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PREFACE

This is a book on practicalfeedbackcontrol and not on systemtheory generally
Feedbacls usedin controlsystemdo changethe dynamicsof the system(usually
to maketheresponsastableandsuficiently fast),andto reducethe sensitivityof the
systemto signaluncertainty(disturbancesindmodeluncertainty Importanttopics
coveredn thebook,include

¢ classicalfrequency-domaimethods

analysisof directionsin multivariablesystemsusingthe singularvaluedecompo-
sition

input-outputcontrollability (inherentcontrollimitationsin the plant)
modeluncertaintyandrobustness

performanceequirements

methoddgor controllerdesignandmodelreduction
controlstructureselectioranddecentralizeadontrol

Thetreatments for linearsystemsThetheoryis thenmuchsimplerandmorewell
developedand a large amountof practicalexperienceells us thatin manycases
linear controllersdesignedusing linear methodsprovide satisfactoryperformance
whenappliedto realnonlinearplants.

We haveattemptedo keepthe mathematicat a reasonablgimplelevel, andwe
emphasizeesultsthat enhancensight andintuition. The designmethodscurrently
availablefor linear systemsare well developed,and with associatedsoftwareit
is relatively straightforwardto designcontrollersfor most multivariable plants.
However withoutinsightandintuition it is difficult to judgea solution,andto know
howto proceede.g.howto changeweights)in orderto improveadesign.

The bookis appropriatefor useasa text for anintroductorygraduatecoursein
multivariablecontrolor for anadvancedindegraduatecourse We alsothink it will
beusefulfor engineersvho wantto understandnultivariablecontrol,its limitations,
andhowit canbeappliedin practice Therearenumerousvorkedexamplesexercises
andcasestudieswhich makefrequentuseof MATLAB ™ 1,

T'MATLAB is aregisteredrademarkof The MathWorks, Inc.
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The prerequisitedor readingthis book are an introductory coursein classical
single-inputsingle-outpu{SISO)controlandsomeelementanknowledgeof matri-
cesandlinearalgebraPartsof thebookcanbe studiedalone,andprovideanappro-
priatebackgroundor a numberof linear control coursesat both undegraduateand
graduatdevels:classicaloop-shapingontrol,anintroductionto multivariablecon-
trol, advancednultivariablecontrol,robustcontrol,controllerdesign,control struc-
turedesignandcontrollability analysis.

Thebookis partly basedon a graduatemultivariablecontrol coursegiven by the
first authorin the CyberneticsDepartmentt the NorwegianUniversity of Science
and Technologyin Trondheim.About 10 studentsfrom Electrical, Chemicaland
MechanicalEngineeringhavetakenthe courseeachyear since 1989. The course
has usually consistedof 3 lecturesa week for 12 weeks.In addition to regular
assignmentghe studentshavebeenrequiredto completea 50 hour designproject
usingMATLAB. In AppendixB, a projectoutlineis giventogetherwith a sample
exam.

Examplesand inter net

Mostof thenumericaexamplehavebeersolvedusingMATLAB. Somesampl€iles
areincludedin thetextto illustratethe stepsnvolved. Most of thesefiles usethe -
toolbox,andsomethe RobustControltoolbox,butin mostcasegheproblemscould
havebeensolvedeasilyusingothersoftwarepackages.

Thefollowing areavailableovertheinternetfrom Trondheint andLeicester:

MATLAB filesfor examplesandfigures

Solutionsto selectedkexercises
Linearstate-spacmodelsfor plantsusedin the casestudies
Correctionscommentgo chaptersextraexercises

Thisinformationcanbe accessefrom theauthors’homepages:

e http://ww. kjeni.unit.no/~skoge
e http://ww. engg. |l e.ac.uk/staff/lan. Postlethwaite

Commentsand questions

Pleasesendquestionserrorsandany comments/ou may haveto theauthorsTheir
emailaddresseare:

e Sigurd. Skogest ad@j emi . unit.no
e i Xp@e. ac. uk

2 Theinternetsitenamein Trondheimwill changefrom uni t to nt nu during1996.
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INTRODUCTION

In thischapterwe beginwith abrief outlineof thedesignprocesgor controlsystemsWethen
discusdinearmodelsandtransfeffunctionswhicharethebasicbuildingblocksfor theanalysis
anddesigntechniquepresenteth thisbook. Thescalingof variableds critical in applications
andsowe providea simpleprocedurdor this. An exampleis givento showhowto derivea
linearmodelin termsof deviationvariablesfor a practicalapplication Finally, we summarize
themostimportantnotationusedin the book.

1.1 Theprocessof control system design

The processof designinga control systemusually makesmany demandsof the
engineeior engineeringeam.Thesedemand®ftenemepgein a stepby stepdesign
procedureasfollows:

1. Studythesystem(plant)to be controlledandobtaininitial informationaboutthe
controlobjectives.

2. Modelthe systemandsimplify themodel,if necessary

3. Analyzetheresultingmodel;determindts properties.

4. Decidewhichvariablesareto be controlled(controlledoutputs).

5. Decideonthe measuremen@ndmanipulatedrariableswhatsensorandactua-
torswill beusedandwherewill theybeplaced?

6. Selectthecontrolconfiguration.

7. Decideonthetypeof controllerto beused.

8. Decideon performancespecificationsbasecdbn the overallcontrolobjectives.

9. Designacontroller

0. Analyzetheresultingcontrolledsystemto seeif the specificationsare satisfied;
andif theyarenot satisfiedmodify the specification®r thetype of controllet

11. Simulatetheresultingcontrolledsystem githerona computeror a pilot plant.

12. Repeafrom step2, if necessary

13. Choosehardwareandsoftwareandimplementthe controller

14. Testandvalidatethe controlsystemandtunethe controlleron-line,if necessary
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Controlcoursesandtextbooksusuallyfocusonstep® and10in theaboveprocedure;
thatis, on methodsfor controllerdesignandcontrol systemanalysis.nterestingly
manyrealcontrolsystemsaredesignedvithoutanyconsideratiomf thesetwo steps.
For example,evenfor complexsystemswith many inputsand outputs,it may be
possibleto designworkablecontrolsystemspftenbasecdn a hierarchyof cascaded
control loops, using only on-line tuning (involving stepsl, 4 5, 6, 7, 13 and 14).
However in this casea suitablecontrol structuremay not be known at the outset,
andthereis a needfor systematid¢oolsandinsightsto assistthe designemith steps
4,5 and6. A specialfeatureof this bookis the provisionof tools for input-output
controllability analysis (step3) andfor control structure design (steps4, 5, 6 and7).

Input-outputcontrollability is the ability to achieveacceptablecontrol perfor
mancelt is affectedby the locationof sensorsaandactuatorshut otherwiseit can-
notbechangedy thecontrolengineerSimply stated,;'eventhe bestcontrolsystem
cannotmakeaFerrarioutof aVolkswagen”Thereforetheproces®f controlsystem
designshouldin somecaseslsoincludeastep0, involving thedesignof the process
equipmenttself. Theideaof lookingatprocesequipmentlesignandcontrolsystem
designasanintegratedvholeis not new asis clearfrom thefollowing quotetaken
from apapemy ZieglerandNichols (1943):

In the applicationof automatiacontrollers,it is importantto realizethat
controllerandprocesgorm aunit; creditor discreditfor resultsobtained
areattributablgo oneasmuchastheother A poorcontrolleris oftenable
to performacceptablynaprocesshichis easilycontrolled.Thefinest
controller made,when appliedto a miserablydesignedprocessmay
notdeliverthe desiredpoerformanceTrue,on badlydesignegrocesses,
advancedontrollersareableto ekeoutbetterresultsthanoldermodels,
but on theseprocessesthere is a definite end point which can be
approachetby instrumentatiorandit falls shortof perfection.

ZieglerandNicholsthenproceedo observehatthereis afactorin equipmentesign
thatis neglectedandstatethat

...the missing characteristiccan be called the “controllability”, the
ability of the procesgo achieveand maintainthe desiredequilibrium
value.

To derivesimpletoolswith whichto quantifytheinhereninput-outpuicontrollability
of aplantis thegoalof Chapters$ and6.

1.2 Thecontrol problem

Theobjectiveof acontrolsystems to maketheoutputy behavean a desiredvay by
manipulatingheplantinputu. Theregulator problemisto manipulates to counteract
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theeffectof adisturbancel. Theservo problemis to manipulates to keeptheoutput
closeto a givenreferenceinput r. Thus,in both casesve wantthe control error
e = y—r tobesmall.Thealgorithmfor adjustingu basedntheavailablenformation
is the controller K. To arrive at a gooddesignfor K we needa priori information
abouttheexpectedisturbanceandreferencenputs,andof the plantmodel(G) and
disturbancenodel(G,). In thisbookwe makeuseof linearmodelsof the form

y=Gu+ Gud (1.1)

A major sourceof difficulty is thatthe models(G, G;) may beinaccurateor may
changewith time. In particular inaccuracyin G may causeproblemsbecausehe

plantwill bepartof afeedbackoop.To dealwith suchaproblemwewill makeuseof

the concepibf modeluncertaintyFor examplejnsteadof a singlemodelG we may
studythe behaviourof a classof models,G, = G + E, wherethe “uncertainty”

or “perturbation” E is bounded but otherwiseunknown.In mostcasesweighting

functions,w(s), areusedto expressEl = wA in termsof normalizedperturbations,
A, wherethemagnitudgnorm)of A is lessthanor equalto 1. Thefollowing terms
areuseful:

Nominal stability (NS). Thesystemis stablewith no modeluncertainty

Nominal Performance (NP). The systemsatisfiesthe performancespecifications
with no modeluncertainty

Robust stability (RS). The systemis stable for all perturbedplants about the
nominalmodelup to theworst-casanodeluncertainty

Robust performance (RP). Thesystensatisfieghe performancepecificationgor
all perturbedplants aboutthe nominal model up to the worst-casemodel
uncertainty

1.3 Transfer functions

The book makesextensiveuse of transferfunctions,G(s), and of the frequency
domain,which arevery usefulin applicationdor thefollowing reasons:

¢ Invaluableinsightsareobtainedrom simplefrequency-dependéplots.

¢ Importantconceptsfor feedbacksuch as bandwidthand peaksof closed-loop
transferfunctionsmaybedefined.

¢ G(jw) givestheresponseo asinusoidainputof frequencyw.

e A seriesinterconnectionof systemscorrespondsn the frequencydomainto
multiplication of the individual systemtransferfunctions,whereasin the time
domainthe evaluationof complicatecconvolutionintegralsis required.

e Polesandzerosappeaexplicitly in factorizedscalartransferfunctions.
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¢ Uncertaintyis moreeasilyhandledn thefrequencydomain.Thisis relatedto the
factthattwo systemsanbedescribedisclose(i.e. havesimilarbehaviour)f their
frequencyresponsearesimilar. Ontheotherhand,asmallchangdn a parameter
in astate-spacdescriptioncanresultin anentirely differentsystenresponse.

We considerlinear, time-invariantsystemswvhoseinput-outputresponsesire gov-
ernedby linearordinarydifferentialequationsvith constantoeficients.An example
of suchasystemis

@1(t) = —azi(t) + 22(t) + Bru(t)
To (t) = —QagT1 (t) + ,Bou(t) (12)
y) = 21(t)

wherei(t) = dz/dt. Hereu(t) representshe input signal, z; (t) and z»(t) the
statesandy(t) the outputsignal. The systemis time-invariantsincethe coeficients
a1, ag, /1 andgy areindependentf time. If we applythe Laplacetransformto (1.2)
we obtain

sT1(s) —x1(t =0) = —a171(s) + Ta2(s) + Bra(s)
8T2(s) —x2(t =0) = —aoZ1(s) + Botu(s) (1.3)
y(s) = x1(s)

where §(s) denotesthe Laplacetransformof y(t), and so on. To simplify our
presentationve will maketheusualabuseof notationandreplacejj(s) by y(s), etc..
In addition,wewill omittheindependentariabless andt whenthemeanings clear
If u(t),z1(¢t), z2(t) andy(t) representleviationvariablesawayfrom a nominal
operatingpointor trajectory thenwe canassumex; (t = 0) = z»(¢t = 0) = 0. The
eliminationof z; (s) andzx(s) from (1.3)thenyieldsthetransferfunction

=G(3) _ /618—1_50

s2+ai1s+ag

u(s)

Importantly for linearsystemsthetransferfunctionisindependentf theinputsignal
(forcing function). Notice that the transferfunctionin (1.4) may alsorepresenthe
following system

y(s) (1.4)
S

§(t) + a1y(t) + aoy(t) = Bra(t) + Bou(t) (1.5)

with inputu(¢) andoutputy (¢).

Transferfunctions,suchas G(s) in (1.4), will be usedthroughoutthe book to
modelsystemsandtheir componentsMore generally we considerrationaltransfer
functionsof theform

Bn.s" + -+ B1s+ Bo
s+ ap_15" 1+ -+ ars+ag

G(s) = (1.6)
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For multivariablesystems((s) is a matrix of transferfunctions.In (1.6) n is the
order of the denominator(or pole polynomial)andis also calledthe order of the
system, andn, is the orderof the numerator(or zeropolynomial). Thenn — n_ is
referredto asthepoleexcesor relative order.

Definition 1.1

A system G(s) is strictly properif G(s) — 0 ass — oo.

A system G(s) is semi-propeor bi-properif G(s) - D #0ass — oc.
A system G(s) which is strictly proper or semi-proper is proper

A system G(s) isimproperif G(s) — oo ass — oo.

Forapropersystemwith n > n,, wemayrealize(1.6) by a state-spacdescription,
& = Az + Bu, y = Cz + Du, similarto (1.2). Thetransferfunctionmaythenbe
writtenas

G(s)=C(sI-A)™'B+D (1.7)

Remark. All practicalsystemawill havezerogain at a suficiently high frequencyandare
thereforestrictly proper It is often convenienthowevey to modelhigh frequencyeffectsby
anon-zeraD-term,andhencesemi-propemodelsarefrequentlyused.Furthermoregertain
derivedtransferfunctions suchasS = (I + GK)™*, aresemi-proper

Usuallywe useG(s) to representheeffectof theinputsu ontheoutputsy, whereas
G4(s) representshe effecton y of the disturbanced. We thenhavethe following
linearprocessnmodelin termsof deviationvariables

y(s) = G(s)u(s) + Ga(s)d(s) (1.8)

We havemadeuseof the superpositiorprinciple for linear systemswhich implies
thatachangen adependentariable(herey) cansimply befoundby addingtogether
the separateffectsresultingfrom changesn the independentariables(hereu and
d) consideredneatatime.

All the signalsu(s), d(s) andy(s) are deviationvariables.This is sometimes
shownexplicitly, for example py useof the notationdu(s), butsincewe alwaysuse
deviationvariablesvhenwe considelLaplacetransformsthed is normallyomitted.

1.4 Scaling

Scalingis very importantin practicalapplicationsasit makesmodelanalysisand
controllerdesign(weight selection)muchsimpler It requiresthe engineerto make
ajudgementtthe startof the designprocessaboutthe requiredperformancef the
system.To do this, decisionsare madeon the expectednagnitudeof disturbances
andreferencechangespn the allowed magnitudeof eachinput signal,andon the
alloweddeviationof eachoutput.
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Let the unscaled(or originally scaled)linear model of the processin deviation
variablesbe

§=Gu+Gud: e=7-7 (1.9)

wherea hat (™) is usedto showthat the variablesarein their unscaledunits. A
usefulapproacHor scalingis to makethe variabledessthanonein magnitudeThis
is doneby dividing each variable by its maximum expected or allowed change. For
disturbanceandmanipulatednputs,we usethe scaledvariables

d=d/dmax, U =70/lUmax (1.10)
where:

. Jmax — largestexpectedthangen disturbance
® Unma, — largestallowedinputchange

The maximumdeviationfrom a nominalvalue shouldbe choserby thinking of the
maximumvalueonecanexpector allow, asa functionof time.

Thevariablegy, € andr arein thesameunits,sothesamescalingfactorshouldbe
appliedto each.Two alternativesarepossible:

e enax — largestallowedcontrolerror
e Tmax — largestexpectedchangen referencevalue

Sinceamajorobjectiveof controlis to minimizethecontrolerrore, we hereusually
chooseo scalewith respecto the maximumcontrolerror:

Y =Y/Cmax; T =T/Cmax, €=2e/Cmax (1.11)
To formalizethe scalingprocedureintroducethe scalingfactors
D, = é\mz«lx; D, = amaxa D; = dmaX7 D, = ?max (112)

For MIMO systemseachvariablein the vectorsd, 7, i andé may havea different
maximum value, in which caseD., D,, D; and D, becomediagonalscaling
matrices. This ensuresfor example,that all errors (outputs)are of aboutequal
importancdan termsof their magnitude.

Thecorrespondingcaledvariablesto usefor controlpurposesrethen

d=D;'d, u=D;'4, y=D;'j, e= D;'¢, r = D;'F (1.13)
Onsubstituting(1.13)into (1.9) we get
D.y = GDyu+ GyDyd; D.e= D,y — D,r
andintroducingthe scaledtransferfunctions

G =D;'GD,, Gaq=D;'GyDq (1.14)
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thenyieldsthefollowing modelin termsof scaledvariables
y=Gu+Gud; e=y—r (1.15)

Hereu andd shouldbelessthanl in magnitudeandit is usefulin somecasego
introducea scaledreferencer, which is lessthan1 in magnitude This is doneby
dividing thereferenceéby the maximumexpectedeferenceehange

7 =7/Pmax = D7 (1.16)
We thenhavethat
r= R? where R = Dngr = ?max/é\max (117)
Here R is the largestexpectedchangen referencerelativeto the allowedcontrol
d r
Gq R
l,«
+ Y -
u €
— G + + g

Figure 1.1: Modelin termsof scaledvariables

error (typically, R > 1). The block diagramfor the systemin scaledvariablesmay
thenbewrittenasin Figurel.1,for whichthefollowing controlobjectiveis relevant:

¢ In termsof scaledvariablesve havethat|d(t)| < 1 and|7(t)| < 1, andourcontrol
objectiveis to manipulates with |u(t)| < 1 suchthat|e(t)| = |y(t) — ()] < 1
(atleastmostof thetime).

Remark 1 A numberof the interpretationsusedin the book dependcritically on a correct
scaling.In particular this appliesto the input-outputcontrollability analysispresentedn
Chapterss and 6. Furthermorefor a MIMO systemone cannotcorrectly makeuseof the
sensitivityfunctionS = (I + GK) ' unlessheoutputerrorsareof comparablenagnitude.

Remark 2 With the abovescalings,the worst-casebehaviourof a systemis analyzedby
consideringlisturbanced of magnitudel, andreference$ of magnitudel.

Remark 3 Thecontrolerroris
e:y—’r:Gu—{—G’dd—R? (118)

and we seethat a normalizedreferencechanger may be viewed as a specialcaseof a
disturbancevith G4 = — R, whereR is usuallyaconstantiagonamatrix. Wewill sometimes
usethis to unify ourtreatmenbf disturbanceandreferences.



8 MULTIVARIABLE FEEDBACK CONTROL

Remark 4 The scalingof the outputsin (1.11) in termsof the control erroris usedwhen
analyzinga given plant. However if the issueis to select which outputsto control, see
Sectionl10.3,thenonemaychooseo scaletheoutputswith respecto theirexpectedrariation
(whichis usuallysimilarto 7max)-

Remark 5 If theexpectedr allowedvariationof avariableabout0 (its nominalvalue)is not
symmetrlc thenthe largestvariationshouldbe usedfor dmx andthe smallestvariationfor
Umax aNdemax. Forexample;f thedisturbancés —5 < d <10 thendmax = 10, andif the
manipulatednputis —5 < u < 10 thenumax = 5. This approachmaybe conservativein
termsof allowingtoo largedisturbancestc.)whenthevariationsfor several variablesarenot
symmetric.

A furtherdiscussioron scalingandperformanceés givenin Chapters onpagel61.

1.5 Derivinglinear models

Linearmodelsmaybe obtainedrom physical‘first-principle” models from analyz-
ing input-outputata,or from acombinatiorof thesawo approache#lthoughmod-
elling andsystenidentificationarenotcoveredn thisbook,it is alwaysimportantfor
acontrolengineeito havea goodunderstandingf a models origin. Thefollowing
stepsareusuallytakenwhenderivingalinearmodelfor controllerdesignbasedna
first-principleapproach:

1. Formulatea nonlinearstate-spaceodelbasedn physicalknowledge.

2. Determinghesteady-stateperatingooint(or trajectory)aboutwhichto linearize.

3. Introducedeviationvariablesandlinearizethe model. Thereareessentialljthree
partsto this step:

(a) LinearizetheequationsisingaTaylorexpansionvheresecondandhigherorder
termsareomitted.
(b) Introducethedeviationvariablese.g.dz(t) definedby

0x(t) = z(t) — =*

wherethe superscript denoteghe steady-stat®peratingpoint or trajectory
alongwhichwe arelinearizing.

(c) Subtractthe steady-statd¢o eliminate the termsinvolving only steady-state
guantities.

ThesepartsareusuallyaccomplishedogetherForexamplefor anonlinearstate-
spaceamodelof theform
dx

R AC) (1.19)
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thelinearizedmodelin deviationvariableg(dx, du) is

d‘sjt(t) - (%) Sa(t) + (%) Su(t) (1.20)
A B

Herex andu maybevectors,in which casethe Jacobiansd and B arematrices.
4. Scalethe variablesto obtainscaledmodelswhich are more suitablefor control
purposes.

In mostcasessteps2 and3 areperformednhumericallybasedn the modelobtained
in stepl. Also, since(1.20)is in termsof deviationvariablesjts Laplacetransform
becomesdzr(s) = Adx(s) + Bdou(s), or

dx(s) = (sI — A)~' Bdu(s) (1.22)

Example 1.1 Physical model of aroom heating process.

T,[K]
a[W/K]
T[K]
Cv[J/K]
/NNVVVVN

[/ am \

Figure 1.2: Roomheatingprocess

The above steps for deriving a linear model will be illustrated on the simple example
depicted in Figure 1.2, where the control problem is to adjust the heat input ) to maintain
constant room temperature T (within 1 K). The outdoor temperature T is the main
disturbance. Units are shown in square brackets.

1. Physical model. An energy balance for the roomrequiresthat the changein energy inthe

roommust equal the net inflow of energy to theroom (per unit of time). Thisyieldsthefollowing
state-space model

di( T)=Q+ (T -T) (1.22)



where T [K] isthe room temperature, [J/K] isthe heat capacity of the room, Q [W] isthe
heat input (from some heat source), andtheterm 7' T [W)] represents the net heat loss
due to exchange of air and heat conduction through the walls.

2. Operating point. Consider a case where the heat input @ is W and the difference
between indoor and outdoor temperatures T T is K. Then the steady-state energy
balance yields W/K. We assume the room heat capacity is constant,

kJ/K. (This value corresponds approximately to the heat capacity of air in a room
of about m ; thus we neglect heat accumulation in the walls.)

3. Linear model in deviation variables. If we assume isconstant the model in (1.22) is
already linear. Then introducing deviation variables

T T T Q Q Q T T T
yields
T Q T T (1.23)

Remark. If depended onthe statevariable (T inthisexample), or on one of the independent
variables of interest (Q or 7' in this example), then one would have to include an extra term

T T on theright hand side of Equation (1.23).
On taking Laplace transformsin (1.23), assuming T at , and rearranging we
get
T — - Q T — (1.24)
The time constant for this example is s min which is
reasonable. It means that for a step increase in heat input it will take about  min for the
temperature to reach of its steady-state increase.
4. Linear model in scaled variables. Introduce the following scaled variables
T Q T
T B T (1.25)
Inour casethe acceptablevariationsinroomtemperatureT” are  K,i.e. T
K. Furthermore, the heat input can vary between W and W, and since its nominal
valueis Wwe have Q W (see Remark 5 on page 8). Finally, the expected
variations in outdoor temperature are K ie T K. The modédl in terms of
scaled variables then becomes
Q __
T
T
T (1.26)
Note that the static gain for the input is , Whereas the static gain for the disturbanceis
. The fact that means that we need some control (feedback or feedforward)
to keep the output within its allowed bound ( when thereis a disturbance of magnitude
. Thefact that meansthat we have enough “ power” intheinputsto reject the
disturbance at steady state, that is, we can, using an input of magnitude , have perfect
disturbance rejection ( ) for the maximum disturbance ( ). We will return with a

detailed discussion of thisin Section 5.16.2 where we analyze the input-output controllability
of the room heating process.



1.6 Notation

Thereis no standardotationto coverall of thetopicscoveredn thisbook.We have
tried to usethe mostfamiliar notationfrom the literaturewheneveipossible put an
overridingconcerrhasbeento beconsistentvithin thebook,to ensurehatthereader
canfollow theideasandtechniqueshroughfrom onechapteito another

The mostimportantnotationis summarizedn Figure 1.3, which showsa one
degree-of-freedormontrol configurationwith negativefeedbacka two degrees-of-
freedomcontrol configurationanda generalcontrol configuration. Thelattercan
be usedto representi wide classof controllers,includingthe oneandtwo degrees-
of-freedomconfigurationsaswell asfeedforwardandestimatiorschemesndmany
others;and,aswe will see,it canalsobe usedto formulateoptimizationproblems
for controllerdesign.Thesymbolsusedin Figurel.3aredefinedin Tablel.1.Apart
fromtheuseof torepresenthecontrollerinputsfor thegenerakonfigurationthis
notationis reasonablygtandard.

Lower-casdettersareusedfor vectorsandsignals(e.g. , , ), andcapitalletters
for matricesfransferfunctionsandsystemge.g. , ). Matrix elementsareusually
denotecby lower-casdetters,so  isthe ’'thelementn thematrix . However
sometimesve useuppercasdetters |, for examplef is partitionedsothat
is itself a matrix, or to avoid conflictsin notation.The Laplacevariable is often
omittedfor simplicity, sowe oftenwrite  whenwe mean

For state-spaceealizationsve usethe standard -notation.Thatis, a
system with astate-spaceealization hasatransferfunction

. We sometimesvrite

S + (1.27)

to meanthat the transferfunction hasa state-spaceealizationgiven by the
quadruple .

For closed-looptransferfunctionswe use to denotethe sensitivityat the plant
output,and to denotethe complementansensitivity With negative
feedback, and , where is thetransferfunction
aroundheloopasseerfromtheoutput.In mostcases , butif wealsoinclude
measuremendynamics( ) then . The corresponding
transferfunctionsas seenfrom the input of the plant are (or

), and .

To representincertaintywe useperturbations (notnormalized)r perturbations
(normalizedsuchthat their magnitude(norm)is lessthanor equalto one).The
nominalplantmodelis , whereaghe perturbednodelwith uncertaintyis denoted
(usually for a setof possibleperturbedplants)or  (usuallyfor a particular
perturbedplant). For example with additive uncertaintywe may have
, Where is a weight representinghe magnitudeof the
uncertainty



(a) Onedegree-of-freedoroontrol configuration

(b) Two degrees-of-freedomontrol configuration

(c) Generakontrolconfiguration

Figure 1.3: Controlconfigurations



Table 1.1: Nomenclature

controller in whateverconfiguration Sometimedhe controlleris broken
down into its constituentparts. For example,in the two degrees-of-

freedomcontrollerin Figure1.3(b), where is a prefilter
and isthefeedbaclcontrollet

For the conventional control configurations (Figure 1.3(a) and (b)):
plantmodel
disturbancenmodel
referencenputs(commandssetpoints)
disturbancegprocessoise)
measuremenntoise
plant outputs.Thesesignalsincludethe variablesto be controlled(“pri-
mary” outputswith referencevalues ) andpossiblysomeadditional‘sec-
ondary”measurement® improvecontrol.Usuallythesignals aremea-
surable.
measured
controlsignals(manipulateclantinputs)

For thegeneral control configuration (Figure 1.3(c)):
generalizegblantmodel.lt will include and andtheinterconnection
structurebetweenthe plantandthe controller In addition,if  is being
usedto formulatea designproblem,thenit will alsoincludeweighting
functions.
exogenouiputs:commandsglisturbanceandnoise
exogenousutputs;‘error” signalsto beminimized,e.g.
controllerinputsfor the generalconfiguratione.g.commandsmeasured
plant outputs,measuredlisturbancesgtc. For the specialcaseof a one
degree-of-freedongontroller with perfectmeasurementae have

controlsignals




By theright-half plane(RHP)we meantheclosedright half of thecomplexplane,
includingtheimaginaryaxis( -axis).Theleft-half plane(LHP) is theopenleft half
of the complexplane,excludingthe imaginaryaxis. A RHP-pole(unstablepole)is
apolelocatedin theright-half plane,andthusincludespoleson theimaginaryaxis.
Similarly, aRHP-zero(“unstable”zero)is a zerolocatedin theright-half plane.

Weuse todenotehetransposefamatrix ,and  torepresenits complex
conjugateranspose.

Mathematical ter minology

Thesymbol is usedto denoteequal by definition,  is usedto denoteequivalent
by definition,and meanghat isidenticallyequalto

Let A andB belogic statementsThenthefollowing expressionareequivalent:
A B

Aif B, or: If B thenA

A isnecessarjor B
B A or: BimpliesA

B is sufficientfor A

B onlyif A
notA notB

Theremainingnotation,speciaterminologyandabbreviationsvill bedefinedin the
text.



In this chapter we review the classicalfrequency-responsechniquedor the analysisand
designof single-loop(single-inpusingle-outputSISO)feedbackcontrolsystemsThesdoop-
shapingtechniqueshavebeensuccessfullyusedby industrialcontrol engineerdor decades,
and have provedto be indispensablevhenit comesto providing insightinto the benefits,
limitations and problemsof feedbackcontrol. During the 19805 the classicalmethodswere
extendedto a more formal methodbasedon shapingclosed-looptransferfunctions, for
examplepy consideringhe normof theweightedsensitivityfunction.We introducethis
methodatthe endof the chapter

The sameunderlyingideasandtechniqueswill recurthroughoutthe book aswe present
practicalproceduredor the analysisand designof multivariable (multi-input multi-output,
MIMO) controlsystems.

2.1 Frequency response

Onreplacing by inatransferfunctionmodel wegettheso-calledrequency
responsealescription.Frequencyresponsegan be usedto describe:1) a systems
responséo sinusoidof varyingfrequency?2) thefrequencyconteniof adeterministic
signalvia the Fouriertransform,and 3) the frequencydistribution of a stochastic
signalvia the powerspectrabdensityfunction.

In thisbookwe usethefirstinterpretationnamelythatof frequency-by-frequesy
sinusoidakesponseThisinterpretatiorhasthe advantag®f beingdirectly linked to
thetime domain,andat eachfrequency thecomplexnumber (or complex
matrixfor aMIMO systemhasa clearphysicalinterpretationlt givestheresponse
to aninputsinusoidof frequency . Thiswill beexplainedn moredetailbelow For
theothertwo interpretationsve cannotassigna clearphysicalmeaningo or

at a particularfrequency- it is the distributionrelativeto otherfrequencies
which matterghen.

Oneimportantadvantageof a frequencyresponseanalysisof a systemis that
it providesinsight into the benefitsand trade-ofs of feedbackcontrol. Although



this insight may be obtainedby viewing the frequencyresponsen termsof its
relationshipbetweenpower spectraldensities,as is evident from the excellent
treatmentby Kwakernaakand Sivan (1972), we believe that the frequency-by-
frequencysinusoidakesponsénterpretatioris the mosttransparenanduseful.

Frequency-by-frequency sinusoids

We now wantto give a physicalpictureof frequencyresponsén termsof a systems

responsdo persistentinusoids .t is importantthat the readerhasthis picturein

mind whenreadingtherestof thebook. For examplejt is neededo understandhe

responsef a multivariablesystemin termsof its singularvaluedecompositionA

physicalinterpretatiorof thefrequencyresponséor astabldinearsystem

is afollows. Apply asinusoidainputsignalwith frequency [rad/s]Jandmagnitude
, suchthat

This input signalis persistentthatis, it hasbeenappliedsince . Thenthe
outputsignalis alsoa persistensinusoidof the samefrequencynamely

Here and represenimagnitudesandarethereforebothnon-negativeNotethat
theoutputsinusoidhasa differentamplitude  andis alsoshiftedin phasd€rom the
inputby

Importantly it canbe shownthat and canbe obtaineddirectly from the
Laplacetransform afterinsertingtheimaginarynumber andevaluating
themagnitudeandphaseof theresultingcomplexnumber . We have
(2.1)
Forexamplejet , with real part andimaginarypart
, then
(2.2)

In words, (2.1) saysthat after sending a sinusoidal signal through a system ,
the signal’s magnitude is amplified by a factor and its phase is shifted by

. In Figure2.1,this statemenis illustratedfor thefollowing first-orderdelay
system(timein seconds),

(2.3)



50
Time[sec]

Figure 2.1: Sinusoidalresponsdor system at frequency
rad/s
At frequency rad/s,we seethatthe output lagsbehindtheinput by about

aquarterof a periodandthatthe amplitudeof the outputis approximatelytwice that
of theinput. More accuratelythe amplificationis

andthe phaseshiftis

is calledthe frequency response of the system . It describesow the
systenrespondso persistensinusoidainputsof frequency . Themagnitudeof the
frequencyresponse, , beingequalto , is alsoreferredto as

the system gain. Sometimeshegainis givenin unitsof dB (decibel)definedas

(2.4)

For example, correspondso dB, and ~ correspondso
dB, and correspondso dB.

Both and dependon the frequency . This dependencynay

be plotted explicitly in Bode plots (with  asindependentariable)or somewhat
implicitly in a Nyquistplot (phaseplaneplot). In Bode plots we usuallyemploya
log-scaléefor frequencyandgain,andalinearscalefor the phase.

In Figure2.2,the Bode plots are shownfor the systemin (2.3). We notethatin
this caseboth the gain and phasefall monotonicallywith frequency This is quite
commorfor procesgontrolapplicationsThedelay only shiftsthesinusoidn time,
andthusaffectsthe phasebut notthe gain. The systemgain isequalto at
low frequenciesthis is the steady-statgain andis obtainedby setting (or

). Thegainremaingrelativelyconstantp to thebreakfrequency  whereit
startdfalling sharply Physicallythesystenrespondsooslowlyto lethigh-frequency
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Figure 2.2: FrequencyesponséBodeplots) of

(“fast”) inputshavemucheffect on the outputs andsinusoidainputswith
areattenuatedby the systemdynamics.

Thefrequencyresponses alsousefulfor anunstable plant , which by itself
hasnosteady-stateesponsel.et bestabilizedby feedbackcontrol,andconsider
applyinga sinusoidalforcing signalto the stabilizedsystem.n this caseall signals
within the systemare persistensinusoidswith the samefrequency , and
yieldsasbeforethe sinusoidakesponsdrom theinput to the outputof

Phasor notation. FromEuler sformulafor complexnumbersve havethat

. It thenfollows that is equalto the imaginarypart of the
complexfunction , andwe canwrite the time domainsinusoidalresponsen
complexform asfollows:

(2.5)
where

(2.6)
and and aredefinedin (2.2). Now introducethe complexnumbers

(2.7)
wherewehaveused asanamgumentbecause and dependnfrequencyandin
somecasesomay and . Notethat is not equalto evaluatedt
nor is it equalto evaluatedat . Since the

sinusoidatesponsén (2.5)and(2.6) canthenbewritten on complexform asfollows

(2.8)



or becausegheterm appear®n bothsides

\ (2.9)

which we referto asthe phasomotation.At eachfrequency , and
arecomplexnumbersandthe usualrulesfor multiplying complexnumbersapply.
Wewill usethisphasomnotationthroughouthebook. Thuswhenever we use notation
suchas (with  andnot  asanargument), the reader should interpret thisas
a (complex) sinusoidal signal, . (2.9)alsoappliesto MIMO systemswvhere

and arecomplexvectorsrepresentinghesinusoidabkignalin eachchannel
and is a complexmatrix.

Minimum phase systems. For stablesystemsvhichareminimumphasgnotime
delaysorright-halfplane(RHP)zerosthereis auniquerelationshigbetweerthegain
andphaseof thefrequencyresponseT his maybequantifiedoy the Bodegain-phase
relationshipwhichgivesthephaseof  (normalized suchthat ) atagiven
frequency asafunctionof overtheentirefrequencyrange:

- — (2.10)

The nameminimum phase refersto the fact that sucha systemhasthe minimum
possiblephasdag for the givenmagnituderesponse . Theterm is the
slopeof the magnitudan log-variablesatfrequency . In particulay thelocal slope
atfrequency is

Theterm —— in (2.10)is infinite at , soit follows that is

primarily determinedy thelocalslope .Also —— — —which
justifiesthecommonlyusedapproximatiorfor stableminimumphasesystems

- (2.11)

Theapproximatioris exactfor the system (where ), and
it is goodfor stableminimumphasesystemsexceptat frequenciegloseto thoseof
resonancécomplex)polesor zeros.

RHP-zerosand time delayscontribute additional phaselag to a systemwhen
comparedo thatof aminimumphasesystenwith thesamegain(hencehetermnon-

minimum phase system) Forexamplethesystem —— with aRHP-zeraat
Thenormalizatiorof is necessarto handlesystemsuchas—— and——, whichhaveequalgain,
arestableandminimumphasebuttheir phasedgliffer by . Systemswith integratoranaybetreated

by replacing- by — where is asmallpositivenumber



hasa constangainof 1, butits phasds [rad] (andnot [rad]
asit would befor the minimumphasesystem of thesamegain).Similarly,
thetime delaysystem hasaconstangainof 1, butits phases [rad].
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Figure2.3: Bodeplotsof transfeffunction ————— . Theasymptotegaregiven
by dottedlines. The vertical dottedlines on the upperplot indicatethe breakfrequencies
and

Straight-line approximations (asymptotes). Forthedesignmethodausedin this
book it is useful to be able to sketchBode plots quickly, and in particularthe
magnitude(gain) diagram.The readeris thereforeadvisedto becomefamiliar with
asymptoticBode plots (straight-lineapproximations)For example,for a transfer
function

(2.12)
the asymptoticBodeplots of areobtainedby usingfor eachterm the
approximation for andby for . These
approximationyield straightinesonalog-logplotwhichmeetattheso-callecbreak
pointfrequency .In (2.12)thereforethefrequencies are
the breakpointswherethe asymptotesneet.For complexpolesor zeros,the term

(where ) is approximatecoy  for and by
for . The magnitudeof a transferfunctionis usually

closeto its asymptoticvalue,andthe only casewhenthereis significantdeviationis
aroundtheresonancérequency for complexpolesor zeroswith adamping  of
about0.3or less.In Figure2.3,the Bodeplotsareshownfor

(2.13)




The asymptotegstraight-lineapproximationsjre shownby dottedlines. We note
thatthe magnitudefollows the asymptoteslosely whereaghe phasedoesnot. In
this examplethe asymptoticslopeof  is O up to thefirst breakfrequencyat

rad/swherewe havetwo polesandthenthe slopechangego . Then
at rad/sthereis a zeroandthe slopechangedo . Finally, thereis a
breakfrequencycorrespondingp apoleat rad/sandsotheslopeis

atthisandhigherfrequencies.

2.2 Feedback control

Figure 2.4: Block diagramof onedegree-of-freedorfeedbackcontrol system

2.2.1 Onedegree-of-freedom controller

In most of this chapter we examinethe simple one degree-of-freedonmegative
feedbackstructureshownin Figure2.4. Theinputto the controller is
where isthemeasuredutputand isthemeasurememoise.Thus,the
inputto theplantis

(2.14)

The objectiveof controlis to manipulate (design ) suchthatthe controlerror
remainssmallin spiteof disturbances. Thecontrolerror is definedas

(2.15)

where denoteghereferencevalue(setpoint)for the output.



Remark. In theliterature the controlerroris frequentlydefinedas whichis oftenthe
controllerinput. However this is not a gooddefinitionof anerrorvariable.First, the erroris
normallydefinedastheactualvalue(here ) minusthedesiredvalue(here ). Secondtheerror
shouldinvolve theactualvalue( ) andnotthemeasuredalue( ).

Notethatwe do notdefine asthecontrollerinput whichis frequentlydone.

2.2.2 Closed-loop transfer functions

Theplantmodelis written as
(2.16)

andfor aonedegree-of-freedormontrollerthesubstitutiorof (2.14)into (2.16)yields

or
(2.17)
andhencetheclosed-loopresponsés
(2.18)
Thecontrolerroris
(2.19)
wherewe haveusedthefact . Thecorrespondinglantinput signalis
(2.20)

Thefollowing notationandterminologyareused

loop transferfunction
sensitivityfunction
complementargensitivityfunction

Weseethat is theclosed-loogransferfunctionfrom the outputdisturbanceso the
outputswhile istheclosed-loogransferfunctionfrom thereferencesignalsto the
outputs.Thetermcomplementargensitivityfor ~ follows from theidentity:

(2.21)

To derive(2.21),write andfactorouttheterm
. Theterm sensitivityfunctionis naturalbecause givesthe sensitivity



reductionaffordedby feedbackTo seethis, considerthe “open-loop”casei.e. with
nofeedbackThen
(2.22)

anda comparisorwith (2.18) showsthat, with the exceptionof noise,the response
with feedbacks obtainedby premultiplyingtheright handsideby

Remark 1 Actually, theaboveis nottheoriginal reasorfor thename“sensitivity”. Bodefirst
called sensitivitybecausé givestherelativesensitivityof the closed-loogransferfunction

to therelativeplantmodelerror In particular ata givenfrequency we havefor a SISO
plant, by straightforwardlifferentiationof , that

S (2.23)

Remark 2 Equations(2.14)-(2.22)are written in matrix form becausehey also apply to
MIMO systemsOf coursefor SISOsystemsve maywrite , _ —_—
andsoon.

Remark 3 In generalclosed-loogransfeffunctionsfor SISOsystemsvith negativefeedback
maybe obtainedrom therule

(2.24)

where“direct” representshe transferfunction for the directeffect of theinput on the output
(with the feedbackpath open)and“loop” is the transferfunction aroundthe loop (denoted
). In theabovecase . If thereis alsoameasuremerdevice, ,in theloop,
then . Therulein (2.24)is easilyderivedby generalizing2.17).1n Section
3.2,we presentamoregeneraform of this rule which alsoappliesto multivariablesystems.

2.2.3 Why feedback?

At thispointit is pertinento askwhy we shouldusefeedbaclcontrolatall — rather
thansimplyusingfeedforwardcontrol.A “perfect”feedforwarctontrolleris obtained
by removingthefeedbacksignalandusingthecontroller

(2.25)

(weassumdor nowthatit is possibleo obtainandphysicallyrealizesuchaninverse,
althoughthis mayof coursenotbetrue). We assumehatthe plantandcontrollerare
bothstableandthatall thedisturbancesareknown,thatis, we know , the effect
of the disturbance®n the outputs.Thenwith asthe controllerinput, this
feedforwardcontroller wouldyield perfectcontrol:

Unfortunately is neveran exactmodel, and the disturbancesre neverknown
exactly The fundamental reasons for using feedback control are therefore the
presence of



1. Signaluncertainty- Unknowndisturbance
2. Modeluncertainty
3. An unstableplant

Thethird reasorfollows becauseinstableplantscanonly be stabilizedby feedback
(seeinternalstability in Chapter4). The ability of feedbacko reducethe effect of
modeluncertaintyis of crucialimportancan controllerdesign.

2.3 Closed-loop stability

Oneof themainissuesn designingfeedbackcontrollersis stability. If thefeedback
gain is too large, thenthe controller may “overreact” and the closed-loopsystem
becomesinstable.Thisis illustratednextby a simpleexample.

- i
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Figure 2.5: Effect of proportionalgain on the closed-loopresponse  of the inverse
responserocess

Example 2.1 Inverseresponse process. Consider the plant (timein seconds)

(2.26)

Thisis one of two main example processes used in this chapter to illustrate the techniques of
classical control. Themodel hasaright-half plane (RHP) zero at rad/s. Thisimposesa
fundamental limitation on control, and high controller gainswill induce closed-loop instability.

Thisisillustrated for a proportional (P) controller in Figure 2.5, where the
response to a step changein thereference ( for )
is shown for four different valuesof . The system is seen to be stable for , and
unstable for . The controller gain at the limit of instability, , IS sometimes
called the ultimate gain and for thisval uethe systemis seen to cycle continuously with a period

s, corresponding to the frequency rad/s.

Two methodsarecommonlyusedto determineclosed-loopstability:



1. Thepolesof theclosed-loopsystemareevaluatedThatis, therootsof
arefound,where isthetransferfunctionaroundtheloop. Thesystemis stable
if and only if all theclosed-loopolesarein theopenleft-half plane(LHP) (thatis,
polesontheimaginaryaxisareconsideredunstable”). Thepolesarealsoequalto
theeigenvalue®f the state-space -matrix, andthisis usuallyhowthe polesare
computechumerically
2. Thefrequencyresponsdincluding negativefrequenciespf is plottedin
the complexplaneandthe numberof encirclementst makesof the critical point
is counted By Nyquist's stability criterion (for which a detailedstatements
givenin Theorem4.7) closed-loopstability is inferredby equatinghe numberof
encirclementso the numberof open-loopunstablepoles(RHP-poles).
For open-loopstable systemswhere falls with frequencysuch that
crosses only once (from aboveat frequency ), one may
equivalentlyuseBode's stability condition which saysthattheclosed-loosystem
is stableif andonly if theloopgain  islessthanl atthis frequencythatis

(2.27)

where is the phasecrossovefrequencydefinedby

Method , whichinvolvescomputingthe poles,is bestsuitedfor numericalcalcula-
tions.Howevertime delaysmustfirst beapproximatedsrationaltransferfunctions,
e.g.Pack approximationsMethod2, whichis basedn the frequencyresponsehas
anice graphicalinterpretationand may alsobe usedfor systemswith time delays.
Furthermoreit providesusefulmeasuresf relativestability andformsthebasisfor

severabf therobustnessestsusedaterin this book.

Example 2.2 Stability of inverse response process with proportional control. Let us
determine the condition for closed-loop stability of the plant  in (2.26) with proportional
control, that is, with and .

1. The systemis stable if and only if all the closed-loop poles are in the LHP. The poles are
solutionsto or equivalently the roots of

(2.28)

But since we are only interested in the half plane locationof the poles, it is not necessary
to solve (2.28). Rather, one may consider the coefficients  of the characteristic equation

in (2.28), and use the Routh-Hurwitztest to check for stability. For
second order systems, this test says that we have stability if and only if all the coefficients
have the same sign. This yields the following stability conditions

or equivalently . With negative feedback ( ) only the upper
bound isof practical interest, and we find that the maximum allowed gain (“ ultimategain” )



is which agrees with the simulation in Figure 2.5. The poles at the onset of

instability may be found by substituting into (2.28) to get ,

i.e . Thus, at the onset of instability we have two poles

on the imaginary axis, and the system will be continuously cycling with a frequency
rad/s corresponding to a period s. This agrees with the

simulation resultsin Figure 2.5.
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Figure 2.6: Bodeplotsfor —— with

2. Sability may al so be evaluated fromthe frequency response of .Agraphical evaluation

is most enlightening. The Bode plots of the plant (i.e. with ) are shown in
Figure 2.6. From these one finds the frequency where is and then reads
off the corresponding gain. Thisyields , and we get
from (2.27) that the systemis stable if and only if (asfound

above). Alternatively, the phase crossover frequency may be obtained analytically from:

which gives rad/s as found in the pole calculation above. The loop gain at
thisfrequency is

which is the same as found from the graph in Figure 2.6. The stability condition
then yields as expected.



2.4 Evaluating closed-loop performance

Althoughclosed-loopstability is animportantissue the real objectiveof controlis
to improveperformancethatis, to makethe output behaven amoredesirable
mannerActually, thepossibilityof inducinginstabilityis oneof thedisadvantagesf
feedbackcontrolwhich hasto be tradedoff againstperformancemprovementThe
objectiveof this sectionis to discusswvaysof evaluatingclosed-loogerformance.

24.1 Typical closed-loop responses

Thefollowing examplevhich considergproportionaplusintegral(PI) controlof the
inverseresponsegrocessn (2.26),illustrateswhattype of closed-looperformance
onemightexpect.

2

10 20 30 40 50 60 70 80
Time[sec]

Figure2.7: Closed-loogesponséo astepchangen referencdor theinverserespons@rocess
with Pl-control

Example 2.3 Pl-control of theinver seresponse process. e have already studied the use
of a proportional controller for the processin (2.26). We found that a controller gain of
gave a reasonably good response, except for a steady-state offset (see Figure 2.5). The
reason for this offset is the non-zero steady-state sensitivity function,  —
(where isthe steady-state gain of the plant). From it follows that for
the steady-state control error is (asisconfirmed by the simulation in Figure 2.5).
To remove the steady-state offset we add integral action in the form of a Pl-controller

— (2.29)

The settings for and can be determined from the classical tuning rules of Ziegler and
Nichols (1942):
(2.30)

where is the maximum (ultimate) P-controller gain and is the corresponding period
of oscillations. In our case and s (as observed from the simulation in



Figure2.5), and we get and s. Alternatively, and  canbeobtained
from the model
(2.31)

where  isdefined by .

The closed-loop response, with Pl-control, to a step change in reference is shown in
Figure 2.7. The output has an initial inverse response due to the RHP-zero, but it then
rises quickly and at s (therisetime). Theresponse is quite oscillatory and
it does not settleto within % of the final value until after s (the settling time). The
overshoot (height of peak relative to the final value) isabout % which is much larger than
one would normally like for reference tracking. The decay ratio, which is the ratio between
subsequent peaks, is about which is also a bit large. However, for disturbance rejection
the controller settings may be more reasonable, and one can always add a prefilter to improve
the response for reference tracking, resulting in a two degrees-of-freedom controller.
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Figure 2.8: Bodemagnitudeandphaseplots of , and when
,and —— (aZieglerNicholsPI controller)

The corresponding Bode plots for , and  are shown in Figure 2.8. Later, in
Section 2.4.3, we define stability margins, and fromthe plot of , repeated in Figure 2.11,
we find that the phase margin (PM) is rad = and the gain margin (GM) is
These margins are too small according to common rules of thumb. The peak value of is

, and the peak value of is which again are high according to

normal design rules.
Exercise2.1 Use(2.31)tocompute  and  for the processin (2.26).

In summaryfor thisexampletheZieglerNichols’ PI-tuningsaresomewhataggres-
sive” andgive aclosed-loopystemwith smallerstability marginsanda moreoscil-
latory responsehanwould normallyberegardedasacceptable.



24.2 Timedomain performance

Overshoot =
157 Decayratio = )

Time
Figure 2.9: Characteristicef closed-loopresponséo stepin reference

Step response analysis. The aboveexampleillustratesthe approachoftentaken
by engineerswhen evaluatingthe performanceof a control system.Thatis, one
simulatesthe responséo a stepin the referencanput, andconsidershe following
characteristic¢seeFigure2.9):

Risetime: ( ) thetimeit takesfor the outputto first reach90% of its final value,
whichis usuallyrequiredto besmall.

Settling time: () thetime afterwhich the outputremainswithin of its final
value,whichis usuallyrequiredto besmall.

Overshoot: thepeakvaluedividedby thefinal value which shouldtypically be 1.2
(20%)or less.

Decay ratio: theratio of the secondandfirst peakswhich shouldtypically be 0.3
orless.

Seady-state offset: the differencebetweenthe final value and the desiredfinal
value,whichis usuallyrequiredto besmall.

Therisetime andsettlingtime aremeasuresf thespeed of the response, whereashe
overshootdecayratioandsteady-stateffsetarerelatedo thequality of the response.
Anothermeasuref thequality of theresponsés:

Excessvariation: thetotalvariation(TV) dividedby the overallchangeat steady
state which shouldbeascloseto 1 aspossible.

Thetotal variationis the total movemenbof the outputasillustratedin Figure?2.10.
Forthecasesonsideredheretheoverallchangds 1, sotheexceswariationis equal
to thetotal variation.

The abovemeasuresaddresshe outputresponse, . In addition,one should
considerthe magnitudeof the manipulatednput (controlsignal, ), which usually
shouldbe assmallandsmoothaspossiblelf thereareimportantdisturbanceshen



Time

Figure2.10: Total variationis , andExcessvariationis

the responsdo theseshould also be consideredFinally, one may investigatein
simulationhowthecontrollerworksif the plantmodelparameteraredifferentfrom
theirnominalvalues.

Remark 1 Anotherway of quantifyingtime domainperformancas in termsof somenorm
of theerrorsignal . Forexample pnemight usetheintegralsquarecerror
(ISE), or its squarerootwhich is the 2-normof the errorsignal,

Notethatin this casethe variousobjectivesrelatedto boththe speedandquality of response
arecombinednto onenumber Actually, in mostcasesninimizing the 2-normseemdo give
areasonablérade-of betweerthe variousobjectivedisted above Anotheradvantagef the
2-normis thatthe resultingoptimizationproblems(suchasminimizing ISE) arenumerically
easyto solve.Onecanalsotakeinput magnitudesnto accountby consideringfor example,

where and arepositiveconstantsThisis similarto

linear quadratic(LQ) optimal control, butin LQ-controlonenormally considersanimpulse
ratherthana stepchangen

Remark 2 Thestepresponsés equalto theintegralof the correspondingmpulseresponse,
e.g.set in (4.11). Somethoughtthenrevealghatonecancomputethetotal variation
asthe integratedabsolutearea(1-norm) of the correspondingmpulserespons€Boyd and
Barratt,1991,p. 98). Thatis, let , thenthe total variationin  for a stepchangein
is
(2.32)

where is theimpulseresponsef ,i.e. resultingfrom animpulsechangdn

24.3 Frequency domain performance

The frequency-responsaf the loop transferfunction, , or of variousclosed-
loop transferfunctions,may alsobe usedto characterizelosed-loopperformance.
Typical Bodeplotsof , and areshownin Figure2.8. Oneadvantagef the

frequencydomaincomparedo asteprespons@nalysisjs thatit considerabroader



classof signals(sinusoidsof any frequency).This makesit easierto characterize
feedbaclpropertiesandin particularsystembehaviouiin thecrossove(bandwidth)
region. We will now describesomeof the importantfrequency-domairmeasures
usedto assesperformancee.g.gain and phasemamgins, the maximumpeaksof
and , andthe variousdefinitionsof crossoverandbandwidthfrequenciesisedto
characterizapeedf response.

Gain and phase margins

Let denotethe loop transferfunction of a systemwhich is closed-loopstable
undernegativefeedback A typical Bode plot anda typical Nyquist plot of
illustratingthe gainmargin (GM) andphasemamin (PM) aregivenin Figures2.11
and2.12,respectively
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Figure 2.11: Typical Bodeplot of with PM andGM indicated
Thegain margin is definedas
(2.33)
wherethe phase crossover frequency is wherethe Nyquist curve of
crosseshenegativerealaxisbetween andO, thatis
(2.34)
If thereis more than one crossingthe largestvalue of is taken.On a
Bodeplot with a logarithmicaxisfor , we havethat GM (in logarithms,e.g.in
dB) is the vertical distancefrom the unit magnitudeline down to , see

Figure2.11. The GM is thefactorby which theloop gain maybeincreased
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Figure 2.12: Typical Nyquist plot of for stableplant with PM and GM indicated.
Closed-loopnstability occursif encircleshecritical point

beforethe closed-loopsystembecomesinstable The GM is thusa directsafeguard

againststeady-stat@ain uncertainty(error). Typically we require . If the
Nyquistplot of  crossedhe negativereal axis between  and thenagain
reduction margin canbe similarly definedfrom the smallestvalue of of

suchcrossings.
Thephase margin is definedas

(2.35)

wherethegain crossover frequency  is where first crossed from above,
thatis

(2.36)

The phasemamin tells how muchnegativephasephasdag) we canaddto at
frequency beforethe phaseat this frequencybecomes which corresponds
to closed-loopnstability (seeFigure2.12).Typically, we requirePM largerthan

or more.The PM is a direct safeguardagainsttime delay uncertainty;the system
becomesinstabldf we addatime delayof

(2.37)



Notethatthe unitsmustbe consistentandsoif  isin [rad/s]thenPM mustbein
radianslt is alsoimportantto notethatby decreasinghevalueof  (loweringthe
closed-loophandwidthyesultingin aslowerresponsedhe systencantoleratelarger
time delayerrors.

Example 2.4 For the PI-controlled inverse response process example we have
rad rad and rad/s. The allowed time delay error
isthen rad rad/s S.

From the abovearmgumentswe seethat gain and phasemargins provide stability
margins for gain and delay uncertainty However aswe showbelow the gain and
phasemaminsarecloselyrelatedto the peakvaluesof and andare
thereforealsousefulin termsof performance. In short,the gainandphasemanmins
areusedto providetheappropriatarade-of betweerperformancendstability.

Exercise2.2 Prove that the maximum additional delay for which closed-loop stability is
maintained is given by (2.37).

Exercise 2.3 Derive the approximation for given in (5.73) for a first-
order delay system.

Maximum peak criteria

The maximumpeaksof the sensitivityandcomplementargensitivityfunctionsare
definedas

(2.38)

(Note that and in termsof the normintroduced
later) Typically, it is requiredthat is lessthanabout ( dB) and is less
thanabout ( dB). A largevalueof or (largerthanabout ) indicates
poorperformancaswell aspoorrobustnessSince it follows thatatany
frequency

SO and differatmostby . A largevalueof thereforeoccursif andonly
if is large.For stableplantswe usuallyhave , butthisis notageneral
rule. An upperboundon hasbeena commondesignspecificationin classical
controlandthereademaybefamiliar with theuseof  -circlesonaNyquistplot or
aNicholschartusedto determine  from
We now give somejustificationfor why we maywantto boundthe valueof

Without control ( ), we have , andwith feedback
control . Thus,feedbackcontrolimprovesperformancen terms
of reducing at all frequencieswvhere . Usually is small at low
frequenciesfor example, for systemawith integralaction.But because
all realsystemsrestrictly properwe mustat high frequenciesavethat or



equivalently . At intermediatdrequencie®necannotavoidin practiceapeak
value, |, largerthanl (e.g.seetheremarkbelow).Thus,thereis anintermediate
frequencyrangewherefeedbaclcontroldegradeperformanceandthevalueof

is a measureof the worst-caseperformancalegradationOne may also view
asarobustnessneasureasis now explained.To maintainclosed-loopstability the

numberof encirclement®f the critical point by mustnot changesowe
want to stayawayfrom this point. Thesmallestistancebetween andthe-1
pointis , andthereforefor robustnesshesmaller |, thebetter In summary

bothfor stability andperformancave want closeto 1.
Thereis acloserelationshiphbetweerthesenaximumpeaksandthegainandphase
maugins. Specifically for agiven we areguaranteed

_ —_— — (2.39)
Forexamplewith we areguaranteed and . Similarly,
for agivenvalueof we areguaranteed

- S S (2.40)
andthereforewith we have and
Proof of (2.39) and (2.40): To derivethe GM-inequalitiesnoticethat
(since and isrealandnegativeat ), from whichwe get
_ - (2.41)

and the GM-resultsfollow. To derive the PM-inequalitiesin (2.39) and (2.40) consider
Figure2.13wherewe have andwe obtain

(2.42)

andtheinequalitiesfollow. Alternativeformulas,which aresometimesised follow from the
identity

Remark. We notewith interestthat(2.41)requires  to belargerthanl atfrequency

This meanghatprovided exists thatis, hasmorethan phasdag at some
frequency(whichis the casefor anyrealsystem)thenthe peakof mustexceedL.
In conclusionwe seethat specificationson the peaksof or (

or ), canmakespecificationson the gain and phasemaigins unnecessaryor
instance requiring implies the commonrules of thumb and



Figure2.13: At frequency we seefrom thefigurethat

24.4 Relationship between time and frequency domain peaks

Forachangan reference, the outputis . Isthereanyrelationship
betweerthefrequencydomainpeakof , , andanycharacteristiof thetime
domainstepresponsdpr exampleheovershoobrthetotal variation?To answethis
considera prototypesecond-ordesystemwith complementargensitivityfunction

(2.43)
Forunderdampedystemsvith thepolesarecomplexandyield oscillatorystep
responsesiith (a unit stepchange}he valuesof the overshootandtotal

variationfor aregiven,togethemwith and ,asafunctionof inTable2.1.
FromTable2.1,weseethatthetotal variationTV correlategjuitewell with . This
is furtherconfirmedby (A.95) and(2.32)which togethelyield thefollowing general
bounds

(2.44)

Here is the orderof , Whichis for our prototypesystemin (2.43).Given

that the responseof many systemscan be crudely approximatedby fairly low-

order systemsthe boundin (2.44) suggestghat may provide a reasonable

approximatiorto thetotal variation.This providessomejustificationfor the useof
in classicakontrolto evaluatehe quality of theresponse.



Table 2.1: Peakvaluesandtotal variationof prototypesecond-ordesystem

Time domain Frequencydomain
Overshoot| Totalvariation
2.0 1 1 1 1.05
15 1 1 1 1.08
1.0 1 1 1 1.15
0.8 1.02 1.03 1 1.22
0.6 1.09 1.21 1.04 1.35
0.4 1.25 1.68 1.36 1.66
0.2 1.53 3.22 2.55 2.73
0.1 1.73 6.39 5.03 5.12
0.01 1.97 63.7 50.0 50.0

% MATLAB code (Mu tool box) to generate Table:

tau=1; zeta=0. 1; t =0: 0. 01: 100;

T = nd2sys(1,[tau*tau 2*tau*zeta 1]); S = nmsub(1,T);
[A B, C D =unpck(T); yl = step(A,B,C,D 1,t);

over shoot =max(y1), tv=sum(abs(di ff(yl)))

M =hi nf norm(T, 1. e-4), Ms=hi nf norn( S, 1. e- 4)

2.4.5 Bandwidth and crossover frequency

The concepibf bandwidthis very importantin understandinghe benefitsandtrade-
offsinvolvedwhenapplyingfeedbaclcontrol.Abovewe consideregeakf closed-
looptransferfunctions, and ,whicharerelatedto thequality of theresponse.
However for performancenve mustalso considerthe speedof the responseand
this leadsto consideringhe bandwidthfrequencyof the systemlIn generalalarge
bandwidthcorrespondso a fasterrise time, sincehigh frequencysignalsaremore
easilypassen to the outputs.A high bandwidthalsoindicatesa systemwhich is
sensitiveto noiseandto parametevariations. Converselyif the bandwidthis small,
thetime responsavill generallybeslow, andthesystemwill usuallybemorerobust.

Looselyspeakinghandwidth maybedefinedasthefrequencyrange over
which controlis effective.In mostcasesve requiretight control at steady-statso
, andwe thensimply call thebandwidth.

Theword“effective” maybeinterpretedn differentways,andthismaygiveriseto
differentdefinitionsof bandwidth Theinterpretatiorwe useis thatcontrolis effective
if we obtainsomebenefit in termsof performancet-ortrackingperformanceheerror
is andwe getthatfeedbackis effective (in termsof improving
performancegslong astherelativeerror is reasonablmall, which we
may defineto belessthan0.707in magnitudeWe thengetthefollowing definition:

Definition 2.1 The(closed-loop) bandwidth, ,isthefrequency where first



Crosses dB) from below.

Anotherinterpretatioris to saythatcontrolis effectiveif it significantlychangesthe
outputresponsek-or tracking performancethe outputis andsincewithout
control , we maysaythatcontrolis effectiveaslongas is reasonablyarge,
which we may defineto be largerthan0.707.This leadsto analternativedefinition
which hasbeentraditionally usedto definethe bandwidthof a control system:The

bandwidth in terms of , is the highest frequency at which Crosses
dB) from above.
Remark 1 Thedefinitionof bandwidthin termsof hastheadvantag®f beingcloserto

howthetermis usedn otherfields,for examplein definingthefrequencyangeof anamplifier
in anaudiosystem.

Remark 2 In mostcasesthetwo definitionsin termsof and yield similarvaluesfor the

bandwidthIn caseavhere  and differ, the situationis generallyasfollows. Up to the

frequency , islessthan0.7,andcontrolis effectivein termsof improvingperformance.
In the frequencyrange control still affectsthe responseput doesnot improve

performance— in mostcasesvefindthatin thisfrequencyange islargerthanlandcontrol

degradegerformanceFinally, atfrequenciesigherthan we have andcontrolhas
no significanteffect ontheresponseThessituationjustdescribeds illustratedin Example2.5

below(seeFigure2.15).

The gain crossover frequency, , definedasthe frequencywhere first

crossed from above s alsosometimesisedto defineclosed-loofbandwidthlt has

theadvantagef beingsimpleto computeandusuallygivesavaluebetween and
. Specifically for systemswith PM we have

(2.45)

Proof of (2.45): Notethat o) . Thus,when

we get (see(2.42)),and we have .

For we get , andsince s thefrequency
where crosse).707from belowwe musthave . Similarly, since is

thefrequencywhere crossed).707from above we musthave

Anotherimportantfrequencyis the phase crossover frequency, , definedasthe
first frequencywhere the Nyquist curve of crossegthe negativereal axis
between ando.

Remark. From (2.41) we getthat for , and for

, andsincein manycaseghe gainmagin is about2.4we concludethat is
usuallycloseto . It is alsointerestingo notefrom (2.41)thatat thephaseof (and
of )is , sofrom we concludethatat frequency thetrackingresponsés
completelyout of phaseSinceasjustnoted is oftencloseto , thisfurtherillustrates
that maybea poorindicatorof closed-looperformance.



Example 2.5 Comparison of and as indicators of performance. An example

where isa poor indicator of performanceis the following:
_ (2.46)
For this system, both and have a RHP-zero at , and we have ,
, and . We find that and are both
lessthan (as one should expect because speed of responseislimited by the presence of
RHP-zeros), whereas isten timeslarger than . The closed-loop response
to a unit step changein the reference is shown in Figure 2.14. Therisetimeis s, which
iscloseto s, but very different from s, illustrating that isa

better indicator of closed-loop performance than
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Figure 2.14: Stepresponséor system _
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Figure2.15: Plotsof and  for system _—
The magnitude Bode plotsof and are shown in Figure 2.15. e see that up to
about . However, inthefrequencyrangefrom  to thephaseof (not shown) drops

from about to about , Soin practicetracking is poor in thisfrequency range. For



example, at frequency we have , and the response to a sinusoidally
varying reference iscompletely out of phase, i.e.

In conclusion,  (whichis definedin termsof ) andalso  (in termsof )
aregoodindicatorsof closed-looperformancewhile (intermsof ) maybe
misleadingin somecasesThereasorns thatwe want in orderto havegood
performanceandit is notsufficientthat ; we mustalsoconsideiits phaseOn
the otherhand,for for goodperformanceve want closeto 0, andthis will bethe
caseif irrespectiveof the phaseof

2.5 Controller design

We haveconsideredvays of evaluatingperformancebut one also needsmethods
for controllerdesign.The ZieglerNichols’ methodusedearlieris well suitedfor
on-linetuning, butmostothermethodsnvolve minimizing somecostfunction.The
overall designprocesss iterative betweencontroller designand performancegor
cost) evaluation.If performances not satisfactorythenone musteitheradijustthe
controllerparameterslirectly (for exampleby reducing  from thevalueobtained
bytheZieglerNichols’rules)or adjustsomeweightingfactorin anobjectivefunction
usedto synthesizehe controller

Thereexistalargenumberof methoddor controllerdesignandsomeof thesewill
be discussedn Chapter9. In additionto heuristicrulesandon-line tuning we can
distinguishbetweerthreemainapproacheo controllerdesign:

1. Shaping of transfer functions. In this approachthe designerspecifiesthe
magnitude of sometransferfunction(s)asafunctionof frequencyandthenfinds
acontrollerwhich givesthedesiredshape(s).

(a) Loop shaping. This is the classicalapproachin which the magnitudeof the
open-looptransfer function, , iIs shaped.Usually no optimizationis
involved and the designeraims to obtain with desiredbandwidth,
slopestc.Wewill look atthisapproachn detaillaterin thischapterHowever
classicaloopshapingsdifficult to applyfor complicatedsystemsandonemay
theninsteadusethe GloverMcFarlane loop-shapinglesignpresentedn
Chapte9. Themethodconsistf asecondstepwhereoptimizationis usedto
makeaninitial loop-shapinglesignmorerobust.

(b) Shaping of closed-loop transfer functions, suchas , and . Optimiza-
tionis usuallyusedyesultingin various optimalcontrolproblemssuchas
mixedweightedsensitivity;moreonthis later.

2. The signal-based approach. This involvestime domainproblemformulations
resultingin theminimizationof anormof atransferfunction.Hereoneconsiders
a particulardisturbanceor referencechangeandthenonetries to optimize the
closed-loopresponseThe “modern” state-spacenethodsfrom the 1960, such



asLinear QuadraticGaussianLQG) control, are basedon this signal-oriented
approachin LQG theinputsignalsareassumedo be stochasti¢or alternatively
impulsesn adeterministicsetting)andthe expectedralueof the outputvariance
(or the 2-norm) is minimized. Thesemethodsmay be generalizedo include
frequencydependentveightson the signalsleadingto whatis calledthe Wiener
Hopf(or -norm)designmethod.

By consideringsinusoidalsignals,frequency-by-frequety, a signal-based
optimal control methodologycan be derived in which the norm of a
combinationof closed-looptransferfunctionsis minimized. This approacthas
attractedsignificant interest, and may be combinedwith model uncertainty
representations$o yield quitecomplexrobustperformanceroblemsequiring -
synthesisanimportanttopic whichwill beaddresseth laterchapters.

3. Numerical optimization. This ofteninvolvesmulti-objectiveoptimizationwhere
oneattemptgo optimizedirectly the true objectives suchasrise times, stability
mamgins, etc. Computationally such optimization problemsmay be difficult to
solve,especiallyif onedoesnothaveconvexityin thecontrollerparametersAlso,
by effectively includingperformancesvaluationandcontrollerdesignin asingle
stepprocedurethe problemformulationis far morecritical thanin iterativetwo-
stepapproaches henumericabptimizationapproachmayalsobeperformedn-
line, whichmightbeusefulwhendealingwith casesith constraint®ntheinputs
andoutputs On-lineoptimizationapproachesuchasmodelpredictivecontrolare
likely to becomemorepopularasfastercomputerandmoreefficientandreliable
computationahlgorithmsaredeveloped.

2.6 Loop shaping

In theclassicaloop-shapingpproacho controllerdesign,‘loop shape'refersto the
magnitudeof the loop transferfunction asa function of frequencyAn
understandingf how canbeselectedo shapehisloop gainprovidesinvaluable
insightinto themultivariabletechniqueandconceptsvhichwill bepresentethterin
thebook,andsowe will discusdoop shapingn somedetailin thenexttwo sections.

2.6.1 Trade-offsin terms of

Recallequation2.19),whichyieldstheclosed-loopesponsén termsof thecontrol
error :

(2.47)

For “perfectcontrol” we want ; thatis, we would like



The first two requirementsin this equation, namely disturbancerejection and
commandtracking, are obtainedwith , or equivalently . Since
, this implies that the loop transferfunction mustbe large in
magnitude On the otherhand,the requiremenfor zeronoisetransmissiorimplies
that , Orequivalently , Whichis obtainedwith . Thisillustratesthe
fundamentahatureof feedbackdesignwhich alwaysinvolvesa trade-of between
conflictingobjectivesjn this casebetweerargeloop gainsfor disturbanceejection
andtracking,andsmallloop gainsto reducethe effect of noise.

It is alsoimportantto consideithe magnitudeof thecontrolaction (whichisthe
input to the plant). We want smallbecauseéhis causedesswearandsavesnput
enepgy, andalsobecause is often a disturbancdo otherpartsof the system(e.g.
consideropeningawindow in your officeto adjustyour comfortandtheundesirable
disturbancethis will imposeon the air conditioning systemfor the building). In
particular we usuallywantto avoidfastchangesn . Thecontrolactionis givenby

andwefind asexpectedhatasmall correspondto smallcontroller
gainsandasmall

The mostimportantdesignobjectiveswhich necessitatérade-ofs in feedback
controlaresummarizedelow:

. Performancegooddisturbanceejection:needdargecontrollergains,.e. large.

. Performancegoodcommandollowing: large.

. Stabilizationof unstableplant: large.

. Mitigation of measurementoiseon plantoutputs: small.

. Smallmagnitudeof inputsignals: smalland small.

. Physicakontrollermustbestrictly proper: and athighfrequencies.

. Nominalstability (stableplant): small(becaus®ef RHP-zerosindtime delays).

. Robust stability (stable plant):  small (becauseof uncertainor neglected
dynamics).

O~NO UL, WDNPE

Fortunately the conflicting design objectivesmentionedabove are generallyin
differentfrequencyrangesandwe canmeetmostof the objectivesby usingalarge
loop gain( ) atlow frequenciedelowcrossoveranda smallgain ( )
athighfrequenciegbovecrossover

2.6.2 Fundamentalsof loop-shaping design

By loop shaping we meana designprocedurethat involves explicitly shapingthe
magnitudeof the loop transferfunction, . Here where

is the feedbackcontroller to be designedand is the productof all
othertransferfunctionsaroundthe loop, including the plant, the actuatorand the
measuremerdevice Essentiallyto getthe benefitsof feedbackcontrolwe wantthe
loopgain, , to beaslargeaspossiblewithin thebandwidthregion.However
duetotimedelays RHP-zerosynmodelledhigh-frequencylynamicsandlimitations
on the allowed manipulatedinputs, the loop gain hasto drop below one at and



abovesomefrequencywhichwe call thecrossovefrequency . Thus,disregarding

stability for the moment,it is desirablethat falls sharplywith frequency
To measurchow  falls with frequencywe considerthe logarithmicslope
. For example,a slope impliesthat  dropsby a factor
of 10when increasedy a factorof 10. If the gainis measuredn decibels(dB)
thena slopeof correspondso dB/ decadeThe valueof at high
frequenciess oftencalledtherall-off rate.
The designof is mostcrucial anddifficult in the crossoveregionbetween
(where ) and (where ). For stability, we at leastneed
theloop gainto belessthanl atfrequency ,i.e. . Thus,to geta

highbandwidth(fastresponsejvewant andtherefore large,thatis, we want
thephaselagin to be small. Unfortunately this is not consistenwith the desire

that shouldfall sharply For example the loop transferfunction

(which hasa slope onalog-log plot) hasa phase . Thus,
to havea phasemamin of we need , andthe slopeof  cannot
exceed

In addition,if the slopeis madesteepeiat lower or higherfrequenciesthenthis
will addunwantedphaselag at intermediaterequenciesAs an exampleconsider
givenin (2.13)with the Bodeplot shownin Figure2.3.Herethe slopeof the

asymptotef is  atthegaincrossovefrequencywhere ), which
by itself gives phasdag.However dueto theinfluenceof thesteepeslopef
atlower andhigherfrequenciesthereis a“penalty” of about atcrossover

sotheactualphaseof at isapproximately

The situationbecomesvenworsefor caseswith delaysor RHP-zerosn
which addundesirablgphasdlagto  without contributingto a desirablenegative
slopein . At thegaincrossovefrequency ,theadditionalphasdagfrom delays
andRHP-zerosnayin practicebe or more.

In summarya desiredloop shapefor typically hasa slopeof about
in the crossoveregion,anda slopeof or higherbeyondthis frequencythatis,
theroll-off is 2 or larger. Also, with a propercontroller which is requiredfor any
real system,we musthavethat rolls off at leastasfastas . At low
frequencieshedesirecsshapeof  depend®nwhatdisturbanceandreferencesve
aredesigningfor. For examplejf we areconsideringstepchangesn thereferences
or disturbancesvhich affect the outputsasstepsthenaslopefor  of atlow
frequencieds acceptablelf the referencesr disturbancesequirethe outputsto
changedn aramp-likefashionthenaslopeof  isrequired.n practice jntegrators
areincludedin the controllerto getthe desiredow-frequencyperformanceandfor
offset-freereferencdrackingtheruleis that

must contain at |east one integrator for each integrator in

Proof: Let where is non-zeroandfinite and  is the numberof
integratorsin — sometimes s calledthe system type. Considerareferencesignalof
theform . Forexamplejf is aunit step,then ( ), andif



is arampthen ( ). Thefinal valuetheoremnfor Laplacetransformss

(2.48)
In our casethecontrolerroris

(2.49)
andto getzerooffset(i.e. ) we mustfrom (2.48)require , andtherule

follows.

In conclusion,one can define the desiredloop transferfunction in terms of the
following specifications:

1. Thegaincrossovefrequency ,where .

2. The shapeof , €.g.in termsof the slopeof in certainfrequency
ranges.Typically, we desirea slopeof about aroundcrossoverand
a larger roll-off at higher frequencies.The desiredslope at lower frequencies
depend®nthe natureof thedisturbancer referencesignal.

3. Thesystemtype, definedasthe numberof pureintegratorsn

In Section?.6.4,we discushowto specifytheloop shapavhendisturbanceejection
is the primary objective of control. Loop-shapingdesignis typically an iterative
proceduravherethedesigneshapesndreshapes aftercomputinghephase
and gain mamgins, the peaksof closed-loopfrequencyresponseg and ),

selectedclosed-looptime responsesthe magnitudeof the input signal, etc. The
proceduras illustratednextby anexample.

Example 2.6 L oop-shaping design for theinver seresponse process.

We will now design a loop-shaping controller for the example process in (2.26) which has a
RHP-zero at . The RHP-zero limits the achievable bandwidth and so the crossover
region (defined as the frequenciesbetween  and )will beatabout  rad/s. Werequire
the system to have one integrator (type system), and therefore a reasonable approach is to
let the loop transfer function have a slopeof  at low frequencies, and then to roll off with a
higher slope at frequencies beyond rad/s. The plant and our choice for the loop-shapeis

(2.50)

The frequency response (Bode plots) of  is shown in Figure 2.16 for

The controller gain was selected to get a reasonable stability margins (PM and GM)
The asymptotic slope of is up to rad/s where it changesto . The controller
corresponding to the loop-shapein (2.50) is

(2.51)
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Figure 2.17: Respons¢o stepin referenceor loop-shapinglesign

The controller has zeros at the locations of the plant poles. Thisis desired in this case because
we do not want the slope of the loop shape to drop at the break frequencies rad/s
and rad/s just before crossover. The phase of is at low frequency, and
at rad/s the additional contribution from the term in (2.50) is , so for
stability we need rad/s. The choice yields rad/scorresponding
to and PM= . The corresponding time response is shown in Figure 2.17. It is
seen to be much better than the responses with either the simple Pl-controller in Figure 2.7 or
with the P-controller in Figure 2.5. Figure 2.17 also shows that the magnitude of the input
signal remains less than about in magnitude. This means that the controller gain is not
too large at high frequencies. The magnitude Bode plot for the controller (2.51) is shown in
Figure 2.18. It is interesting to note that in the crossover region around rad/s the
controller gain is quite constant, around in magnitude, which is similar to the “ best” gain
found using a P-controller (see Figure 2.5).
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Limitationsimposed by RHP-zerosand time delays

Basedon the aboveloop-shapingargumentsve cannow examinehow the presence
of delaysandRHP-zerodimit theachievablecontrol performanceWe havealready
arguedthatif we wanttheloop shapeto havea slopeof  aroundcrossove( ),
with preferablya steepeislopebeforeand after crossoverthenthe phaselag of
at  will necessarilpeatleast , evenwhenthereareno RHP-zeror delays.
Thereforejf weassumehatfor performancendrobustness/e wantaphasenamgin
of about or more,thenthe additionalphasecontributionfrom any delaysand
RHP-zerostfrequency cannotexceedabout

First considera time delay . It yields an additionalphasecontributionof ,
whichatfrequency is rad= (whichis morethan ). Thus,for
acceptableontrol performanceve need , approximately

Next considerareal RHP-zeraat . To avoidanincreasen slopecausedy
this zerowe placea pole at suchthattheloop transferfunctioncontainghe
term ——, the form of which is referredto asall-passsinceits magnitudeequals
1 at all frequenciesThe phasecontributionfrom the all-passterm at
is (which is closeto ), so for acceptablecontrol
performanceve need , approximately

2.6.3 Inverse-based controller design

In Example 2.6, we made sure that containedthe RHP-zeroof , but
otherwisethe specified wasindependenbf . This suggestshe following
possibleapproachfor a minimum-phaselant(i.e. onewith no RHP-zerosor time
delays)Selectaloopshapevhichhasaslopeof  throughouthefrequencyrange,
namely

— (2.52)



where s the desiredgain crossoverfrequency This loop shapeyields a phase
maugin of andan infinite gain mamin sincethe phaseof neverreaches
. Thecontrollercorrespondingo (2.52)is

— (2.53)

Thatis, thecontrollerinvertstheplantandaddsanintegrato ). Thisisanoldidea,
andis alsothe essentiapart of theinternalmodelcontrol (IMC) designprocedure
(Morari and Zafiriou, 1989) which has proved successfuiin many applications.
However thereareat leasttwo goodreasondor why this inverse-basedontroller
may notbeagoodchoice:

1. Thecontrollerwill notberealizablaf hasapoleexces®f two or larger, and
mayin anycaseyield largeinput signals.Theseproblemsmay be partly fixed by
addinghigh-frequencyynamicso thecontrollet

2. Theloop shaperesultingfrom (2.52)and(2.53)is not generallydesirablepnless
thereferenceanddisturbanceaffecttheoutputsasstepsThisisillustratedby the
following example.

Example 2.7 Disturbance process. We now introduce our second 9SO example control

problem in which disturbance rejection is an important objective in addition to command

tracking. We assume that the plant has been appropriately scaled as outlined in Section 1.4.
Problem formulation. Consider the disturbance process described by

- (2.54)

with time in seconds (a block diagramis shown in Figure 2.20). The control objectives are:

1. Commandtracking: Therisetime(toreach % of thefinal value) should belessthan s
and the overshoot should be lessthan %.
2. Disturbance rejection: The output in response to a unit step disturbance should remain

within therange at all times, and it should returnto  asquickly as possible (

should at least belessthan  after ).

3. Input constraints: should remain within the range at all times to avoid input
saturation (thisis easily satisfied for most designs).

Analysis. Since we have that without control the output response to a unit
disturbance ( ) will be times larger than what is deemed to be acceptable. The
magnitude is lower at higher frequencies, but it remains larger than up to

rad/s (where ). Thus, feedback control is needed up to frequency , so we

need tobeapproximately equal to  rad/sfor disturbancerejection. Onthe other hand, we
donotwant tobelarger than necessary because of sensitivity to noiseand stability problems
associated with high gain feedback. We will thus aim at a design with rad/s.

Inverse-based controller design. We will consider the inverse-based design as given
by (2.52) and (2.53) with . Since has a pole excess of three this yields an
unrealizable controller, and therefore we choose to approximate the plant term



by and then in the controller we let this term be effective over one decade, i.e. we

use to give the realizable design

- — (2.55)
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Figure 2.19: Responsewith “inverse-basedtontroller for thedisturbancerocess

The response to a step reference is excellent as shown in Figure 2.19(a). Therise time is
about s and there is no overshoot so the specifications are more than satisfied. However,
the response to a step disturbance (Figure 2.19(b)) is much too sluggish. Although the output
stays within the range ,itisstill at s (whereas it should be lessthan ).
Because of the integral action the output does eventually return to zero, but it does not drop
below  until after s

Theaboveexampleillustratesthatthe simpleinverse-basedesignmethodwhere
hasa slopeof about atall frequenciesgdoesnot alwaysyield satisfactory
designsin the examplereferencdrackingwasexcellent but disturbanceejection
was poor. The objective of the next sectionis to understandvhy the disturbance
responsevas so poor, andto proposea more desirableloop shapefor disturbance
rejection.

2.6.4 Loop shapingfor disturbancerejection

At the outsetwe assumethat the disturbancehas beenscaledsuchthat at each
frequency , andthemaincontrolobjectiveis to achieve . With
feedbackcontrolwe have , Soto achieve for
(theworst-casalisturbancejve require , Or equivalently

(2.56)

At frequenciesvhere , this is approximatelythe sameasrequiring
. Howeverin orderto minimizetheinputsignalstherebyreducinghesensitivity



to noiseandavoidingstability problemswe do notwantto uselargerloop gainsthan
necessaryat leastat frequenciesaroundcrossover)A reasonablénitial loop shape
is thenonethatjust satisfieshe condition

(2.57)
where the subscript signifies that is the smallestloop gain to satisfy
. Since the correspondingontrollerwith the minimumgain

satisfies
(2.58)

In addition, to improve low-frequencyperformancge.g. to get zero steady-state
offset),we oftenaddintegralactionat low frequenciesanduse

S (2.59)

This canbesummarizedasfollows:

Fordisturbanceejectionagoodchoicefor thecontrolleris onewhich containghe
dynamics( ) of thedisturbanceandinvertsthe dynamics( ) of theinputs(at
leastat frequenciegust beforecrossover).
For disturbancegnteringdirectly at the plant output, , we get

, Soaninverse-basedesignprovideghebesttrade-of betweerperformance
(disturbanceejection)andminimumuseof feedback.
For disturbancegnteringdirectly at the plantinput (which is acommonsituation
in practice— oftenreferredto asa load disturbance)we have andwe
get , Soa simpleproportionalcontrollerwith unit gainyields a good
trade-of betweeroutputperformancenndinputusage.
Notice thata referencechangemay be viewedasa disturbancalirectly affecting
theoutput.Thisfollows from (1.18),from whichwe getthata maximumreference
change maybeviewedasadisturbance with where is
usuallyaconstantThisexplainsvhy selecting to belike (aninverse-based
controller)yieldsgoodresponseto stepchangesn thereference.

In additionto satisfying (eqg.2.57)at frequenciesroundcrossoverthe
desiredoop-shape may be modifiedasfollows:

1. Aroundcrossovemaketheslope of tobeabout . Thisistoachievegood
transientbehavioumwith acceptablgainandphasemamgins.

2. Increaseaheloop gain at low frequenciesasillustratedin (2.59)to improvethe
settlingtime andto reducethesteady-stateffset.Adding anintegratotyieldszero
steady-stateffsetto a stepdisturbance.

3. Let roll off fasterat higherfrequenciegbeyondthe bandwidth)in orderto
reducethe use of manipulatednputs, to makethe controllerrealizableand to
reducethe effectsof noise.



The aboverequirementsare concernedvith the magnitude, . In addition,
the dynamics(phase)of must be selectedsuchthat the closed-loopsystem
is stable.When selecting to satisfy one shouldreplace

by the correspondingninimum-phaseransferfunction with the samemagnitude,
that is, time delaysand RHP-zerosin should not be includedin as
this will imposeundesirabldimitations on feedback On the otherhand,any time
delaysor RHP-zerosn mustbeincludedin becausé&kHP pole-zero
cancellationdbetween and yield internalinstability; seeChapter.

Remark. Theideaof including a disturbancenodelin the controlleris well known andis
morerigorouslypresentedh, for exampleresearctontheinternalmodelprinciple (Wonham,
1974), or the internal model control designfor disturbancegMorari and Zafiriou, 1989).
However our developments simple,and sufficient for gainingthe insight neededor later
chapters.

Example 2.8 L oop-shapingdesign for thedisturbanceprocess. Consider again the plant
described by (2.54). The plant can be represented by the block diagramin Figure 2.20, and we
see that the disturbance enters at the plant input in the sensethat  and share the same
dominating dynamics as represented by the term

Figure 2.20: Block diagramrepresentationf thedisturbancerocessn (2.54)

Step 1. Initial design. From (2.57) we know that a good initial loop shape looks like
—— at frequencies up to crossover. The corresponding controller is

. This controller is not proper (i.e. it has more zeros

than poles), but sincetheterm only comesinto effect at rad/s, which

isbeyond the desired gain crossover frequency rad/s, we may replaceit by a constant
gain of resulting in a proportional controller

(2.60)

The magnitude of the corresponding |oop transfer function, , and theresponse ( )
to a step change in the disturbance are shown in Figure 2.21. This simple controller works



surprisingly well, and for s the response to a step change in the disturbance is not

much different from that with the more complicated inver se-based controller of (2.55)
asshownearlier in Figure 2.19. However, thereisnointegral actionand as
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Figure 2.21: Loop shapesanddisturbancaesponsefor controllers and for the

disturbancerocess

Step 2. Moregain at low frequency. To get integral action we multiply the controller by
the term ——, see (2.59), where is the frequency up to which the term is effective (the
asymptotic value of the termis 1 for ). For performance we want large gains at
low frequencies, so we want  to be large, but in order to maintain an acceptable phase
margin (whichis for controller ) theterm should not add too much negative phase at
frequency ,so  should not be too large. A reasonable value is for which
the phase contribution from — is at . Inour case

rad/s, so we select the following controller

- (2.61)

Theresulting disturbance response () shownin Figure 2.21(b) satisfies the requirement that
attime s, but exceeds for a short time. Also, the responseis slightly
oscillatory as might be expected since the phase marginisonly and the peak values for
and are and .
Step 3. High-frequency correction. Toincreasethe phase margin and improvethetransient
response we supplement the controller with “ derivative action” by multiplying by a
lead-lag termwhich is effective over one decade startingat  rad/s:

_ (2.62)

This gives a phase margin of , and peak values and .

From Figure 2.21(b), it is seen that the controller reacts quicker than and the
disturbance response staysbelow .

Table 2.2 summarizes the results for the four loop-shaping designs; the inverse-based

design for reference tracking and the three designs and for disturbance

rejection. Although controller satisfies the requirements for disturbance rgjection, it isnot



Table 2.2: Alternativeloop-shapinglesigndor thedisturbancerocess
Reference Disturbance

GM PM

Spec.

9.95| 72.9 114 | 134 1 0.16 | 1.00 0.95 0.75
404 | 447 | 848 | 1.83| 1.33| 0.21| 1.24 1.35 0.99
3.24| 309 | 865 | 228|189 019| 151 1.27 0.001
19.71 509 | 9.27 | 1.43| 1.23|| 0.16 | 1.24 0.99 0.001

satisfactory for reference tracking; the overshoot is % which is significantly higher than
the maximum value of %. On the other hand, the inverse-based controller inverts the
term which isalso in the disturbance model, and therefore yields a very sluggish
response to disturbances (the output is till at swhereasit should belessthan ).

In summaryfor this processoneof the controllerdesignsmeetall the objectives
for both referencerackinganddisturbanceaejection.The solutionis to usea two
degrees-of-freedomontrollerasis discusseahext.

2.6.5 Two degrees-of-freedom design

Forreferencdrackingwetypically wantthecontrollerto look like - , 5eg(2.53),
whereador disturbanceejectionwe wantthe controllerto look like - , see
(2.59). We cannotachieveboth of thesesimultaneouslywith a single (feedback)
controller

Figure 2.22: Two degrees-of-freedomontroller

The solution is to use a two degrees-of-freedonsontroller where the reference
signal andoutputmeasurement areindependentlytreatedby the controller,



ratherthan operatingon their difference . There exist severalalternative
implementation®f a two degrees-of-freedoroontroller The mostgeneralform is
shownin Figure1.3(b)on pagel2 wherethe controllerhastwo inputs( and )
andoneoutput( ). However the controlleris often split into two separateélocks
asshownin Figure2.22where  denoteghe feedbackpart of the controllerand
a referenceprefilter The feedbackcontroller is usedto reducethe effect

of uncertainty(disturbancesnd model error) whereashe prefilter ~ shapeshe
commands to improvetrackingperformanceln generaljt is optimalto designthe
combinedwo degrees-of-freedogontroller in onestep.Howeverin practice
is oftendesignedirst for disturbanceejection,andthen  is designedo improve
referencaracking.Thisis theapproachakenhere.

Let (with ) denotethe complementargensitivity
functionfor the feedbacksystem.Thenfor a onedegree-of-freedornontroller

, Whereasfor a two degrees-of-freedornontroller . If the desired
transferfunctionfor referencaracking(often denotedthe referencemodel)is ,
thenthecorrespondingdealreferenceprefilter  satisfies , or

(2.63)

Thus,in theorywe may design to getanydesiredtrackingresponse
However in practiceit is notsosimplebecause¢heresulting maybeunstable
(if hasRHP-zerospr unrealizableandalso if is notknown
exactly

Remark. A convenienpracticalchoiceof prefilteris the lead-lagnetwork

(2.64)
Herewe select if we wantto speediup theresponseand if wewant
to slowdowntheresponsef onedoesnotrequirefastreferenceracking,whichis thecasan

manyprocesgontrolapplicationsa simplelag is oftenused(with ).

Example 2.9 Two degrees-of-freedom design for the disturbance process. In Example
2.8 we designed a loop-shaping controller for the plant in (2.54) which gave good
performance with respect to disturbances. However, the command tracking performance was
not quite acceptable asisshown by  in Figure 2.23. Therisetimeis swhich is better
thantherequired valueof s, but theovershootis % which issignificantly higher than the
maximum value of %. To improve upon this we can use a two degrees-of-freedom controller
with ,and we design based on (2.63) with reference model

(afirst-order response with no overshoot). To get a low-order , We may either usethe
actual and then use a low-order approximation of , Or we may start with a low-
order approximation of . We will do the latter. Fromthe step response  in Figure 2.23
we approximate the response by two parts; a fast response with time constant  sand gain

, and a slower response with time constant sand gain (the sum of the gainsis
1). Thus we use , from which (2.63) yields
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Figure 2.23: Trackingresponsewith the onedegree-of-freedoroontroller( andthetwo
degrees-of-freedorontroller( ) for the disturbancerocess

— . Following closed-loop simulations we modified this dlightly to arrive at the
design
(2.65)

where the term was included to avoid the initial peaking of the input signal

above . The tracking response with this two degrees-of-freedom controller is shown in
Figure 2.23. The rise time is s which is better than the requirement of s, and the
overshootisonly % which is better than the requirement of %. The disturbance response
isthesameascurve inFigure 2.21. In conclusion, we are able to satisfy all specifications
using a two degrees-of-freedom controller.

L oop shaping applied to a flexible structure

The following exampleshows how the loop-shapingprocedurefor disturbance
rejection canbeusedo desigraonedegree-of-freedormontrollerfor averydifferent
kind of plant.

Example 2.10 Loop shaping for a flexible structure. Consider the following model of a
flexible structure with a disturbance occurring at the plant input

(2.66)

From the Bode magnitude plot in Figure 2.24(a) we see that around the

resonancefrequenciesof  and rad/s, so control is needed at these frequencies. The dashed

linein Figure 2.24(b) shows the open-loop response to a unit step disturbance. The output is

seen to cycle between and (outside the allowed range to ), which confirms that

control is needed. From (2.58) a controller which meets the specification for
isgiven by . Indeed the controller

(2.67)
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Figure 2.24: Flexiblestructurein (2.66)

turnsout to be a good choice asis verified by the closed-loop disturbance response (solid line)
in Figure 2.24(b); the output goes up to about and then returns to zero. The fact that the
choice gives closed-loop stability is not immediately obvious since has
gain crossover frequencies. However, instability cannot occur because the plant is “ passive”
with at all frequencies.

2.6.6 Conclusionson loop shaping

Theloop-shapingorocedureoutlinedandillustratedby the examplesaboveis well
suitedfor relatively simple problems,as might arisefor stableplantswhere
crosseshenegativerealaxisonly once.Althoughthe proceduranaybe extendedo
morecomplicatedsystemgheeffort requiredby theengineeis considerablygreater
In particular it maybevery difficult to achievestability.

Fortunatelythereexist alternativemethodswherethe burdenon the engineeris
muchless.Onesuchapproachs theGloverMcFarlane  loop-shapingrocedure
whichis discussedh detailin Chapte®. It is essentiallyatwo-stepprocedurewhere
in thefirst stepthe engineerasoutlinedin this section,decideson aloop shape,
(denotedhe“shapedplant” ), andin thesecondstepanoptimizationprovidesthe
necessarphasecorrectiongo geta stableandrobustdesign.The methodis applied
to thedisturbanceprocessn Example9.3on page381.

Anotherdesignphilosophywhich dealsdirectly with shapingboth the gain and
phaseof is the quantitativefeedbackheory(QFT) of Horowitz (1991).

2.7 Shaping closed-loop transfer functions

In this section,we introducethe readerto the shapingof the magnitude®of closed-
loop transferfunctions,wherewe synthesizea controller by minimizing an



performancenbjective.The topic is discussedurtherin Section3.4.6andin more
detailin Chapten9.

Specificationdirectly on the open-loop transfer function , asin the
loop-shapingdesignproceduresf the previoussection,makethe designprocess
transparenasit is clearhow changesn affect the controller andvice

versa. An apparenproblemwith this approachhoweveris thatit doesnotconsider
directlytheclosed-loop transfer functions, suchas and ,whichdeterminghefinal
responseThefollowing approximationspply

butin the crossoveregionwhere is closeto 1, one cannotinfer anything
about and fromthemagnitudeof theloop shape, . Forexample, and
may experiencdarge peaksif is closeto , i.e. the phaseof is

crucialin thisfrequencyrange.

An alternativedesignstrategyis to directly shapethe magnitude®f closed-loop
transferfunctions,suchas and . Sucha designstrategycanbe formulated
asan optimalcontrolproblem thusautomatinghe actualcontrollerdesignand
leavingthe engineemith thetaskof selectingreasonabldoundg“weights”) onthe
desiredclosed-looptransferfunctions.Before explaininghow this may be donein
practice we discusgheterms and

271 Theterms and

The norm of a stablescalartransferfunction is simply the peakvalueof
asafunctionof frequencythatis,

(2.68)

Remark. Strictly speakingwe shouldherereplace " (themaximumvalue)by“ " (the
supremumtheleastupperbound).This is becaus¢he maximummay only be approacheds

andmaythereforenotactuallybeachievedHowever for engineeringurposeshere
is nodifferencebetweerf " and”

Theterms normand controlareintimidatingatfirst, andanameconveying
theengineeringignificanceof would havebeenbetter After all, we aresimply
talking abouta designmethodwhich aimsto pressdownthe peak(s)f oneor more
selectedransfeffunctionsHowevertheterm  ,whichispurelymathematicahas
now establishedtselfin thecontrolcommunity To makethetermlessforbidding,an
explanatiorof its backgroundnayhelp.First,thesymbol comedromthefactthat
themaximummagnitudeoverfrequencymaybewrittenas



Essentiallyby raising  to aninfinite powerwe pick outits peakvalue.Next, the
symbol standgor “Hardy space”and in thecontextof thisbookis thesetof
transfeffunctionswith bounded -norm,whichis simplythesetof stableand proper
transferfunctions.
Similarly, the symbol  standsfor the Hardy spaceof transferfunctionswith
bounded -norm,whichis thesetof stable and strictly proper transferfunctions.The
normof astrictly properstablescalarntransferfunctionis definedas

— (2.69)

The factor ~is introducedto get consistencywith the 2-norm of the corre-
spondingmpulseresponsesee(4.117). Notethatthe ~ normof asemi-propefor
bi-proper)transferfunction (where is a non-zeroconstant)s infinite,
whereasts normis finite. An exampleof a semi-propetransferfunction (with
aninfinite  norm)is thesensitivityfunction

2.7.2 Weighted sensitivity

Asalreadydiscusseahesensitivityfunction isaverygoodindicatorof closed-loop
performancebothfor SISOandMIMO systemsThemainadvantag®f considering
isthatbecausaveideallywant small,it is sufficientto considejustits magnitude
; thatis, we neednot worry aboutits phase Typical specificationsn termsof
include:

1. Minimum bandwidthfrequency  (definedas the frequencywhere
crosse®.707from below).

2. Maximumtrackingerrorat selectedrequencies.

3. Systentype,or alternativelythe maximumsteady-stat&rackingerror,

4. Shapeof overselectedrequencyranges.

5. Maximumpeakmagnitudeof

The peakspecificatiompreventsamplificationof noiseat high frequenciesandalso

introducesa magin of robustnesdypically we select . Mathematicallythese
specificationsnay be capturedby anupperbound, , onthe magnitudeof
, where is a weight selectedby the designer The subscript standsfor

performancesince is mainly usedasa performancéndicator andthe performance
requiremenbecomes

(2.70)

] en

Thelastequivalencdollows from the definitionof the norm,andin wordsthe
performancerequirements that the norm of the weightedsensitivity ,



Magnitude

L L
10 =2 -1 0 1

10 10
Frequencyrad/s]

(a) Sensitivity andperformanceveight

Magnitude

0 . .

107 10" 10’ 10"
Frequencyrad/s]
(b) Weightedsensitivity
Figure2.25: Casewhere  exceedsts bound , resultingin

mustbelessthanone.In Figure2.25(a),anexamples shownwherethe sensitivity
, exceedsts upperbound, , at somefrequenciesTheresultingweighted
sensitivity thereforeexceedsl at the samefrequenciesasis illustratedin
Figure2.25(b).Note thatwe usuallydo not usealog-scalefor the magnitudevhen
plotting weightedtransferfunctions,suchas
Weight selection. An asymptotiglot of atypicalupperbound, ,isshown
in Figure2.26.Theweightillustratedmayberepresentetly

(2.72)
andwe seethat (the upperboundon ) is equalto at low
frequenciesis equalto at high frequenciesandthe asymptotecrossed. at

thefrequency , whichis approximatelythe bandwidthrequirement.
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Figure 2.26: Inverseof performancewneight. Exactand asymptoticplot of in
(2.72)
Remark. For this weightthe loop shape yieldsan which exactlymatcheghe

bound(2.71)atfrequencie®elowthebandwidthandeasilysatisfiegby afactor ) thebound
athigherfrequenciesThis hasaslopein thefrequencyrangebelowcrossovenof

In somecasesjn orderto improve performanceywe may want a steepeslopefor
(and ) belowthe bandwidth,andthena higherorderweightmay be selectedA
weightwhich asksfor aslopeof  for in arangeof frequenciedelowcrossover

is

2.73)

The insightsgainedin the previoussectionon loop-shapinglesignarevery useful

for selectingweights. For example,for disturbancerejection we must satisfy
atall frequenciegassuminghevariableshavebeenscaledo beless

thanl in magnitude)lt thenfollows thata goodinitial choicefor the performance

weightis to let look like atfrequenciesvhere
Exercise 2.4 Make an asymptotic plot of in (2.73) and compare with the asymptotic
plot of in (2.72).

2.7.3 Stacked requirements. mixed sensitivity

The specification putsa lower boundon the bandwidth,but not an
upperone,andnordoest allow usto specifytheroll-off of abovethebandwidth.
To do this one can make demandson anotherclosed-looptransferfunction, for
example,on the complementarysensitivity . For instance,
one might specify an upperbound on the magnitudeof to makesure
that rolls off sufficiently fast at high frequenciesAlso, to achieverobustness
or to restrictthe magnitudeof the input signals, , one may



placean upperbound, , on the magnitudeof . To combinethese"mixed
sensitivity” specificationsa “stacking approach”is usually used,resultingin the
following overallspecification:

(2.74)
We here use the maximumsingularvalue, , to measurethe size of the
matrix ateachfrequencyFor SISOsystems, is avectorand is theusual
Euclidearvectornorm:

(2.75)

After selectingheformof andtheweightsthe optimalcontrolleris obtained
by solvingthe problem
(2.76)

where s a stabilizingcontroller A goodtutorial introductionto controlis
givenby Kwakernaak1993).

Remark 1 The stackingprocedures selectedor mathematicatonveniencesit doesnot

allow usto exactlyspecifytheboundson theindividual transferfunctionsasdescribedbove.

For example assumehat and aretwo functionsof  (which mightrepresent
and ) andthatwe wantto achieve

(2.77)

Thisis similarto, but not quitethe sameasthe stackedequirement
(2.78)

Objectiveq2.77)and(2.78)arevery similarwheneither or is small,butin theworst
casewhen , we getfrom (2.78)that and . Thatis, there
is apossiblé‘error” in eachspecificatiorequalto atmostafactor dB. In generalwith
stackedrequirementsheresultingerrorisatmost . Thisinaccuracyin thespecifications
is somethingve areprobablywilling to sacrificein theinterestof mathematicatonvenience.
In any case the specificationsarein generalratherrough,andare effectively knobsfor the

engineeto selectandadjustuntil a satisfactorydesignis reached.

Remark 2 Let denotetheoptimal norm.An importantproperty

of optimalcontrollersis thattheyyield aflat frequencyresponsethatis,

atall frequenciesThepracticalimplicationis that,exceptfor atmostafactor —, thetransfer

functionsresultingfrom a solutionto (2.76)will becloseto  timesthe boundsselectedoy

thedesignerThisgivesthedesigneamechanisnfior directly shapinghemagnitudesf ,
, ,andsoon.



Example2.11 mixed sensitivity design for thedisturbance process. Consider again
the plant in (2.54), and consider an mixed sensitivity designin which

(2.79)

Appropriate scaling of the plant has been performed so that the inputs should be about  or
less in magnitude, and we therefore select a simple input weight . The performance
weight is chosen, in the formof (2.72), as

(2.80)

A value of would ask for integral action in the controller, but to get a stable weight
and to prevent numerical problemsin the algorithm used to synthesize the controller, we have
moved the integrator slightly by using a small non-zero value for . This has no practical
significancein terms of control performance. Thevalue has been selected to achieve
approximately the desired crossover frequency of  rad/s. The problemis solved with
the -toolbox in MATLAB using the commandsin Table 2.3.

Table2.3: MATLAB program to synthesizean controller

% Uses the M-t ool box

G=nd2sys(1, conv([10 1], conv([0.05 1],[0.05 1])), 200); % Plant is G
ME1.5; wbh=10; A=1l.e-4; Wb = nd2sys([1/Mwb], [1 wb*A]); Wi = 1; % Wi ghts.

%

% Ceneral ized plant P is found with function sysic:

% (see Section 3.8 for nore details)

%

systemanes = 'G W W' ;

inputvar = '[ r(1); u(1)]’;

out putvar = W; Wi; r-@’;

input to.G="[u]";
i nput _t oW [r-Gd";
i nput t o.\Wi [ul’;
sysoutnanme = 'P';

cl eanupsysic = 'yes’;

sysi c;

%

% Find Hinfinity optinmal controller:

%

nnmeas=1; nu=1l; gm=0.5; gnx=20; tol =0.001;

[ khi nf, ghi nf, gopt] = hi nfsyn(P, nneas, nu, gm, gnx, tol );

[
[

For this problem, we achieved an optimal norm of , SO the weighted sensitivity
requirements are not quite satisfied (see design  in Figure 2.27). Nevertheless, the design
seems good with , , ,
and rad/s, and the tracking response is very good as shown by curve  in
Figure 2.28(a). The design is actually very similar to the loop-shaping design for references,
, which was an inver se-based controller.
However, we see from curve  in Figure 2.28(b) that the disturbance response is very
sluggish. If disturbance rejection is the main concern, then from our earlier discussion in
Section 2.6.4 this motivates the need for a performance weight that specifies higher gains at
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Figure 2.27: Inverseof performanceveight (dashedine) and resultingsensitivity function
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Figure 2.28: Closed-loopstepresponsesor two alternative
disturbancerocess

low frequencies. We therefore try
(2.81)

Theinverseof thisweight isshownin Figure 2.27, and is seen fromthe dashed lineto cross in
magnitude at about the same frequency as weight , but it specifiestighter control at |ower
frequencies. Wth the weight , We get a design with an optimal norm of ,yielding
, , and rad/s. The design
is actually very similar to the loop-shaping design for disturbances, . The disturbance
responseisvery good, whereasthetracking response hasa somewhat high over shoot; seecurve

in Figure 2.28(a).

Inconclusion, design isbest for referencetrackingwhereasdesign isbest for disturbance
rejection. To get a design with both good tracking and good disturbance rejection we need a



two degrees-of-freedom controller, as was discussed in Example 2.9.

2.8 Conclusion

Themainpurposef thischaptehasbeernto presentheclassicaldeasandtechniques
of feedbaclcontrol.We haveconcentratedn SISOsystemsothatinsightsinto the
necessarylesigntrade-ofs, and the designapproacheswvailable,can be properly
developedbefore MIMO systemsare considered We also introducedthe
problembasedon weightedsensitivity for which typical performanceveightsare
givenin (2.72)and(2.73).



In this chapter we introducethe readerto multi-input multi-output (MIMO) systemsWe

discussthe singularvalue decomposition(SVD), multivariable control, and multivariable
right-half plane (RHP) zeros.The needfor a careful analysisof the effect of uncertainty
in MIMO systemsis motivatedby two examples Finally we describea generalcontrol

configuratiorthatcanbe usedto formulatecontrol problems Many of theseimportanttopics
areconsideredhgainin greaterdetail later in the book. The chaptershouldbe accessibleéo

readersvho haveattendeda classicalSISOcontrolcourse.

3.1 Introduction

We considera multi-input multi-output(MIMO) plantwith  inputsand outputs.
Thus thebasictransfefunctionmodelis ,Where isan vector
isan vectorand isan transferfunctionmatrix.

If we makea changein thefirst input, , thenthis will generallyaffect all the
outputs, , thatis, thereis interaction betweernthe inputsandoutputs.
A non-interactingplantwouldresultif ~ only affects ,  onlyaffects , andso
on.

The maindifferencebetweena scalar(SISO)systemanda MIMO systemis the
presencef directionsin thelatter Directionsarerelevantfor vectorsandmatrices,
but not for scalars However despitethe complicatingfactor of directions,mostof
the ideasandtechniquegpresentedn the previouschapteron SISO systemamay
beextendedo MIMO systemsThesingularvaluedecompositiorfSVD) providesa
usefulwayof quantifyingmultivariabledirectionality andwewill seehatmostSISO
resultsinvolving theabsolutevalue(magnitudemaybegeneralizedo multivariable
systemdy consideringhe maximumsingularvalue.An exceptiorto thisis Bode’s
stability conditionwhich hasno generalizatiorin termsof singularvalues.This is
relatedto thefactthatit is difficult to find agoodmeasuref phasdor MIMO transfer
functions.



The chapteris organizedas follows. We start by presentingsome rules for
determiningmultivariabletransferfunctionsfrom block diagrams Although most
of the formulasfor scalarsystemsapply, we mustexercisesomecaresincematrix
multiplicationis notcommutativethatis, in general . Thenweintroduce
the singularvaluedecompositiorandshowhow it may be usedto studydirections
in multivariablesystemsWe alsogive a brief introductionto multivariablecontrol
anddecouplingWe thenconsidera simpleplantwith a multivariableRHP-zercand
showhow the effect of this zeromay be shiftedfrom oneoutputchanneto another
After this we discussobustnessandstudytwo exampleplants,each , Which
demonstratehatthe simplegain and phasemargins usedfor SISO systemsdo not
generalizeeasilyto MIMO systemsFinally, we considera generalkcontrol problem
formulation.

At this point, you mayfind it usefulto browsethroughAppendixA wheresome
importantmathematicatools aredescribedExercisego testyour understandingf
this mathematicaregivenatthe endof this chapter

3.2 Transfer functionsfor MIM O systems

e : +
I ' L :|
(a) Cascadeystem (b) Positivefeedbaclksystem

Figure 3.1: Block diagramdor the cascadeule andthefeedbackule

Thefollowing threerulesareusefulwhenevaluatingransferfunctionsfor MIMO
systems.

1. Cascade rule. For the cascade (series) interconnection of and in
Figure 3.1(a), the overall transfer function matrix is

Remark. Theorderof thetransferfunctionmatricesin (from left to right) is the
reverseof the orderin which they appeaiin the block diagramof Figure3.1(a)(from left to
right). This hasled someauthorsto useblock diagramsn which theinputsenterat the right
handside.Howeverin thiscaseheorderof thetransferfunctionblocksin afeedbackpathwill

bereverseccomparedvith their orderin theformula,sono fundamentabenefitis obtained.

2. Feedback rule. Wth reference to the positive feedback systemin Figure 3.1(b),
we have where is the transfer function around the
loop.



3. Push-through rule. For matrices of appropriate dimensions
(3.1)

Proof: Equation(3.1) is verified by pre-multiplying both sidesby and post-
multiplying bothsidesby

Exercise 3.1 Derive the cascade and feedback rules.

Thecascadandfeedbackulescanbe combinednto the following MIMO rule for
evaluatingclosed-loopransferfunctionsfrom block diagrams.

MIMO Rule: Sart from the output and write down the blocks as you meet them
when moving backwards (against the signal flow), taking the most direct path
towardstheinput. If you exit fromafeedbackloop thenincludeaterm
for positive feedback (or for negative feedback) where is the
transfer function around that loop (evaluated against the signal flow starting
at the point of exit fromthe loop).

Careshould be takenwhen applying this rule to systemswith nestedloops. For

suchsystemst is probablysaferto write downthe signal equationsandeliminate
internalvariablesto getthe transferfunctionof interest.Therule is bestunderstood
by consideringanexample.

Figure 3.2: Block diagramcorrespondingo (3.2)

Example 3.1 Thetransfer function for the block diagramin Figure 3.2 is given by
(3.2)

To derivethisfromthe MIMO rule above we start at the output  and move backwards towards

. There are two branches, one of which gives the term directly. In the other branch we

move backwards and meet andthen . Wethen exit from a feedback loop and get aterm
(positive feedback) with , and finally we meet



Exercise 3.2 Usethe MIMO rule to derive the transfer functionsfrom to andfrom to
in Figure 3.1(b). Use the push-through rule to rewrite the two transfer functions.

Exercise 3.3 Use the MIMO rule to show that (2.18) corresponds to the negative feedback
systemin Figure 2.4.

Negative feedback control systems

Figure 3.3: Conventionahegativefeedbaclcontrolsystem

Forthenegativeeedbacksystemin Figure3.3,wedefine tobethelooptransfer
functionasseerwhenbreakingtheloop atthe output of theplant. Thus,for thecase
wheretheloop consistof aplant andafeedbackcontroller wehave

(3.3)
Thesensitivityandcomplementargensitivityarethendefinedas
(3.4)

In Figure3.3, isthetransferfunctionfrom to , and isthetransferfunction
from to ;alsoseeequationg2.16)to (2.20)whichapplyto MIMO systems.
and aresometimesalledthe output sensitivity and output complementary
sensitivity, respectivelyandto makethis explicit onemayusethe notation ,
and . This is to distinguishthemfrom the correspondingransfer
functionsevaluatedat theinput to the plant.
Wedefine tobethelooptransferfunctionasseenwhenbreakingtheloopatthe
input to the plantwith negativefeedbackassumedin Figure3.3

(3.5)

Theinput sensitivityandinput complementargensitivityfunctionsarethendefined
as

(3.6)

In Figure3.3, is thetransferfunctionfrom to . Of coursefor SISOsystems
, ,and

Exercise 3.4 InFigure 3.3, what transfer functiondoes  represent? Evaluate the transfer
functionsfrom and to



Thefollowing relationshipsareuseful:

(3.7)
(3.8)
(3.9)
(3.10)

Notethatthematrices and in (3.7)-(3.10)neednotbesquarevhereas
is square(3.7)follows trivially by factorizingouttheterm from theright.
(3.8)saysthat andfollows from thepush-throughule. (3.9)alsofollows

from the push-throughrule. (3.10) canbe derivedfrom the identity

Similar relationships,but with  and  interchangedapply for the transfer
functionsevaluatedattheplantinput. To assisin remembering3.7)-(3.10)notethat
comesfirst (becausehe transferfunctionis evaluatedat the output)andthen
and alternatan sequenceA giventransfemmatrixneveroccurstwicein sequence.
Forexampletheclosed-loopransferfunction doesnot exist(unless

is repeatedn theblock diagram butthenthese ’swould actuallyrepresentwo
differentphysicalentities).

Remark 1 The aboveidentitiesare clearly usefulwhenderiving transferfunctionsanalyti-
cally, buttheyarealsousefulfor numericakalculationsnvolving state-spaceealizationse.g.
. Forexampleassumave havebeengivena state-spaceealiza-

tion for with stategso isa matrix) andwe wantto find the statespace
realizationof . Thenwe canfirst form with  statesandthenmultiply it by
to obtain with  statesHowever aminimalrealizationof hasonly states.

Thismaybeobtainechumericallyusingmodelreductionbutit is preferableo find it directly
using , see(3.7).

Remark 2 Note alsothattheright identity in (3.10) canonly be usedto computethe state-

spacerealizationof if thatof exists,so mustbe semi-propemwith (which
is rarely the casein practice).On the otherhand,since is squarewe canalwayscompute
thefrequencyresponsef (exceptatfrequenciesvhere has -axispoles).and
thenobtain from (3.10).

Remark 3 In AppendixA.6 we presensomefactorizationf the sensitivityfunctionwhich
will beusefulin laterapplicationsFor example (A.139)relatesthe sensitivityof a perturbed
plant, , to thatof thenominalplant, . We have

(3.1)

where is anoutputmultiplicative perturbatiorrepresentinghe differencebetween and
,and isthenominalcomplementargensitivityfunction.



3.3 Multivariablefrequency response analysis

The transferfunction is afunction of the Laplacevariable andcanbeused
to represenadynamicsystemHowever if we fix thenwe mayview
simply asa complexmatrix, which canbe analyzedusing standardoolsin matrix
algebraln particular the choice is of interestsince representshe
responséo asinusoidakignalof frequency .

3.3.1 Obtainingthefrequency response from

Figure 3.4: System with input andoutput

Thefrequencydomainis idealfor studyingdirectionsin multivariablesystemsat
any given frequency Considerthe system in Figure 3.4 with input and
output

(3.12)

(We heredenotetheinputby ratherthanby to avoid confusionwith the matrix
usedbelowin thesingularvaluedecomposition)ln Section?2.1we consideredhe

sinusoidalrespons®f scalarsystemsTheseresultsmay be directly generalizedo

multivariablesystemsy consideringheelements of thematrix . We have

representthe sinusoidaresponsérom input  to output .
To bemorespecific,applyto inputchannel ascalarsinusoidakignalgivenby
(3.13)

This input signalis persistentthatis, it hasbeenappliedsince . Thenthe
correspondingersistenputputsignalin channel is alsoa sinusoidwith the same
frequency

(3.14)

wherethe amplification(gain) and phaseshift may be obtainedfrom the complex
number asfollows

_ (3.15)

In phasomotation,see(2.7) and(2.9), we may compactlyrepresenthe sinusoidal
time responselescribedn (3.13)-(3.15by

(3.16)



where
(3.17)

Heretheuseof (andnot ) asthearmgumentof and impliesthatthese
arecomplexnumbersrepresentingteachfrequency themagnitudeandphaseof
thesinusoidakignalsin (3.13)and(3.14).

Theoverallrespons#o simultaneousputsignalsof thesamerequencyin several
input channelss, by the superpositiomprinciplefor linearsystemsgqualto the sum
of theindividual responsesandwe havefrom (3.16)

(3.18)
or in matrix form

(3.19)
where

(3.20)
representhevectorsof sinusoidainputandoutputsignals.
Example 3.2 Consider a multivariable system where we simultaneously apply
sinusoidal signals of the same frequency  to the two input channels:

(3.21)
The corresponding output signal is

(3.22)
which can be computed by multiplying the complex matrix by the complex vector

(3.23)

3.3.2 Directionsin multivariable systems

Fora SISOsystem, , thegainatagivenfrequencyis simply

Thegaindepend®nthefrequency , butsincethesystemis linearit is independent
of theinput magnitude



Things are not quite as simple for MIMO systemswherethe input and output
signalsare both vectors,andwe needto “sum up” the magnitudeof the elements
in eachvectorby useof somenorm,asdiscussedn AppendixA.5.1.1f we selectthe
vector2-norm theusuaimeasur®flength thenatagivenfrequency themagnitude
of thevectorinput signalis

(3.24)
andthe magnitudeof thevectoroutputsignalis

(3.25)
The gain of the system for a particularinput signal is thengivenby the
ratio

(3.26)

Againthegaindepend®nthe frequency , andagainit is independentf the input
magnitude . However for aMIMO systemthereare additionaldegreeof
freedomandthegaindependslsoonthedirection of theinput .

Example 3.3 For a systemwith two inputs, , thegainisin general different for
the following five inputs:

(which all have the same magnitude but are in different directions). For example,
for the system

(3.27)

(a constant matrix) we compute for the fiveinputs  the following output vectors

and the 2-norms of these five outputs (i.e. the gains for the five inputs) are

Thisdependency of thegain ontheinput directionisillustrated graphicallyin Figure 3.5where
we have used theratio as an independent variableto represent theinput direction. We
see that, depending on the ratio , the gain varies between and



Figure3.5: Gain asafunctionof for in(3.27)

Themaximumvalueof thegainin (3.26)asthedirectionof theinputis variedis the
maximumsingularvalueof

—_— (3.28)
whereaghe minimumgainis theminimumsingularvalueof

e _ (3.29)
We will discusshisin detail below Thefirst identitiesin (3.28)and(3.29)follow
becaus¢hegainis independenof theinput magnitudefor alinearsystem.

3.3.3 Eigenvaluesare apoor measure of gain

Beforediscussinghe singularvalueswe wantto demonstrat¢hatthemagnitude®f
theeigenvaluesf atransferfunctionmatrix,e.g. , donot provideauseful
meansof generalizinghe SISOgain, . Firstof all, eigenvalueganonly be
computedor squaresystemsandeventhentheycanbevery misleadingTo seethis,
considertthesystem with

(3.30)

which has both eigenvalues equalto zero. However to concludefrom the
eigenvalueshatthe systemgainis zerois clearly misleading For example with an
inputvector we getanoutputvector .

The“problem” is thatthe eigenvaluesneasurehe gainfor the specialcasewhen
theinputsandthe outputsarein the samedirection,namelyin the directionof the
eigenvectorsTo seethislet beaneigenvectoof andconsideraninput
Thentheoutputis where isthecorrespondingigenvalueWe get



so  measurethegainin thedirection . Thismaybeusefulfor stabilityanalysis,
butnotfor performance.

To find usefulgeneralizationsf ~ for thecasewhen is amatrix, we needthe
conceptof a matrix norm, denoted . Two importantpropertieswhich mustbe
satisfiedfor a matrix normarethetriangle inequality

(3.31)
andthemultiplicative property
(3.32)

(seeAppendixA.5 for moredetails).As we mayexpectthe magnitudeof thelargest
eigenvalue, (the spectrakradius),doesnot satisfythe properties
of amatrix norm;alsosee(A.115).

In AppendixA.5.2weintroduceseveramatrixnorms,suchastheFrobeniusiorm

, thesumnorm , themaximumcolumnsum , themaximumrow

sum , andthemaximumsingularvalue (thelatterthreenorms
areinducedby avectornorm,e.g.see(3.28);thisis thereasorfor thesubscript). We
will useall of thesenormsin this book,eachdependingn thesituation Howeverin
this chaptemwe will mainly usetheinduced2-norm, . Noticethat
for thematrixin (3.30).

Exercise 3.5 Computethe spectral radius and the five matrix norms mentioned above for the
matricesin (3.27) and (3.30).

3.34 Singular value decomposition

The singularvaluedecompositio(SVD) is definedin AppendixA.3. Herewe are
interestedn its physicalinterpretationwhenappliedto the frequencyresponsef a
MIMO system with  inputsand outputs.

Considera fixed frequency where is a constant complexmatrix,
anddenote by for simplicity. Any matrix maybe decomposedhto its
singularvaluedecompositionandwe write

(3.33)
where

isan matrixwith non-negativeingularvalues, ,arranged
in descendingrderalongits main diagonal;the otherentriesare zero. The
singularvaluesarethepositivesquareootsof theeigenvaluesf ,Where
is thecomplexconjugateranspos®f

(3.34)



isan unitarymatrix of outputsingularvectors,

isan unitarymatrix of inputsingularvectors,
Thisis illustratedby the SVD of areal matrix which canalwaysbe writtenin
theform

(3.35)

wheretheangles and dependnthegivenmatrix. From(3.35)we seethatthe
matrices and involverotationsandthattheir columnsareorthonormal.

The singularvaluesare sometimesalledthe principal valuesor principal gains,
andthe associatedlirectionsare calledprincipal directions.In generalthe singular
values must be computednumerically For matrices however analytic
expressionor thesingularvaluesaregivenin (A.36).

Caution. It is standaradhotationto usethesymbol to denotethematrix of output singular
vectorsThisis unfortunateasit is alsostandardotationto use (lowercase)o representhe
input signal. Thereadershouldbe carefulnotto confusethesetwo.

Input and output directions. Thecolumnvectorsof , denoted ,representhe

output directions of theplant. Theyare orthogonakndof unitlength(orthonormal),
thatis

(3.36)
(3.37)

Likewise,thecolumnvectorsof , denoted , areorthogonakndof unitlength,and
representheinput directions. Theseinput andoutputdirectionsarerelatedthrough
the singularvalues.To seethis, notethatsince is unitarywe have , SO
(3.33)maybewrittenas , whichfor column becomes

(3.38)

where and arevectorswhereas isascalarThatis,if we considemaninput in
thedirection , thentheoutput is in thedirection . Furthermoresince

and we seethatthe 'th singularvalue givesdirectly the gainof the
matrix in thisdirection.Iln otherwords

— (3.39)

Someadvantagesf the SVD overtheeigenvalualecompositiotior analyzinggains
anddirectionalityof multivariableplantsare:

1. Thesingularvaluesgive betterinformationaboutthe gainsof the plant.



2. Theplantdirectionsobtainedrom the SVD areorthogonal.
3. TheSVD alsoappliesdirectly to non-squarglants.

Maximum and minimum singular values. As alreadystatedijt canbeshownthat
thelargestgainfor any inputdirectionis equalto the maximumsingularvalue

(3.40)

andthatthe smallestgain for anyinput directionis equalto the minimum singular
value

_ (3.41)
where . Thus,for anyvector we havethat
_ S (3.42)
Define _and _. Thenit follows that
o (3.43)

Thevector correspondsotheinputdirectionwith largestamplificationand isthe
correspondingutputdirectionin whichtheinputsaremosteffective. Thedirections
involving and aresometimeseferredto asthe“strongest”,*high-gain” or “most
important”directions Thenextmostimportantdirectionsareassociatewith  and

, andsoon(seeAppendixA.3.5)until the“leastimportant”,“weak” or “low-gain”
directionswhich areassociatedvith _and_.

Example 3.4 Consider again the system (3.27) in Example 3.3,

(3.44)
Thesingular value decomposition of  is
Thelargest gain of 7.343 isfor aninput in the direction , and the smallest gain of
0.272isfor aninput inthedirection _ . This confirmsthefindingsin Example 3.3.

Sincein (3.44)bothinputsaffect bothoutputs we saythatthe systemis interactive.
Thisfollows from therelativelylarge off-diagonalelementsn . Furthermorethe
systemisill-conditioned, thatis, somecombination®f theinputshaveastrongeffect
on the outputs whereasothercombinationdavea weakeffect on the outputs.This
may be quantifiedby the condition number; theratio betweerthegainsin the strong
andweakdirectionswhichfor the systemin (3.44)is



Example 3.5 Shopping cart. Consider a shopping cart (supermarket trolley) with fixed
wheelswhich we may want to move in three directions; forwards, sideways and upwards. This
is a simple illustrative example where we can easily figure out the principal directions from
experience. The strongest direction, corresponding to the largest singular value, will clearly be
in the forwards direction. The next direction, corresponding to the second singular value, will
be sideways. Finally, the most “ difficult” or “weak” direction, corresponding to the smallest
singular value, will be upwards (lifting up the cart).

For the shopping cart the gain depends strongly on the input direction, i.e. the plant isill-
conditioned. Control of ill-conditioned plants is sometimes difficult, and the control problem
associated with the shopping cart can be described as follows: Assume we want to push the
shopping cart sideways (maybe we are blocking someone). This is rather difficult (the plant
haslow gain in thisdirection) so a strong force is needed. However, if there is any uncertainty
in our knowledge about the direction the cart is pointing, then some of our applied force will
be directed forwards (where the plant gain is large) and the cart will suddenly move forward
with an undesired large speed. We thus see that the control of an ill-conditioned plant may be
especially difficult if there is input uncertainty which can cause the input signal to “ spread”
from one input direction to another. We will discuss thisin more detail later.

Example 3.6 Distillation process. Consider the following steady-state model of a distilla-
tion column

(3.45)
The variables have been scaled as discussed in Section 1.4. Thus, since the elements are much
larger than  in magnitude this suggests that there will be no problems with input constraints.

However, thisis somewhat misleading as the gain in the low-gain direction (corresponding to
the smallest singular value) is actually only just above . To seethis consider the SVD of

(3.46)

From the first input singular vector, , we see that the gain is

when we increase one input and decrease the other input by a similar amount. On the other
hand, from the second input singular vector, _ , we see that if we
increase both inputs by the same amount then the gain is only . The reason for thisis
that the plant is such that the two inputs counteract each other. Thus, the distillation process
isill-conditioned, at least at steady-state, and the condition number is

The physics of this exampleis discussed in more detail below, and later in this chapter we wi II
consider asimplecontroller design (see Motivating robustness example No. 2in Section 3.7.2).

Example 3.7 Physics of the digtillation process. The model in (3.45) represents two-
point (dual) composition control of a distillation column, where the top composition is to be
controlled at (output ) and the bottom composition at (output ),
using reflux L (input ) and boilup V (input ) as manipulated inputs (see Figure 10.6 on
page 426). Note that we have here returned to the conventionof using  and  to denotethe
manipulated inputs; the output singular vectorswill be denoted by and _

The -elementofthegainmatrix is .Thusanincreasein by (with constant)
yieldsalarge steady-statechangein  of , thatis, the outputsare very sensitiveto changes



in . Smilarly,anincreasein by (with constant) yields . Again, thisisa
very large change, but in the opposite direction of that for theincreasein . Wetherefore see
that changesin  and  counteract each other, and if weincrease  and  simultaneously
by , then the overall steady-statechangein  isonly

Phys1 cally, the reason for this small change is that the composmons in the didtillation
column are only weakly dependent on changesin the internalflows (i.e. simultaneous changes
intheinternal flows and ). Thiscan also be seen fromthe smallest singular value, _

, which is obtained for inputs in the direction _ . From the output singular
vector we see that the effect is to move the outputsin different directions, that
is, to change . Therefore, it takes a large control action to move the compositionsin

different directions, that is, to make both products purer simultaneously. This makes sensefrom
a physical point of view.

On the other hand, the distillation column isvery sensitive to changesin externafflows (i.e.
increase ). This can be seen from the input singular vector

associated with the largest singular value, and is a general property of distillation columns
where both products are of high purity. The reason for this is that the external distillate flow
(which varies as ) has to be about equal to the amount of light component in the feed,
and even a small imbalance leads to large changesin the product compositions.

For dynamicsystemghe singularvaluesandtheir associatedlirectionsvary with

frequencyandfor controlpurpose is usuallythefrequencyrangecorrespondingp
the closed-loophandwidthwhichis of maininterest.Thesingularvaluesareusually
plotted as a function of frequencyin a Bode magnitudeplot with a log-scalefor

frequencyandmagnitude Typical plotsareshownin Figure3.6.
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Figure 3.6: Typical plotsof singularvalues



Non-Square plants

The SVD is alsousefulfor non-squarglants.For example considera plantwith 2
inputsand3 outputs.n this casehethird outputsingularvector  , tellsusin which
outputdirectiontheplantcannotbecontrolled.Similarly, for aplantwith moreinputs
thanoutputstheadditionalinputsingularvectorstell usin whichdirectiongheinput
will haveno effect.

Exercise 3.6 For a syssemwith  inputs and output, what is the interpretation of the
singular values and the associated input directions ( )? Whatis  in thiscase?

Use of the minimum singular value of the plant

The minimum singularvalue of the plant, _ , evaluatedas a function of
frequencyis a usefulmeasurdor evaluatingthe feasibility of achievingacceptable
control.If theinputsandoutputshavebeerscaledasoutlinedin Sectionl.4,thenwith
amanipulatednputof unit magnitudgmeasuredby the -norm),we canachievean
outputmagnitudeof atleast_ in any outputdirection.We generallywant _
aslargeaspossible.

Remark. Therequirement_ , to avoidinput saturationjs discussedn Section6.9.
In Section10.3,it is shownthatit maybedesirableo have_ large evenwheninput
saturations notaconcernTheminimumsingulavalueof theplantandits useis alsodiscussed
by Morari (1983),andYu andLuyben(1986)call _ the“Morari resilienceindex”.

3.3.5 Singular valuesfor performance

SofarwehaveusedheSVD primarilyto gaininsightinto thedirectionalityof MIMO
systemsBut the maximumsingularvalueis alsovery usefulin termsof frequency-
domainperformancendrobustnessiVe hereconsidemperformance.

For SISO systemswe earlier found that evaluatedas a function of
frequencygivesusefulinformationaboutthe effectivenes®f feedbackcontrol. For
exampleijt isthegainfrom asinusoidateferencenput(or outputdisturbancejo the
controlerror, .

For MIMO systemsa useful generalizationresultsif we considerthe ratio

,where isthevectorof referenceénputs, isthevectorof control
errors,and is thevector2-norm.As explainedabove this gaindepend®n the
direction of andwe havefrom (3.42)thatit is boundedby the maximumand
minimumsingularvalueof

(3.47)

In termsof performance, it is reasonabldo requirethatthe gain
remainssmallfor anydirectionof , includingthe “worst-casedirectionwhich



givesa gain of . Let (theinverseof the performancaveight)
representhe maximumallowed magnitudeof at eachfrequency This
resultsin thefollowing performanceequirement:

(3.48)

wherethe norm(seealsopages5)is definedasthepeakof themaximumsingular
valueof thefrequencyresponse

(3.49)

Typical performanceweights aregivenin Section2.7.2,which shouldbe
studiedcarefully.

The singular values of may be plotted as functions of frequency as

illustratedlaterin Figure3.10(a).Typically, theyaresmallatlow frequenciesvhere
feedbacks effective,andtheyapproach athighfrequenciedecausanyrealsystem
is strictly proper:

(3.50)

Themaximumsingularvalue, , usuallyhasa peaklargerthanl aroundthe
crossovefrequenciesThispeakis undesirablehutit is unavoidabldor realsystems.
As for SISO systemswe define the bandwidthas the frequencyup to which
feedbacks effective.For MIMO systemghe bandwidthwill dependon directions,
andwe havea bandwidth region betweena lower frequencywherethe maximum
singularvalue, , reache$).7 (thelow-gainor worst-caselirection),andahigher
frequencywheretheminimumsingulavalue,  ,reache$.7(thehigh-gainorbest
direction).If we wantto associata singlebandwidthfrequencyfor a multivariable
systemthenwe consideitheworst-casglow-gain)direction,anddefine

Bandwidth, : Frequencyhere crosses— from below

It is thenunderstoodhatthe bandwidthis atleast  for anydirectionof theinput

(referenceor disturbanceyignal.Since , (A.52)yields
_ — _ (3.51)
Thusat frequenciesvherefeedbacks effective (namelywhere_ ) we have
_, andat the bandwidthfrequency(where
) we havethat _ is between0.41 and 2.41. Thus, the bandwidthis

approximatelyhere _ crossed. Finally, athigherfrequenciesvherefor anyreal
system_ (and ) is smallwe havethat



3.4 Control of multivariable plants

Figure 3.7: Onedegree-of-freedorfeedbaclkcontrol configuration

Considerthe simple feedbacksystemin Figure 3.7. A conceptuallysimple
approachto multivariable control is given by a two-stepprocedurein which we
first designa “compensatdt to dealwith the interactionsin , andthendesigna
diagonal controllerusingmethodssimilarto thosefor SISOsystemsThis approach
is discussedbelow

Themostcommonrapproaclis to useapre-compensator ,whichcounteracts
theinteractionsn theplantandresultsin a“new” shapedlant:

(3.52)
which is more diagonaland easierto control than the original plant . After
finding a suitable we candesigna diagonal controller for the shaped
plant . Theoverallcontrolleris then

(3.53)

In manycasesffectivecompensatormay be derivedon physicalgroundsandmay
includenonlinearelementsuchasratios.

Remark 1 Somedesignapproaches this spirit arethe NyquistArray techniqueof Rosen-
brock(1974)andthecharacteristi¢oci techniqueof MacFarlaneandKouvaritakis(1977).

Remark 2 The loop-shapingdesignprocedure describedin detail in Section9.4, is
similar in thata pre-compensatds first chosento yield a shapecdplant, , with
desirablepropertiesandthena controller is designedThe main differenceis thatin

loop shaping, is afull multivariablecontroller designedasedn optimization(to
optimize robuststability).



3.4.1 Decoupling

Decouplingcontrolresultswhenthe compensatois chosersuchthat  in (3.52)is
diagonalata selectedrequencyThefollowing differentcasesarepossible:

1. Dynamic decoupling: is diagonal(at all frequencies)For example with
andasquareplant, we get (disregardinghe possible
problemsinvolvedin realizing ). If we thenselect (e.q.
with ), theoverallcontrolleris

(3.54)

Wewill laterreferto (3.54)asaninverse-based controller It resultsn adecoupled
nominal systemwith identicalloops,i.e. , —— and

Remark. In somecasesve may wantto keepthe diagonalelementdn the shapecdlant
unchangedy selecting . In other caseswe may want the diagonal
elementdn to be 1. This may be obtainedby selecting ,
andthe off-diagonalelementf arethencalled“decouplingelements”.

2. Seady-state decoupling: is diagonal.This may be obtainedby selectinga
constanpre-compensator (andfor anon-squar@lantwe mayuse
thepseudo-inversprovided hasfull row (output)rank).

3. Approximate decoupling at frequency is as diagonalas possible.
This is usually obtainedby choosinga constantpre-compensator
where s arealapproximatiorof . may be obtained for example,
usingthe align algorithmof Kouvaritakis(1974). The bandwidthfrequencyis a
goodselectiorfor  becaus¢heeffecton performancef reducinginteractionis
normallygreatesatthis frequency

Theideaof decouplingcontrolis appealingbut thereareseveradifficulties:

1. As onemight expect,decouplingmay be very sensitiveto modellingerrorsand
uncertaintiesThisis illustratedbelowin Section3.7.2.

2. Therequiremenbf decouplingandtheuseof aninverse-basedontrollermaynot
be desirablefor disturbanceejection.Thereasonsare similar to thosegivenfor
SISOsystemsn Section2.6.4,andarediscussedurtherbelow; see(3.58).

3. If theplanthasRHP-zeroshentherequirementf decouplinggenerallyintroduces
extraRHP-zerognto theclosed-loopsystem(seeSection6.5.1).

Eventhoughdecouplingcontrollersmaynotalwaysbedesirablen practicetheyare
of interesfromatheoreticapointof view. Theyalsoyield insightsinto thelimitations
imposedby the multivariableinteractionson achievablgperformanceOnepopular
designmethodwhich essentiallyyieldsa decouplingcontrolleris theinternalmodel
control (IMC) approachMorari andZafiriou, 1989).
Anothercommornstrategywhichavoidsmostof theproblemgustmentionedis to
usepartial (one-way) decoupling where in (3.52)is upperor lowertriangular



3.4.2 Pre- and post-compensatorsand the SVD-controller

The above pre-compensatoapproachmay be extendedby introducing a post-

compensator , asshownin Figure3.8.Onethendesignsa diagonal controller
Figure 3.8: Pre-andpost-compensators, and . is diagonal
for the shapedlant . Theoverallcontrolleris then
(3.55)

The SVD-controller is aspecialcaseof a pre-andpost-compensatatesign.Here
(3.56)

where  and are obtainedfrom a singular value decompositionof
,where isarealapproximatiorof atagivenfrequency (often
aroundhebandwidth) SVD-controllersarestudiedoy HungandMacFarlan€1982),
andby Hovd et al. (1994)who foundthatthe SVD controllerstructureis optimalin
somecasese.g.for plantsconsistingof symmetricallyinterconnectedubsystems.
In summarytheSVD-controllemprovidesausefulclassof controllersBy selecting
adecouplingdesignis achievedandby selectingadiagonal  with
alow conditionnumber( small) generallyresultsin a robustcontroller(see
Section6.10).

3.4.3 Diagonal controller (decentralized control)

Anothersimpleapproachto multivariablecontrollerdesignis to usea diagonalor
block-diagonalcontroller . This is often referredto asdecentralizectontrol.
Clearly, this works well if is closeto diagonal,becausdghenthe plantto be
controlledis essentiallya collectionof independensub-plantsandeachelementin

maybedesignedndependentlyHowever if off-diagonalelementsn are
large,thentheperformancavith decentralizediagonakontrolmaybepoorbecause
no attemptis madeto counteractheinteractions.

3.4.4 What isthe shape of the " best” feedback controller?

Considetheproblemof disturbanceejection.Theclosed-loomisturbanceesponse
is . Supposewne havescaledthe system(seeSection1.4) suchthat at



eachfrequencythedisturbanceareof magnitudel, , andour performance

requirements that . This is equivalentto requiring .In

manycaseghereis a trade-of betweeninput usageandperformancesuchthatthe

controllerthatminimizestheinputmagnitudds onethatyieldsall singularvaluesof
equalto 1,i.e. . This correspond$o

(3.57)

where is someall-passtransferfunction (which at eachfrequencyhasall its
singularvaluesequalto 1). The subscriptmin refersto the useof the smallestoop
gainthat satisfiesthe performanceobjective.For simplicity, we assumehat  is
squareso is aunitarymatrix. At frequenciesvherefeedbacks effectivewe
have , and(3.57)yields .In
conclusionthecontrollerandloop shapewith theminimumgainwill oftenlook like

(3.58)
where is someall-passtransferfunction matrix. This providesa
generalizatiorof whichwasderivedin (2.58)for SISOsystems,

and the summaryfollowing (2.58) on page48 thereforealso appliesto MIMO
systemsForexamplewe seethatfor disturbancesnteringattheplantinputs,

, we get , Soasimpleconstanunit gaincontrolleryieldsa goodtrade-
off betweenoutputperformanceandinput usage We alsonotewith interestthatit
is generallynot possibleto selecta unitary matrix ~ suchthat is
diagonal,so a decouplingdesignis generallynot optimal for disturbanceejection.
Theseinsightscanbe usedasa basisfor a loop-shapingdesign;seemore on
loop-shapingn Chapten.

3.4.5 Multivariablecontroller synthesis

Theabovedesigmnmethodsarebasednatwo-stepprocedurén whichwefirst design
a pre-compensatoffor decouplingcontrol) or we make an input-outputpairing
selection(for decentralizedontrol)andthenwe designa diagonalcontroller
Invariablythis two-stepproceduraesultsin a suboptimabesign.

The alternativeis to synthesizedirectly a multivariable controller based
on minimizing someobjective function (norm). We hereusethe word synthesize
ratherthandesign to stresghatthis is a moreformalizedapproachOptimizationin
controllerdesigrbecamegrominentn the1960’swith “optimal controltheory”based
on minimizing the expectedvalue of the outputvariancein the face of stochastic
disturbancesLater, other approachesand norms were introduced,such as
optimalcontrol.



3.4.6 Summary of mixed-sensitivity design ( )

We hereprovide a brief summaryof the and other mixed-sensitivity
desigmmethodsvhichareusedn laterexamplesln the problemtheobjective
is to minimizethe normof

(3.59)

This problemwas discussedearlier for SISO systems,and anotherlook at Sec-
tion 2.7.3wouldbeusefulnow. A sampleMATLAB file is providedin Example2.11,

page60.
Thefollowing issuesandguidelinesarerelevantwhenselectingthe weights
and
1. is thetransferfunctionfrom to in Figure3.7,sofor a systemwhich has
beenscaledasin Sectionl.4, a reasonablénitial choicefor the input weightis
2. s thetransferfunctionfrom to . A commonchoicefor the
performanceveightis with
(3.60)
(seealsoFigure2.26onpage58). Selecting ensuregpproximatentegral
actionwith . Oftenwe select  about for all outputs,whereas

maybedifferentfor eachoutput.A largevalueof yieldsafasterresponséor
output .

. To find a reasonablenitial choice for the weight , one canfirst obtaina

controllerwith someother designmethod,plot the magnitudeof the resulting
diagonakelementof asafunctionof frequencyandselect asarational
approximatiorof

. Fordisturbanceejectionwemayin somecasesvantasteepeslopefor at

low frequencieshanthatgivenin (3.60),e.g.assegheweightin (2.73).However
it may be betterto considerthe disturbance&xplicitly by consideringthe
normof

(3.61)

or equivalently
with (3.62)
where  representshe transferfunction from to the weighted outputs

. In somesituationswe may wantto adjust or in orderto satisfy



betterour original objectivesThehelicoptercasestudyin Sectionl12.2illustrates
this by introducinga scalamparameter to adjustthe magnitudeof

5. is the transferfunction from to . To reducesensitivity to noise and
uncertaintywewant smallathigh frequenciesandsowe maywantadditional
roll-off in . This canbeachievedn severalways.Oneapproachs to add
tothestackfor in (3.59),where and is smallerthanl
atlow frequenciesndlargeathighfrequenciesA moredirectapproachs to add
high-frequencydynamics, , to the plantmodelto ensurethat the resulting
shapedplant, , rolls off with the desiredslope.We thenobtainan

optimalcontroller  for this shapedlant,andfinally include in the

controller,

More detailsabout designaregivenin Chapter9.

3.5 Introduction to multivariable RHP-zeros

By meansof an example,we now give the readeran appreciatiorof the fact that
MIMO systemdavezeroseventhoughtheir presencenaynot be obviousfrom the
elementof . As for SISOsystemswefind thatRHP-zerosmposefundamental
limitationson control.

Thezeros of MIMO systemsaredefinedasthevalues where loses
rank,andwe canfind thedirection of azeroby looking atthedirectionin whichthe
matrix haszerogain.Forsquaresystemsve essentialljhavethatthe polesand
zerosof arethepolesandzerosof . However this crudemethodmay
fail in somecasesasit mayincorrectlycancebpolesandzeroswith thesamdocation
butdifferentdirections(seeSectionst.5and4.6.1for moredetails).

Example 3.8 Consider the following plant

(3.63)

The responses to a step in each individual input are shown in Figure 3.9(a) and (b). e see
that the plant is interactive, but for these two inputs there is no inverse response to indicate
the presence of a RHP-zero. Nevertheless, the plant does have a multivariable RHP-zero at

, that is, loses rank at , and . The singular value
decomposition of is

(3.64)

and we have as expected _ . The input and output directions corresponding to

the RHP-zero are and . Thus, the RHP-zero is associated with
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Figure 3.9: Open-loopresponséor in (3.63)

both inputsand with both outputs. The presence of the multivariable RHP-zero isal so observed
from the time response in Figure 3.9(c), which is for a simultaneous input change in opposite

directions, .Weseethat displaysan inverseresponse whereas  happensto

remain at zero for this particular input change.
To see how the RHP-zero affects the closed-loop response, we design a controller which
minimizes the norm of the weighted matrix

(3.65)
with weights
(3.66)

The MATLAB file for the design is the same as in Table 2.3 on page 60, except that we now
have a system. Snce there is a RHP-zero at we expect that this will somehow
limit the bandwidth of the closed-loop system.

Design 1. We weight the two outputs equally and select

Thisyieldsan normfor  of and theresulting singular valuesof  are shown by the
solid linesin Figure 3.10(a). The closed-loop response to a reference change
is shown by the solid lines in Figure 3.10(b). e note that both outputs behave rather poorly
and both display an inverse response.

Design 2. For MIMO plants, one can often move most of the deteriorating effect (e.g. inverse
response) of a RHP-zero to a particular output channel. Toillustratethis, we change the wei ght

so that more emphasis is placed on output . We do this by increasing the bandwidth

requirement in output channel by a factor of

This yields an norm for of . In this case we see from the dashed line in
Figure 3.10(b) that the response for output ( ) is excellent with no inverse response.
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Figure 3.10: Alternativedesigndor plant(3.63)with RHP-zero

However, this comes at the expense of output () where the response is somewhat poorer
than for Design .

Design 3. We can also interchange the weights and to stress output  rather
than output . In this case (not shown) we get an excellent response in output ~ with no
inverse response, but output  responds very poorly (much poorer than output for Design

). Furthermore, the normfor is , Whereas it was only for Design .
Thus, we seethat it is easier, for this example, to get tight control of output  than of output
. This may be expected from the output direction of the RHP-zero, _ , Which is

mostly in the direction of output . We will discussthisin more detail in Section 6.5.1.

Remark 1 Wefind from this examplethatwe candirectthe effect of the RHP-zerato either
of the two outputs.Thisis typical of multivariableRHP-zeroshut therearecasesvherethe
RHP-zerds associatedvith aparticularoutputchannehndit is not possibleo moveits effect
to anotherchannel Thezerois thencalleda “pinnedzero” (seeSectiord.6.2).

Remark 2 It is observedrom theplot of the singularvaluesin Figure3.10(a) thatwe were
ableto obtainby Design2 a very largeimprovemenin the “good” direction(corresponding
to_ ) attheexpensef only aminordeterioratiorin the“bad” direction(correspondingo

). ThusDesignl demonstratea shortcomingof the norm:only theworstdirection
(maximumsingularvalue)contributego the normandit maynotalwaysbeeasyto geta
goodtrade-of betweerthevariousdirections.

3.6 Condition number and RGA

Two measurewhichareusedo quantifythedegreeof directionalityandThelevel of
(two-way)interactionsn MIMO systemsarethe conditionnumberandtherelative
gain array (RGA), respectively We heredefinethe two measuresnd presentan
overviewof their practical use. We do not give detailedproofs, but referto other



placesn thebookfor furtherdetails.

3.6.1 Condition number

We definethe condition number of a matrix astheratio betweerthe maximumand
minimumsingularvalues,

(3.67)

A matrix with a large condition numberis said to be ill-conditioned. For a non-
singular(square)matrix _ , SO . It then
follows from (A.119)thattheconditionnumbeiis largeif both and havelarge
elements.

The conditionnumberdependstronglyon the scalingof the inputsandoutputs.
To be morespecific,if and arediagonalscalingmatricesthenthe condition
numbersof thematrices and may be arbitrarily far apart.In generalthe
matrix shouldbe scaledon physicalgroundsfor example py dividing eachinput
andoutputby its largestexpectedr desiredvalueasdiscussedn Sectionl.4.

One might also considerminimizing the condition numberover all possible
scalingsThisresultsin theminimized or optimal condition number whichis defined
by

(3.68)

andcanbecomputedising(A.73).

The conditionnumberhasbeenusedas an input-outputcontrollability measure,
and in particularit hasbeenpostulatedthat a large condition numberindicates
sensitivityto uncertainty This is not true in general but the reverseholds; if the
conditionnumbeiis small,thenthemultivariableeffectsof uncertaintyarenotlikely
to beseriougsee(6.72)).

If theconditionnumbeiis large(say largerthan10),thenthis mayindicate control
problems:

1. A large conditionnumber _ may be causedy a smallvalue
of _ , whichis generallyundesirabl¢ontheotherhand,alargevalueof
neednot necessariljpea problem).

2. A largeconditionnumbemaymearthattheplanthasalargeminimizedcondition
number or equivalently it haslarge RGA-elementsvhich indicatefundamental
controlproblemsseebelow

3. A largeconditionnumberdoesimply thatthesystenis sensitiveto “unstructured”
(full-block) input uncertainty(e.g.with aninverse-basedontroller, see(8.135)),
but thiskind of uncertaintyoftendoesnot occurin practice We thereforecannot
generallyconcludethat a plant with a large condition numberis sensitiveto
uncertaintye.g.seethediagonalplantin Example3.9.



3.6.2 RelativeGain Array (RGA)

Therelativegainarray(RGA) of a non-singulaisquarematrix  is a squarematrix
definedas

(3.69)
where denotexlement-by-elememnultiplication (the Hadamardr Schurprod-
uct). Fora matrixwith elements theRGA s

(3.70)

Bristol (1966) originally introducedthe RGA as a steady-statemeasureof
interactiondor decentralizedontrol.Unfortunatelybaseddntheoriginal definition,
manypeoplehavedismissedhe RGA asbeing“only meaningfulat ". Tothe
contrary in mostcasest is the valueof the RGA at frequenciesloseto crossover
whichis mostimportant.

The RGA hasa numberof interestingalgebraic properties, of which the most
importantare(seeAppendixA.4 for moredetails):

1. Itis independentf inputandoutputscaling.

2. ltsrowsandcolumnssumto one.

3. The sum-normof the RGA, , is very closeto the minimized condition
number ; see(A.78). This meansthat plantswith large RGA-elementsare
alwaysill-conditioned(with alarge valueof ), butthereversemaynothold
(i.e.aplantwith alarge mayhavesmallRGA-elements).

4. A relative changein an elementof  equal to the negativeinverse of its
correspondindgRGA-elementyieldssingularity

5. TheRGA s theidentity matrixif  is upperor lowertriangular

Fromthe lastpropertyit follows thatthe RGA (or moreprecisely ) provides
ameasuref two-way interaction. Thedefinitionof the RGA maybe generalizedo
non-squarenatricesby usingthe pseuddnverse;seeAppendixA.4.2.

In additionto the algebraicpropertieslisted above,the RGA hasa surprising
numberof usefulcontrol properties:

1. TheRGA is agoodindicatorof sensitivityto uncertainty:

(a) Uncertainty in the input channels (diagonal input uncertainty). Plantswith
large RGA-elementsaroundthe crossoveifrequencyare fundamentallydiffi-
cultto controlbecausef sensitivityto inputuncertainty(e.g.causedy uncer
tainor neglectedhctuatodynamics)In particular decouplersr otherinverse-
basedcontrollersshouldnot be usedfor plantswith large RGA-elementgsee
page244).

(b) Element uncertainty. Asimpliedby algebraigropertyno.4 aboveJargeRGA-
elementamply sensitivityto element-by-elemenincertainty However this



kind of uncertaintymaynotoccurin practicedueto physicalcouplingshetween
thetransferfunctionelementsTherefore diagonalinput uncertaintywhichis
alwayspresent)s usuallyof moreconcerrfor plantswith largeRGA-elements.

2. RGA and RHP-zeros. If the signof an RGA-elementhangesrom to
, thenthereisaRHP-zeran orin somesubsystenof (seeTheoreml0.5).

3. Non-square plants. Extrainputs:If the sumof theelementsn a columnof RGA
is small ( ), thenone may considerdeletingthe correspondingnput. Extra
outputs:If all elementsn arow of RGA aresmall( ), thenthe corresponding
outputcannotbe controlled(seeSection10.4).

4. Diagonal dominance. TheRGA canbeusedto measuraliagonaldominanceby
thesimplequantity

RGA-number (3.71)

For decentralizedcontrol we prefer pairings for which the RGA-numberat
crossovefrequenciess closeto 1 (seepairingrule 1 on page435). Similarly, for
certainmultivariabledesignmethodsshapingit is simplerto chooseheweights
andshapeheplantif we first rearrangdheinputsandoutputsto makethe plant
diagonallydominantwith asmallRGA-number

5. RGA and decentralized control.

(a) Integrity: For stableplantsavoidinput-outputpairingon negativesteady-state
RGA-elementsOtherwise,if the sub-controllersare designedndependently
eachwith integralaction thentheinteractionswill causenstabilityeitherwhen
all of the loops are closed,or whenthe loop correspondingo the negative
relativegainbecomesnactive (e.g.becausef saturationseeTheorem10.4
page439). Interestingly this is the only useof the RGA directly relatedto
Bristol’s original definition.

(b) Sability: Prefer pairings correspondingto an RGA-numbercloseto 0 at
crossovefrequenciegseepage435).

Remark. An iterativeevaluationof the RGA, etc.,hasin applications
provedto be usefulfor choosingpairingsfor large systemsWolff (1994)found numerically

that
(3.72)

is a permuteddentity matrix (with the exceptionof “borderline” casesthe resultis proved
for a positive definite Hermitian matrix by Johnsonand Shapiro(1986)). Typically,
approaches for betweend and8. This permuteddentity matrix may thenbe usedas

a candidatepairing choice.For example for we get

and , whichindicates

1

thattheoff-diagonalpairingshouldbeconsideredNotethat  maysometimesrecommend”
apairingon negativeRGA-elementsevenif apositivepairingis possible.



Example 3.9 Consider a diagonal plant and compute the RGA and condition number,

- (3.73)

Here the condition number is large which means that the plant gain depends strongly on the
input direction. However, sincetheplantisdiagonal thereare no interactionsso and
, and no sensitivity to uncertainty (or other control problems) isnormally expected.

Remark. An exception would be if there was uncertainty caused by unmodelled or neglected
off-diagonal elementsin . Thiswould couple the high-gain and low-gain directions, and the
large condition number implies sensitivity to this off-diagonal (“ unstructured” ) uncertainty.

Example 3.10 Consider atriangular plant  for which we get
—_— (3.74)

Note that for a triangular matrix, the RGA is always the identity matrix and is always

Example 3.11 Consider again the distillation process for which we have at steady-state

(3.75)
In this case isonly slightly larger than .
The magnitude sum of the elementsin the RGA-matrix is . This confirms
(A.79) which states that, for systems, when islarge. The
condition number islarge, but since the minimum singular value _ islarger than

this does not by itself imply a control problem. However, the large RGA-elements indicate
control problems, and fundamental control problemsare expectedif analysisshowsthat
haslarge RGA-elementsal so in the crossover frequency range. (Indeed, the idealized dynamic
model (3.82) used below has large RGA-elements at all frequencies, and we will confirmin
simulationsthat there isa strong sensitivity to input channel uncertainty with an inver se-based
controller).

Example 3.12 Consider a plant for which we have

(3.76)
and and . The magnitude sum of the elements in the RGA
is whichiscloseto  as expected from (A.78). Note that the rows and the
columnsof sumto .Snce_  islarger than 1 and the RGA-elementsarerelatively small,

this steady-state analysis does not indicate any particular control problems for the plant.

Remark. The plant in (3.76) represents the steady-state model of a fluid catalytic cracking
(FCC) process. A dynamic model of the FCC processin (3.76) is given in Exercise 6.16.



Foradetailedanalysisof achievablgerformancef theplant(input-outputontrolla-
bility analysis)pnemustalsoconsidetthesingularvalues RGA andconditionnum-
berasfunctionsof frequencyln particular the crossovefrequencyrangeis impor-
tant.In addition,disturbanceandthepresencef unstabl§dRHP)plantpolesandze-
rosmustbe consideredAll theseissuesarediscussedn muchmoredetailin Chap-
ters5 and6 wherewe discussachievableerformancandinput-outputcontrollabil-
ity analysisfor SISOandMIMO plants,respectively

3.7 Introductionto MIMO robustness

To motivatethe needfor a deeperunderstandingf robustnessye presenttwo
examplesvhichillustratethatMIMO systemsandisplayasensitivityto uncertainty
not foundin SISO systemsWe focus our attentionon diagonalinput uncertainty
whichis presenin anyrealsystemandoftenlimits achievableerformancéecause
it entersbetweerthe controllerandthe plant.

3.7.1 Motivating robustness example no. 1: Spinning Satellite

Considetthefollowing plant(Doyle, 1986;Packarcet al., 1993)which canitself be
motivatedby consideringheangulawelocity controlof asatellitespinningaboutone
of its principalaxes:

_ (3.77)

A minimal, state-spaceealization, ,is
I (3.78)
Theplanthasapairof -axispolesat soit needgo bestabilized.Let us

applynegativefeedbaclkandtry the simplediagonalconstantontroller

Thecomplementargensitivityfunctionis

S (3.79)



Nominal stability (NS). The closed-loopsystemhastwo polesat andso
it is stable.This canbeverifiedby evaluatinghe closed-loopstatematrix

(Toderive  use , and ).

Nominal performance (NP). Thesingularvaluesof areshownin
Figure3.6(a),page76.We seethat__ atlow frequenciesndstartsdropping
off at about . Since_ neverexceeds , we do not havetight controlin
the low-gaindirectionfor this plant (recall the discussiorfollowing (3.51)),sowe
expectpoor closed-loopperformanceThis is confirmedby considering and
For example at steady-state and . Furthermorethelarge
off-diagonalelementsn in (3.79)showthatwe havestronginteractionsn the
closed-loopsystem.(For referenceracking,however this may be counteractedby
useof atwo degrees-of-freedomontroller).

Robust stability (RS). Now let us considerstability robustnessin order to
determinestability maginswith respecto perturbationsn eachinput channelone
may considerFigure3.11 wherewe havebrokentheloop at thefirst input. Theloop
transferfunctionat this point (thetransferfunctionfrom to )is
(whichcanbederivedfrom — ). Thiscorrespondto aninfinite
gainmamin andaphasemamginof . Onbreakingtheloop atthesecondnputwe
getthesameaesult.Thissuggestgoodrobustnespropertiesrrespectiveof thevalue
of . However the designis far from robustasa further analysisshows.Consider

Figure 3.11: Checkingstability maigins“one-loop-at-a-time”

inputgainuncertaintyandlet and denotetherelativeerrorin thegainin each
inputchannelThen

(3.80)



where and aretheactualchange themanipulatednputs,while and are
thedesiredchangesscomputedby the controller It is importantto stresghatthis
diagonainputuncertaintywhichstemsgrom ourinability to knowtheexactvaluesof
themanipulatednputs,is always presentln termsof astate-spacdescription(3.80)
mayberepresentedly replacing by

Thecorrespondinglosed-loopstatematrixis

which hasa characteristipolynomialgivenby

(3.81)

The perturbedsystemis stableif andonly if boththe coeficients and are
positive.We thereforeseethatthe systemis always stable if we consider uncertainty
in only one channd at a time (atleastaslong asthe channelgainis positive).More
preciselywe havestabilityfor and .
This confirmsthe infinite gain mamgin seenearlier However the systemcanonly
toleratesmall simultaneous changesin thetwo channelsForexamplelet ,
thenthe systemis unstablg ) for

In summary we have found that checkingsingle-loopmamins is inadequatefor
MIMO problemsWe havealsoobservedhatlarge valuesof or indicate
robustnesproblemsWe will returnto thisin Chapter8, wherewe showthat with
input uncertaintyof magnitude , we areguaranteedobuststability
(evenfor “full-block complexperturbations”).

In the next examplewe find that there can be sensitivity to diagonal input
uncertaintyevenin caseswvhere and haveno large peaks.This cannot
happerfor adiagonalcontroller see(6.77),butit will happenf we useaninverse-
basedcontrollerfor a plantwith large RGA-elementssee(6.78).

3.7.2 Motivating robustness example no. 2: Distillation Process

Thefollowing is anidealizeddynamicmodelof a distillation column,

S (3.82)



(timeis in minutes).Thephysicsof thisexamplewasdiscussed Example3.7.The

plantis ill-conditionedwith conditionnumber atall frequenciesThe
plantis alsostronglytwo-wayinteractiveandthe RGA-matrixatall frequenciess
(3.83)

Thelargeelementsn this matrixindicatethatthis processs fundamentallydifficult

to control.

Remark. (3.82)is admittedlyaverycrudemodelof arealdistillationcolumn;thereshouldbea
high-ordedagin thetransferfunctionfrominputl to output2 to representheliquid flow down
to thecolumn,andhigherordercompositiordynamicsshouldalsobeincluded.Nevertheless,
themodelis simpleanddisplaysimportantfeaturef distillation columnbehaviourlt should
benotedthatwith amoredetailedmodel,the RGA-elementsvould approacH. atfrequencies

aroundl rad/min,indicatinglessof a controlproblem.
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Figure 3.12: Responswaith decouplingcontrollerto filteredreferencenput
The perturbedplanthas20%gainuncertaintyasgivenby (3.86).

We considerthe following inverse-basedontroller, which may also be looked
uponasa steady-statdecouplemwith a Pl controller:

(3.84)

Nominal performance (NP). We have — . With nomodel
errorthis controllershouldcounteracall theinteractionsn the plantandgiveriseto
two decoupledirst-orderresponsesachwith atime constanof min.
Thisis confirmedby thesolidline in Figure3.12whichshowshesimulatedesponse
to areferencechangein . Theresponseareclearly acceptableandwe conclude
thatnominal performance (NP) is achieved with the decoupling controller.

Robust stability (RS). The resultingsensitivity and complementarysensitivity
functionswith this controllerare

(3.85)



Thus, and arebothlessthanl at all frequenciessothereareno peaks
whichwould indicaterobustnesgroblemsWe alsofind thatthis controllergivesan
infinite gain magin (GM) anda phasemaigin (PM) of in eachchannel.Thus,
useof thetraditionalmarginsandthepeakvaluesof and indicatenorobustness
problemsHoweverfromthelargeRGA-elementshereis causdor concernandthis
is confirmedin thefollowing.

We considemagaintheinputgainuncertainty(3.80)asin thepreviousexampleand
we select and . Wethenhave

(3.86)

Notethatthe uncertaintyis onthe change in theinputs(flow rates),andnotontheir
absoluteralues A 20%erroris typicalfor procesgontrolapplicationgseeRemark2
on page300). The uncertaintyin (3.86) doesnot by itself yield instability. This is
verified by computingthe closed-looppoles,which, assumingno cancellationsare
solutionsto (see(4.102)and(A.12)). In our
case

sotheperturbectlosed-loomolesare
(3.87)

andwe haveclosed-loogstability aslong astheinputgains and remain
positive,sowe canhaveup to 100%errorin eachinput channelWe thusconclude
thatwe have robust stability (RS) with respect to input gain errorsfor the decoupling

controller.

Robust performance (RP). For SISO systemswe generallyhavethat nominal
performancé€NP) androbuststability (RS)imply robustperformancé€RP),but this
is not the casefor MIMO systems.This is clearly seenfrom the dottedlines in
Figure3.12which showthe closed-looresponsef the perturbedsystemlt differs
drasticallyfrom thenominalresponseepresentetly thesolid line, andeventhough
it is stable theresponsés clearlynotacceptableit is nolongerdecoupledand
and reachavalueof about2.5beforesettlingattheir desiredvaluesof 1 and0.
Thus RP is not achieved by the decoupling controller.

Remark 1 Thereis a simplereasorfor the observedpoorresponseo the referencechange
in . To accomplistthis changewhich occursmostly in the directioncorrespondingo the
low plantgain,theinverse-basedontrollergenerateselativelylargeinputs and , while

trying to keep very small. However theinputuncertaintymakeshisimpossible-the
resultis anundesiredarge changdn theactualvalueof , which subsequentlyesults
inlargechangesn and becausef thelargeplantgain( ) in thisdirection,

asseerfrom (3.46).



Remark 2 Thesystenremainsstablefor gainuncertaintyupto 100%becaus¢heuncertainty
occursonly atonesideof the plant(attheinput). If we alsoconsidemncertaintyatthe output
thenwe find thatthe decouplingcontrolleryieldsinstability for relatively small errorsin the
inputandoutputgains.Thisis illustratedin Exercise3.8below

Remark 3 It is alsodifficult to geta robustcontrollerwith otherstandardlesigntechniques
for thismodel.Forexamplean -designasin (3.59)with (using and

in the performanceveight(3.60))and , Yieldsagoodnominalresponse
(althoughnotdecoupled)butthe systemis very sensitiveto input uncertaintyandthe outputs
go upto about3.4 andsettlevery slowly whenthereis 20%inputgainerror.

Remark 4 Attemptsto makethe inverse-basedontroller robustusing the secondstep of
the GloverMcFarlane loop-shapingrocedurerealsounhelpful;seeExercise3.9. This
showsthatrobustnessvith respecto coprimefactor uncertaintydoesnot necessarilymply
robustneswith respecto inputuncertaintyln anycasethesolutionis to avoidinverse-based
controllersfor a plantwith largeRGA-elements.

Exercise 3.7 Design a SvD-controller for the distillation processin (3.82),
i.e select and where and aregivenin(3.46). Select  intheform

and try the following values:

@ ;
(b) , ;
(0 ,

Smulate the closed-loop reference response with and without uncertainty. Designs (a) and
(b) should be robust. Which has the best performance? Design (c) should give the response
in Figure 3.12. In the simulations, include high-order plant dynamics by replacing by
_ . What isthe condition number of the controller in the three cases? Discussthe
results. (See also the conclusion on page 244).

Exercise 3.8 Consider again the distillation process (3.82) with the decoupling controller,
but also include output gain uncertainty . That is, let the perturbed loop transfer function be

— (3.88)

where  isaconstant matrix for thedistillation model (3.82), sinceall elementsin  sharethe

same dynamics, . The closed-loop poles of the perturbed system are solutions
to , or equivalently

— (3.89)
For we have from the Routh-Hurwitz stability condition indexRouth-Hurwitz stability

test that instability occurs if and only if the trace and/or the determinant of ~ are negative.



Snce for anygainerror lessthan %, instability can only occur if .
Evaluate and show that with gain errors of equal magnitude the combination of errors
which most easily yields instability is with . Use thisto show that
the perturbed systemis unstable if

(3.90)

where isthe  -element of the RGA of . Inour case and
we get instability for . Check this numerically, e.g. using MATLAB.

Remar k. Theinstability conditionin (3.90)for simultaneougputandoutputgainuncertainty
appliegtotheveryspeciakaseof a plant,in whichall elementsharehesamedynamics,
, andaninverse-basedontrolleg

Exercise 3.9 Consider again the distillation process in (3.82). The response using the
inverse-based controller in (3.84) wasfound to be sensitive to input gain errors. WWe want
to see if the controller can be modified to yield a more robust system by using the Glover-
McFarlane loop-shaping procedure. To this effect, | et the shaped plant be ,
i.e , and design an controller for the shaped plant (see page 382 and
Chapter 9), such that the overall controller becomes . (Youwill find that

which indicates good robustness with respect to coprime factor uncertainty, but the loop
shape is almost unchanged and the system remains sensitive to input uncertainty.)

3.7.3 Robustnessconclusions

From the two motivating examplesabove we found that multivariable plants
can display a sensitivity to uncertainty(in this caseinput uncertainty)which is
fundamentallydifferentfrom whatis possiblein SISOsystems.

In thefirstexamplgspinningsatellite) we hadexcellentstabilitymamgins(PM and
GM) whenconsideringoneloop at a time, but small simultaneousnput gainerrors
gaveinstability. Thismighthavebeenexpectedrom thepeakvalues( norms)of

and , definedas

(3.91)

which werebothlarge (about10) for this example.

In the secondexample(distillation process)we again had excellentstability
maugins (PM and GM), and the systemwas also robustly stableto errors(even
simultaneouspf up to 100%in the input gains.However in this casesmallinput
gain errors gave very poor output performance so robust performancewas not
satisfied,and adding simultaneousoutput gain uncertaintyresultedin instability
(seeExercise3.8). Theseproblemswith the decouplingcontrollermight havebeen
expectedecaustheplanthaslargeRGA-elementd-orthissecondexamplehe
normsof and werebothabout , sotheabsencef peaksin and doesnot
guaranteeobustness.



AlthoughsensitivitypeaksRGA-elementsetc.areusefulindicatorsof robustness
problems they provide no exactanswerto whethera given sourceof uncertainty
will yield instability or poor performanceThis motivatesthe needfor bettertools
for analyzingthe effects of modeluncertainty We wantto avoid a trial-and-error
procedurebasedon checking stability and performancefor a large number of
candidateplants.This is very time consumingandin the end one doesnot know
whetherthoseplantsarethelimiting ones Whatis desiredjs a simpletool whichis
abletoidentify theworst-casglant. Thiswill bethefocusof Chapter§ and8 where
we showhow to representmodeluncertaintyin the framework,andintroduce
thestructuredsingularvalue asourtool. Thetwo motivatingexamplesarestudied
in moredetailin Example8.10and Section8.11.3wherea -analysispredictsthe
robustnesgroblemsfoundabove.

3.8 General control problem formulation

(weighted) (weighted)
exogenougnputs exogenousutputs
controlsignals senseautputs

Figure 3.13: Generakontrolconfiguratiorfor the casewith no modeluncertainty

In this sectionwe considera generalmethodof formulating control problems
introducedby Doyle (1983; 1984). The formulation makesuse of the general
control configurationin Figure 3.13,where is the generalized plantand is
the generalizedcontrollerasexplainedin Table1.1 on pagel3. Note that positive
feedbacks used.

The overall control objectiveis to minimize somenorm of the transferfunction
from to ,for examplethe norm.Thecontrollerdesignproblemis then:

Findacontroller whichbaseddntheinformationin , generateacontrolsignal
which counteractsheinfluenceof on , therebyminimizing the closed-loop
normfrom to .

Themostimportantpointof this sectionis to appreciatéhatalmostanylinearcontrol
problemcanbe formulatedusingthe block diagramin Figure3.13(for thenominal
case)or in Figure3.21(with modeluncertainty).



Remark 1 The configurationin Figure 3.13may at first glanceseemrestrictive.However
thisis notthe case andwe will demonstratéhe generalityof the setupwith a few examples,
includingthe designof observergthe estimationproblem)andfeedforwardcontrollers.

Remark 2 We maygeneralizehe controlconfigurationstill furtherby includingdiagnostics
asadditionaloutputsfrom the controllergiving the 4-parameter controller introducedoy Nett
(1986),but thisis not consideredn this book.

3.8.1 Obtaining the generalized plant

Theroutinesin MATLAB for synthesizing and  optimalcontrollersassume
thatthe problemis in the generalform of Figure 3.13,thatis, they assumehat
isgiven.Toderive (and ) for aspecificcasewe mustfirst find a block diagram
representatioandidentify thesignals , , and .Toconstruct oneshouldnote
thatit is anopen-loop systemandremembeto breakall “loops” enteringandexiting
thecontroller . Someexamplesaregivenbelowandfurtherexamplesaregivenin
Section9.3(Figures9.9,9.10,9.11 and9.12).

Figure 3.14: Onedegree-of-freedornontrol configuration

Example 3.13 One degree-of-freedom feedback control configuration. We want to find
for the conventional one degree-of-freedom control configuration in Figure 3.14. The first
step isto identify the signals for the generalized plant:

(3.92)
Withthischoiceof , the controller only hasinformation about the deviation . Also note
that , which means that performanceis specified in terms of the actual output and

notin terms of the measured output . The block diagramin Figure 3.14 then yields



...................................

Figure 3.15: Equivalentrepresentationf Figure3.14wherethe errorsignalto be minimized
is andtheinputto thecontrolleris

and  which represents the transfer function matrix from to is
(3.93)

Notethat doesnotcontainthecontroller. Alternatively, can be obtained by inspectionfrom
the representation in Figure 3.15.

Remark. Obtainingthe generalizegplant may seemtedious.However whenperforming
numericakalculations canbegeneratedisingsoftware Forexamplejn MATLAB we may
usethesi nmul i nk program,or we mayusethesysi ¢ programin the -toolbox.Thecode
in Table3.1generatethegeneralizeglant in (3.93)for Figure3.14.

Table3.1: MATLAB program to generate in (3.93)
% Uses the M-t ool box

systemanes = ' G ; % Gis the SISO plant.
inputvar = "[d(1);r(1);n(1);u(d)]’; % Consi sts of vectors w and u.
input to.G="[u]";

outputvar = '[G+d-r; r-Gd-n]’; % Consi sts of vectors z and v.
sysoutname = 'P';

sysi c;

3.8.2 Controller design: Including weightsin

To geta meaningfulcontrollersynthesigproblem.for examplejn termsof the

or norms,we generallyhaveto includeweights  and in the generalized
plant ,seeFigure3.16.Thatis, we consideitheweightedor normalizecexogenous
inputs  (where consistf the “physical” signalsenteringthe system;



......................................

......................................

Figure 3.16: Generakontrolconfiguratiorfor the casewith no modeluncertainty

disturbancesreferencesand noise), and the weighted or normalizedcontrolled
outputs (where often consistsof the control error and the
manipulatednput ). Theweightingmatricesareusuallyfrequencydependenand
typically selectecsuchthatweightedsignals and areof magnitudel, thatis, the
normfrom to shouldbelessthanl. Thus,in mostcase®nly themagnitudeof the
weightsmatter andwe maywithoutlossof generalityassumehat and

arestableandminimum phasgthey neednot evenberationaltransferfunctionsbut
if nottheywill beunsuitabldor controllersynthesiaisingcurrentsoftware).

Example 3.14 Stacked problem. Consider an problem where we want to
bound (for performance), (for robustness and to avoid sensitivity to noise) and

(to penalize large inputs). These requirements may be combined into a stacked
problem

(3.94)

where isa stabilizing controller. In other words, we have and the objective isto
minimizethe normfrom to .Except for some negative signswhich have no effect when
evaluating ,the in (3.94) may be represented by the block diagramin Figure 3.17
(convince yourself that thisistrue). Here  represents a reference command ( , where
the negative sign does not really matter) or a disturbance entering at the output ( ),and
consists of the weighted input , the weighted output , and theweighted
control error . e get from Figure 3.17 the following set of equations



Figure 3.17: Block diagramcorrespondingo in (3.94)

sothegeneralized plant  from to is

(3.95)
3.8.3 Partitioning the generalized plant
We oftenpartition as

(3.96)
suchthatits partsare compatiblewith the signals , , and in the generalized
controlconfiguration,

(3.97)

(3.98)

Thereadershouldbecomefamiliar with this notation.In Example3.14we get
(3.99)

(3.100)

Notethat  hasdimensionsompatiblewith thecontrolleri.e.if isan
matrix,then isan matrix. Forcasesvith onedegree-of-freedomegative
feedbaclcontrolwe have



3.84 Analysis: Closing the loop to get

Figure 3.18: Generablock diagramfor analysiswith no uncertainty

Thegenerafeedbackconfigurationsn Figures3.13and 3.16havethe controller
asaseparatédlock. Thisis usefulwhensynthesizinghe controller However for
analysis of closed-loopperformancehe controlleris given,andwe may absorb
into theinterconnectiorstructureandobtainthe system asshownin Figure3.18
where
(3.101)

where isafunctionof .Tofind | firstpartitionthegeneralizeghlant asgiven
in (3.96)-(3.98) combinethis with the controllerequation

(3.102)
andeliminate and from equationg3.97),(3.98)and(3.102)to yield
where isgivenby

(3.103)
Here denotesalower linear fractional transformation (LFT) of  with

asthe parameterSomepropertiesof LFTs aregivenin AppendixA.7. In words,

is obtainedfrom Figure3.13by using  to closea lower feedbacKoop around

Sincepositivefeedbackis usedin the generalconfigurationin Figure3.13theterm
hasa negativesign.

Remark. To assisin rememberinghesequencef and  in(3.103),noticethatthefirst
(last)indexin is the sameasthefirst (last)indexin . Thelower
LFT in (3.103)is alsorepresentedy the block diagramin Figure3.2.

Thereadeiis advisedo becomecomfortablewith theabovemanipulationdefore
progressingnuchfurther.

Example 3.15 We want to derive  for the partitioned  in (3.99) and (3.100) using the
LFT-formulain (3.103). We get

where we have made use of the identities , and .
With the exception of the two negative signs, thisisidentical to  givenin (3.94). Of course,
the negative signs have no effect on the norm of



Again, it shouldbe notedthatderiving from is muchsimplerusingavailable
software For examplein the MATLAB -Toolboxwe canevaluate
usingthecommand\=st ar p( P, K) . Herest ar p denotegshe matrix starproduct
which generalizesheuseof LFTs (seeAppendixA.7.5).

Exercise 3.10 Consider thetwo degrees-of-freedom feedback configurationin Figure 1.3(0).
(i) Find  when

(3.104)

(i) Let andderive intwo different ways; directly fromthe block diagramand using

3.85 Generalized plant : Further examples

To illustratethe generalityof the configurationin Figure3.13,we now presentwo
further examplesonein which we derive  for a probleminvolving feedforward
control,andonefor a probleminvolving estimation.

+

4

Figure 3.19: Systemwith feedforward)ocal feedbackandtwo degrees-of-freedorontrol

Example 3.16 Consider thecontrol systemin Figure 3.19, where  isthe output we want to
control,  isa secondary output (extra measurement), and we also measure the disturbance

. By secondary we mean that s of secondary importance for control, that is, there is
no control objective associated with it. The control configuration includesa two degrees-of-
freedom controller, afeedforward controller and alocal feedback controller based onthe extra



measurement . To recast thisinto our standard configuration of Figure 3.13 we define

(3.105)

Notethat and arebothinputsandoutputsto andwe have assumed a perfect measurement
of the disturbance . Snce the controller has explicit information about we have a two
degrees-of-freedom controller. The generalized controller  may be written in terms of the
individual controller blocksin Figure 3.19 asfollows:

(3.106)

By writing down the equations or by inspection from Figure 3.19 we get

(3.107)

Then partitioning asin (3.97) and (3.98) yields

Exercise 3.11 Cascade implementation. Consider further Example 3.16. The local feed-
back basedon isoftenimplemented in a cascade manner; see also Figure 10.4. Inthiscase
the output from  entersinto and it may be viewed as a reference signal for . Derive
the generalized controller  and the generalized plant  in thiscase.

Remark. FromExample3.16andExercise3.11, we seethatacascad@émplementation doesnot
usuallylimit theachievablgerformanceince,unlessheoptimal or  haveRHP-zeros,
wecanobtainfromtheoptimaloverall thesubcontrollers and (althoughvemayhave
toaddasmall -termto tomakethecontrollersproper)Howeverif weimposerestrictions
on the design suchthat,for example  or aredesignedocally” (without considering
the whole problem),thenthis will limit the achievablgperformanceFor example for a two
degrees-of-freedom controller a commonapproachis to first designthe feedbackcontroller

for disturbanceejection(without consideringeferencaracking)andthendesign ~ for
referenceracking.Thiswill generallygive someperformancéosscomparedo asimultaneous
designof and

Example 3.17 Output estimator. Consider a situation where we have no measurement of
the output  which we want to control. However, we do have a measurement of another output
variable .Let denotethe unknown external inputs (including noise and disturbances) and

the known plant inputs (a subscript  isused becausein this case theoutput from is
not the plant input). Let the model be



The objective is to design an estimator, , such that the estimated output

is as close as possible in some sense to the true output ; see Figure 3.20. This problem may
be written in the general framework of Figure 3.13 with

Note that ,thatis, theoutput fromthegeneralized controller isthe estimate of the plant
output. Furthermore, and
(3.108)
We see that since the estimator problem does not involve feedback.
+

KalmanFilter

Figure 3.20: Outputestimationproblem.Oneparticularestimator is aKalmanFilter

Exercise 3.12 State estimator (observer). In the Kalman filter problem studied in Sec-
tion 9.2 the objective is to minimize (whereas in Example 3.17 the objective was to
minimize ). Show how the Kalman filter problem can be represented in the general con-
figuration of Figure 3.13 and find



3.8.6 Deriving from

Forcasewhere isgivenandwewishtofinda suchthat

it is usuallybestto work from a block diagramrepresentationThis wasillustrated
abovefor the stacked in (3.94). Alternatively, the following proceduremay be
useful:

1. Set in  toobtain

2. Define andrewrite  suchthateachtermhasa commonfactor
(thisgives ).

3. Since , wecannowusuallyobtain  and by inspection.

Example 3.18 Weighted sensitivity. e will use the above procedure to derive  when
, Where isa scalar weight.

1 .

2. , and we have
o) .

3. so we have and , and we get

(3.109)

Remark. Whenobtaining fromagiven , we havethat and areunique,whereas

from Step3 in the aboveprocedurave seethat and arenotunique.Forinstancelet
be arealscalarthenwe mayinsteadchoose and .For in

(3.109)this meanghatwe may movethe negativesignof thescalar ~ from to

Exercise 3.13 Mixed sensitivity. Use the above procedure to derive the generalized plant
for thestacked  in (3.94).

3.8.7 Problemsnot covered by the general formulation

The aboveexampleshavedemonstratethe generalityof the control configuration
in Figure3.13.Neverthelessthereare somecontrollerdesignproblemswhich are
notcoveredlLet besomeclosed-looptransferfunction whosenormwe wantto
minimize.To usethegeneraform we mustfirstobtaina suchthat

However this is not always possible,sincethere may not exist a block dlagram
representatiofor . As asimpleexampleconsidetthe stackedransferfunction

(3.110)

Thetransferfunction may berepresentedn ablock diagramwith the
input and outputsignalsafter the plant, whereas may be represented



by anotheblock diagramwith inputandoutputsignalsbefore theplant.Howeverin

thereareno crosscouplingtermsbetweeraninput beforethe plantandanoutput
aftertheplant(correspondingo ), or betweeraninputaftertheplant
andan outputbeforethe plant(correspondingo )so cannotbe
representeth blockdiagranmform. Equivalentlyif weapplytheprocedurén Section
3.8.6to0 in (3.110),wearenotableto find solutionsto and in Step3.

Anotherstackedransferfunctionwhich cannot in generaberepresented block
diagramformis

(3.111)

Remark. The casewhere  cannotbe written asan LFT of , is a specialcaseof the
Hadamardveighted problemstudiedby vanDiggelenandGlover(1994a) Althoughthe
solutionto this problemremaingntractableyan DiggelenandGlover(1994b)present
solutionfor a similar problemwherethe Frobeniusiormis usedinsteadof the singularvalue
to “sumupthechannels”.

Exercise3.14 Showthat in (3.111) can be represented in block diagram form if
where isascalar.

3.8.8 A general control configuration including model
uncertainty

Thegenerakontrolconfigurationin Figure3.13may be extendedo includemodel
uncertaintyas shown by the block diagramin Figure 3.21. Here the matrix

is a block-diagonal matrix that includesall possibleperturbations(representing
uncertainty)o thesystemlt is usuallynormalizedn suchaway that

Figure 3.21: Generakontrolconfiguratiorfor the casewith modeluncertainty

Theblockdiagramin Figure3.2lintermsof  (for synthesisjnaybetransformed
into theblockdiagramin Figure3.22in termsof  (for analysispyusing toclose



Figure 3.23: Rearranging systemwith multiple perturbationsnto the -structure

alowerlooparound . If wepartition tobecompatiblewith thecontroller ,then
thesameower LFT asfoundin (3.103)applies,and

(3.112)

To evaluatethe perturbed(uncertain)transferfunction from externalinputs  to
externaloutputs , we use to closethe upperloop around (seeFigure3.22),
resultingin anupper LFT (seeAppendixA.7):

(3.113)
Remark 1 Controllersynthesishasedon Figure3.21is still anunsolvedproblem,although
goodpracticalapproachebke -iterationto find the* -optimal” controllerarein use(see

Section 8.12).For analysig(with a givencontroller),the situationis betterandwith the
normanassessmenf robustperformancenvolvescomputingthe structuredsingularvalue,
. Thisis discussedn moredetailin Chapter8.

Remark 2 In (3.113)  hasbeenpartitionedto be compatiblewith , thatis has
dimensioncompatiblewith . Usually is squaran which case is asquarematrix of
the samedimensionas . For the nominalcasewith no uncertaintywe have

, SO is thenominaltransferfunctionfrom to .



Remark 3 Notethat and herealsoincludeinformationabouthowtheuncertaintyaffects
thesystemsotheyarenotthesame and asusedearliet for examplen (3.103).Actually,
theparts  and of and in(3.112) (with uncertainty)areequaltothe and in
(3.103)(without uncertainty) Strictly speakingwe shouldhaveusedanothersymbolfor
and in (3.112), butfor notationalsimplicity we did not.

Remark 4 The fact that almostany control problemwith uncertaintycan be represented
by Figure 3.21 may seemsurprising,so someexplanationis in order First represeneach
sourceof uncertaintyby a perturbatiorblock, , whichis normalizedsuchthat
Theseperturbationgnay resultfrom parametriauncertaintyneglecteddynamics etc. aswill
bediscussedh moredetailin Chapters and8. Then“pull out” eachof theseblocksfrom the
systensothataninputandanoutputcanbeassociateditheach asshownin Figure3.23(a).
Finally, collecttheseperturbatiorblocksinto alargeblock-diagonamatrixhavingperturbation
inputsandoutputsasshownin Figure3.23(b).In Chaptei8 we discussn detailhowto obtain
and

3.9 Additional exercises

Mostof theseexercisearebasednmaterialpresenteih AppendixA. Theexercises
illustrate material which the readershould know before readingthe subsequent
chapters.

Exercise 3.15 Consider the performance specification . Suggest a rational
transfer function weight and sketch it as a function of frequency for the following two
Cases:

1. We desire no steady-state offset, a bandwidth better than rad/s and a resonance peak
(worst amplification caused by feedback) lower than

2. We desire lessthan % steady-state offset, lessthan % error up to frequency rad/s, a
bandwidth better than  rad/s, and a resonance peak lower than . Hint: See (2.72) and
(2.73).

Exercise 3.16 By one can mean either a spatial or temporal norm. Explain the
difference between the two and illustrate by computing the appropriate infinity norm for

Exercise 3.17 What is the relationship between the RGA-matrix and uncertainty in the
individual elements? Illustrate this for perturbationsinthe  -element of the matrix

(3.114)

Exercise 3.18 Assume that  is non-singular. (i) Formulate a condition in terms of the
maximumsingular valueof  for the matrix to remain non-singular. Apply thisto in
(3.114) and (ii) find an  of minimum magnitude which makes singular.



Exercise 3.19 Compute , , , , and for
the following matrices and tabulate your results:

Show using the above matrices that the following bounds are tight (i.e. we may have equality)
for matrices ( ):

Exercise 3.20 Find example matricesto illustrate that the above bounds are also tight when
isa square matrix with

Exercise 3.21 Do the extreme singular values bound the magnitudes of the elements of a
matrix? That is, is greater than the largest element (in magnitude), andis_ smaller
than the smallest element? For a non-singular matrix, how is _ related to the largest
element in ?

Exercise 3.22 Consider alower triangular matrix  with , for all
, and for all
a) What is ?
b) What are the eigenvaluesof ~ ?
¢) Show that the smallest singular valueis less than or equal to
d) What isthe RGA of  ?
e) Let andfindan  with the smallest value of such that issingular.

Exercise 3.23 Findtwomatrices and suchthat which proves
that the spectral radius does not satisfy the triangle inequality and is thus not a norm.

Exercise 3.24 Write asan LFTof ,i.e find such that

Exercise 3.25 Write asan LFT of ,i.e. find such that

Exercise 3.26 Sate-spacedescriptionsmay berepresented as LFTs. To demonstratethisfind
for

Exercise 3.27 Show that the set of all stabilizing controllersin (4.91) can be written as
and find



Exercise 3.28 In (3.11) we stated that the sensitivity of a perturbed plant,
, isrelated to that of the nominal plant, by

where . This exercise deals with how the above result may be derived
in a systematic (though cumbersome) manner using LFTs (see also (Skogestad and Morari,
1988a)).

a) First find  such that ,and find  such that
(see Exercise 3.25).
b) Combine these LFTsto find .Whatis intermsof and ?.Notethat
since we have from (A.156)
¢) Evaluate and show that

d) Finally, show that this may be rewritten as

3.10 Conclusion

Themainpurposef thischaptehasbeerto giveanoverviewof methoddor analysis
anddesignof multivariablecontrolsystems.

In termsof analysiswe haveshownhow to evaluateMIMO transferfunctions
andhow to usethe singularvalue decompositiorof the frequency-dependéplant
transferfunction matrix to provide insight into multivariabledirectionality Other
usefultools for analyzingdirectionality and interactionsare the conditionnumber
andthe RGA. Closed-loopperformancemay be analyzedn the frequencydomain
by evaluatingthe maximumsingularvalue of the sensitivityfunctionasa function
of frequency Multivariable RHP-zerosmposefundamentalimitations on closed-
loop performancebut for MIMO systemswe canoften directthe undesireceffect
of aRHP-zerao a subsedf the outputs MIMO systemsreoftenmoresensitiveto
uncertaintythan SISO systemsandwe demonstrateéh two exampleghe possible
sensitivityto input gainuncertainty

In terms of controller design, we discusssedsome simple approachessuch
as decouplingand decentralizedcontrol. We also introduceda generalcontrol
configurationin termsof the generalizeglant , which canbe usedasa basisfor
synthesizingnultivariablecontrollersusinga numberof methodsjncluding LQG,

, and -optimalcontrol. Thesemethodsarediscussedh muchmoredetailin
Chapters8 and9. In thischapteme haveonly discussedhe weightedsensitivity
method.
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458
MATLAB, 468
modaltruncation 452
residualization453
steady-statgainpreservation460
truncation 452
unstableplant,467-468
Moore-Penroseverse 509
, See Structuredsingularvalue
-synthesis335-344
Multilayer, 401
Multilevel, 401
Multiplicative property 72,155,520
Multiplicative uncertainty see Uncertainty
see Uncertainty
Multivariable stability mamgin, 313
Multivariablezero,see Zero

Neglecteddynamicssee Uncertainty
Neutralizatiorprocess205-210537
controlsystendesign,208
mixing tank,205
plantdesignchange
multiple pH adjustments209
multiple tanks,207
Niederlinskiindex, 440

Noise( ), 13
NominalPerformancéNP), 3
Nominalperformancé€NP), 276,303
Nyquistplot, 276
Nominal Stability (NS), 3
Nominalstability (NS), 303
Non-causatontroller 182
Non-minimumphase 19
Norm,516-527
, see also Matrix norm
, See also Signalnorm
, See also Systemnorm
, see also Vectornorm
Normalrank, 130,219
Notation,11
Nyquist -contour 147
Nyquistarray 79
Nyquistplot, 17,31
Nyquiststabilitytheorem 146
argumentprinciple, 148
generalizedMIMO, 146
SISO,25

ObservabilityGramian,126,454
Observabilitymatrix, 125
Observer390
loop shaping 390
Offset,see Controlerror( )
Onedegree-of-freedoroontroller 21
Optimization,401
closed-loogmplementation402
open-loopmplementation402
Optimizationlayer, 399
look-uptable,406
Orthogonal,73
Orthonormal,73
Output( ), 13
primary 13,419
secondaryl3,419
Outputdirection,73,213,214
disturbance?13,227
plant, 73,213
pole, 133,213
zero,133,213
Outputscaling,6
Outputuncertaintysee Uncertainty
Overshoot29

Pack approximation]121,181
Pairing,432,435,437,439
aero-engine488



, see also Decentralizedontrol
Parsevak Theorem 365
Partialcontrol,422

“true”, 422,428
distillation process429
FCCprocess251
Partitionedmatrix, 501,502
Perfectcontrol, 163
non-causatontroller 182,183
unstablecontrollef 182
Performance?9
norm,78
frequencydomain,30
limitationsMIMO, 213-252
limitationsSI1S0O,159-212
time domain,29
weightselection57
weightedsensitivity 56,78
worst-case326,342

, See also Robustperformance
PerformanceRelative Gain Array (PRGA),

433,446
Permutatiomatrix,512

Perronroot ( ), 436,523
Perron-Frobeniutheorem523
Perturbation304

allowed,304

, See also Realperturbation

, See also Uncertainty
Phasdag

limitation SISO,193
PhaseMargin (PM), 32, 34

LQG, 358
Phasomnotation,18
Pl-controller 27

ZieglerNicholstuningrule, 27
PID-controller 120

cascadéorm, 194

idealform, 120
Pinnedzero,135
Plant( ), 13

, see also Generalizeglant( )
Plantdesignchange 160,207,248

neutralizatiorprocess207,209
Pole,128, 128-130

effect of feedback135,136

stability, 128

, See also RHP-pole
Poledirection,133

from eigenvectqrl33
Polepolynomial,128

Polynomialsystermmatrix, 131
Positivedefinitematrix, 500,504
Post-compensatd8l
Powerspectradensity 353,361
Pre-compensator9
Prediction, 163,182,203
Prefilter 28,52
Principalcomponentegression510
Principalgain,73

, see also Singularvalue
Processioise,353
Proper5
Pseudo-invers&09

Q-parameterizatiori,42

Rank,506
normalrank,219
Ratefeedback475
Realperturbation344
-iteration,345
, 313,344
robuststability, 305
Realization see State-spaceealization,see
State-spaceealization
Referencd ), 13,402
optimalvalue,402
performanceequiremenMIMO, 232
performanceequirement|SO,187-189
scaling,6,7
Referencenodel(
Regulatoproblem,2
Regulatorycontrol,399
Relativedisturbancegain (RDG), 443
RelativeGainArray (RGA, ), 88,512
aero-engine486
controllability analysis 88
decentralizeaontrol,89,434-441
diagonalinput uncertainty88
DIC, 439
elementuncertainty 88
element-by-elemenincertainty244
inputuncertainty239,244
input-outputselection410
MATLAB, 515
measuref interaction 434
non-square39,514
propertieof, 512
RGA-number89,443,487
RHP-zero441
steady-state}88

), 52,385



Relativeorder 5, 194
Returndifference 145
factorization433,528
RHP-pole,14, 25,184,216,224
limitation MIMO, 216,224
limitation SISO,184
RHP-poleandRHP-zero
MIMO, 224
anglebetweerpoleandzero,218
sensitivitypeak,217
SI1S0,185
design,186
stabilization,185
RHP-zero4, 19,45,174,221
aero-engine486
bandwidthlimitation, 175
complexpair, 175
decoupledesponse?223
FCCprocess251
high-gaininstability, 175
interaction223
inverseresponsel 74
limitation MIMO, 221
limitation SISO,45,174
low or high frequency179
moveeffectof, 85,221
multivariable 84
perfectcontrol,182
phasdag,19
positivefeedback;180
RGA, 441
weightedsensitivity 170,177,216
performanceathigh frequency178
performancetlow frequencyl177
Riccatiequation,118
optimalcontrol,367
loop shaping 392
controller 368
coprimeuncertainty378
Kalmanfilter, 355
statefeedback355
Right-halfplane(RHP), 14
Right-halfplanepole,see RHP-pole
Right-halfplanezero,see RHP-zero
Risetime, 29
RobustperformancgRP), 3, 253,276,303,
322
,322
optimalcontrol,375
conditionnumber 332,334
distillation process329

graphicalderivation,277
inputuncertainty326—-335
inverse-basedontroller 333
loop-shaping279
mixedsensitivity 279
Nyquistplot, 278
outputuncertainty 334
relationshipto robuststability, 324
relationshipto RS,282
SIS0,276,281
structuredsingularvalue,279
worst-case326
Robuststability (RS),3, 253,270,303, 304,
319
-structure 292,304
complementargensitivity 271
coprimeuncertainty308,376
determinantondition,305
gainmamgin, 274
graphicalderivation,270
inputuncertainty308,319
inversemultiplicativeuncertainty275,308
multiplicative uncertainty270
Nyquistplot, 271
realperturbation305
relationshipto RR, 282
scaling,310
sensitivity 276
SIS0,270
skewed-, 321
smallgaintheorem311
spectraradiuscondition,305
spinningsatellite,321
structuredsingularvalue( ), 319
unstructuredincertainty 306,307
Robustnes91,97
norm,97
LQG control,357
LTR, 361
motivatingexamples91
Roll-off rate,42
Roomheatingprocess
controllability analysis 203
derivingmodel,9
Routh-Hurwitzstability test,25

Saturationsee Input constraint
Scaling,5-8, 161,214,382
aero-engine484
MIMO controllability analysis214
SISOcontrollability analysis, 161



Schurcomplement501
Schurproduct,512
Schutsformula,502
Second-ordesystem 35
Secondarputput,415
Selector
auctioneering420
override 420
Self-regulation188,198
Semi-norm516
Semi-properb
Sensitivityfunction( ), 22-23, 66
bandwidth( ), 36
factorization, 112,528
output( ), 66
, See also Mixed sensitivity
, see also Weightedsensitivity
Sensitivityfunctionpeak , 171,217
MIMO RHP-poleandRHP-zero217
MIMO RHP-zero216
SISOpeak( ),33
SISORHP-poleandRHP-zero 171
SISORHP-zero 171
uncertainty237-244
SeparatioTheorem 353,356
Sequentiatlesign 424,448
Servoproblem,3, 356
loop shaping 385
LQG, 356
non-causatontroller 182
Setpointsee Reference )
Settlingtime, 29
Shapedplant( ), 79,380
Shapingof closed-loopransfefunction,39,
see also Loop shaping
Signof plantMIMO, 245
Signalnorm,524
-norm,525
norm,525
1-norm,525
2-norm,525
ISE, 525
powernorm,525
Similarity transformation504
Singularapproximation455
Singularmatrix, 506, 509
Singularvalue,72,74
matrix, 506
norm,78
frequencyplot, 76
inequalities507

Singular value decomposition(SVD), 72,
505
matrix, 73
economy-size509
nonsquarelant,77
of inverse 507
pseudo-inverse&g09
SVD-controller 81
Singularvector 73,505
Sinusoid,16
Skewed- , 321, 326,333
Smallgaintheorem 150
robuststability, 311
Spatialnorm,516
, Ssee also Matrix norm
, see also Vectornorm
Spectrakadius( ), 502,521
Perronroot ( ), 523
Spectrakadiusstability condition,149
Spinningsatellite,91
robuststability, 321
Split-rangecontrol,420
Stability, 24,127,128
closed-loop24
frequencydomain,144
internal, 127
, See also Robuststability
Stability magin, 33
coprimeuncertainty377
multivariable,313
Stabilizable 127, 185
stronglystabilizable 185
unstablecontroller 226
Stabilizingcontroller 111, 142-144
Starproduct,302,532
Statecontrollability, 122, 133,162
exampletanksin series 123
Stateestimatorsee Observer
Statefeedback127,354
Statematrix( ), 114
Stateobservability 125, 133
exampletanksin series 126
State-spaceealization 113,119
hiddenmode,126
inversionof, 119
minimal (McMillan degree) 126
unstablehiddenmode, 127
, see also Canonicaform
Steady-statgain,17
Steady-stateffset, 27,29
Stepresponse30



Stochastic353,365,366 overshoot?29

Strictly proper 5 quality, 29
Structuralproperty 219 risetime, 29
Structuredingularvalue( ,SSV),279,311, settlingtime, 29
312 speed?29
-synthesis335-344 steady-stateffset,29
complexperturbations314 total variation,29
computationatomplexity 345 Total variation,29
definition,313 Transferfunction,3, 22,115
discretecase 345 closed-loop22
-iteration,335 evaluatiorMIMO, 65
distillation process337 evaluationSI1SO,23
interactionmeasure436 rational,4
LMI, 346 state-spaceealization,119
nominalperformance325 Transmissiorzero,see Zero,134
practicaluse,348 Transpos¢ ), 500
propertieof, 313 Triangleinequality 72,516
complexperturbation314-318 Truncation 452
realperturbation313 Two degree®f freedomcontroller
realperturbation344 localdesign413
relationto conditionnumbey 332 Two degrees-of-freedomontroller 11, 141
robustperformance322,325,375 loop shaping 385—389
robuststability, 325 design,51-52
RR 279 internalstability, 141
scalar312 local design,105
skewed-, 279,321,326
state-spactest,346 Ultimategain, 24
upperbound,344 Uncertainty 195,253,291,294
worst-casgerformance326 -structure 293
Submatrix( ), 500 additive,260,262,295
Sumnorm ,518 andfeedback- benefits 236
Superpositiorprinciple,5, 113 andfeedback— problems237
Supervisorycontrol,399 atcrossover196
Supremun( ), 55 chemicalreactor 287
Systemnorm,151-157525 complexSIS0,259-265
Systentype,42 convexset,305
coprimefactor, 308,377
Temporalnorm,516 diagonal 299
, see also Signalnorm element-by-elemeng94,298
, See also Systemnorm feedforwardcontrol, 195,235
Timedelay 45,121,173,220 distillation process241
Pacdk approximation,121 RGA, 236
increasedielay 220 frequencydomain,259
limitation MIMO, 220 generalizeglant,291
limitation S1S0,45,173 infinite order 269
perfectcontrol, 182 , see also Inputuncertainty
phasdag,19 input,295,297,301,see also Inputuncer
Time delayuncertainty 32 tainty
Timeresponse inputandoutput,302
decayratio, 29 integralcontrol,245

excesyariation,29 inverseadditive,295



inversemultiplicative,257,295
LFT, 287,291,292
limitation MIMO, 234-246
limitation SISO,195-196
lumped,256,296
modellingSISO,253
multiplicative, 256,261,263
neglectedlynamics 255,266
nominalmodel,265
Nyquistplot, 260,265
output,234,295,297
parametric255,257,263,295
-matrix, 286
gain,257,290
gainanddelay 267
pole,283
repeategerturbations287
time constant258
zero,284
physicalorigin, 255
pole,264
RHP-pole 284
RHP-zero284,288
statespace285
stochastic257
structured257
time-varying,344
unmodelled255,268
unstableplant,283
unstructured257,295
weight, 262,263
Unitary matrix, 505
Unstablehiddenmode, 127
Unstablemode,128
Unstableplant
frequencyresponsel 8

Valvepositioncontrol,419
Vectornorm,517
-norm,517
Euclideamorm,517
MATLAB, 523
maxnorm,517

Waterbedeffect, 165
Weightselection57,336
loop shaping 382,489
mixedsensitivity 476
mixedsensitivity( ), 83
performance57,336
Weightedsensitivity 56

generalizegblant, 107
MIMO system,78
RHP-zero170,177,216
typical specification56
Weightedsensitivityintegral, 168
White noise,353
WienerHopf design,373

Youlaparameterizatiori, 42

Zero,130, 130-137

decouplingzero,134
effect of feedback 135,136
from state-spaceealization, 131
from transferfunction,131
inputblocking,134
invariantzero,134
non-squareystem;132,135
pinned,135

, see also RHP-zero

Zerodirection,132
ZieglerNichols' tuningrule, 27



