| 1
wp <z< =+ il (5.74)

(Hint: Use (5.13).) Note that for a plant with a single RHP-pole and RHP-zero the
bound (5.74) with M = 2 is feasible (upper bound on wp is positive) for p < 0.33z.
This confirms the approximate bound p < 0.25z derived for stability with acceptable low-
frequency performance and robustness on page 196.

Solution. Joining (5.13) and (5.47), we have that:

z+

fwp (2 H' ”]_prsnooa
’L
%,_/

Mzp;

Considering the performance weight (5.50):

z/M +wp

5.50
z+whA ( )

lwp (2)| =

So, we have that:

When z is real, all variables are real and positive, so (with A = 0)

|z—pl
w <z —
B ( |Z+pz

Exercise 5.12 Perform closed-loop simulations with the SIMC PI controller and the
proposed PID controller for the room heating process. Also compute the robustness
parameters (GM, PM, Ms and M) for the two designs.

Solution. The model for the heating room is:

—100s
20e  Gas) = 10
1000s + 1’ 1000s + 1

The SIMC and PID tunings used were:
SIMC: K, =0.25and 77 = 800 s
PID: K. =0.4, 71 =200sand 7p =60 s

G(s) =
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The closed-loop simulations with SIMC PI and PID controllers are presented in Figure
5.12.

The robustness parameters are:
For SIMC PI: GM = 3.1060(9.8439dB), PM = 58.3494, Ms = 1.6039, and Mr =
1.0443;
For PID: GM = 1.6281(4.2335dB), PM = 38.6326, Ms = 2.6406, and My = 1.7102.

18 T T T T 35

16

y
/ N
14} SIMCPI, N

12 / S
/

PID

,. SIMCPI

-0.2 -0.5
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

(c) Step disturbance in outdoor temperature (d) Setpoint change 3/(150s + 1)

Exercise 5.14 (a) The effect of a concentration disturbance must be reduced by a factor of
100 at the frequency 0.5 rad/min. The disturbances should be dampened by use of buffer tanks
and the objective is to minimize the total volume. How many tanks in series should one have?
What is the total residence time?

(b) The feed to a distillation column has large variations in concentration and the use of
one buffer tank is suggested to dampen these. The effect of the feed concentration d on the
product composition y is given by (scaled variables, time in minutes)

Ga(s)=¢"°/3s

That is, after a step in d the output y will, after an initial delay of 1 min, increase in a ramp-like
fashion and reach its maximum allowed value (which is 1) after another 3 minutes. Feedback
control should be used and there is an additional measurement delay of 5 minutes. What
should be the residence time in the tank?

(c) Show that in terms of minimizing the total volume for buffer tanks in series, it is optimal
to have buffer tanks of equal size.

(d) Is there any reason to have buffer tanks in parallel (they must not be of equal size
because then one may simply combine them)?

(e) What about parallel pipes in series (pure delay). Is this a good idea?

Solution.
(a) From (5.116) we must require
1

w(jwo)| = ———— = 0.01
|, (jwo)| (@wo) +1 0.0
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This gives
o= /1007 1
0

With wo = 0.5 rad/min we find
n Tn
1 200
2 39.80
3 27.20
4 24.00
5 23.04
6 22.90
7 23.12
10 24.59

and we find that to minimize 7, we should have 6 tanks in series with a total residence time
Tn = 22.90 min. (In practice, we would prefer fewer tanks because the number of tanks
increases the cost, and probably use only 2 or at most 3 tanks).

(b) Assume the transfer function of the tank is

1

h(s) = s +1

The total delay in the feedback loop is & = 1+ 5 = 6 [min]. To make the system controllable,
we need

|Ga(3/0) - h(3/6)] < 1.
This leads to 7, > 10.39 [min].

(c) Consider the case with two buffer tanks with total residence time 75 Let the residence
time in one of the tanks be x. Then

1 1
Q+zs)(1 4 (rhn —x)s) 14+ Ths+ (th — x)xs2

hg(s) =

and the high-frequency asymptote becomes |h» (jw)| = 1/[( — )zw?] which is minimized
by selecting x = 7,/2, that is, the tanks should be of equal size to get the best disturbance
attentuation with a given total volume. For n tanks in series we get the same result by
considering the high-frequency asymptote.

(d) 1t seems no any such reasons.

(e) It certainly may dampen disturbances, but probably tanks are better.

Exercise 5.16 What information about a plant is important for controller design, and in
particular, in which frequency range is it important to know the model well? To answer this
problem you may think about the following sub-problems:

(a) Explain what information about the plant is used for Ziegler-Nichols tuning of a SISO
PID-controller.

(b) Is the steady-state plant gain G(0) important for controller design? (As an example
consider the plant G(s) = ﬁ with |a| < 1 and design a P-controller K(s) = K. such
that w. = 100. How does the controller design and the closed-loop response depend on the
steady-state gain G(0) = 1/a?)
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Solution. (a) w,, and |G (w.,)|, that is, only information at frequency w,, is used.

(b) As just noted the steady-state information is not needed for Ziegler-Nichols tuning, and
it is generally not important for feedback design. This is illustrated by the example where
K, = vVwZ+aZ = /10000 + a2 ~ 100 for any value of a < 1. Thus response hardly
effected by a. Main effect is on steady-state offset which is =~ a/K,. and may vary
between 0 (for a = 0) and 0.01 (for @ = 1).

1
1+K./a

Exercise 5.18 A heat exchanger is used to exchange heat between two streams; a coolant
with flowrate ¢ (1+1 kg/s) is used to cool a hot stream with inlet temperature 75 (100+10°C)
to the outlet temperature T (which should be 60 &+ 10°C). The measurement delay for 7" is 3s.
The main disturbance is on Tp. The following model in terms of deviation variables is derived
from heat balances

8 0.6(20s + 1)
G0s 7025 + 4 T @05 + (25 1

T(s) = )To(s) (5.121)
where T and T, are in °C, q is in kg/s, and the unit for time is seconds. Derive the scaled
model. Is the plant controllable with feedback control? (Solution: The delay poses no problem
(performance), but the effect of the disturbance is a bit too large at high frequencies (input
saturation), so the plant is not controllable).

Solution.Since |Ga(jw)| < 1, especially |G4(j3)| < 1, the delay poses no problem. But
input constraint does! Lety = T'/10, u = ¢/1 and d = Ty /10, then the scaled model is:

B 0.8 0.6(20s + 1)
Y6 = Gosrnazs 0"t Gos+ nazs 1)
50, [GI/|Gal = o2t < 1, when w > VOBO6-1 0441, iie. at high

frequencies the disturbance is too large which will cause input saturation. Thus the plant is
not controllable.
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Exercise 6.3 To illustrate further the above arguments, determine the sensitivity function S
for the plant (6.31) and K = fI. Use the approximation e~%* = 1 — 85 to show that at low
frequencies the elements of S(s) are of magnitude 1/(k6 + 2). How large must & be to have
acceptable performance (less than 10% offset at low frequencies)? What is the corresponding
bandwidth? (Answer: Need & > 8/6. Bandwidth is equal to &.)

Solution. Using S = (I + GK) " and e ~ 1 — s, it can be obtained that

g= 1 s+k —k
T s+ EkQ2+6k) |-k —-6s) s+k
Thus at low frequencies (s = 0), the elements of S all have the magnitude of 1/(2 + 6k).

To maintain 10% offset at low frequencies, let 1/(2 + 6k) < 1/10. It leads to k > 8/6. The
bandwidth is obtained by letting:

—k(1 —jbw) | _
jw+k(246k)|
This gives k* + k%60%w? = w? +k?(2+0k)2. Since k > 8/6, 8k >> 2, i.e. k?6% =~ (2+6k)>.
Thus the equation for bandwidth can be simplified as k* = w?, i.e. the bandwidth is equal to
k.

1.

Exercise 6.5 For a plant with a single real RHP-zero z with input direction u. and a
diagonal performance weight matrix Wp, show that the requirement ||WWp S||oo < 1 implies

> wei(2) Pzl < 1
i

If wp,; is given by (5.50) and wp,; = 0, ¢ # j (arbitrarily poor control of all outputs other
than y;), show that tight control of y; at low frequencies imposes the following limitation on

w*B7z
wp; < z 1 _ 1
B,i Usi M
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Solution.

Unfortunately, the result does not hold as originally stated: Instead of ||WpS|lcc < 1 One
could consider ||[WpSr|leo < 1 (which is OK mathematically but makes less sense from a
physical point of view).

Alternatively (and better), the exercise should start with ”For a system L = GK with a
single...”. The solution then goes as follows:

If L(s) has a RHP-zero at z with input direction u., then for internal stability of the
feedback system the following interpolation constraint applies:

S(z)u, = u,
Then, if we multiply Wp S by u., we have that
WpSu, = Wpu,
As Wp is diagonal (Wp = diag(wp;)), we have that
[|diag(wp,i)uzlleo <1

Taking the square of both sides, we see that

|(uz diag(wp,i))(diag(wp.i)u:)||eo < |lu diag(wp,i)lloo - [|diag(wei)us]|eo < 1
So

I Z |wp,i(2)]*[uz,il*||o = Z |lwe,i(2)]?[uz,i]* < 1
Considering that w;,i is given by (5.50) and w;,j =0, # 7, from

3w (=) Plus i < 1

2

we have that ; .
2 + e
z+whA

With A = 0 (no steady-state offset):

Uy <1

z " z
— twp < —

M Uz,
Then
b < 2(—— — 1)
ws Uz, M
Exer cise 6.6 Consider the plant
G(s) = [ N 1] (6.39)
s+1 a

(a) Find the zero and its output direction.

(b) Which values of « yield a RHP-zero, and which of these values is best/worst in terms of
achievable performance?

(c) Suppose a = 0.1. Which output is the most difficult to control? Illustrate your conclusion
using Theorem 6.4.
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Solution. (a) z = ;15 — 1 because RankG(z) = 1. The output zero direction is obtained
from yZG(z) = 0. Thisgives y, =[—a 1]7.

(b) We have a RHP-zero for || < 1. Best for = 0 with zero at infinity; if control at
steady-state is required then worst for « = 1 with zero at s = 0.

(c) Output 2 is most difficult since the zero is mainly in that direction; we get strong interaction
with 8 = 20 in (6.38) if we want to control y» perfectly.

Exercise 6.8 Analyze input-output controllability for

G( ) 1 0 0115+1 1
s) = ;
2100 | 01 1

Compute the zeros and poles, plot the RGA as a function of frequency, etc.

Solution. The system has 6 poles: 4510, +310, 1 and 100; 2 zeros: —9.537 and 9.437 (RHP-
zero). The diagonal elements of the RGA are: Ad11 = A2z = (1 — %gz—;)‘ and off-diagonal
elements of the RGA are: A2 = A21 = 1 — Aq1. The amplitudes of these elements are shown
as functions of frequency in Fig. 6.8(a). It is shown in the figure that all elements of the RGA

10"

—— 211, A22
— - 12,221

10

107 L L L
10 10 10° 10" 10°

Fig. 6.8(a) The RGA of exercise 6.8

have a peak about 6 at w = 10. The singular values of the system are shown in Fig. 6.8(b). It
is shown that the sv is less than 1 at all frequencies. Thus it is difficult to control this plant.

Exercise 6.10 Let

—-10 0 10 11 00
A‘[ 0 —1]’3_1’0_[10 0]’D_[0 1]

(a) Perform a controllability analysis of G(s).
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5 I I I
2 1 0 1 2

10 10 10 10 10
Fig. 6.8(b) The SV of exercise 6.8

10

(b) Let & = Az + Bu + d and consider a unit disturbance d = [21  z2]”. Which direction
(value of 21 /22) gives a disturbance that is most difficult to reject (consider both RHP-zeros
and input saturation)?

(c) Discuss decentralized control of the plant. How would you pair the variables?

Solution. (a) The transfer function matrix is:

10 11
6= |5 .

s+10 1
The system has two stable poles: -10 and -1 and one RHP-zero: z = 0.1. The RGA matrix is:

10(s+1) —11

— 10s—1 10s—1
RGA = [ —11 10(s+1):| .

10s—1 10s—1

Thus, the magnitudes of the RGA elements are large (about 10) at low frequencies and small
at high frequency (approximating to a unit matrix). But the approximation isatw > 1 > z,
i.e. “outside” the bandwidth which is limited by the RHP-zero, z = 0.1.

(b) At steady-state, G(0) = [1 lil

[—0.689 0.725]". Letd = [1 k]”. Then, ga(0) = —BA™'d = [1+ 1.1k 1]". So,
in the most difficult direction, g4(0)/||g4(0)|| = u(0), i.e. 1 + 1.1k = —0.689/0.725. This
gives k = —1.77.

(c) At the steady state,

] and the most difficult output direction is u(0) =

RGA(0) = [‘10 1 ]

11 -10
Thus the best pairing for decentralized control is: (y1, u2) and (y2, u1).
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Exercise 6.12 Order the following three plants in terms of their expected ease of
controllability

100 95 100e™°  95¢~° 100 95¢~°
Gils) = [100 100] » Ga(s) = [ 100 100 ]’G3(s)_ [100 100 ]

Remember to also consider the sensitivity to input gain uncertainty.

Solution. G1 and G2 have the same RGA matrix which is constant with A11 = X22 = 20
and A12 = A21 = 19. These large RGA values indicate both G; and G- are difficult to
be controlled. Additionally G has a delay in output 1 thus is worse than G1. With the

approximation of e™* ~ 1 — s the RGA of G5 can be expressed as: A11 = A22 = 75> and

A1 = Aoy = 22D When w & 1 the system is well-conditioned (the RGA= I). So G is

the best one, then G'1 and G+ is the worst.

Exercise 6.14 Analyze input-output controllability for

100 102 10 .
6= | | =% o=
100 100 1o L
Which disturbance is the worst?
Solution. This is a ill-conditioned plant. The RGA, A1 = —50 at all frequencies.

Disturbance d; is in the same direction of w1, thus is easy to be rejected. The disturbance
condition numbers for the two disturbances are, y41 = 1.4213 and 42 = 202.01. Hence, d»
is more difficult to be rejected than d;.

Exercise 6.16 Find the poles and zeros and analyze input-output controllability for

c+(1/s) 1/s

GO=1""1s  c+(1/s)

Here c is a constant, e.g. ¢ = 1.

Remark. A similar model form is encountered for distillation columns controlled with the
D B-configuration. In which case the physical reason for the model being singular at steady-
state is that the sum of the two manipulated inputs is fixed at steady-state, D + B = F.

Solution. For the computations we select ¢ = 1. The plant has two poles at s = 0 and one
LHP-zero at s = 0, e.g. consider the realization

1 fes+1 1
G(s)_sﬁ[ 1 cs+1]

Here G(s) has a zero at s = 0 since the matrix cs:- 1 csl+ 1 has a zero for s = 0.
(alternatively, we may have a realization with only one pole at s = 0 e.g. A = 0 (scalar),

B=[1 1],C= 1 , D = I)), but we then have no zero at s = 0). In any case, the plant

is unstable and needs to be stabilized.
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The plant is singular at steady-state (with infinite RGA and condition number). This may
seem to indicate that control is very difficult, but this is not the case. The reason is that the
singularity is caused by the largest singular value being infinite at steady-state, whereas the
smallest singular value is |c| = 1 at s = 0 so it is non-zero (if the smallest singular value was
zero at s = 0 then tight control at steady-state would be impossible).

In summary, acceptable control for this plant is possible provided the bandwidth is
sufficiently high (higher than about frequency |c|).
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Exercise 7.2 Suppose that the nominal model of a plant is

1

G =37

and the uncertainty in the model is parameterized by multiplicative uncertainty with the weight

0.125s5 + 0.25

wi(8) = G125/4)s + 1

Call the resulting set IT. Now find the extreme parameter values in each of the plants (a)-(g)
below so that each plant belongs to the set I1. All parameters are assumed to be positive. One
approach is to plot I; (w) = |G~'G’ — 1] in (7.25) for each G’ (G., Gy, etc.) and adjust the
parameter in question until I; just touches |w;r (jw)].

(a) Neglected delay: Find the largest 8 for G, = Ge™%® (Answer: 0.13).

(b) Neglected lag: Find the largest 7 for G, = G = (Answer: 0.15).

(c) Uncertain pole: Find the range of a for G. = sfa (Answer: 0.8 to 1.33).

(d) Uncertain pole (time constant form): Find the range of T for G4 = ﬁ (Answer: 0.7
to 1.5).

(e) Neglected resonance: Find the range of ¢ for Ge = G m (Answer: 0.02
to 0.8). .

(f) Neglected dynamics: Find the largest integer m for Gy = G (ﬁ) (Answer: 13).

(9) Neglected RHP-zero: Find the largest 7, for G4 = G%fll (Answer: 0.07). These
results imply that a control system which meets given stability and performance requirements
for all plants in II, is also guaranteed to satisfy the same requirements for the above plants
Ga, Gp,...,Gy.

(h) Repeat the above with a new nominal plant G = 1/(s — 1) (and with everything else

the same except G4 = 1/(T's — 1)). (Answer: Same as above).

Solution. _
(@) Ir(w) = |1 — e™%%|. When 8 = 0.13 I;(w) just touches |wr (jw)].
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(b) Ir(w) = |+227~|. When 7 = 0.16 I7(w) just touches |wz (jw)|.

jwr+1
© Ir(w) = |jt.;_+aa|" When 0.8 < a < 1.33 11 (w) < |wr(jw)|.
() s (w) = | 55552 | When 0.7 < T < 1.5 1 (w) < Jwr (jw)|-

@) li(w) = |UeliPHIeX/T0 | When 0.14 < ¢ < 5.6 Is(w) < |ws(jw)|. Note the

jw/70)2+jw2(/70+1
answer given in the book is not right. If Gy = G(S/m) +21C(3/10)+1' i.e. the middle term is

2¢(s/10) not 2¢(s/70) than the answer given in the book is right.

0l (w) =| (m)m —1]. Whenm < 13 Ir(w) < |wr (jw)].

@) lr(w) = |7224|. When 7 < 0.07, 11(w) < |wr(jw)].

(h) If we change G, = -2 then I;(w)’s for all plants G, to G, are the same as (a) to (g).

s$—a

Thus the answer is the same as above.

Exercise 7.4 Represent the gain uncertainty in (7.54) as multiplicative complex uncertainty
with nominal model G = Gy (rather than G = kG used above).

(a) Find w; and use the RS-condition ||wrT||eoc < 1 10 find kmax,3. Note that no iteration
is needed in this case since the nominal model and thus T = Ty is independent of kmax.

(b) One expects kmax,3 t0 be even more conservative than kmax,2 Since this uncertainty
description is not even tight when A is real. Show that this is indeed the case using the
numerical values from Example 7.10.

Solution.

(@) Let k,G = G(1 — wiA), kp € [1, kmax,3] and |A] < 1. Then |1 — kmax,3| = [|wrAl|co-
This leads to ||wr||lco = Kkmax,3 — 1, SO kmax,3 = (1/||T|ls) + 1.

(b) Numerically we can get ||Tol|ec = 1.79. SO kmax,3 = 1.56 (no iteration needed in this
case).

Exercise 7.6 Also derive, from |wp S| + |wrT| < 1, the following necessary bounds for RP
(which must be satisfied)

-1

|L| > %, (for lwp| > 1 and |w;| < 1)
1—|U)p|

|L| < m, (for |’U)P| < 1and |’U)]| > ].)

(Hint: Use [1+ L| <1+ |L|.)

Solution. |wpS| + |wiT| < 1 & |wp| + |wrl| < 1+ L| <1+ |L| = |lwp| -1 <
L] = [w1] - |L] = (1 — Jwr])|L]. So, if wr| < 1and jwe| > 1 then |L| > 251=1 and if
|wp| < 1and |wr| > 1then |L| <

|
1-|wp]
Jwr]—1"

Exercise 7.7 Consider a “true” plant

3670.15

G'(s) = (25 + 1)(0.1s + 1)2

(a) Derive and sketch the additive uncertainty weight when the nominal model is G(s) =
3/(2s+1).
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(b) Derive the corresponding robust stability condition.
(c) Apply this test for the controller K(s) = k/s and find the values of k that yield stability.
Is this condition tight?

Solution.
(2) Based on a plot we find that e %3¢ /(0.1s + 1) — 1 = 0.35/(0.1s + 1) and wa(s) =

0.9s
@er1)(0.1s71) "
(b) Using (7.12), the RS condition (7.34) can be derived from (7.34): |T'| < |G|/|wal.

©L=GK = GapandT = L/(1+ L) = 5ot S0, [T| < |G|/lwal leads to
|sgarisarar| < |%55%a |- This gives k < 1. This condition is tight.

Exercise 7.9 Consider again the system in Figure 7.18. What kind of uncertainty might w,,
and A, represent?

Solution. w, may seem to represent some additive uncertainly, but actually it
represents inverse multiplicative (“pole”) uncertainty. (This may be seen by moving
the point where the signal goes to w,, to just after the block for wy).

Exercise 7.11 Parametric gain uncertainty. We showed in Example 7.1 how to represent
scalar parametric gain uncertainty G,(s) = k,Go(s) where

Fmin < kp < Emax (7.101)

as multiplicative uncertainty G, = G(1 4+ wrA;) with nominal model G(s) = kGo(s) and
uncertainty weight w;y = 7% = (kmax — Kmin)/(kmax + kmin). Ar is here a real scalar,
—1 < Ay < 1. Alternatively, we can represent gain uncertainty as inverse multiplicative
uncertainty:

s Gp(s) = G(s)(1 +wir(s)Air)™; —1<A;r<1 (7.102)
with w;r = r and G(s) = k;G where
_ kminkmax
k'z =2 kmax + kmin (7103)

(a) Derive (7.102) and (7.103). (Hint: The gain variation in (7.101) can be written exactly
askp, =ki/(1 —rpA).)

(b) Show that the form in (7.102) does not allow for &, = 0.

(c) Discuss why (b) may be a possible advantage.

Solution.
(@) Let kp = ki(1 + rA)~L If Delta = 1 then kp = Kmin, and if Delta = —1 then
kp = kmax. Solving the equations:

kmin(]- + rk) = ki;

kmax(l - rk) kiv

gives that
kmax - kmin
kmax + kmin '

kmakain
k . = 2 _—,
‘ kmax + kmin

Tk
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Inserting &, into G (s) = kpGo(s) and letting w; = 7y leads to (7.102) and (7.103).

(b) Since k; # 0, kp, = 0 implies 1 + rxA = oo. But this is impossible when —1 < A < 1.
Thus k, = 0 is not allowed.

(c) Usually the gain CANNOT be zero physically, so using an uncertainty description where
this is not possible may be an advantage. However, note that the inverse gain form may allow
for k, being infinite which is also impossible physically.
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ROBUST STABILITY AND
PERFORMANCE ANALYSIS
FOR MIMO SYSTEMS

Exercise8.1 The uncertain plant in (8.7) may be represented in the additive uncertainty form
Gp =G+ WrA W7 where A4 =4 is a single scalar perturbation. Find W7 and W.

Solution.
w

L e T

—w

Exercise 8.3 Obtain H in Figure 8.6 for the uncertain plant in Figure 7.20(b).

Solution.
_|w w1 G w1G
Hyp = 0 E Hiyy = [ ) ]
Hy =[I G], Hy» =G

Exer cise 8.4 Show in detail how P in (8.29) is derived.

Solution. From Figure 8.7 it can be obtained that:

yan = Wru
z = —Wpw
v = —w-—Gu—ua
So,
ya 0 0 Wi UA
z | = | WpG Wp WpG w | .
v -G -1 -G U

Exer cise 8.6 Derive N in (8.32) from P in (8.29) using the lower LFT in (8.2). You will note
that the algebra is quite tedious, and that it is much simpler to derive N directly from the block
diagram as described above.
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Solution.
N = P+ PK(I- P22K)_1P21
_ [ o 0 Wi —1
= WG Wp]+[WpG]K(I+GK) [-G -1I]
_ 0 0 -WiKSG -WiK
- |WpG Wp -WpGKSG —-WpGKS
_ -WiKSG —-WiKS
- |WeG(I — KSG) Wp(I—-GKS)

where S = (I + GK)~*. Using the identities  —-GKS =T-T =S = (I +GK)™*,and
I - KSG = (I + KG)™', itfinally yields the desired matrix N.

Exercise 8.8 Find P for the uncertain system in Figure 7.18.

—Wy —Wy —WyG
P=| wp wp wpG

—I —I -G

Solution.

Exercise 8.10 Find the interconnection matrix NV for the uncertain system in Figure 7.18.
What is M?

Solution.
_ [~w,(I+GK)™* —w,(I+GK)™?!
T | wp(I+GK)™'  wp(I+GK)™!

S0, M = Ni1 = —w, (I + GK)™*.

Exercise8.12 M A-structurefor combined input and output uncertainties. Consider the
block diagram in Figure 8.8 where we have both input and output multiplicative uncertainty
blocks. The set of possible plants is given by

Gp = I+ Waw0AoWi0)G(I + War ArWhr) (8.33)

where ||Ar]leoc < 1and [|[Aolle < 1. Collect the perturbations into A = diag{A;, Ao}
and rearrange Figure 8.8 into the M A-structure in Figure 8.3 Show that

(8.34)

M= Wir 0 -Tr —-KS Wor 0
"1 0 Wl |SG -T 0 W

Solution. Since N = P11 + P12 K(I + GK)™' P> and M = Ny, it yields:

[0 0 ] Wir
M =
| Wio Wor | + [WIOG
[—Wi K+ GK) *\GWar  —WuK({ +GK) 'Wao
| WioGI +KG) 'War  —Wi0GK(I + GK) *Wao
W 0 ] [-Tr —KS][War 0
| 0 Wio | | SG -T 0 Wao

] K(I+GK) ' [-GWar —Wao]
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Exercise 8.13 Consider combined multiplicative and inverse multiplicative uncertainty at
the output, G, = (I — AioWio) ™ (I + AoWo)G, where we choose to norm-bound the
combined uncertainty, || [Aio Ao ]|l < 1. Draw a block diagram of the uncertain plant,
and derive a necessary and sufficient condition for robust stability of the closed-loop system.

Solution. A block diagram of the uncertain plant is shown in Fig. 8.13. From the diagram it

WO 5 AO Az’o
) e
e

Y
=

=
¥
Q

Fig. 8.13 Combined output uncertainties for Exercise 8.13

can be obtained that

_ WioS
M= [WoT] .
According to (8.64) the RS condition is:
[M]loo < 1.

Exercise 8.15 (continued from Example 8.7). (b) For M in (8.98) and a diagonal A show
that u(M) = |a| + |b| using the lower “bound” u(M) = maxy p(MU) (which is always
exact). (Hint: Use U = diag{e’®, 1} (the blocks in U are unitary scalars, and we may fix
one of them equal to 1).) (c) For M in (8.98) and a diagonal A show that u(M) = |a| + ||
using the upper bound p(M) < minp (DM D~1) (which is exact in this case since D has
two ““blocks™).

Solution. (b) The 2 x 2 matrix MU is singular and its non-zero eigenvalue is then given by
its trace (Fact 1 in Appendix A.2.1). We then get

ae’® a .
w(M) = max p [bejd’ b] = m£x|ae]¢ +|

The sum of two complex numbers is maximized when they are in the same direction, and since
we have freedom to select the direction (phase) of the first term, we get u(M) = |a| + |b|.
(c) Use D = diag{d, 1}. Since DM D" is a singular matrix we have from (A.37) that

a da

_ -1y _ =
(DMD )_a[%b b

] = +/|a|? + |da|? + |b/d|? + |b|? (8.100)

which we want to minimize with respect to d. The solution is d = +/|a|/|b] which gives

(M) = +/la|? + 2|ab + [b]? = |a] + [b]-
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Exercise 8.18 Let a, b, c and d be complex scalars. Show that for

ab ad| _ |ab ab
be cd| " Hled ed

Does this hold when A is scalar times identity, or when A is full? (Answers: No and No).

A = diag{d1,02}: p [ ] = |ab| + |cd| (8.103)

Solution. Using (8.86), and letting U = diag{e’?, 1} we can get

ab ad U= abej:q> ad
bc cd T | beef® cd |’

ab ad ab ad
'u[bc cd] - m(?Xp([bc cd]U)

abe’®  ad
i

which is singular. Thus

beel?  cd

= max labe?® + cd)

= max|tr
|

= |ab| + |cd|.

The second equality has been proven in Example 8.7. When A = §I, U = /I, we have
essentially no degrees of freedom and p(M) = p(M) = |ab+cd| (which is enerally smaller).
When A is full, U is a general unitary matrix, and (M) = (M) which is generally larger.
So the answer for the last question is also NO.

Exercise 8.20 If (8.94) were true for any structure of A then it would imply p(AB) <
a(A)p(B). Show by a counterexample that this is not true.

. 1 0 1 10
Solution. Select A = 10 1 ,B_[O 1

p(B) = 1,50 p(AB) > 6(A)p(B).

Exer cise 8.22 Consider the plant G(s) in (8.108) which is ill-conditioned with v(G) = 70.8
at all frequencies (but note that the RGA-elements of G are all about 0.5). With an inverse-
based controller K(s) = %ZG(s)~", compute p for RP with both diagonal and full-block
input uncertainty using the weights in (8.133). The value of g is much smaller in the former
case.

]. Then p(AB) = 102, 5(A) = 10, and

Solution. The g curves for diagonal and full-block input uncertainty are shown in Fig. 8.22.
The value of u for diagonal uncertainty is much smaller than that of the case discussed in
Section 8.11.3.

Exer cise 8.24 Explain why the optimal u-value would be the same if in the model (8.144) we
changed the time constant of 75 [min] to another value. Note that the u-iteration itself would
be affected.

Solution. The optimal u-curve as a function of frequency is flat, i.e. the optimal g is almost
a constant (u-value) over a wide rang of frequencies. In the model (8.144), the change of
the time constant can be treated as a frequency scaling change, while the optimal p-value is
independent of frequency. Thus it would be the same.
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4.5

3.51

251

Ssv

15F

Diag

Fig. 8.22. u curves for diagonal and full uncertainty in Exercise 8.22
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9

CONTROLLER DESIGN

Exercise 9.1 Show that the closed-loop objectives 1 to 6 can be approximated by the open-
loop objectives 1 to 6 at the specified frequency ranges.

Solution.

1. Whena(GK) > 1,58 = (I+GK)™! ~ (GK)™'. So the close-loop objective 1, making
&(.S) small, can be approximated by the open-loop objective 1, making (G K) large.

2. Whena(GK) < 1,T = GK(I+GK)™' ~ GK. So the closed-loop objective 2, making

a(T) small, can be approximated by the open-loop objective 2, making a(GK') small.

G(GK)>»1=>T=GKI+GK) ' ~1.5&(GK)small = &(T) = ¢(T) ~ 1.

7(GK) < 1= KS=K({+GK)™" =~ K.Thus, 5(K) small = (K S) small.

See 4.

7(GK) < 1=>T=GK(I +GK)™' = GK.Thus, 5(GK) small = &(T) small.

W18
[ WaT ] (9.58)

o 0rw

Exer cise 9.6 For the cost function

WsKS

formulate a standard problem, draw the corresponding control configuration and give
expressions for the generalized plant P.

Solution. The control configuration is shown in Fig. 9.6. From the figure, the generalized
plant P can be derived as:

Wi -WiG
Pn:[o], Pm:[mG],

0 W3
Py = I, Py = —@G.

Exercise 9.8 Design an H, loop-shaping controller for the disturbance process in (9.75)
using the weight W7 in (9.76), i.e. generate plots corresponding to those in Figure 9.18. Next,
repeat the design with W1 = 2(s + 3)/s (which results in an initial G which would yield
closed-loop instability with K, = 1). Compute the gain and phase margins and compare
the disturbance and reference responses. In both cases find w. and use (2.45) to compute the
maximum delay that can be tolerated in the plant before instability arises.
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L i
: P :
1 1
! — W, ——2
: :
1 1
: :
1 1
! o Wy, ——» %2 3,
w=r, 1
. :
1 1
1 1
' o W; —a—» 3
: :
1 1
1 1
1 1
1 1
1 1
: Y+ :
: " G >0 :
1 - 1
1 1
u , ' v
1 1
R o
K |

Fig. 9.6 Control configuration for S/T'/ K S optimization problem

Solution. The loop shapes, disturbance response and reference response of the system using
the Hoo loop-shaping controller designed with W1 = 2(s + 3)/s are shown in Fig. 9.8. Itis
shown that the initial G would yield closed-loop instability with K. = 1 (dashed-line). The
gain margin of this design is 2.95, phase margin is 44.2°. w. = 15.8 rad/s. Thus the maximum
delay is PM/w. = 0.049 s which can be tolerated in the plant before instability.

Exercise 9.10 Show that the Hanus form of the weight W, in (9.109) simplifies to (9.108)

when there is no saturation i.e. when u, = u.

Solution. Let u = Gius + Gaua, Where

s Aw—BuwDy'Cy | 0 ]
G = [ Cu Do, :| = Dy,
a S [ Aw— B,D3'Cy | BuDy
> = Cu 0

If ug = u, thenu = (I — G2) " *G1us. We have,

I—Gzé[ C

and (see (4.27))

I

Aw | —BuDy'

a-e 2|

Thus,
s

I

[ —

Aw — BuwD,'Cw | —=BuwDy' ]

(I-Gs)™'Gh = [ =

ok
Ol
€ |8
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Loop shapes

10" 10?

10°
Frequency

Time
Fig. 9.8 Loop shaping design for Exercise 9.8
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10

CONTROL STRUCTURE
DESIGN

Exercise 10.2 Suppose that we want to minimize the LQG-type objective function, J =
z® + ru?, r > 0, where the steady-state model of the system is

r+2u—3d=0

y1 =2z, y2=6x—5d, y3=3x—2d
Which measurement would you select as a controlled variable for » = 1? How does
your conclusion change with variation in »? Assume unit implementation error for all
measurements.

Solution. For this system, we have that J = (3d — 2u)” + ru’.
S0, Ju = (8 + 2r)u — 12d and uep: = 13d.
Also, Juu = 8+ 2r and J,q = —12.
The state-space model of the system can be written as:

y1 = —4u+6d, y»=-12u+13d, y3=—-6u+7d
So, the linearized models for the three measured variables are:

Yi1: G!{ = —4, Ggl =6
y2: Gy =-12, GY, =13
Y3: Gg = —6, Ggs =7

Following the singular value procedure (page 400):

1. The input is scaled by the factor 1/4/(0%2J/0u?)opt = 1/4/8 + 2r such that a unit

deviation in each input from its optimal value has the same effect on the cost function J.

2. The maximum setpoint error due to variations in disturbances is given as eqpt,; =
GfJu_ulJud — GY,. Then, for z = y1, eopt,1 = (—4) - 84,;27‘ < (-12) — (6) = sigw —6
and similarly, eopt,2 = ggr — 13 and eopt,3 = g2y — 7.

3. For each candidate controlled variable the implementation error is n* = 1.

4. The expected variation (“span”) for z = y1 is |eopt,i| + 2| = |35 — 6| + 1. Similarly,

for 2 = y» and z = ys, the spans are | 1245~ — 13| + 1 and | g5 — 7| + 1, respectively.
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5. The scaled gain matrices and the worst-case losses are

8ta2r
z=y2: |Gy = —miTHl -12/4/8 + 2r;
1

| 8+2r

Z=1yY3: |G§|—W6/v8+2r

- | 72
8+2r

These scaled gain matrices can be plotted for different values of r (see Figure 10.2).

—_ = = yl
35f Y, |

25 b

15 !

05F o ~ ]

Fig. 10.2. Norm of scaled gain matrix.

So, we can conclude that it is better to choose 41 when r» < 0.364. 1f 0.364 < r < 1.14,
then we can choose both y2 or ys. For r > 1.14, y, is the best choice.

Exercise 10.4 Show that for a system with a single unstable pole, (10.23) represents the least
achievable value of || K S|| . (Hint: Rearrange (5.31) on page 178 using the definition of pole
vectors.)

Solution. From (5.31):
ISl > 1G5 () (10.31)

By definition of pole vectors:
1 yp“f
G(s)=—"—+N
(8) = gy = + N(S)
Also, the stable version of G(s) with the RHP-pole at s = p mirroed across the imaginary
axis is:

_(s—p)
Gs(p)_ (s+p)G(p)
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Then, we have

1 ypul s —p
Gz =l 7 - T = N (8)lla(s—)

sS+p s+p
> llysll2 - [lupll
Yoll2 ~ [|Up||2
G =
)= ]
Then,

2p-|q"t|

KS|leo > |G ()] = ——i—
1S leo 2 1G: P = 1 T, o

Exercise 10.5 For systems with multiple unstable poles, the variables can be selected
sequentially using the pole vector approach by stabilizing one real pole or a pair of complex
poles at a time. Usually, the selected variable does not depend on the controllers designed in
the previous steps. Verify this for each of the following two systems:

Gi(s) =Q(s)- [13 1?5 5})1} Ga(s) = Q(s) - [}3 ? 1_161}

_ 16— 0
Qs) = [ 0 1/(s — 0.5)]
(Hint: Use simple proportional controllers for stabilization of p = 1 and evaluate the effect of
change of controller gain on pole vectors in the second iteration.)

Solution. For G1(s), the absolute pole vectors are:

3.000 0.375
Y| = [40'8% 3'88] U,|" = [1.252 2.50]
’ ’ 0.500 0.25

So, we choose to select first output y» and input u;. Afterwards, we can use again the pole
vectors to select the next loop, after closing the first one.

T —0.221
Y,| = [-4.790] |U,|" = [_0.737}

Then, the first loop will be ¢, and u3. The simulation is shown in Figure 10.5(a).
For G2(s), the absolute pole vectors are:

3.000 0.25

0.00 4.00 T
Y, = [400 000} U,|” = [0.403 2.50]
: : 0.500 0.25

So, we choose to select first output y2 and input u;. Afterwards, we can use again the pole
vectors to select the next loop, after closing the first one.

Vil = [as54] [UI7 = 0]

0.265

Then, the first loop will be y; and us. The simulation is shown in Figure 10.5(b).
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_2 1 L !
0 0.01 0.02 0.03 0.04 0.05

(@) G,(s)

0.01 0.02 0.03 0.04 0.05
(b) G()

Fig. 10.5. Figure for exercise 10.5.

Exercise 10.9 Draw the block diagrams for the two centralized (parallel) implementations
corresponding to Figure 10.10 (in the book).

Solution. See Figure 10.9 (in this solution manual)

Exercise 10.11 Process control application. A practical case of a control system like the
one in Figure 10.13 is in the use of a pre-heater to keep the reactor temperature y; at a given
value r1. In this case y» may be the outlet temperature from the pre-heater, u» the bypass flow
(which should be reset to r3, say 10% of the total flow), and us the flow of heating medium
(steam). Make a process flowsheet with instrumentation lines (not a block diagram) for this
heater/reactor process.

Solution. See Fig. 10.11.

Exercise 10.17 (a) Assume that the 4 x 4 matrix in (A.83) represents the steady-state model
of a plant. Show that 20 of the 24 possible pairings can be eliminated by requiring DIC. (b)
Consider the 3 x 3 FCC process in Exercise 6.17 on page 257. Show that the six possible
pairings can be eliminated by requiring DIC.

Solution. (a) Applying (10.78) to (A.83), where the RGA is:

6.16 —0.69 —-7.94 3.48
—1.77 0.10 3.16 —0.49
—6.60 1.73 8.55 —2.69

321 -0.14 =277 0.70

A(4s) =
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Y

't " K Plant

T2 |+
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(e) Extrameasurements yo

u
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Plant
K, —%

(f) Extrainputs ua
Fig. 10.9 Centralized implementations

Y-

ye
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Pre-heater

Y2 Y1
- Ty =|  Reactor i -
%@
A
T3
T

T2

Ko

Fig. 10.11. Flowsheet for heater-reactor process.

it can be seen that outputs 1 and 4 can only be paired with inputs 1 and 4 in 2 possible
combinations, and that output 2 and 3 can only be paired with inputs 2 and 3 also in 2 possible
combinations. Thus only 4 pairings give positive RGA required by DIC and other 20 pairings
can be eliminated.

(b) The RGA is:

1.4966 0.9855 —1.4821
A(Az) = | —0.4147  0.9662 0.4485
—0.0819 —0.9517 2.0336

it can be seen that outputs 1 can only be paired with input 1 and input 3 can only be paired
with output 3. Thus there is only one pairing that gives positive RGA required by DIC and
other 5 pairings can be eliminated.
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11

MODEL REDUCTION

Exercise 11.1 The steady-state gain of a full order balanced system (A, B,C, D) is
D — CA'B. show, by algebraic manipulation, that this is also equal to D, — C, A 'B,,
the steady-state gain of the balanced residualization given by (11.7)—(11.10).

Solution. Using (A.8) and noting Y in (A.8) is equal to A.. in (11.7), we have

D-CA™'B
Al —A; A AL By
= D-[C C] —Ap At AT Ay + Ay An AT A AL | | Be
= D- [CTA;l C2A2_21 - CTA;IAHA;;] I:gl]
2
D — CoAz By — Cr A, (Br — A12Ay) Ba)
D, — C,A;'B,

Exercise 11.3 Is Theorem 11.3 true, if we replace balanced truncation by balanced
residualization?

Solution. Yes, it is still true. Balanced truncation and balanced residualization are related
by the bilinear transformation s — s~*. If (N(s), M(s)) is a normalized left-coprime
factorization of G(s) then (N(s™'), M(s™') is a normalized left-coprime factorization
of G(s™'). Applying Theorem 11.3 to (N(s™*), M(s™ ") is equivalent to using balanced
residualization with (N (s), M (s)).
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12

LINEAR MATRIX
INEQUALITIES

Exercise 12.1 Let Q be a Hermitian matrix (Q = Q%) having the form Q = Qr + jQr.
Show that @ > 0 if and only if

Qr Qi
[ 5 on ] >0 (12.9)

Solution. For a complex hermitian matrix @, Q > 0, it implies that Re(z® Qz) > 0, for all
z in C™ (C is the set of complex numbers).

Let@Q =Q, +jQ; and z = z, + jz;.

Then,

Re(:cHQ:v) = foTxr + :c,TQi:cr — x?QixT - x?Qwi + :clTQTa:i >0

which can be written as

[z mz]T[_Qer g:]][xr z;]>0

Since this holds for any [z, z; ], we have
Qr Qz ]
>0
[_Qi QT
Exer cise 12.3 With reference to Example 12.2, formulate the problem of finding the worst-
case (maximum) gain of each of the uncertain systems

k k
s+T’G2(s)

T rs+1
as LMI problems. Verify your results with the Robust Control toolbox command wcgain using
numerical values 2 < k, 7 < 3.

Gi(s) =

(12.51)

Solution.
Transfer functions G and G2 can be easily converted to state-space representation:

& = Ar + Bu
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y=Czx+ Du

ForGi:A=—-7,B=k,C=1,and D=0
ForGy:A=-1,B=kC=21adD=0

Substituting these A, B, C, and D in (12.30) we get the LMI problem.

The results obtained are similar to using Robust Control toolbox command wcgain, i.e.,

both methods give almost the same upper bounds, as can be seen on the next Table.

G, Go
wcgai n | 1.5003 3.0273
LMI 15 3.06
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CASE STUDIES

Exercise 13.1 Repeat the p-optimal design based on D K-iteration in Section 8.12.4 using
the model (13.19).

Solution. Apply the MATLAB program given in Table 8.2 to G in (13.9). After 10 iterations,
the resulting controller with 25 states (denoted Ko in the following) gives a peak -value of
0.8847 (see Fig. 13.1(a)). The final -curves for RS, NP and RP with controller K¢ are shown
in Fig. 13.1(b). It is shown that all requirements are well satisfied. The time response of y
and y- to a filtered setpoint change in y1, r1 = 1/(5s + 1) is shown in Fig. 13.1(c). both for
the nominal case (solid line) and for 20% input gain uncertainty (dashed line)

11
— lter. 1
1r - - lter. 2
—--lter. 3
Iter. 10
05 L L L L T .ol
10°° 107 10 10° 10" 10° 10°
Fregency

Fig. 13.1(a). Change in during D K -iteration.
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Fig. 13.1(b). -plots with -“optimal” controller K1,.

yl

y2

0 10 20 30 40 50 60 70 80 90 100
Time
Fig. 13.1(c). Setpoint response for -“optimal” controller K,. Solid line: nominal
plant. Dashed line: “worst-case” plant.



