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Preface

In everyday life we use and surround ourselves with products: cars, gasoline, plastic
bags, glue, telephones, clothing, computers, lamps, airplanes, makeup, fishing rods
and toilet paper. To produce these products we need raw materials. But this is not
enough. We also need a “process”,1 and in this book we concentrate on this process
(or the path) from raw materials (feedstock) to products (including energy).

The development of a new process is demanding and exciting. Especially important
are the choice of reaction conditions (pressure, temperature, degree of conversion) and
the method for separation. The final process must be optimized to be competitive.
Unfortunately, it is not often that an engineer gets a chance to participate in the
development of a completely new process, but it is also very interesting to analyze
and understand existing processes (which we focus on in this book).

This book uses three basic principles:

1. Mass is conserved (mass balance = material balance)
2. Energy is conserved (energy balance = the first law of thermodynamics),
3. Any system will proceed towards a more probable state (with more disorder)

– and left to itself it will end up in a state of equilibrium (the second law of
thermodynamics)

In this book, we will mainly apply these principles at the macro scale. This gives
simple equations and the most essential information with relatively little effort. The
same principles also apply if we look at the details on the micro scale, but rather than
simple algebraic equations we then often end up with partial differential equations
which are difficult to work with analytically.

The goal of this book is primarily to give a foundation for industrial process
engineering calculations. But the principles are general and also apply for biological
processes. I have attempted to write a book that is intellectually stimulating by
deriving most of the formulas from the three basic principles mentioned above. This
also promotes insight and understanding. Emphasis is placed on presenting analytical
methods which give physical insight and which can be used for “calculations by hand.”
Even though the calculations are often done with computers, it is imperative that
one has the physical insight to be able to validate the results by performing simple
calculations by hand.

To make analytical calculations possible and give insight, it is often necessary to
simplify. Many industrially important processes take place in a gaseous phase. In

1 In dictionaries, process has many definitions. One from Webster is the following: “Process. A
continuous action, operation or series of changes taking place in a definite manner.”



addition to assuming ideal gas, we simplify our calculations significantly by assuming
perfect mixing. This allows us to not look at the detailed flow pattern at micro scale.

This book has two main target audiences:

1. Students who need a basis in process engineering.
2. Practicing engineers and students at a more advanced level who need a reference

book for practical calculations.

These targets are partly contradictory, but on the other hand a student who has
invested time and money in a book should expect that it will prove useful later in his
or her career. A suggestion to the students: Do not sell this book! The book contains
many examples to illustrate the use of theory on actual problems. The emphasis is on
obtaining numbers that can actually be used in the real world, so much of this book
will useful in your career as a process engineer!

A few words on using this book

Chapter 1 summarizes the most important notation, definitions and conversion factors.
You should browse through this chapter, which is primarily meant to be used for later
reference.

The reader is assumed to have some previous knowledge of physics, chemistry and
thermodynamics. Most of this is summarized in Appendix A. I recommend you start
by browsing through this material, possibly reading some parts carefully, since it forms
the basis for later chapters.

The focus of this book is on the general principles of material and energy balance.
This begins in Chapter 2 where we introduce the general balance principle and mass
balances which are the most important tool for process engineers. This continues in
Chapter 3 with chemical reaction systems and in Chapter 4 with energy balances and
so on.

This book was originally written to be used in a process engineering course for
second year chemical and petroleum engineering students at NTNU in Trondheim.
The material has been taught in approximately the following order: We start with
topics on basic thermodynamics from Appendix A (about two weeks) and then cover
the following chapters: 2, 3, 4, 5, 6, 7, 8, and finally (if we have time) Chapter 9.
The course has also included a field trip to a plant and an associated required project
where the students utilize their knowledge on a specific chemical process.

This book is suitable also for students and engineers with other backgrounds, such as
energy engineering, process engineering, mechanical engineering or control engineering.
The book can also be used for courses in more advanced subjects, in particular the
“bonus” Chapter 11 on process dynamics, and Chapters 7 and 8 on entropy and
thermal power.

Use the index. To find specific information, such as conversion factors, definitions
and data, you should use the index at the end of the book.

Further reading

Many books can be recommended for further reading. This applies in particular
to thermodynamics where the following texts are recommended, depending on your



background:

J.M. Smith and H.C. van Ness, Introduction to chemical engineering thermodynamics,
McGraw-Hill, 6th Edition, New York, 1996.

M.M. Abbot and H.C. van Ness, Thermodynamics with chemical applications, Schaum’s
Outline Series, McGraw-Hill, New York, 1989.

M.J. Moran and H.N. Shapiro, Fundamentals of engineering thermodynamics, Wiley,
6th Edition, 2007.

K. Denbigh, The principles of chemical equilibrium, Cambridge Press, 4th Edition, 1981.

D.R. Gaskell, Introduction to the thermodynamics of materials, Taylor & Francis, 4th

Edition, New York, 2003.

There are also several good textbooks that focus on material balance calculations
for chemical process engineering, and these may be useful for gaining additional insight
or finding additional problems:

R.W. Felder and R.W. Rousseau, Elementary principles of chemical processes, Wiley,
3rd Edition, 2000.

D.M. Himmelblau and J.B. Riggs, Basic principles and calculations in chemical
engineering, Prentice Hall, 7th Edition, 2004.

T.M. Duncan and J.A. Reimer, Chemical engineering design and analysis. An
introduction, Cambridge University Press, 1998.

It may also be interesting and rewarding to return to the classic:

Olaf A. Hougen and Kenneth M. Watson, Chemical process principles., Wiley. Part 1:
Material and energy balances (1943). Part 2: Thermodynamics (1947). Part 3: Kinetics
and catalysis (1947).

Book home page

The book has its own web page: http://www.nt.ntnu.no/users/skoge/. Here you
will find:

• Comments on and corrections to the book
• Complete solutions to starred exercises
• Additional exercises
• The MATLAB files used in the examples

Good luck with the reading of the book!

Thanks

There are many I would like to thank – for discussions, comments, corrections,
inspiration, patience, translation, love, support .... The list is very long and if I listed
them all I am afraid I would forget someone. Anyway, thank you all – you know who
you are.



Epilogue

An epilogue belongs of course at the end of a text, but I’m placing it here because it
is probably better to read it before you start.

The balance principle is the key to process engineering calculations. We start by
considering a small part of the world (usually indicated by a dotted line in figures)
which we call our “system.” The outside is the surroundings. Process streams may
enter and exit our system, and energy can be provided in the form of heat or work.
We can quite easily formulate mass balances based on “counting up” what goes in and
out of our system.

Energy balances are usually more difficult to formulate, mainly because there are
so many forms of energy, and because it makes use of thermodynamics with all its
associated identities and variable transformations. The most important form of energy
for us is internal energy (U). This is the energy of the molecules which includes
chemical bonding energy, weaker forces between the molecules, as well as the thermal
kinetic energy related to the movement of the molecules. In addition to its internal
energy, a stream also contributes an associated flow (pV ) work. By introducing the
enthalpy H = U + pV we no longer need to worry about this flow work (see also
page 99):

Enthalpy is the sum of a stream’s internal energy and flow work

The energy balance (the first law of thermodynamics) for a steady-state (stationary;
static) open flow process (process with inlet and outlet streams) is

Hout − Hin = Q + Wn [J/s] (1)

where H is the stream enthalpy, Q is the heat supplied and Wn is the supplied non-
flow work, (n stands for “non-flow”). That is, Wn is the overall work W minus the
flow work (pV work) already included in H .

Note that H is the enthalpy of the stream and not of the system itself – the system
is unchanged for a steady-state process. Also note that no assumption of constant
pressure is made.2

The notion of the state of the system is also extremely important. If we consider a
system (or a process stream) in internal equilibrium, then the state of the system is
uniquely determined by specifying two variables in addition to the composition, for
example enthalpy H and pressure p. The value of all other state variables, for example
temperature T , entropy S are then given. Note that work W and heat Q deal with
the transfer between systems and are not state variables.

An important consequence of the state notion is that one can evaluate changes in
a real process by considering an imaginary process operating between the same start
and end states. One can for example compute changes in enthalpy (which is a state
variable) for an open system by considering an imaginary reversible process between
the same conditions in a closed system.

2 It is easy to confuse the energy balance for a steady-state open system in (1) with the energy balance
for a closed system with constant pressure. Both are often written in the form ∆H = Q + W , but
∆H has different meanings in the two cases – it is change in stream enthalpy for an open system
and the change in system enthalpy for a closed system. You are now warned!



Of equal importance is the concept of entropy and the second law of
thermodynamics. In short, the entropy (“degree of disorder”) of a system is a state
function and the second law of thermodynamics says the total entropy of the universe
(system plus its surroundings) must always increase. At the equilibrium state the total
entropy reaches its maximum. This results in simple and practical results, including
equilibrium constants for chemical reaction, phase equilibrium relationships, and the
Carnot factor η = 1−TC/TH for the maximum fraction of heat that can be transferred
to work.

In summary, thermodynamics is a very useful tool – it is amazing how much practical
knowledge can be obtained from the first and second laws of thermodynamics and the
idea that internal energy and entropy are state variables.

To sum up: The basic theory of mass and energy balances is quite simple and,
together with the phase and chemical equilibrium theory and some knowledge about
rates, it constitutes the basis for what a process engineer needs to know.

A word of caution: even though the basic theory is simple, a fair amount of
experience and insight is needed to put it to use. The best method of achieving this
is by solving exercises, which is highly recommended!
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1

Notation, concepts and numbers

Collected here is a bit of everything that could have been placed in an Appendix, but I find
them so important that I chose to place them first. The chapter starts with an overview of
the notation and a discussion on the choice of basis. Engineers need numbers for practical
calculations, and we provide an overview of conversion factors and some important numbers.
After defining some important concepts, we next provide an overview of some important
unit operations. We look at the difference between batch and continuous processes and give
an introduction to economic analysis. Finally, you find some fun energy exercises which will
make you familiar with the use of numbers and conversion between units.

1.1 Notation

Symbol Name SI unit

Cp heat capacity, constant pressure [J/K]
CV heat capacity, constant volume [J/K]
cp, cV specific heat capacity [J/K kg]
c concentration [mol/m3]
E (total) energy [J]
H enthalpy [J]
M molar mass [kg/mol]
m mass [kg]
n number of mols [mol]
Q supplied heat [J]
p pressure [N/m2] = [Pa]
S entropy [J/K]
T temperature [K]
t time [s]
U internal energy [J]
V volume [m3]
v velocity [m/s]
W supplied work [J]
xi mole fraction of component i [mol i/mol total]
ρ (mass) density [kg/m3]



2 CHEMICAL AND ENERGY PROCESS ENGINEERING

The most important symbols are given in the table. They follow the international
conventions (IUPAC and ISO). The following applies:

• Units are in the SI system which has seven basic units: m (meter), kg (kilogram),
s (second), K (Kelvin), mol, A (ampere) and cd (candela). This book uses the first
five of these. In addition, we use the derived SI units Newton (N), Pascal (Pa), Joule
(J) and Watt (W):

N = kg · m · s−2

Pa = N · m−2 = kg · m−1 · s−2

J = N · m = kg · m2 · s−2

W = J/s = kg · m2 · s−3

Conversion factors to some non-SI units are given on page 8.
• SI-notation is also used for prefixes:

E (exa) = 1018

P (peta) = 1015

T (tera) = 1012

G (giga) = 109

M (mega) = 106

k (kilo) = 103

h (hecto) = 102

c (centi) = 10−2

m (milli) = 10−3

µ (micro)= 10−6

n (nano) = 10−9

p (pico) = 10−12

• In English (American) literature one finds some non-SI numbers and prefixes,
including

billion = 109

trillion = 1012

M = 103 (because M is the roman number 1000)
MM = 106 (yes, this is really a strange one!)

• To indicate small fractions, one often uses the non-SI terms
ppm = 10−6 (parts per million)
ppb = 10−9 (parts per billion)

• E or e is commonly used to indicate exponentials with base 10, e.g., E-4 = 10−4.
• The universal gas constant is

R = 8.314510 J/K· mol (SI units)
The value of R in some other units is

R = 1.987 cal/mol· K
R = 1.987 Btu/lb · R (here, the latter R stands for degrees Rankine) 1

R = 82.06 cm3 atm/mol· K
R = 0.08206 l atm/mol· K

• The standard value for the acceleration of gravity is (IUPAC)
g = 9.80665 m/s2

However, we often set g = 10 m/s2 as it varies around the earth anyway.

1 Unfortunately, the number of symbols and letters is limited, so the same letter is sometimes used in
different meanings. For example, W is the symbol for work, but W is also the unit Watt for power
(1 W = 1 J/s); R is the universal gas constant, but R is also the unit for degrees Rankine.
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• Standard temperature and pressure (STP). According to IUPAC, the
standard temperature is 273.15 K (0oC) and the standard pressure is

p⊖ = 1 bar = 105 N/m2.
However, most thermodynamic data are given at the standard ambient
temperature

T0 = 298.15 K
and we actually rarely use the “standard temperature” 273.15 K in this book. Also,
note that until 1982 the standard pressure was set as

1 atm = 1.013250 bar.
• Superscript ⊖ (or o) is used generally to indicate standard or reference states. For

a gas at temperature T , the standard state is a (hypothetical) state as ideal gas at
p⊖ = 1 bar and temperature T .

• Standard enthalpy of formation ∆fH
⊖ and other thermodynamic quantities are

given at 1 bar and 298.15 K (25 oC), unless otherwise stated.
• Superscript ∗ often indicates pure components.
• Superscript ′ often indicates ideal gas.
• Subscript 0 often indicates initial state at time t0, or feed stream to a reactor, or

standard temperature T0.
• Subscript f often indicates final state at time tf .

Note

• We use lowercase letter for mass m [kg] and number of moles n [mol]. However, these
are exceptions, because we use capital letters for most other extensive quantities
(which are variables that depend on the size of the system), for example V , H , S,
U , Q and W .

• The following are examples of intensive quantities (which are point variables that
do not depend on the size of the system): c, M , p, T , x and ρ.

• We follow the IUPAC-convention and let Q indicate supplied heat and W indicate
supplied work (to the system from the surroundings). For work, the opposite older
convention, where W is work performed by the system (on the surroundings), is
still commonly used, especially in mechanical engineering literature, i.e., W gets
the opposite sign.

• In SI units, the molar mass M is in [kg/mol], for example, water has M =
18.015·10−3 kg/mol. Usually, we give molar mass in [g/mol], which is not a standard
SI unit, for example M = 18.015 g/mol for water. A closely related quantity is
the relative molar mass (molecular weight) Mr [dimensionless], which has the
same numerical value as M [g/mol] but without the units. For example, water has
M=18.015 g/mol and Mr=18.015.

• Exact relationship between mass, number of moles and molar mass:

m[kg] = n[mol] · M [kg/mol] (1.1)

(which may be viewed as the definition of molar mass M).
• We use brackets with the meaning “with unit,” for example [kg] means “with unit

kg.” Brackets are used sometimes as “extra-information” in the equations. For
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example, we can write the ideal gas law as

p[N/m2] =
n[mol] · R[J/mol K] · T[K]

V[m3]

However, if we introduce numbers in the equations then units should be included.
Thus, the units are now necessary information rather than extra information, and
we may use “common” parenthesis rather than brackets. For example, the ideal gas
law with numbers,

p =
1mol · 8.31(J/mol K) · 298.15K

25 · 10−3m3
= 99055 N/m2 = 0.991 bar

• Mole fraction. Consider a mixture with c components (molecules), where we have
ni mol of component i. The total number of moles n (sometimes denominated ntot)
is

n = n1 + n2 + . . . + ni + . . . + nc =
c∑

i=1

ni =
∑

i

ni [mol]

The mole fraction xi [mol i/mol total] is defined as

xi ,
ni

n
(1.2)

and since n =
∑

i ni we always have that the sum of the mole fractions is 1,
∑

i

xi = 1 (1.3)

Mass and volume fractions are defined in the same way. For mole, mass or volume
fractions, it is common to use ppm (parts per million = 10−6) and ppb (parts per
billion = 10−9), which are not SI units.

1.1.1 Choice of basis – Consistent notation

Most quantities can be given with different basis. For example, the quantity of a
material can be given on a mole basis (chemist), weight basis (mechanical engineer)
or volume basis (sales people). To avoid uncertainty about the basis, we can introduce
special symbols, and we choose to use subscript m for mole basis (e.g., Hm [J/mol]
for molar enthalpy) and lowercase letter for mass basis (e.g., h [J/kg] for specific
enthalpy). We will not introduce any special symbol for volume basis.
Molar quantity (mole basis). An extensive quantity X can be divided by the number
of moles n [mol], to get the molar quantity, which is here indicated with subscript m,
i.e.,

Xm = X/n

which is an intensive quantity. Examples are molar heat capacity, molar enthalpy and
molar volume:

Cp,m = Cp/n [J/K mol]

CV,m = CV /n [J/K mol]

Hm = H/n [J/mol]

Vm = V/n [m
3
/mol]
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The subscript m is omitted sometimes when it is obvious from the context that it is
related to a molar quantity. For example, the standard enthalpy of formation ∆fH

⊖
m

[J/mol] is written as ∆fH
⊖ [J/mol].

Specific quantities (mass basis). An extensive quantity X can be divided by the
mass m [kg], to get the specific quantity, which is here indicated by lowercase letter,
i.e.,

x = X/m

which is an intensive quantity. Examples are specific heat capacity, specific enthalpy
and specific volume:

cp = Cp/m [J/K kg]

cV = CV /m [J/K kg]

h = H/m [J/kg]

v = V/m [m
3
/kg]

Note that the density ρ [kg/m3] is the inverse of the specific volume, i.e.,

ρ =
m

V
=

1

v
[kg/m

3
]

• Some exact relations follow from the definitions above. For example, we have the
relation between molar volume Vm and density ρ,

Vm [m3/mol] =
M [kg/mol]

ρ [kg/m
3
]

where M is the molar mass, and the relation between molar and specific heat
capacity

Cp,m [J/K mol] = cp [J/kg K] · M [kg/mol]

Rates and dot notation. For a continuous process, the flow rate (per unit of time)
is often indicated by the use of dot notation,2 Ẋ. Examples are

• molar rate (molar flow): ṅ [mol/s]
• mass rate (mass flow): ṁ [kg/s]
• volumetric rate (volumetric flow): V̇ [m3/s]
• enthalpy rate (enthalpy flow): Ḣ [J/s]

Example 1.1 In this example we illustrate the use of consistent notation. Consider a
continuous process where water is heated from 10 oC to 25 oC by the use of an electric
heater. The mass flow of water is

ṁ = 2 kg/s

2 Some, including control engineers, use the dot notation to mean time derivative, ẋ ≡ dx
dt

(change of

a variable per unit of time), which is not the same as a rate variable. To avoid confusion, the whole
dot notation can be omitted by using special symbols for flow rates, and the following is common:
Molar flow F ≡ n [mol/s], mass flow w ≡ m [kg/s] and volumetric flow q ≡ V̇ [m3/s]. We use this
later in Chapter 11 on process dynamics where we deal with both time derivatives and rates and,
to avoid confusion, we omit the use of dot notation. However, in the rest of the book we use dots
to mean rates, as defined above.
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(a) Calculate the molar [mol/s] and volumetric [m3/s] flows and the supplied power [W=J/s].
(b) Calculate the specific [J/kg] and molar heat [J/mol] supplied. (c) How much water is heated
up in 1 hour (in kg, mol and m3) and how much heat is supplied in this period [J]. (d) What
is the cost per hour if the energy cost is 0.2 $/kW h.

Use the following data for water (liquid): Molar mass M = 18 · 10−3 kg/mol; density
ρ = 1000 kg/m3; specific heat capacity cp = 4.18 · 103 J/K kg.
Solution. (a) Molar and volumetric flows

ṅ = ṁ/M = (2kg/s)/(18 · 10−3kg/mol) = 111 mol/s

V̇ = ṁ/ρ = (2kg/s)/(1000kg/m3) = 0.002 m3/s

For the energy balance (more about this in Chapter 4), the supplied power (heat per unit of
time) is

Q̇ = ṁcp(Tout−Tin) = 2 kg/s ·4.184 ·103J/kg K ·(25K−10K) = 125.5 ·103 J/s = 125.5 kW

(b) Supplied heat per kg (specific heat)

q =
Q̇

ṁ
=

125.4 · 103J/s

2kg/s
= 62.8 kJ/kg

Supplied heat per mol (molar heat)

Qm =
Q̇

ṅ
= 1131 J/mol

(c) In the time period ∆t = 3600 s (1 hour), we heat up the following amount

m = ṁ∆t = 2(kg/s) · 3600s = 7200 kg

n = ṅ∆t = 400 · 103 mol = 400 kmol

V = V̇ ∆t = 7.2 m3

and the supplied heat in the period is

Q = Q̇∆t = 125.4 · 103J/s · 3600s = 451.44 · 106J = 451.44MJ

(d) The cost for 1 hour is

125.4kW · 1h · 0.2 $/kWh = 25.1 $

The disadvantage with the consistent notation introduced above is the large number
of equations and symbols. For example, consider the energy balance from the example.
With consistent notation it can be written in the following equivalent forms

Mass basis : Q [J] = m cp(Tout − Tin) (1.4)

Mole basis : Q [J] = n Cp,m(Tout − Tin)

Mass rate basis : Q̇ [J/s] = ṁ cp(Tout − Tin)

Mole rate basis : Q̇ [J/s] = ṅ Cp,m(Tout − Tin)

Specific mass basis : q [J/kg] = cp(Tout − Tin)

Specific molar basis : Qm [J/mol] = Cp,m(Tout − Tin)
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1.1.2 Simplified notation

An alternative approach, which we frequently use in this book, is to write the equations
using “mass basis symbols” (1.4) for all choices of basis. The advantage is fewer special
cases, which makes it easier to focus on the contents of the equation. As an example,
with the simplified notation, the energy balance is in all cases written in the form

Q = mCp(Tout − Tin) [J; J/s; J/kg; or J/mol] (1.5)

with the same symbols (Q, m and CP ) for all choices of basis. The particular choice of
basis for m, or, equivalently, the choice of units, may be indicated by use of brackets,
for example:

Mass basis : Q [J] = m[kg] · Cp[J/kg K] · (Tout[K] − Tin[K])

Mole basis : Q [J] = m[mol] · Cp[J/mol K] · (Tout[K] − Tin[K])

Mass rate basis : Q [J/s] = m[kg/s] · Cp[J/kg K] · (Tout[K] − Tin[K])

Mole rate basis : Q [J/s] = m[mol/s] · Cp[J/mol K] · (Tout[K] − Tin[K])

Spec. mass basis : Q [J/kg] = Cp[J/kg K] · (Tout[K] − Tin[K])

Spec. molar basis : Q [J/mol] = Cp[J/mol K] · (Tout[K] − Tin[K])

(the latter two cases correspond to setting m = 1 kg and m = 1 mol, respectively). We
have then just one symbol for heat (Q) instead of many (Q, Q̇, q and Qm). Similarly,
the symbol m is used for both mass [kg] and mass flow [kg/s], and in some cases even
for [mol] and [mol/s]. Furthermore, we use Cp to mean also molar and specific heat
capacity (e.g., we write for water Cp = 4.18 kJ/K kg and Cp = 75.3 J/K mol instead
of cp = 4.18 kJ/K kg and Cp,m = Mcp = 75.3 J/K mol).

Nevertheless, there will be cases where we follow the consistent notation and
introduce dots (for rates), lowercase letters (for specific quantities) or subscript m
(for molar quantities).

1.2 Always check the units!

If SI units are used for all numbers in an equation, then the answer is always in SI
units. One can then get away with omitting the units from the equations, which is
frequently done in this book to save space (or actually because the author was lazy).
That is, if you find a number without units then it is understood that it is in SI units.
For example, the molar volume for ideal gas at 0 oC and 1 atm is equal to

Vm =
RT

p
=

8.3145 · 273.15

1.01325 · 105
= 22.414 l/mol

(l/mol here means liters per mol). Here, there are several things that are “not good”:

1. It is mathematically wrong to omit units in intermediate calculations, but as
mentioned it is understood that we use SI units if nothing else is said, i.e., we
have in reality

Vm =
8.3145 · 273.15

1.01325 · 105

m3

mol
= 22.414 · 10−3 m3

mol
= 22.414

l

mol
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2. We should insert units for each number to make sure that we actually end up
with the expected SI unit. This gives a very useful check that the equations are
dimensionally correct. That is, it is recommended you write

Vm =
8.3145 J

K mol · 273.15 K

1.01325 · 105 N
m2

= 22.414 · 10−3 J

K mol
· K · m2

N

Here we easily see that the [K]s cancel, and that [N] is cancelled because [J] =
[Nm], i.e., we get

J

K mol
· K · m2

N
=

m3

mol

which is indeed the SI unit for molar volume. As 10−3 m3 = 1 l, we then get as
expected that Vm = 22.414 l/mol.

1.3 Some conversion factors

Unfortunately, the world has not yet completely converted to metric (SI) units, and
especially in the US the transition is slow. In spite of many efforts, most people in the
US are still using the old “British” units, or U.S. customory units as they are officially
known. In any case, non SI-units are still in use and are also found in older literature,
so an engineer needs to know the most important units and conversion factors.

Time. The standard SI unit for time (t) is s (second). In addition, the following
derived SI units are common:

1 min = 60 s.

1 h (hour, hr) = 60 min = 3600 s.

1 d (day) = 24 h = 86400 s.

1 y (year) is usually taken as 365 days = 8760 h.
Sometimes the symbol a (annum) is used, i.e., 1 y = 1 a.

The operating time for a continuous plant is often assumed to be 8000 h per
year, which corresponds to an uptime (availability) of 91%.

Mass. The standard SI unit for mass (m) is kg (kilogram).

In English (American) literature one finds the unit

1 lb (pound) = 1 lbm (pound mass) = 0.45359237 kg (exact).

A common derived SI unit is

1 t (ton, tonne) = 1000 kg (exact).

However, note that in English literature one can find the terms (short) ton =
2000 lb = 907.185 kg (US) and (long) ton = 2240 lb = 1016.047 kg (British).
The term tonne is sometimes used to clearly indicate that it is a metric ton

(1000 kg).
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Mole. In SI units, a mole (= 1 mol) is the number of molecules (or atoms) in 12
grams of carbon-12 = NA = 6.02214 · 1023 (Avogadro’s number); see page 327
for details.

In English literature one can also find the rather strange unit “pound mole”
(lb-mol) defined as

1 lb-mol = 0.453593 kmol = 453.593 mol = 453.593 g-mol

The reason for introducing these strange units is to make the molar mass (molar
mass) equal in SI and English units. For example, the molar mass of water is M
= 18.015 g/mol = 18.015 kg/kmol = 18.015 lb/lb-mol. Note also that the unit
1 g-mol (“gram mole”) found in English literature means 1 mol (the standard
SI unit), and similarly 1 kg-mol means 1 kmol.

Length. The standard SI unit for length is m (meter). A derived unit is Ångstrøm:

1 Å = 10−10 m = 0.1 nm.

The commonly used British/American foot (ft) was defined in 1960 to be exactly
0.3048 m.3 In addition, we have the British/American length units inch, yard
and mile, and we have:

1 inch = 1′′ =
1

12
ft = 0.0254 m (exact)

1 ft = 1′ = 0.3048 m (exact)

1 yard = 3 ft = 0.9144 m (exact)

1 mile = 1760 yards = 1609.344 m (exact)

At sea, one uses the nautical mile = 1852 m (exact).

Exercise 1.1 ∗ What is a speed of 100 mph (miles per hour) in SI units [m/s]?

Volume. The standard SI unit for volume (V ) is m3, but for smaller volumes it is
common to use the SI-derived unit l (liter) and we have:

1 l = 10−3 m3 (exact).

In US literature one often finds the units cubic foot and gallon:

1 cu.ft. (ft3) = 28.317 l

1 gal (US) = 231 inch3 (exact) = 3.78541 l

The latter should not be confused with the somewhat less common British
“imperial” gallon,

1 gal (Imperial) = 4.54609 l (exact)

The oil industry uses barrel (bbl):

1 bbl = 42 gal (US) (exact) = 158.99 l = 0.15899 m3.

By the way, my “favorite unit” , is acre-foot which is used in the US to indicate
volumes for water storage and oil reservoirs. 1 acre = 43560 ft2 = 4046.9 m2 and
we have 1 acre-foot = 43560 ft3 = 1233.5 m3.

3 A British/US foot (ft) is defined as 0.3048 m (exact). For comparison, the old Norwegian foot was
0.3137 m, whereas the Swedes, poor guys, had a foot that was only 0.2969 m.
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For gas volumes, see page 14.

Exercise 1.2 On food products in the US, you may find the mysterious units ounce
(oz). and fluid ounce (fl.oz).. These are defined as 1 oz. = (1/16) lb and 1 fl.oz. =
(1/128) gal (US). Show that 1 oz = 28.35 g and 1 fl.oz. = 29.57 ml. (Thus, for water,
which has a density of 1 ml/g, 1 fl.oz. is slightly more than 1 oz.)

Temperature. The standard SI unit for temperature is K. A derived SI unit is Celsius
[C or oC] and we have (exact):

T [K] = t[oC] + 273.15

In English literature one finds the unit Fahrenheit [F or oF ] and its “absolute”
counterpart Rankine [R]. We have (exact)

t[oC] =
t[oF] − 32

1.8
T [K] = T [R]/1.8

In thermodynamic equations (e.g., the ideal gas law), one must always use
“absolute” temperature T (i.e., in K or R). This is why I often use the lowercase
letter (t) for temperature when it is given in degrees Celsius or Fahrenheit (we
must then live with the small problem that t can also mean time). On the other
hand, note that for temperature differences (changes) the units K or oC are the
same (and R or oF are the same); for example, for specific heat (Cp) we have 1
J/kg K = 1 J/kg oC, and for a temperature difference (∆T ) we have 1 K = 1
oC.

Force. The standard SI unit for force (F ) is N (Newton). 1 N = 1 kg m s−2).

From the old “metric” cgs-system (where cm and g were used instead of m and
kg, and which was replaced by the SI-system in 1960) we have the “small” unit
dyn, which is no longer in common use,

1 dyn = 10−5 N.

Then, there is the more strange American/British unit

1 lbf (pound force)= 4.4482216 N.

This is equal to the gravitational force that a mass of 1 lb (0.454 kg) has at
the earth’s surface. This is a rather stupid unit which makes it necessary to
introduce the mystical factor gc in all equations with force. Newton’s 2nd law
is normally written F = ma where a is the acceleration. No “factor” is needed in
this equation. However, if force (F ) is given in units lbf (pound force) we must
write F = ma

gc
where gc is the acceleration of gravity used when defining lbf . In

American/British units the acceleration is in ft/s2, and we get

gc = 32.1740
lbm · ft
lbf · s2

Note that in SI units, we have, as expected, gc = 32.1740 0.453593kg·0.3048m
4.4482216N ·s2 = 1

(dimensionless), and the factor gc drops out.
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Pressure. The standard SI unit for pressure (p) is Pa (= N m−2 = kg m−1 s−2), but
1 Pa is a rather small pressure, so we often use the derived SI unit

1 bar = 105 Pa (exact).

The conversions to bar from some non-SI units are:

p[bar] = p[atm] · 1.013250

p[bar] = p[mmHg]/750.061 = p[torr]/750.061 = p[torr] · 133.322 · 10−5

p[bar] = p[psi]/14.5038

Here the US/British unit for pressure [psi] is the same as [lbf in−2] (pound-force
per square inch). Also note that

1 atm = 1.01325 bar = 760.0 mm Hg = 14.696 psi.

In older literature (and in old process design manuals) one may find “technical
atmosphere” ([kp/cm2] =[at]):

p [bar] = p [at] ·0.9807

In every day life (e.g., tire pressure) and in industry, one often uses “gauge
pressure” which is the pressure difference to the atmosphere,

gauge pressure + atmospheric pressure = absolute pressure

In English literature, gauge pressure is indicated with g (for gauge) and German
literature with o (for overpressure). We have then, with the standard atmospheric
pressure set at 1 atm,

p [bar] = p [barg; baro] + 1.01325 bar

p [bar] = p[psig]
14.5038 + 1.01325 bar

In some cases, the letter a is used to explicitly show that one means the real
(“absolute”) pressure, i.e.,

1 bara = 1 bar.

1 psia = 1 psi.

Example. If the pressure is given as 0.400 barg, then the real (absolute) pressure
is 0.400 bar + 1.013 bar = 1.413 bar.

Example. The pressure in car and bicycle tires is given often in psig (pounds
per square inch gauge). A tire pressure of 30 psig corresponds to an absolute
pressure of (30 / 14.504) bar + 1.013 bar = 3.082 bar.

Example. If the pressure is given as 0.400 ata, then this is probably the
absolute pressure in technical atmosphere, i.e., the real (absolute) pressure is
0.4 · 0.9807 = 0.392 bar.

Example. If the pressure is given as 0.400 ato, then this is probably gauge
pressure in technical atmosphere, i.e., the real (absolute) pressure is 0.4 ·0.9807+
1.013 = 1.405 bar.

Energy and power. The standard SI unit for energy is J (= N m = kg m2 s−2).

The conversion factor between the old unit calorie and Joule is



12 CHEMICAL AND ENERGY PROCESS ENGINEERING

1 cal = 4.184 J (exact).4

Note that the “common calorie” still used in everyday language and on many
food labels is actually 1 kcal.

For electrical energy, it is common to use kilowatt-hour,

1 kWh = 3600 kJ = 3.6 MJ (exact)

In English literature one finds the unit Btu (British thermal unit),

1 Btu = 1.05505 kJ.5

Another (rather stupid) unit used for mechanical energy in English literature is

1 ft · lbf = 1.35582 J.

With energy in ft · lbf , the mystical factor gc (see page 10) appears also in the

energy equations, for example, the kinetic energy becomes EK = mv2

gc
. Of course,

if we use SI units, EK = mv2.

For really small energies, at the molecular level, the unit electronvolt is common

1 eV = 1.60218 ·10−19 J

On the other end of the scale, we have the unit ton of oil equivalent (toe),
which is used as a measure of the energy content in fuels. The unit is the (lower)
heat of combustion for 1 ton of crude oil, but this value of course depends on
the source of the oil. IEA/OECD has more precisely defined

1 toe = 41.868 GJ

For power (energy per unit of time), the standard SI unit is Watt [W],

1 W = 1 J/s

The unit W (and also kW, MW, GW, TW) is widely adopted, even in English
(American) literature, but some people use the British unit

1 Btu/hr = 0.2931 W

The old unit horsepower (hp) is still quite common,

1 hp (US) = 550 ft · lbf/s = 745.7 W = 0.7457 kW.

This American/British unit is also known as a “mechanical horsepower.”

Apparently, the horses varied in strength around the world, and a Norwegian (and German)

horse was apparently somewhat weaker, since a Norwegian hestekraft (also known as a “metric

horsepower”) was only 735.5 W (rarely used today). This is the power needed to lift 75 kg up

1 meter in a period of 1 second (735.5 W = 75 m · kgf /s = 75 kg · 9.80665 m/s2· 1 m / 1

s); you would need to lift about 76 kg to get 1 hp (US). What about a real horse? The peak

4 The conversion factor between (thermochemical) calorie and Joule is 4.184 (exact), but also other
“calories” have been in use, including the International Table (IT)-calorie from 1956 with conversion
factor 4.1868, and the “at 15 oC”-calorie from 1950 with conversion factor 4.1855. The problem
dates back to 1800’s when it was not clear that heat and work had the same unit, and different
units were used for heat (calorie) and work (Joule).

5 The unit calorie was originally defined as the amount of heat necessary to raise the temperature of
1 gram of water by 1 oC. Analogously, the unit Btu was defined as the amount of heat necessary
to raise the temperature of 1 lb of water by 1 oF. For water we then have that Cp(l) ≈ 1 Btu/lb
F≈ 1 cal/g K = 4.184 kJ/kg K = 4.184 cal/g C.
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power over a few seconds has been measured to be as high as 15 hp, but over longer periods

an average horse gives somewhat less than 1 hp.

For some more fun (and even useful) facts about energy and power, see
Section 1.9 (page 31).

Exercise 1.3 ∗ In their design book, Seider et al. (Process design principles, Wiley,
1999) state that a heuristic for an air cooler is that the fan power is 5 hp/(MMBtu/hr).
What is the expected fan power (kW) for an air cooler that removes 1 MW of heat?

Density. In SI units, density (ρ = m/V ) is given in kg/m3.

To convert from English units use

ρ [kg/m3] = ρ [lb/ft3] · 16.018

A related concept is specific gravity (spgr), which is the normalized
(dimensionless) density defined by

Specific gravity (spgr) = ρ[kg/m3]

ρref [kg/m3]
= ρ[lb/ft3]

ρref [lb/ft3]

Note that the specific gravity is the same in SI and American units. The reference
for liquids and solids is normally water (liquid) at 4oC, where ρref = 1000 kg/m3

= 62.43 lb/ft3. For gases, the reference is normally air.

Specific gravity of liquid. To be precise, when using specific gravity, the data
should also refer to the temperatures of the substance and reference. Thus, for
solids and liquid the notation

spgr = 1.26425/4

means the following: The density of the substance at 25oC is 1.264 times higher
than the density of the reference substance (water) at 4oC. For cases where no
temperatures are given, one can assume ambient temperature (20oC) for the
substance and 4oC for water, i.e., ρref = 1000 kg/m3.

API gravity. In the petroleum industry, they have many strange units, and
yet another one is the so-called American Petroleum Institute (API) gravity (or
oAPI). To convert to the more “normal” specific gravity, use

spgr60F/60F = 141.5
oAPI+131.5

where we note that the densities of both the substance (petroleum fluid) and
the reference (water) are at 60oF (= 15.6oC). Fortunately, the density of water
is almost constant from 0oC to 16oC, so one can still set the reference density
as 1000 kg/m3. Note that a “heavy” component with a high density has a small
API gravity and vice versa. Also note that spgr = 1.0 corresponds to API gravity
= 10.

Classification of crude oil. Crude oil is classified as light, medium or heavy, according to

its measured API gravity. A light crude oil is defined as having an API gravity higher than

31.1 ◦API (density less than 870 kg/m3). A medium oil is defined as having an API gravity

between 22.3 ◦API and 31.1 ◦API (density between 870 kg/m3 and 920 kg/m3). A heavy oil

is defined as having an API gravity below 22.3 ◦API (density over 920 kg/m3).

Specific gravity of gases. For gases the reference substance is normally air.
Then at 25oC and 1 atm we have ρref = 1.184 kg/m3 (see exercise). Often, the
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densities of gas and air are given at the same conditions, and if we assume ideal
gas then the specific gravity is equal to the relative molar mass,

spgr (gas) = density gas (T,p)
density air (T,p) = M [g/mol]

Mair[g/mol] (assuming deal gas)

where M is the molar mass of the gas and Mair = 28.97 g/mol.

Exercise 1.4 Show that the density of air at 25oC and 1 atm is 1.184 kg/m3 when
you assume ideal gas.

Gas volumes. The amount (quantity) of a material is specified by giving its mass (m)
or total mol (n). Historically, it has been common to use volume as a measure of
quantity, because it is easy to understand and measure. The problem is that the
volume depends also on temperature and pressure. This has made it necessary
to introduce so called “standard” or “normal” states for volume – both for gas
and liquid. Here, we consider gases, where the ideal gas is used as the basis.

For an ideal gas the volume is

V = n
RT

p
= nVm

where

Vm =
RT

p

is the molar volume for ideal gas. Thus, at a given (“standard” or “normal”)
T and p, the “standard” or “normal” volume V is a direct measure of the total
number of moles n.

• At standard temperature and pressure (STP), T = 273.15K (0oC) and p = 1
bar, the molar volume of an ideal gas is Vm = 22.711 l/mol (this value is
listed as a “fundamental constant” by IUPAC).

• At T = 298.15K (25oC) and p = 1 bar, the molar volume of an ideal gas is
Vm = 8.3145 · 298.15/105 = 24.790 · 10−3 m3/mol = 24.79 l/mol.

• The older unit “normal cubic meter” [Nm3] is defined as the theoretical
volume the substance would have as ideal gas at 0 oC and 1 atm. In this state

Vm =
8.3145 J/K mol · 273.15 K

1.01325 · 105 N/m
2 = 22.414 · 10−3 m3/mol = 22.414 l/mol

or 1/Vm = 1/(22.414 · 10−3m3/mol) = 44.615 mol/m3. We have then that

1 Nm3 is 44.615 mol.

• A “standard cubic meter”[Sm3] was originally defined (US) at 60oF (15.56
oC) and 0 psig (1 atm). In this state Vm = 8.3145 · 288.706/(1.01325 · 105) =
23.690 · 10−3 m3/mol = 23.690 l/mol or 1/Vm = 42.211 mol/m3. Thus,

1 Sm3 (US) is 42.211 mol .
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• The newer “ISO-standard cubic meter” is defined at 15 oC and 1 atm. In this
state Vm = 8.3145 · 288.15/(1.01325 · 105) = 23.645 · 10−3 m3/mol = 23.645
l/mol, or 1/Vm = 42.292 mol/m3 (which is 0.2% higher than the US-value).
Thus,

1 Sm3 (ISO) is 42.292 mol .

Production rates. Many strange units, most of them non-SI, are in common use in
the process industry to denote production volumes. Some examples are (in order
of increasing strangeness, according the the author’s view):

1 TPD (ton per day)= 1 t/d = 1000 kg/d = 11.574 ·10−3 kg/s

1 TPA (ton per annum) = 1 t/y = 2.740 kg/d = 31.71 ·10−6 kg/s

1 KTPA (kton per annum) = 1000 t/y = 2740 kg/d = 31.71·10−3 kg/s

1 MTPA (million ton per annum)= 106 t/y = 2740 t/d = 31.71 kg/s

1 MTA (metric ton per annum) = 1 t/y = 31.71·10−6 kg/s

1 gpm (US gallons per minute) = 63.09·10−6 m3/s

1 BPD (barrels per day) = 1 bbl/d = 0.15899 m3/d = 1.8401·10−6 m3/s

1 MIGD (million imperial gallons per day) = 4546 m3/d = 0.05262 m3/s

1 MM lbs/hr = 106 lb/h = 453.6 t/h = 126.00 kg/s

Finally, a common unit (US) for large flows of gas:

1 BCFD (billion cubic feet per day) = 109 Sft3/d = 327.74 Sm3/s

Note here that 1 Sm3(US) is 42.211 mol (see page 14), so 1 BFCD is 13.834
kmol/s.

This list is pretty confusing; the letter M can mean mega (million) or metric or
the roman numeral for 1000! The combination MM means million – please do
not ask me why this unit still is popular in English literature...

Note that in a typical processing plant, 10 kg/s is a “large” flow, 1 kg/s is a
“medium” flow and 0.1 kg/s is a “small” flow; see the illustration in Figure 1.9.

Exercise 1.5 Another common unit (US) for gas flow is standard cubic meters per
hour, [scmh]=[SCMH] = [Sm3 (US)/h]. Show that 103 scmh is 11.725 mol/s.

1.4 Some important numbers

As an engineer, it is very important to have an idea about order of magnitudes and
to be able to make quick estimates. It is a great advantage to know by heart some
numbers. For example, one should know the molar mass (molecular weight) of the
most important elements and components (e.g., the molar mass of water is about
M = 18 g/mol) and that the gas constant R = 8.31 J/mol K. Below you find some
other numbers that are important to know. References to sources of physical data are
given in page 415.
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Air. The normal pressure (“atmospheric pressure”) at the surface of the earth is
defined as 1 atm = 1.013250 bar (where 1 bar is 105 N/m2 = 105Pa). In most
cases, the composition of (dry) 6 air can be set to 21 mol% O2 and 79% N2. If
you want to be more accurate you can use

78.1% N2, 0.9% Ar and 21% O2.
7

In addition, air contains a varying amount of water. In saturated8 air, the content
of water is about 0.6mol% at 0 oC, approx. 3% at 25 oC and 100% at 100 oC
(because the vapor9 pressure of water is ca. 0.006 atm, 0.03 atm and 1 atm at
the three temperatures).
The molar mass M for (dry) air is 28.97 g/mol (or approximately 29 g/mol).
The heat capacity of air is Cp = 29 J/mol K (= 1.0 kJ/K kg) and one then has
γ = Cp/CV ≈ 1.4. The density of air at 1 bar and 25 oC assuming ideal gas is

ρ⊖(g) =
p⊖M

RT
=

1.013 · 105 · 29 · 10−3

8.31 · 298.15
= 1.19 kg/m3

Water. The molar mass for water is M = 18.015 g/mol. You should know some
physical constants for water (here given at 25 oC):

Liquid : ρ(l) = 1000
kg

m3

Cp(l) = 4.18
kJ

kg K
= 75.4

J

mol K

Gas : ρ⊖(g) =
p⊖M

RT
= 0.74

kg

m3
;

Cp(g) = 1.87
kJ

kg K
= 33.6

J

mol K

Heat of vaporization : ∆vapH = 2444 kJ/kg = 44.03 kJ/mol

Note that the heat capacity of water is Cp(l, H2O) = 1 cal/g K =1 kcal/kg
K because the original definition of one calorie was that it is the heat necessary
to raise the temperature of 1 g water by 1oC (1K).10

At water’s normal boiling point11 of 100 oC (Tb = 373.15K) the heat of
vaporization is 2257 kJ/kg = 40.66 kJ/mol, which is somewhat less than at
25oC; see Exercise A.5 (page 359) for details. Note that the heat of vaporization
of water is very large – evaporating water requires the same energy as heating
it up 584K.Water vapor is also known as steam.

6 By dry basis we mean that any water in the gas has been removed before calculating the
composition.

7 The air’s CO2 content, which is of so much concern because of global warming, is only about 0.04%
(400 ppm), but it is steadily increasing.

8 By saturated we generally mean that the state is in equilibrium with another phase. Specifically,
saturated air is in equilibrium with water (liquid), i.e., the air contains the maximum quantity of
water and a further increase gives condensation.

9 Vapor means “saturated gas,” that is, vapor is gas in equilibrium with a liquid phase
10 Note that for temperature differences (changes), it does not matter if we use K or oC; for example,

for specific heat (Cp), which is the energy required to raise (change) the temperature by 1 degree,
we have 1 J/kg K = 1 J/kg oC.

11 The normal boiling point (Tb) is the point where the liquid starts boiling at 1 atm, i.e., the
temperature where the vapor pressure is 1 atm.
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Other components. The heat capacity of liquid and gas for some components is
given in the form of nomograms in the Appendix (pages 421 and 422). We
notice that the heat capacity for most liquid is around 2 kJ/kg K, and that
water stands out with a much higher value of 4.18 kJ/kg K.12

The heat of vaporization for hydrocarbons is typically about 400 kJ/kg (i.e.
much lower than for water which has a value of 2444 kJ/kg). For hydrocarbons
CnHm with n > 4 , the (higher) heat of combustion (gross heating value)
(to H2O(l)) is about 48000 kJ/kg, which we note is about 100 times larger than
their heat of vaporization. See page 362 for more about combustion reactions.
The heat of combustion per kg is somewhat larger for smaller hydrocarbons,
and methane has a (higher) heat of combustion of 55501 kJ/kg. This is called
the “higher” heat of combustion because H2O (l) is the product rather than
H2O (g). To indicate the energy content as a fuel, it is common to use the lower
heat of combustion (also known as the net heating value) with water as a gas
product, which is typically about 3500 kJ/kg lower because the heat released by
condensing water is not included. The lower heat of combustion is 50014 kJ/kg
for methane (g), 44736 kJ/kg for n-hexane (l), ≈ 42000 kJ/kg for heating oil,
≈ 29300 kJ/kg for coal and ≈ 17300 kJ/kg for wood. Note that the energy unit
“ton of oil equivalent” (toe) is defined as the lower heating value (to H2O (g))
for 1 ton of crude oil, or more precisely, 1 toe = 41.868 GJ.

Heat capacity for ideal gas. For an ideal gas, the heat capacity Cp is a function
of temperature only and we also have that (we here omit the subscript m for
molar quantity, i.e., Cp means Cp,m)

Cp − CV = R = 8.3145 J/mol K (1.6)

For ideal gases, the heat capacity can be estimated from statistical
thermodynamics by adding the contributions from

• the molecule’s movements (translation, rotation and vibration),
• the electronic contribution at extremely high temperatures.

Isolated, each atom in a molecule has 3 degrees of freedom for motion, and
the total number of motional degrees of freedom is therefore 3Na, where Na is
the number of atoms in the molecule. For an ideal gas, each “active” degree
of freedom gives a contribution of 1

2R [J/K,mol] to the heat capacity CV . At
sufficiently high temperatures (where all degrees of freedom are “active”) we
therefore have that the contribution from motion is CV = 3Na

2 R or

molecular motion at high temperature : Cp =

(
3Na

2
+ 1

)

R

Of the 3Na degrees of freedom for motion, 3 degrees of freedom are for
translation, 3 for rotation (2 for linear molecules) and the rest for vibration.

12 It is typical that water stands out. This is mainly because of hydrogen bondings in its liquid phase.
For example, the boiling point at 100oC is much higher than one should expect for such a small
molecule.
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The translational degrees of freedom are “active” already at “low” temperatures,
the rotational contributions become active at “medium ” temperatures, while
the contributions from vibration become active only at “high” temperatures.
In addition, at “extremely high” temperatures there contributions from the
electronic degrees of freedom. We then have:

• For a mono-atomic gas (Na = 1, for example He or Ar), there is just translation
and the contribution to the heat capacity from motion is Cp = (3/2 + 1)R =
2.5R = 20.79 J/mol K.

• For a diatomic molecule (Na = 2, for example N2), there are 3Na = 6 degrees
of freedom for motion. At “medium” temperatures, only the three degrees of
freedom from translation and the two from rotation are active and we have
Cp = (5/2 + 1)R = 3.5R = 29.1 J/mol,K. At “higher” temperatures, the
contribution from vibration becomes active and the total contribution from
motion is Cp = (6/2+1)R = 4R = 33.2 J/mol,K. For example, Cp for N2 (ideal
gas) is 29.12 [J/mol,K] at 298 K (“medium” temperature) and increase to 32.69
J/mol,K at 1000 K (“high” temperature). At “extremely high” temperatures,
it increases further (e.g. to 37.05 J/mol,K at 3000 K) because of additional
contributions from the electronic degrees of freedom

• For larger molecules, all the three rotation’s degrees of freedom are active at
“medium” temperatures and the contribution from motion is Cp = (6/2 +
1)R = 4R = 33.2 J/mol K. At “higher” temperatures, the contribution from
the remaining Na −6 vibration’s degrees of freedom become active (especially
for large molecules) and the value for Cp is higher than 33.2 J/mol K. For
example, Cp (ideal gas) at 25 oC (298 K) is equal to

33.63 J/mol K for H2O
35.89 J/mol K for NH3

35.52 J/mol K for CH4

73.76 J/mol K for C3H8

Heat capacities for ideal gases are important for practical calculations (see
page 342), and empirical expressions are used in practice to capture the
temperature dependency (see page 355), for example Cp(T ) = A + BT +
CT 2 + DT 3. Note that the heat capacity for an ideal gas always increases with
temperature (but for a real gas the pressure dependency makes the heat capacity
for saturated vapor (real gas) approach zero at the critical point).

1.5 Some important concepts

In this book, we focus on the process (course of events, “the path”) that takes us from
one state (feed) to another state (product). We then need to define more precisely
the system and the surroundings where the process takes place. In the following,
we list some definitions and important concepts. Most of them are from the field of
thermodynamics and more details are given in Appendix A.

Process – The course of events from an initial state to a final state. In our processes,
this happens by transport, transfer or transformation of mass and/or energy, and
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Surroundings

System boundary

(control volume)

Figure 1.1: System and surroundings

the initial state is the feed (inflow) and the final state is the product (outflow).

System – The part of the world that we choose to analyze. The outside is called the
surroundings – which can also be viewed as a system.

System boundary (control volume) – The spacial boundary between the system
and its surroundings, for example, the outside of a piece of equipment.

Closed system – System that does not exchange mass with its surroundings.

Isolated system – System without any interaction with the surroundings, that is, a
closed system without exchange of heat or work with the surroundings.

Example of an isolated system: A perfect thermos bottle (vacuum flask).

Open system – System with exchange of mass with the surroundings.

Adiabatic system (process) – System (process) without exchange of heat (with
the surroundings), i.e., Q = 0.

State – Quantitative characterization of the system at a given time.

State variable (function) – A property (variable) of the system that depends only
on the system’s (equilibrium) state at a given time, and not on the path the
system followed to get to this state.

Examples of thermodynamic state variables are mass (m), enthalpy (H), entropy
(S), pressure (p), temperature (T ), volume (V ), density (ρ), composition (xi, ci),
etc.

State

State

State
U is a state function
Then:

Figure 1.2: Example of state variable (function)

In addition to the composition, at least two state variables must be specified to
determine the system’s (thermodynamic) state – the values of the remaining
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state quantities are then a function of these (see also page 332). In our
systems, the following “base variables” are often chosen : Quantity (mass)
of all components (alternatively, total mass and composition), pressure p and
temperature T .

• The term “equation of state” is normally used for a constitutive equation13

that gives a relationship between a fluid’s pressure, volume and temperature.
It can, for example, be used to calculate the pressure p given the systems
volume, temperature and composition. The simplest equation of state is the
ideal gas law

pV = nRT (1.7)

where the gas constant R = 8.3145 J/K mol is an universal constant,
independent of composition. The ideal gas law applies well at low pressure and
at high temperature (see figure page 336). For real gases, more complicated
equations are used with parameters that depend on composition, for example,
the Redlich-Kwong’s equation of state (see page 340).

Extensive variable – A physical quantity whose value depends on the quantity of
matter in the system, for example mass, volume, energy and enthalpy.

Intensive variable – A physical quantity (“point variable”) which is independent of
the quantity of matter, for example pressure, temperature, density, concentration
and molar enthalpy.

Stream – Usually, a mass that flows, for example in a pipe, but in this book it is
generalized to include any quantity (bulk) of material [kg; kg/s]. A stream is
defined by its quantity (for example kg or kg/s) and state. The state is typically
defined by specifying the following intensive variables: composition, pressure,
temperature and phase distribution (instead of the last two, one can specify the
enthalpy).

Reversible process – Hypothetical process where the driving forces are always zero,
such that the process is always in equilibrium (both internally and with its
surroundings).

(Such a process is not feasible in practice, for example because it would take an
infinite time, but a hypothetical reversible process between two given states can
be used to obtain the change in state variables for a real process).

Batch process – Process where the supply of feed and/or removal of products is
not continuous. This includes any process which takes place in a closed system.
Example: cooking of rice in a pot.

A semi-batch process is a batch process with a continuous feed or product
stream (but not both). Example: Batch distillation where the feed is supplied as
“a batch,” but the product is withdrawn continuously.

13 A constitutive equation is a relation between physical quantities that is specific to a material
or substance, and does not follow directly from physical laws.
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Continuous process – Process with continuous feed (inlet stream) and continuous
removal of product (outlet stream). This is a special case of an open system. For
our processes, a continuous process is the same as a flow process.

Steady-state process – Continuous process where all the variables are independent
of time (Note! This does not mean that “nothing happens” because the feed
(inlet) stream is different from the product (outlet) stream. Example: Mixing of
cold and hot water in a shower process.

Non-steady state or dynamic process – Process where the variables vary with
time, for example, cooking of rice in a pot. Any batch or semi-batch process is
a dynamic process.

Constant conditions

• isotherm, isothermal: constant temperature
• isobar, isobaric: constant pressure
• isochor: constant volume
• isenthalpic: constant enthalpy
• isentropic: constant entropy

1.6 Unit operations

The development of chemical engineering as a separate field from applied chemistry
around 1900 is closely related to the concept of unit operations. It was found that
certain basic operations in a process were similar in a paper mill, a diary, a chemical
plant and in a refinery, and this simplified considerably the exchange of knowledge and
made it possible to educate generalists rather than specialists for each industry. Some
unit operations and/or their associated apparatus/unit are (here listed alphabetically):

Absorption (Figure 1.4a). Absorption is a process where a gas is dissolved in a
liquid. In an absorber or absorption column the gas and liquid are contacted
in a vertical column (see column) in a countercurrent fashion. The objective is
to remove one or several “heavy” components from the gas by transferring them
to (absorbing them into) the liquid. There are two feed streams (a gas entering
from the bottom and a liquid entering from the top) and two product streams
(gas and liquid exiting at the other end). In a stripping column (stripper), the
reverse process takes place.

Boiler Heat exchanger where evaporation takes place on the cold side.

Coalescer Unit that separates emulsions, for example, separation of oil from water.
Basically, it works as a reversed emulsifier.

Column (tower) (Figure 1.4a). Vertical apparatus where a light phase (usually
a gas, but it can be a liquid) and a heavy phase (liquid) are contacted in a
countercurrent fashion. The light phase flows upwards in the column and the
heavy phase flows downwards. Examples are absorption columns and strippers;
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a distillation column consists of two column sections with the feed entering
between them.

The objective is to exchange one or several components between the two phases.
It is important to achieve good contact between the phases, with a large contact
area and good mixing. To achieve this, one uses as “internals” either plates
(trays) or packings. There are two main kinds of packings: random packings
(e.g., Rashig-rings) and the more expensive structured packings. Trays are
usually used in large columns. Packings are used in columns where a small
pressure drop is required, e.g., vacuum columns.

Figure 1.3: (a) Compressor. (b) Turbine. (c) Pump

Compressor (Figure 1.3a). Unit that increases pressure of a gas-stream by supplying
mechanical work (shaft work, Ws). The compressor efficiency η is the fraction
of supplied work that gives a “useful” increase in pressure. More precisely,
W rev

s = ηWs, where W rev
s is the work required for a reversible process with

the same pressure increase. The remaining “lost work” (1 − η)Ws increases the
gas temperature by friction loss. The opposite of a compressor is a turbine (see
this).

Condenser Heat exchanger where condensation takes place on the hot side.

Crystallizer Apparatus where solid crystals are precipitated from a (super) saturated
liquid.

Cyclone Unit that separates particles or fluids by making use of their density
difference. A hydrocyclone separates solids from liquids or separates liquids
of different density.

Decanter Unit where two phases (liquid or solid) are separated by gravity.

Demister A unit that removes entrained liquid droplets from a gas stream.

Distillation (Figure 1.4b). Process where a feed F is separated into a “light”
product (distillate D) and a “heavy” product (bottom product B) by utilizing
the difference in volatility (vapor pressure; boiling point) of the components.
Distillation is the most common unit operation for separating liquid mixtures.
In the laboratory, the simple flashing (boiling, evaporation) of a liquid feed
followed by condensation of the vapor is sometimes referred to as distillation
(see single-stage batch (Rayleigh) distillation on page 396). However, in industry,
distillation refers to a unit with a trayed or packed column section (see column)
and where some of the condensed overhead product is returned to the column
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Figure 1.4: (a) Absorber/stripper (column section). (b) Distillation column

as liquid reflux. The countercurrent flow of vapor and liquid in the column
results in successive evaporation and condensation which improves the degree
of separation. The number of such successive steps in the column is called the
number of theoretical stages (N).

In a batch distillation column, the feed F is charged to the bottom of the
column as a batch, and the distillate product D is usually removed continuously
from the top. For a multicomponent feed, one may obtain a distillate product
for each component in the order of their boiling points. The remaining liquid
(residue) in the bottom at the end of the batch is the “heavy” product B. The
difference between batch and continuous distillation is illustrated in Figure 1.8.

A continuous distillation column has continuous feed and product withdrawal,
also of the bottom product, see Figure 1.4b. It usually consists of the following
sub-units: Two trayed or packed column sections with the feed entering
between them, two heat exchangers (reboiler and condenser), two holdup vessels
(condenser drum and reboiler sump) and a splitter for the reflux. The upward
vapor stream (boilup) in the column is generated by supplying heat QH at high
temperature in the reboiler which evaporates parts of the liquid; the remaining
is withdrawn continuously as the bottom product (B). The downward liquid
stream (reflux) is generated by the removal of about the same quantity of
energy QC at a lower temperature in the condenser at the top of the column,
and returning some of the condensed liquid as reflux; the remaining withdrawn
as the top (distillate) product (D). In the top section of the column (above the
feed point), the heavy components condense and are absorbed into liquid. In
the bottom section, the light components evaporate and are thereby removed
(stripped) from the liquid and transferred to the gas. As a result, the light
components are concentrated in the top and the heavy components in the bottom
of the distillation column.

Dryer Heat exchanger with wet solid on the cold side, causing some of the liquid
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(usually water) to evaporate.

Evaporator Heat exchanger with boiling liquid on the cold side, causing some or all
of the liquid to evaporate.

Extraction Exchange of components between two liquid streams. This can take place
in a vertical or horizontal extraction column where the two liquid streams flow
countercurrently.

Fan or blower A simple compressor (see this), but where the main purpose is the
transfer of gas and not increase of pressure.

Filter; filtration unit Unit that separates particles from liquid or gas. Some of the
liquid or gas in the feed passes through a porous medium (e.g., a filter cloth) to
form the filtrate, whereas the remaining particles and some retained liquid form
the filter cake.

Fittings Parts used to connect pipes; see Table 9.1 (page 246) for details.

Flash; flash drum Unit where the feed stream is “flashed” to a lower pressure,
thereby causing a partial evaporation, resulting in a liquid and vapor product.
The liquid and vapor products are usually assumed to be in equilibrium.

Flotation Process for separating a suspended phase (solids, liquid, particles) from a
liquid by using surfactants and wetting agents.

Figure 1.5: Alternative flow sheet symbols for heat exchanger

Heat exchanger (Figure 1.5). Unit where heat is transferred from a hot stream to
a cold stream through a solid barrier (wall); see Chapter 5 for more details.

Membrane unit Unit that by permeation exchanges mass between two streams (gas
or liquid) through a film (the membrane). A membrane can be viewed as a
“filtration of molecules,” rather than the normal filtration of particles that takes
place in a filter.

Mixer (1) Unit where two or more streams are combined to a product stream. (2)
Unit where a stream is treated to get a more uniform product (e.g., blender).
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Pump (see Figure 1.3c). Simple “compressor” used to increase the pressure of a liquid
stream by supplying mechanical work.

Quencher Unit where a hot feed stream (usually gas) is brought into direct contact
with a cold stream (often cold water) to be rapidly cooled. A quencher is often
used following a reactor to stop the reaction.

CSTR PFR Batch

Figure 1.6: Reactor types

Reactor (see Figure 1.6). Unit where a chemical conversion takes place. Some types
of reactors: (a) Continuously stirred tank reactor (CSTR), (b) plug flow reactor
(PFR) and (c) batch reactor.

Scrubber An absorption column designed to remove undesirable particles, drops or
components from a gas stream. In most cases, water is used as the liquid.

Figure 1.7: Simplified flowsheet symbols for (a) Separator. (b) Valve

Separator (Figure 1.7a). Common term for a wide range of unit operations (typically
tanks or “drums”) that separate a feed stream into two (or more) outlet
streams with different compositions. Examples: gas/liquid-separator (flash tank),
liquid/liquid-separator, etc. (If the outlet streams have equal compositions, the
unit is called a splitter).

Settler See decanter.

Stripping (Figure 1.4a). Stripping is a process where dissolved gas comes out of a
liquid (opposite of absorption). A stripper is a vertical column with two feed
streams (gas and liquid) and two product streams (gas and liquid), where the
objective is to remove (strip off) a “light” component from the liquid and transfer
it to the gas. In an absorber, the reverse process takes place.

Turbine (expander) (Figure 1.3b). Rotating machine (engine) that extracts
mechanical work (Ws) from a fluid flow by using the pressure head. Early
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turbine examples are windmills and water wheels. A gas turbine (expander)
is the opposite of a compressor, and liquid (water) turbine is the opposite of a
pump.

In an ideal (reversible) turbine, there is no friction and all of potential pressure
head is converted to mechanical work. The efficiency η indicates the fraction of
the ideal (reversible) work that is extracted, that is, Ws = W rev

s η. The remaining
lost work increases the fluid temperature by friction loss.

Valve (Figure 1.7b). A valve is a device that regulates the flow of substances (gases,
liquids, slurries) by partially obstructing its passageways, resulting in a pressure
drop. In a control valve, the flow can be adjusted by changing the valve position
(z). The valve equation gives the dependency of flow on valve position and
pressure drop. A typical valve equation for liquid flow is

q = Cdf(z)A
︸ ︷︷ ︸

Cv

√

∆p/ρ (1.8)

where q [m3/s] is the volumetric flowrate, Cd (dimensionless in SI units) is the
valve constant (relative capacity coefficient), z is the relative valve position (0 is
fully closed and 1 is fully open), f(z) is the valve characteristic (e.g., f(z) = z
for a linear valve), A [m2] is the cross sectional area of the valve (at its inlet or
outlet), ∆p = p1 − p2 [N/m2] is the pressure drop over the valve, and ρ [kg/m3]
is the fluid density. The mass flowrate is m [kg/s] = ρq and the flow velocity
is v [m/s] = q/A (at the valve inlet or outlet). A typical value for a control
valve is Cd ≈ 1 (see Example 9.2, page 244). Cv = Cdf(z)A [m2] is the valve
coefficient (capacity coefficient), which depends on the valve opening. Note
that the valve coefficient C′

v provided by the valve manufacturer, usually is the
flow in gallons per minute (gpm) of cold water when the valve pressure drop is
1 psi, and to convert to SI units this value needs to be divided by 41625.

Exercise 1.6 ∗ Prove that the expression for converting the manufacturer’s valve
coefficient C′

v to SI units is Cv[m2] = C′
v(manufacturer)/41625.

A choke (throttle) valve is a valve where the primary objective is to reduce
the pressure rather than to regulate flow.

A Joule-Thompson valve is a valve where the primary objective is to reduce
the temperature of a non-ideal gas, by making use of the fact it requires energy
to lower the pressure because of the attractive forces between the gas molecules
(except at very high pressures).

And more... In particular, there are many units that handle solids and particles:

• agitator
• blender
• classifier
• conveyor belt
• centrifuge
• crusher, grinder, mill (for solids size reduction)
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• electrostatic precipitator
• electrostatic filter
• lifter
• fluidizer
• homogenisator, emulsifier, disperser
• prilling tower
• screw (pump for solid material)
• scrubber, spray tower, venturi scrubber
• sedimenter
• sieve

Mechanical engineers are good at many of these operations (but mechanical
engineers become noticeably nervous and start flickering if an operation involves
chemical reactions and especially if it involves moles...).

1.7 Batch and continuous process

Heat

C
o

lu
m

n

First
Then

Separation

   (product)

Reactant

ReactorHeat

exchanger
Feed

CONTINUOUS:

Heat

BATCH (Same apparatus used for many operations):

1. Heat up

2. Reaction with addition of B (A+B     C+D)

3. Distillation (Product C)

4. Distillation (Product D)

5. Distillation residue: Unreacted A and B to the next batch

Initially: Batch with A

Figure 1.8: Continuous and batch process with the same feed and product

The difference between a batch and continuous process is illustrated in Figure 1.8.
In a continuous process, there is a separate unit (heat exchanger, reactor, column, etc.)
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for each step of the process and the units are arranged sequentially with a continuous
flow between them. In addition, there is usually a continuous recycle in order to
improve yield and avoid losses. In a batch process, which is often a direct scale up of
the lab-scale process, the same unit is used for several steps of the process, and the
subprocesses take place sequentially in time rather than in space.

1.7.1 Typical production rates for a continuous process

A continuous process is usually operated 24 hours a day. We typically assume 8000
operating hours per year, which is about 90% of the total of 8760 hours.

Large Medium Small

Figure 1.9: Large, medium and small production rates

• A small production rate for a continuous process is about 1000 ton/year ≈ 3 ton/d
(d = day) ≈ 0.1 ton/h (h = hour) ≈ 2 kg/min ≈ 0.03 kg/s.

• For a large plant for bulk chemicals, the production rate is typically about 250
times larger, i.e., ∼ 10 kg/s.

• For giant plants (for example, an oil refinery), the production rate can be a factor
10 larger than this, say 100 kg/s.

• In summary, the production rate may vary from about 0.03 kg/s (very small plant)
to 0.1 kg/s (small plant), 1 kg/s (medium plant), 10 kg/s (large plant) and 100 kg/s
(giant plant).

• Rule of thumb: A “medium” stream (see Figure 1.9) is around 1 kg/s.

What about molar flows? A typical molar mass is M = 30 g/mol, which means that
the molar production rate typically varies from 1 mol/s (very small plant) to 3000
mol/s (giant plant).

Note that you must multiply by a factor of 3.6 to go from kg/s to ton/h (t/h), and
to go from mol/s to kmol/h.

1.7.2 Typical production rate in a batch process

In batch production, it is often practical to start a new batch every day. Let us assume
that we have 250 days of production per year and there is 1 batch per day. Then we
have

• A yearly production below 500 ton/year (where batch production is usually better;
see above) corresponds to a batch smaller than 2 ton.

• A yearly production above 5000 ton/year (where continuous production is usually
better) corresponds to a batch of more than 20 ton.

This means that continuous operation should be considered if the batch size exceeds
about 2 ton; see also Example 1.2 (page 30).



NOTATION, CONCEPTS AND NUMBERS 29

1.7.3 Batch versus continuous

Advantages with continuous operation. Continuous production usually has a
substantially better energy efficiency than batch production, because one can use
heat integration where an energy demand in one part of the process is matched by
an energy excess in another part. It is also easier to automate a continuous process
such that it needs fewer operators. In short, the operation costs are lower than with
batch production. In addition, there are some processes that are less suitable for batch
production. This applies especially to gas phase processes with a short residence time
in the reactor, which includes many of the most important industrial processes.

Disadvantages with continuous operation. Compared to a batch plant, a
continuous plant is more complicated and usually requires a larger investment for the
same capacity. For small production rates, a batch process is therefore more profitable.
Batch plants are also significantly more flexible as a standard apparatus can be used to
produce a large range of products. A continuous plant, on the other hand, is designed
for a specific feed and product. Typically, it takes at least 2-3 years to build a new
continuous process – which may exceed the market life time for some special products.
Thus, batch production is the only viable alternative in many cases.

Choice. Until about 1900, nearly all production was batch, and in the period from
about 1900 to 1980 the most important task for a process engineer was to replace old-
fashioned batch plants with modern continuous plants. Most of the training of process
engineer was (and is) therefore directed to continuous processes. But more recently, it
has become clearer that batch processes are preferable when great flexibility is desired
and also for small production rates. In general, continuous processes are better for
larger production volumes and we have

• Processes with a yearly production above ∼ 5000 ton/year (0.17 kg/s) are usually
continuous.

• Processes with production rates less than ∼ 500 ton/year (0.017 kg/s) are operated
batchwise.

For production rates between about 500 and 5000 ton/year, a closer evaluation should
be made.

1.8 A little about economy

The investment cost I [in $ or any other currency] for a unit or process section
depends on the production rate m [kg/s]. The following relationship is often used,

I = c0 + c1m
q (typically : q ≈ 0.67) (1.9)

Here, the scaling exponent q is almost always smaller than 1, that is, we have an
economy of scale advantage because the investment increases less than proportional
to the production. The value q ≈ 0.67 is physically reasonable, because the production
capacity m increases proportional to the volume of the apparatus, while the investment
I typically increases proportional to the area of the apparatus. If L [m] represents a
typical length of the apparatus, then m ∝ L3 and I ∝ L2 and it follows that I ∝ m2/3

(the symbol ∝ here means “proportional to”).
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One often estimates the investment I only for the main equipment, that is, one does
not include the cost of valves, smaller pumps, measurement devices, automatization
(control), installation, etc. To obtain the total investment I, the cost of the main
equipment is then multiplied by an experience factor (“Lang-factor”). The Lang-factor
for a continuous process is typically around 5.

To compare alternative processes for producing a given amount of product, one often
considers the total annualized cost (TAC) which is the sum of the production costs
P [$/y] and the capital (investments) costs. For the capital costs, we here use a very
simple approach, often used in practice: Assume that the plant will run for T years
and use linear (constant) depreciation of the investment I over this period. The capital
cost is then I/T [$/y] and the total annualized cost is

TAC = P + I/T [$/y] (1.10)

A typical depreciation period is T = 10 years. The process is profitable if TAC is less
than the income from selling the products. The expression in (1.9) for I can be used
both for continuous and batch plants, but the values of c0 and c1 are usually smaller
for a batch plant. On the other hand, the operational costs P are usually substantially
larger in a batch plant, especially for operators, energy and raw materials (because
of larger losses). We next illustrate the ideas for economical analysis with a simple
example.

Example 1.2 Economic analysis of batch versus continuous production. For a
continuous (c for continuous) production plant which produces a material X, the total
investment cost is assumed to be

Ic[$] = 10 · 105 + 0.5 · 105m0.7

where m [t/y] is the yearly production. Note that scaling exponent is assumed to be 0.7. Ic is
here the total investment cost, i.e., the Lang-factor has already been included. We note that
it costs one million dollars to build a plant with zero production capacity. The production
cost Pc for the continuous plant, without the capital cost, is assumed to be

Pc[$/y] = 2 · 106 + 100 · m[t/y]

Here, a constant term of 2 · 106
$/y is included to account for fixed costs like wages for

supporting staff and insurance, while the variable term included cost for energy, operators
and raw materials.

From (1.10), the total annualized cost (TAC) is TAC = Pc + Ic/T [$/y], where we choose
a depreciation period of T = 10 years. The cost per ton product for our example is then
Cc = Pc/m + Ic/(10m) or

Cc[$/t] = 2 ·106/m+100+105/m+0.5 ·104m−0.3 = 100+2.1 ·106/m+0.5 ·104m−0.3 (1.11)

where m is in [t/y]. For example, with a production of m = 10000 t/y, the production cost in
$ per ton is:

Cc[$/y] = 100 + 210 + 315 = 625

For a batch (b for batch) production plant to produce the same material X, we assume in this
example that the investment cost is 1/10 of the cost for the continuous plant, i.e., Ib = Ic/10,
whereas the variable cost for energy, raw materials and operators are 10 times higher (but
with no fixed costs, since the batch plant can be used also to produce other products)

Pb[$/y] = 1000 · m[t/y]
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The total production cost (again with linear depreciation over 10 years) is Pb + Ib/10[$/y]
and the cost per kg becomes

Cb[$/t] = 1000 + 104/m + 0.5 · 103m−0.3 (1.12)

where m is in [t/y]. For example, with a production of m = 10 t/y, the production cost
becomes, in dollar per ton:

Cb[$/t] = 1000 + 1000 + 250 = 2250

The table below compares the production cost [$/t] of continuous and batch production for
some values of capacity m [t/y]:

m[t/y] 1 10 100 1000 10000 100000 1000000
Continuous : Cc[$/t] 2100000 213000 22400 2830 625 279 181

Batch : Cb[$/t] 11500 2250 1225 1072 1032 1016 1008

For this particular example, the costs for batch and continuous production cross at about
4000 t/y (however, the numbers can be completely different in another case).

1.9 Some fun and useful energy exercises

Here you find some exercises to practice how to convert between different units. The
exercises also give you insight into typical sizes and numbers, especially related to
energy and energy usage. For this reason, I have provided the answer to the exercises,
but it is strongly recommended that you solve them yourself. Please include units in
all calculations to check that the formula you use is consistent. If you miss information
to solve a problem, then this can be found earlier in this chapter (use the index!).

Exercise 1.7 ∗ One day, the energy price for electric power is 0.1 $/kWh. What is this in
$/GJ? (Answer. 27.8 $/GJ.)

Exercise 1.8 ∗ One day, the price of crude oil with density 0.8 kg/l is 1 $/l (= 3.79 $/gal =
159 $/bbl). What does this correspond to in $/GJ (with water as gas combustion product)?
(Answer. 27.8 $/GJ (assuming the lower heating value is 45 MJ/kg).)

Thus, the energy price is the same if we pay 0.1 $/kWh (electricity) and 1 $/l (oil).
This is because the energy contents if 1 kWh (=3600 kJ) is the 1/10 of the energy
contents in 1 l oil (= 36000 kJ = 1 l · 0.8 kg/l · 45e3 kJ/kg). We derive from this the
rule:

• The price (in any currency) of 1 kWh electricity should be at least 1/10
the price of 1 liter oil.

The reason we say “at least” is because electricity is a more valuable energy source
than oil. First, it gives no losses when used for heating, whereas some energy will be
lost in the flue gas when we burn oil for heating. Second, and more importantly, it can
easily be converted to work in an electro motor with almost 100% efficiency, whereas
less than about 50% (and in many cases much less) of the heating value in oil can
be converted to work. You can read more about the thermodynamic background for
extracting work from heat in Chapter 8.
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Exercise 1.9 ∗ Given the above energy costs, what is the cost of taking a bath, that is, how
much does it cost to heat up 100 l of water from 10 oC to 50 oC with the use of electricity or
oil?

Exercise 1.10 ∗ How much oil [kg] is needed to heat up 100 l of water from 10 oC to 50 oC?

Exercise 1.11 ∗ The oil price is one day $100/barrel. What is this per liter and per gallon?

Exercise 1.12 ∗ The price of natural gas varies a lot depending of the location. In October
2005, the gas price varied from $0.75/million Btu in Saudi-Arabia to $8/million Btu in
Western Europe and $14/million Btu in the United States. What does this correspond to in
$/GJ? (Answer. 0.71 $/GJ (Saudi), 7.63 $/GJ (Europe), 13.25 $/GJ (USA))

Exercise 1.13 ∗ What does a natural gas price of $8/million Btu (Western Europe Nov.
2005) correspond to in $/Sm3?

Exercise 1.14 ∗ The natural gas production in the Norwegian part of the North Sea was in
2001 about 53 · 109 Sm3 (which was about 2% of world’s production of natural gas). What
does this correspond to in kg/s and what is the combustion value in GW (assume that the
natural gas has molar mass of 18 g/mol and that its heating value (lower heat of combustion)
is 42 MJ/Sm3)?

Exercise 1.15 ∗ In addition to the 53 · 109 Sm3 mentioned above, an additional 34 · 109 Sm3

was reinjected into the ground as pressure support for oil extraction and to avoid flaring. (a)
What is the potential value of the reinjected gas, with a gas price of 8 $/million Btu (Europe,
Nov. 2005)? (b) What is its potential value for producing electric energy, if we assume a 50%
efficiency for converting it to electric energy and the electricity price is 0.1 $/kWh.

Exercise 1.16 ∗ How much CO2 [Sm3] is created when we burn 1 l gasoline (assume that the
density for gasoline is 0.7 kg/l and that the mole ratio C:H in gasoline is 1:2)?

Exercise 1.17 ∗ Assume that there are 600 million cars in the world, which annually on
average are driven 20000 km with a gasoline consumption of 0.1 l/km. Assume that gasoline
has a density of 0.7 g/l and that the lower heat of combustion is 45000 kJ/kg. What is the
consumption of gasoline (in l/y and kg/s) and energy (GW) for all these cars? (Answer.
1.2 E12 l/y, 26636 kg/s, 1.2 E12 J/s = 1.2 TW).

Exercise 1.18 ∗ The world’s yearly energy consumption (2008) corresponds to about
12000 million ton of oil equivalents (toe). What does this correspond to in EJ/y, in kWh/y,
and in TW? What is the average energy consumption [kW] per person? (Data: 1 toe
corresponds to 42 GJ and there are 6 billion people). (Answer. 504 EJ/y, 1.4 · 1014 kWh/y,
16 TW, 2.7 kW/person.)

In terms of money, with an energy price of 27.8 $/GJ (see Exercises 1.7 and 1.8),
the cost for a global energy consumption of 504 EJ/y = 504109 GJ/y, is 14000 · 109

$/y or 14000 billion US dollars per year. This corresponds to about 2300 US dollars
per year for every person on the earth.

To solve the next exercise, you need to make use of the following rule of thumb:

• The heating value of 1 Sm3 natural gas is about the same as 1 kg oil (≈
1.2 l oil).
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• This rule implies that the price (in any currency) of 1 l oil should be at least
the price of 1 Sm3 natural gas (they have about the same energy contents but
we say “at least” because oil is more valuable, e.g., it is easier to transport).

To justify the rule, recall first that the lower heating value for oil is about 42 MJ/kg (as 1 toe= 41.868

GJ, see page 12). Natural gas consists mainly of methane, but may also contain significant amounts

of ethane and propane and also inerts such as CO2 and N2. Methane has a higher (gross) heating

value (GHV) of 37.7 MJ/Sm3 and a lower heating value of 33.9 MJ/sm3. Ethane has a higher (gross)

heating value (GHV) of 66.0 MJ/Sm3 and a lower heating value of 60.4 MJ/sm3. From this it is clear

that the heating value of natural gas depends strongly on its composition, so the above rule of thumb

(1 toe =1 Sm3 natural gas ) is quite rough. Also, note that the natural gas sold to the customers14

(“sales gas”) usually has a lower heating value than the original natural gas, and a typical value is

to set 1 toe = 1.14 Sm3 sales gas.

Exercise 1.19 The world’s largest natural gas field is offshore Qatar in the Arabian Gulf.∗

It is given that the total reserves in this field are 900 TCF. How many years of the world’s
current energy consumption does this correspond to?

Exercise 1.20 ∗ Solar cells. Taking into account that some light is reflected, the earth
receives from the sun about 120000 TW which is about 7500 times more than the current
worldwide energy consumption (16 TW in 2008; see Exercise 1.18). Thus, if we could make
effective use of the solar energy, there would no need to worry about the world’s energy
supply or global warming. The most direct way to utilize the energy from the sun is by solar
photavoltaic cells.

The average solar radiation to the earth is about 240 W/m2, but not all this reaches the
surface. Assume that the average value in the Sahara is 220 W/m2. How large of an area
must one cover with solar cells to meet the world’s energy demand if the efficiency in a solar
cell for conversion to electricity is 15%?

Exercise 1.21 ∗ Electricity price with solar cell. Let us be a bit conservative, and assume
that the radiation from the sun is 100 W/m2 on average. What is the resulting energy price
(in $/kWh) if we assume 15% efficiency, a price of solar cells of 1000 $/m2 and linear
depreciation over 10 years?

Comment: The electricity production from solar cells is currently (2008) approx. 9000
MW = 0.09 TW, which is only 0.06% of the global energy consumption of 16 TW. The
electricity production from solar cells increases by about 50% per year, and as the cost to
produce solar cells is reduced (here the process engineer will play an important role!), the
resulting energy price may eventually reach 0.2 $/kWh or lower. The oil company Shell
produced in 2001 a study that predicted that solar cells around 2050 would be the planet’s
most important source of electricity; however, at present, most experts in the energy field find
this prediction unlikely.

14 The sales gas to customers should typically have a gross heating value (GHV) between 39.5 and
43.6 GJ/Sm3 – and the lower heating value (LHV) is then about 4 GJ/Sm3 lower. The GHV
specification is to assure that the customers’ gas burners will function properly without need for
adjusting the air to gas ratio. Thus, natural gas usually needs to be processed, by removing ethane
and heavier components, before it is sold.
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Human energy consumption

Exercise 1.22 ∗ What is the average human energy consumption in Watt [=J/s] given the
data below for the daily energy consumption?

Minimum to survive 900 kcal/d
Student, teacher, office worker 1900 kcal/d
Lumberman, athlete 4500 kcal/d

Exercise 1.23 ∗ How much tortilla chips per day must a student eat to meet her energy
demand (given: tortilla chips has an energy content (heat of combustion) of 2150kJ/100g) ?

Exercise 1.24 ∗ The following formula is given for the maximum work a person can perform
over a period P :

Ẇ [W] =
2500

ln P[s]

What is the maximal work over a period of (a) 2 seconds and (b) 1 hour?
Comment: Note that work W and energy consumption E are two different things. Only

a fraction of a person’s energy consumption from burning food is converted into work in the
muscles (maybe 10-30%).

Exercise 1.25 ∗ What is the average work W (in Watt) when a weight lifter lifts a weight of
200 kg up 1 m in a period of 1 second?

Exercise 1.26 ∗ What is the average work W (in Watt) when a person that weighs 80 kg
climbs up a 500 m high mountain in a period of one hour?

Exercise 1.27 ∗ The human heart can be viewed as a pump. From (6.14), the pump work
is Ẇs = V̇ ∆p where Ẇs [W] is the work per unit of time (power), V̇ [m3/s] is the volumetric
flow and ∆p [N/m2] is the pressure increase. Calculate the work that a human heart performs
given the following data:

• The blood flow for a person at rest is 5 l/min and it goes to both the lungs and the body
(via the two heart chambers).

• The pressure increase for the blood that goes to the lungs is 25 mmHg.
• The pressure increase for the blood that goes to the body is 130 mmHg.

Next, a few exercises on the heat loss Q for humans. With a constant body
temperature, the steady-state energy balance (4.13) applies,

E = Q + W [J; J/s]

• E = ∆Hcombustion – net energy intake from food (released by burning in cells)
• W – work performed by body on surroundings
• Q – heat from body to surroundings (net cooling)

(Note: To keep the numbers positive, we have reversed the definitions (signs) for E,
Q and W compared to the standard sign convention used elsewhere in this book.)

In most cases, at least over a longer time period, the work W is insignificant
compared to the heat Q (for example, the net work W is zero if you climb up and
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down a mountain – even if it does not feel like it!). Thus, in practice all the energy E
ends up as heat Q:

E ≈ Q

Some typical data for the required energy E for various activities:

sleeping 70 W
sitting 100 W
walking 250 W
jogging 500 W

To remove the corresponding amount of heat Q, we consider three cooling
mechanisms:

1. Heat loss by breathing (Q1)
2. Heat loss by heat exchange through the skin (Q2)
3. Heat loss by sweating (Q3)

The total heat loss is
Q = Q1 + Q2 + Q3

In the first exercise, you will find that the breathing heat loss Q1 is insignificant in
most cases.

Exercise 1.28 ∗ A person breathes 20 l/min and the outgoing air is 20 oC warmer than the
incoming. What is the heat loss by breathing when we neglect the change in the air’s water
contents (Q1 = mcP ∆T )?

If the air temperature is not too high and you take it easy, the heat loss Q2 through
the skin provides sufficient cooling, as found in the next exercise.

Exercise 1.29 ∗ As discussed in more detail in Chapter 5 on heat exchange, the heat Q2 [W]
transferred from the body to the air through the skin is, see equation (5.1),

Q2 = UA∆T [J/s]

where ∆T = Tbody −Tair [K or C] is the temperature difference, A [m2] is the surface area of
the body (skin area) and U [W/m2 K] is the overall heat transfer coefficient. For humans, U
may vary from about 2 W/m2 K (well dressed and gentle breeze) to 20 W/m2 K (swimming in
water). The skin area typically varies from 1.6 m2 (female) to 1.8 m2 (male). In this exercise,
we assume U = 5 W/m2 K (a typical value) and A = 2 m2, such that UA = 10 W/K. The
normal body temperature (Tbody) is 37.0oC.

Problem: At which air temperature will you start sweating when (a) Q = 100 W (sitting),
(b) Q = 250 W (walking) and (c) Q = 500 W (jogging).

If the temperature is sufficiently high, sweating is the only means to keep the body
cool. Cooling is then provided by evaporation of water according to the equation,

Q3 = m · ∆vapH [J; J/s]

where m [kg; kg/s] is the amount of water evaporated and ∆vapH [J/kg] is the heat of
evaporation for water, which is 2444 kJ/kg at 25oC (see page 16). In the next exercise,
you will find that even for moderate energy consumptions, the amount of water needed
for sweating may be several liters per day.
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Exercise 1.30 ∗ A person stays in a hot climate such that the heat loss due to the difference
between the body’s and air’s temperatures is negligible. How much water must the person
evaporate/sweat/perspire in a day (24 hours) if the energy consumption is 100 W?

Hiking the Grand Canyon in Arizona (US) is a great experience, but one needs
to be a bit careful because, as opposed to climbing a mountain, the return hike is the
hard part. The elevation difference from the rim at the top to the river at the bottom
is about 1360 m, and as you start descending into the canyon you see warning signs:

Warning. DO NOT attempt to hike from the canyon rim to the river and
back in one day. Each year hikers suffer serious illness or death from exhaustion.

Another sign tells the sad story of a young lady who died in the canyon:

Margaret L. Bradley was a 24-year-old athlete and medical student who
finished the 2004 Boston Marathon in a little more than three hours. On
July 2, 1984, she died in the Grand Canyon of dehydration. Margaret and a
companion left the South Rim mid-morning for what they thought was a 15
mile (24 km) day hike. They failed to carry a map, so they were unaware
that the proposed hike was actually 27 miles (43 km). The predicted high
temperatures for the inner canyon was 105oF (41oC). Each carried inadequate
food and water. Margaret had 1.5 liters of water, 2 energy bars and 1 apple.
They were unprepared for the extreme heat, excessive distance and lack of
water. By mid-afternoon, the hottest part of the day, the two ran out of
water and were severely heat stressed. Margaret’s companion could no longer
continue. Thinking it would be best to go for help, they decided to separate -
their final mistake. Her companion, after resting out the heat of the day, made
it out alive. Two days after beginning their trip, park rangers found Margaret’s
body.

While hiking up the canyon the heat production Q is at least 600 W. You can
imagine what happens if you leave a kettle of water on the stove at 600 W – the water
disappears fast, and this is what happened to Margaret Bradley. If you run out of
water, you should rest and use as little energy as possible, like the companion who
survived (and like most people in hot climates do).

Exercise 1.31 ∗ A sign at the top of the Grand Canyon says that for every hour of hiking in
the canyon, you should drink 0.5 to 1 liter of water. Prove this statement by computing the
energy (in Watt) required to evaporate this amount of water.

In spite of these warnings, my daughter Hanne and I did hike from the South Rim
to the river and back in one day. Hiking down the Kaibab Trail and up the Bright
Angel Trail, we started early at 6 am and returned 12 hours later, including detours
to the Phantom Ranch and the Plateau Point. This was on June 8, 2008, and the
temperature at the bottom of the canyon was about 37oC. Actually, the hike was not
very hard, but we did drink a lot of water.

Exercise 1.32 ∗ Hanne was wearing a pulse monitor, and when we got back, it estimated that
she had used 7000 calories during the hike. How much water does this correspond to if all of
the cooling was due to sweating?
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1.10 Global energy consumption

We end this chapter by looking into the world’s future. A high standard of living is
closely related to the use of energy. Table 1.1 shows the global energy consumption
by source for the period 2000 to 2050, as predicted in 2008 by the Shell oil company.
Energy use is predicted to double in the period 2000 to 2050. Fossil fuels (oil, gas and
coal) are expected to remain the main energy source. In any case, providing the world
with sufficient and sustainable energy is a major challenge and will require significant
efforts and technology developments by the world’s process engineers.

Table 1.1: Estimated global energy consumption by primary source [EJ/y = 1018J per year].
Source: Shell Energy scenarios (2008).

2000 2010 2020 2030 2040 2050
Oil 147 176-177 186-191 179-192 160-187 141-157
Natural gas 88 109-110 133-139 134-142 124-135 108-122
Coal 97 137-144 172-199 186-210 202-246 208-263
Nuclear 28 30-31 30-34 34-36 38-41 43-50
Biomass 44 48-50 52-59 59-92 54-106 57-131
Solar 0 0-1 2-7 22-26 42-62 74-94
Wind 0 1-2 9-9 17-18 27-28 36-39
Other renewables 13 18-19 28-29 38-40 50-51 62-65
(incl. hydroelectric)
Total 417 524-531 628-650 692-734 738-815 769-880
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Derivation of balance equations

The balance principle is the process engineer’s most important tool. First we deal with
balances in general. Then we formulate a more detailed procedure for deriving balance
equations with an emphasis on mass balances. Recycling improves the effectiveness of a
process, but the resulting balance equations become coupled and more difficult to solve.
Finally, we look at the degrees of freedom and the solvability of the equations.

2.1 The balance principle

Control volume
(system boundary)

In Out
Generated

     - Lost

Inventory

Figure 2.1: The balance principle. The dashed line defines the system boundary.

Consider a “quantity” (mass, energy, etc.) that may be balanced (counted). The
general balance equation for a system constrained by a boundary (control volume)
over a given time period is (see Figure 2.1)

Change in inventory
︸ ︷︷ ︸

accumulated within system

= In − Out
︸ ︷︷ ︸

through system′s boundary

+ Generated − Lost
︸ ︷︷ ︸

internally in system

(2.1)

or with symbols
∆B = Bin − Bout + Bgenerated − Blost (2.2)

• Inventory B: Quantity located within the system’s boundary at a given time.
• Change in inventory, ∆B: Accumulated over the time period.
• In: Supplied to the system over the time period.
• Out: Removed from the system over the time period.
• Generated (formation term): Formed in the system over the time period.
• Lost (loss term): Lost in the system over the time period.
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Balance equations can only be formulated for extensive variables, that is, for
variables that depend on the system’s quantity (mass).

Examples of quantities that can be balanced: total mass, component mass, number
of moles (total or component), energy, momentum, population, money.

Examples of quantities that cannot be balanced: volume (imagine mixing gases with
different pressures), concentration, temperature, pressure (the latter three are not
even extensive variables) and enthalpy (it is energy and not enthalpy that should be
balanced).

Example 2.1 Bank account. The following balance applies for a bank account over a given
time period, e.g., a year:

Change in inventory = Deposited − Withdrawn + Interest − Fees

Here, “interest” is a formation term (generated) while “fees” is a loss term. Knowledge of
this basic principle of accounting should guarantee process engineers a bright future as bank
managers.

Example 2.2 Balance over the number of students in a class room. Let B denote
the number of students. We consider a lecture (the time period) and assume there are no child
births (generated) or deaths (loss), so that Bgenerated = Blost = 0. Furthermore, we assume
that the auditorium is emptied after each lecture, so that the “change in inventory” is zero.
The balance equation is then 0 = Bin − Bout, or Bout = Bin, or

Number of students out = Number of students in

Conserved quantities

A conserved quantity is by definition a quantity for which we don’t have terms for
generation or loss,

Generated = 0; Lost = 0

The balance equation for a conserved quantity then assumes the simple form
(“conservation principle” or “conservation law”):

Change of inventory = In − Out (2.3)

∆B = Bin − Bout (2.4)

In this book, we will focus on two conserved quantities

1. Total mass m [kg]

2. Energy E [J]

A third important conserved quantity is

3. Momentum (mv) [N]. The balance equation for momentum is

d(mv)

dt
=

∑

i

Fi (2.5)
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where
∑

i Fi is the sum of all forces acting on the system, including gravitation
and friction. Equation (2.5) is also known as Newton’s second law. The
momentum balance is the core of fluid mechanics and is used to find the
relationship between pressure and flow. We won’t explicitly use the momentum
balance in this book, but we do consider the “mechanical energy balance” in
Chapter 9 which provides similar information.

Comments:

• The atomic mass of each element is also a conserved quantity, but the atomic balance is indirectly
included in the stoichiometry of the reaction equations, i.e., they are “used up” when we balance
the reactions; see Appendix A.2 (page 329). For this reason we will usually not explicitly formulate
atomic balances.

• For systems without chemical reaction, the component mass ([kg A] or [mol A]) is also a conserved
quantity, and also the total number of moles [mol].

• The fact that mass is a conserved quantity is fairly obvious and has been known for a long time.
• On the other hand, it is much less obvious that energy is a conserved quantity, and this was only

established around 1850 with the first law of thermodynamics.
• But isn’t energy generated in exothermic chemical reactions? The answer is no. What happens is

that some of the molecule’s internal energy is converted from chemical bonding energy to thermal
energy, but the amount of energy is constant.

• Strictly speaking, mass is a conserved quantity only for systems without nuclear reactions and at
velocities far from the speed of light. A nuclear reactor involves a mass change and converts it to
energy according to Einstein’s famous formula ∆E = ∆mc2. It is therefore assumed in this book
that we consider systems without nuclear reactions and at velocities far from the speed of light
c = 3 · 108 m/s.

Contributions from mass flows

In our systems, the terms in “In - Out” are often split in two contributions: (1)
“bulk” transport with streams (for flow processes) and (2) transfer by other means
(for example, heat through a wall), that is

In − Out
︸ ︷︷ ︸

Through the system′s boundary

= In − Out
︸ ︷︷ ︸

with streams (bulk transport)

+ In − Out
︸ ︷︷ ︸

other means (through wall)

out

Figure 2.2: Contribution to “In - Out” from mass flow (stream)



42 CHEMICAL AND ENERGY PROCESS ENGINEERING

2.2 The balance equation

Let us summarize the use of balance equations in more mathematical detail, and
provide some examples. Introduce

B − Inventory of balanced quantity (within the control volume at a given time)

We can make balances over a given time period or per unit of time:

1. Balance over a given time period (for batch process). We consider the time
period from start (at time t0) to end (at the final time tf ) of the process. Over
this time period

∆t = tf − t0

the change in inventory is
∆B = Bf − B0 (2.6)

and from (2.1) we derive the general balance equation for B over the
period ∆t:

∆B = Bin − Bout + Bgenerated − Blost [kg, $, mol A, persons, . . .] (2.7)

We often use this equation for batch processes where we consider the time from
filling of reactants Bin (at t0) to removal of products Bout (at tf ).

2. Balance per unit of time (rate form for continuous process). This is used
for processes with a continuous supply (Ḃin) and removal (Ḃout). We use dot
variables to clearly indicate that these are rates (but later we usually omit the
dots to simplify notation). From (2.7) we can derive the general (dynamic)
balance equation for B at any time t:

dB

dt
= Ḃin − Ḃout + Ḃgenerated − Ḃlost [kg/s, $/s, mol A/s, persons/s, . . .]

(2.8)
Here, dB/dt denotes the rate of change of the inventory (accumulation) of the
quantity B.

Proof of (2.8): We consider the time period from time t0 to time t0 + ∆t, where ∆t is small
(for example, 1 second). We assume that the feed rates, etc. are constant over this short time

period, that is, we have Bin = Ḃin∆t, etc. From (2.7) we then get for the time period ∆t:

∆B = Ḃin∆t
| {z }

Bin

− Ḃout∆t
| {z }

Bout

+ Ḃgenerated∆t
| {z }

Bgenerated

− Ḃlost∆t
| {z }

Blost

We divide both sides by ∆t and then let ∆t → 0. The definition of derivative, dB/dt ,

lim∆t→ ∆B/∆t, then gives (2.8). 2

Important. (2.7) and (2.8) are the same, but (2.7) is over a time period ∆t, whereas
(2.8) is the rate at a given time t.

Note that we in Bin (or Ḃin) include all inflows (and correspondingly all outflows
in Bout). With several inflows we have Bin = B1 + B2 + · · · =

∑

i Bi, where B1, B2,
etc. denote the individual inflows (for example, separate streams).
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Special case A: Conserved quantity (mass and energy)

For a conserved quantity (total mass, energy or momentum), there are no terms for
“generated” or “lost,” that is, Bgenerated = 0 and Blost = 0, and the general balance
equation becomes

Over time period ∆t : ∆B = Bin − Bout [kg, J, . . .] (2.9)

At time t : dB/dt = Ḃin − Ḃout [kg/s, J/s, . . .] (2.10)

Special case B: No accumulation

In most of this book (except Chapter 11) we consider processes where there is no
accumulation over the time period, that is, the inventory within the system does not
change. For such a system the following applies:

1. For a batch process where the tank is emptied between each batch, we have
∆B = 0 over the batch period ∆t and the balance equation becomes

Over time period ∆t : Bout = Bin + Bgenerated − Blost [kg, J, . . .] (2.11)

2. For a continuous process without accumulation (= steady-state process) there is
no time variation, i.e., dB/dt = 0, and the balance equation becomes

At time t : Ḃout = Ḃin + Ḃgenerated − Ḃlost [kg/s, J/s, . . .] (2.12)

which is the most common case studied in this book.
Comment. In most continuous processes, steady state (without accumulation) is never fully

attained because it takes time to reach this state, and also because there are always changes

(disturbances) in feed streams and changes in the process equipment. Nevertheless, the idealized

assumption of a steady-state process is used for calculation and design of most process plants.

Note that equations (2.11) and (2.12) are identical if we omit the dots on B. In this
book, we usually omit the dot notation, and we can use the same equation for both
batch and continuous processes.

Combined special case A and B: Total mass balance without accumulation

Since total mass is a conserved quantity, the mass balance (2.9) and (2.10) without
accumulation becomes 0 = min − mout, or

min = mout [kg; kg/s] (2.13)

(2.13) applies to both (1) batch and (2) continuous processes at steady state, and is
probably the process engineer’s most useful tool. (2.13) always holds for total mass, and
if no chemical reactions takes place it also holds for component mass and component
moles.

The next section (page 47) features many uses for the steady state mass balance
(2.13). However, before getting to this, we consider two examples where we need the
dynamic mass balance (2.10). First, we consider filling a bathtub with water and next
a membrane unit (or actually an artificial kidney).
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Example 2.3 Process with accumulation: Filling a bathtub. Let m [kg] be the mass
of water in a bathtub. Mass is a conserved quantity and from (2.10) the dynamic mass balance
for a bathtub at time t becomes:

dm

dt
= ṁin − ṁout [kg/s] (2.14)

During filling with the plug in, the outflow is zero, ṁout = 0, and the mass balance becomes
dm
dt

= ṁin. The filling increases the inventory m of mass (dm/dt > 0), that is, we have a
“dynamic process” where mass is accumulated. This increase continues until we turn off the
water (then ṁout = 0 and also ṁin = 0) or the bathtub flows over. In both cases, we get

ṁout = ṁin (2.15)

At this point, we have no further accumulation in the system (dm/dt = 0), and (2.15)
represents the mass balance of a continuous steady-state process.

Example 2.4 Mass balances for an artificial kidney (membrane unit). In this
example, we formulate mass balances for urea (which is the most important component
in urine) during cleansing (dialysis) of a patient’s blood with an artificial kidney (dialysis
machine, which for a process engineer is a membrane unit). This is a continuous process. For
the membrane unit itself, we will assume that there is no accumulation (steady state mass
balance), while for the patient, we consider accumulation (dynamic mass balance).

F

Dialysis fluid D

Semi-permeable membrane

Blood,

D,mem

B,mem,
B

Figure 2.3: Dialysis using a membrane unit (artificial kidney). Notation: c [mol/m3 = mmol/l]
= concentration of urea. B = blood. D = dialysis fluid. mem = leaving membrane unit.

More details on the process: During dialysis, urea is transferred from the blood (B)
through a semi-permeable membrane to the dialysis liquid (D), as schematically shown in
Figure 2.3. Here, q [m3/min] is the volumetric flow and c [mol/m3] is the concentration of
urea. The dialysis liquid contains some of the same components as in blood (so that the blood
won’t be drained for important salts), but we assume that it contain no urea, that is, cD = 0.
We have countercurrent flow in the membrane unit (with blood and dialysis fluid entering at
opposite ends of the membrane unit as shown in the figure).
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For simplicity, we here assume that we have a perfect membrane unit, where the urea
concentration in the exiting blood is the same as in the entering dialysis fluid, i.e.,

cB,mem = cD = 0

This means that the returning blood contains no urea (we will relax this assumption in
Exercise 2.2).

Data. Urea is present in all the body fluids, not only in the blood. In this exercise we
assume that we have 50 liters of body fluid which initially (t = 0) contains 50 mmol/l of urea.
The membrane unit is connected for 240 minutes, with constant flows of 0.3 l/min blood and
0.5 l/min dialysis fluid. (This means that 72 liters of blood go through the membrane unit
during the four hours the patient is connected.) We thus have that

cB,0 = 50 mmol/l, cD = 0 mmol/l

qB = 0.3 l/min, qD = 0.5 l/min

V = 50 l, t = 240 min

Problem. How do the concentrations of urea in the blood (cB) and in the exiting dialysis
fluid (cD,mem) change with time?

Mass balance patient (dynamic, i.e., with accumulation). We start by formulating
the urea mass balance for the patient. The boundary (control volume) then includes the patient,
but not the membrane unit. We assume that urea is evenly distributed in all of the V = 50l
body fluids. The concentration of urea in the body cB(t) will decrease with time t when the
patient is connected to the membrane. This can be derived more exactly by setting up the
dynamic mass balance for the amount of urea n [mol] in the body. Using B = n in (2.8) gives

dn/dt = ṅin − ṅout [mol/s]

To simplify, we have here neglected the generation and conversion of urea by chemical
reactions in the body, that is, ṅgenerated = 0 and ṅloss = 0. We further have for the patient

n = V cB [mol]

ṅout = qBcB [mol/s]

ṅin = qBcB,mem [mol/s]

and we get with the assumption of constant volume V of body fluids:

V dcB/dt = qBcB,mem − qBcB

With the assumption cB,mem = 0 (perfect membrane unit) this gives the differential equation

V dcB/dt = −qBcB

Separation of variables gives dcB/cB = −(qB/V )dt, which upon integration gives

cB(t) = cB0 · e−qBt/V

With the given data, we have that (qBt/V ) = 0.3 l/min · 240 min/50 l = 1.44 and since
e−1.44 = 0.237 we get

cB(240 min) = 0.237cB0 = 0.237 · 50 mmol/l = 11.8 mmol/l

That is, during a period of four hours, the amount of urea in the blood is reduced to 23.7%
of its initial amount. This result was derived for an ideal membrane, but actual membranes
give similar values.
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Mass balance membrane units (steady state, that is, without accumulation).
Let us now formulate the urea mass balance for the membrane unit. The boundary (control
volume) now includes the membrane unit, but not the patient. The mass of blood and dialysis
fluid (and thereby of urea) within the actual membrane unit is relatively small, and we will
therefore neglect the accumulation of urea in the membrane unit. We then have dn/dt ≈ 0
where n here is the amount of urea accumulated in the membrane unit. (We couldn’t make this
assumption for the patient because the amount of body fluids is very large). The membrane has
two sides and we set up the steady state urea balance (in=out) for each side of the membrane
unit:

Blood side : qBcB = qBcB,mem + F [mol/s]

Dialysis fluid side : qD cD + F = qD cD,mem [mol/s]

The two equations are coupled by the amount F transferred through the membrane from the
blood to the dialysis fluid. We can eliminate F by adding the equations (or alternatively by
setting up a total mass balance over the membrane unit) and derive

Total (in = out) : qBcB + qDcD = qBcB,mem + qDcD,mem [mol/s] (2.16)

These mass balance equations are independent of how the actual membrane functions, that
is, they apply for both cocurrent and countercurrent flows. Equation (2.16) can be used to
calculate the urea concentration cD,mem of the existing dialysis fluid. In our case, with a
“perfect membrane unit” and countercurrent flow, (2.16) gives that the concentration of urea
in the exiting dialysis fluid is initially (t = 0)

cD,mem =
qBcB + qDcD − qBcB,mem

qD
=

0.3 · 50 + 0.5 · 0 − 0.3 · 0
0.5

= 30 mmol/l

and at the end of the treatment (t = 240 min) it decreases to cD,mem = (0.3 · 11.8/0.5) = 7.0
mmol/l.

Remark 1 Similarity of membrane unit and heat exchanger. The membrane unit is almost
identical to the shell-and-tube heat exchanger in Figure 5.2 (page 130), except that the tubes are
semi-permeable fibers where mass is transferred rather than heat. The blood flows through the fibers
(tubes) while the dialysis fluid flows countercurrently on the outside; this is the same as in a heat
exchanger.

Remark 2 Perfect membrane unit. For the “perfect membrane unit” assumption (cB,mem = 0)
to be true the following must hold:

• The flows are countercurrent (as shown in the figure)
• The membrane is sufficiently effective (for example, with a very large membrane contact area A),

so that we approximately have zero driving force at the end of the membrane where the blood
leaves, that is, ∆c = cB,mem − cD = 0.

• The flow of dialysis fluid qD [m3/s] is larger than the flow of blood qB [m3/s].

The need for the last assumption can be shown by setting cD = 0 and cB,mem = 0 into the total

mass balance (2.16) for urea. We find that cB/cD,mem = qD/qB and since cB > cD,mem (urea is

transferred from the blood to the dialysis fluid) we must then have that qD > qB.

Next are two follow-up exercises for the membrane example. It is well known from
heat transfer that countercurrent flow is more effective than cocurrent and in the first
exercise this is confirmed for mass transfer in a membrane.

Exercise 2.1 ∗ Perfect membrane unit with cocurrent flow. By mistake the patient is
connected to the membrane unit so that the flow is cocurrent, that is, the two flows enter at
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the same end. With a perfect membrane unit we can then assume cB,mem = cD,mem at the
exiting end. Assume also here cD = 0 (no urea in entering dialysis fluid).

(i) Use the total urea mass balance for the membrane unit to derive an expression for
cB,mem/cB = (1 − ǫ), where ǫ is the membrane unit’s “efficiency” (which was 1 for ideal
membrane with countercurrent flow). Note that ǫ should only depend on qB and qD.

(ii) Put this into the dynamic urea mass balance for the patient, and use the given data to
calculate the concentration of urea in the blood (cB) at the end of the treatment (t=240 min).
(You will find that the urea concentration is about double of that found with countercurrent
flow).

The next exercise should be done after you have read Chapter 5 on heat exchange.

Exercise 2.2 Mass balance for a real membrane unit. Here, we use a more detailed
model of a countercurrent membrane unit. The mass transfer though the membrane is assumed
to be described by Fick’s law:

F = kA∆c [mol/min]

where F [mol/min] is the amount of urea transferred, k [m/min] is the mass transfer
coefficient (or permeance) which is assumed constant, A [m2] is the area of the membrane, and
∆c = cB − cD [mol/m3] is the average (mean) concentration difference across the membrane.

Above we assumed a “perfect membrane unit” (or more precisely, we assumed that the

mass transfer is very effective so N
△
= kA/qD ≫ 1) where the local concentration difference

was 0 at the end where blood exits (∆c = cB,mem − cD = 0), but here we will not make this
assumption. Otherwise, we use the same data as given above, including cD = 0 (no urea in
entering dialysis fluid).

(a) Simplified model. In order to simplify the calculations, we first assume perfect
mixing on each side of the membrane (there is then no difference between cocurrent and
countercurrent flows), that is, we have ∆c = cB,mem − cD,mem along the whole membrane
unit.

(i) Eliminate cD,mem from the mass balance equations and use this to derive an expression
for cB,mem/cB = (1 − ǫ), where the membrane efficiency ǫ is a function of kA, qB , qD.

(ii) Compute the efficiency ǫ for the two cases N = 1 and N = ∞.
(b) Countercurrent flow membrane model. The simplified model gives valuable

insights, but it is too pessimistic because the actual average ∆c is larger.
(i) Compare the equations for heat exchange and mass transfer in a membrane, and explain

why the correct expression for the average ∆c in the membrane unit is the logarithmic mean
concentration difference,

∆clm =
∆c1 − ∆c2

ln(∆c1/∆c2)

where for countercurrent flow the local concentration differences at the two ends are ∆c1 =
cB,mem − cD and ∆c2 = cB − cD,mem.

(ii) Find the concentration cB at t = 240 min for the two cases N = 1 and N = ∞. Also
find the efficiency ǫ for the two cases.

2.3 Mass balances without accumulation

The simplest balance, but also the most important one in engineering practice, is
the total mass balance for a process without accumulation, see equation (2.13) and
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out

C

Figure 2.4: Mass balance without accumulation

Figure 2.4:
min = mout [kg; kg/s]

This balance applies to the following two cases:

1. Batch process with no accumulation; min = mout [kg] (over period ∆t)
2. Steady-state continuous process; min = mout [kg/s]

Note that min = m1 + m2 + · · · can consist of several inflows, and correspondingly
mout = mI + mII + · · · can consist of several outflows. By writing m = ρV , where
V [m3] is the volume and ρ [kg/m3] the density, the total mass balance becomes
ρinVin = ρoutVout. For the special case of constant density, that is, ρin = ρout, the total
mass balance can then be written as a “volume balance” (the quotation marks are
absolutely necessary as volume is not a conserved quantity):

Vin = Vout [m3; m3/s] (only for constant density!)

The mass balance (2.13) applies also to component mass for cases without reaction
(here written for an arbitrary component A):

mA,in = mA,out [kgA; kgA/s; molA; molA/s] (no reaction!) (2.17)

You may think it is trivial to set up such balances, but in practice it is not always so
simple unless you work systematically. The following procedure is recommended (for
more details see Table 2.2, page 67):

1. Obtain an overview of the problem by drawing a flow sheet
2. Summarize the stream data – either in a table or directly on the flow sheet
3. Define the control volume(s) (usually one for each unit)
4. Formulate balances (for total mass, moles, energy, etc.) for each control volume
5. Solve the equations

When solving the equations by hand, you need to start the calculations at the
right point in the process, for example, by choosing a “clever” basis. This usually
corresponds to specifying a flow rate, for example, at the reactor feed. The idea is
to have sufficient information at some point to start the calculations. Alternatively
(and this always works!) you can use the general (systematic) approach: Formulate all
the equations (mass balances, etc.) and solve them simultaneously, for example, using
MATLAB or a spreadsheet program.

We now consider some examples of mass balance without accumulation. First, we
consider mixing processes (which are very important industrially), and then proceed
in the next section to more complicated processes with recycle.
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Example 2.5 Continuous mixing process. 10 kg/s of a 5% (meaning 5 weight%) ethanol
solution is produced by mixing two streams from two tanks, that contain 1% and 41% ethanol,
respectively (the rest is water, all on a weight basis). How much is needed from each tank?

Solution. The flow sheet with stream data is shown in Figure 2.5(a). E denotes ethanol.
We lack data for the two feed flows which we denote m1 and m2 [kg/s] (if desirable, you can
use dot notation, ṁ1 and ṁ2, to explicitly show that these are flow rates, but here we omit
the dots and instead include the units in the equations).

The steady-state total mass balance (“In=Out”) gives

m1 [kg/s] + m2 [kg/s] = 10 kg/s

The component balance for ethanol [kg E/s] gives:

0.01 kg E/kg · m1 [kg/s] + 0.41 kg E/kg · m2 [kg/s] = 0.05kg E/kg · 10kg/s

Thus, there are two equations with two unknowns. We find m1 = 9 kg/s and m2 = 1 kg/s.

Mixer Mixer

Stream

Stream

Stream

Continuous Batch

Figure 2.5: Mixing of streams in (a) continuous process (Example 2.5) and (b) batch process
(Example 2.6)

The following example is very similar, but instead of a continuous process with a
rate balance [kg/s], we consider a batch process where we balance [kg] over a certain
period of time.

Example 2.6 Batch mixing process (beaker). From clean water and an aqueous solution
with 5 % S (NaCl), we want to produce 1 kg of 2% NaCl (everything is in weight%). How
much is needed of each reactant?

Solution. The flow sheet is shown in Figure 2.5(b). The two unknown feeds are denoted
m1 and m2 [kg]. The total mass balance “In=Out” gives

m1 + m2 = 1 [kg]

The component balance for S gives:

0 + 0.05m2 = 0.02 · 1 [kg S]

and we find m2 = 0.4 kg (water) and m1 = 0.6 kg (S).

The next example illustrates that volume is not a conserved quantity unless one
assumes constant density, and illustrates the choice of basis and scaling.
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Mixer

Figure 2.6: Another mixing example

Example 2.7 Another mixing example. A stream of 2 m3/h with 10 mol/l NaOH
(stream 1) is to be diluted with a solution of 0.5 mol/l NaOH (stream 2) to produce a product
with 2 mol/l NaOH (stream 3). How much of stream 2 must be added?

Solution. The flow sheet is shown in Figure 2.6. We choose 1 l of stream 1 as a basis
(even though it is specified that the amount is 2 m3/h; we will “fix this up” later). The total
mass balance is m1 + m2 = m3 [kg] and by introducing the density ρ = m/V [kg/m3] we get

ρ1V1 + ρ2V2 = ρ3V3

where we have V1 = 1 l with our assumed basis. The densities are not given so we do not
have enough information to solve this exercise. We therefore assume that the density is
the same for all streams, that is, ρ1 = ρ2 = ρ3 (this is of course not entirely correct, but
it is common to neglect mixing volumes). The mass balance then gives the “volume balance”

V1
|{z}

=1l

+V2 = V3 [l]

The mass balance for NaOH on molar basis gives (no assumption of equal density is needed
here)

10 · 1 + 0.5V2 = 2V3 [mol NaOH ]

and by combining the two equations we find V2 = 5.33l which is the amount that is needed
for 1 l of stream 1. To consume 2 m3/h of stream 1 we need to scale everything by the factor
2 [(m3/h)/l], that is, we need 10.66 m3/h of stream 2.

Example 2.8 Mixing of gasoline. 98 octane gasoline with 1 weight% aromatics is to be
produced by mixing three fractions. Fraction 1 is 90 octane with 0.2% aromatics. Fraction 2
is 105 octane with 0.2% aromatics. Fraction 3 is 95 octane with 0.5% aromatics. How much
is needed of each fraction?

For simplicity, assume that the octane number p of the blend (outstream) is the mass
average of the octane numbers pi of the streams that are mixed (instreams):

p =
Σimipi

Σimi
(linear mixing of property p on mass basis) (2.18)

Solution. Write balances (“In=Out”) for total mass, aromatics and octane:

m1 + m2 + m3 = mout [kg]

0.2m1 + 2m2 + 1.5m3 = 1 · mout [kg aromatics]
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90m1 + 105m2 + 95m3 = 98 · mout [octane number]

We use mout = 1 kg total mass as a basis, and then have three linear equations with three
unknowns. This is easily solved, for example, using MATLAB:

A = [1 1 1; 0.2 2 0.5; 90 105 95]; b=[1; 1; 98];

m=inv(A)*b

This gives the mass fractions (m): 0.1111, 0.3556 and 0.5333.

Example 2.9 Distillation of methanol.

water
methanol

Methanol product

methanol
butanol

water

Fusel draw-off

Feed

Feed

methanol

methanol
water

water

water

methanol

butanol

Water product

Figure 2.7: Distillation column with two feeds and side stream

In a continuous methanol plant there is a distillation column where methanol is removed
as a top product and water as a bottom product. The column has two feeds. There is some
butanol in one of the feeds and the butanol is removed as a “fusel oil” in the middle of the
column. (Distillation is based on differences in volatility, and one would expect that butanol,
which boils at a higher temperature than water, would be removed at the bottom of the column.
This does not happen in this case because water and butanol in the liquid phase “do not like
each other,” and butanol is therefore “pushed up” the column). More information is given
in Figure 2.7 (all numbers are in mol-%). Steady-state operation is assumed. We want to
determine the amount of feed 2 (n2).

(a) How many independent mass balances can be formulated for the column?
(b) How much additional information do you need to solve the problem?
(c) Is the system solvable if it is specified that the fusel contains 2% methanol (if yes, find

the answer)?
(d) Is the system solvable if instead it is specified that the amount of fusel is n4=20 mol/s

(if yes, find the answer)?
Solution. (a) We can formulate 3 independent mass balances:

Total : 800 + n2 = 700 + n4 + n5 [mol/s]

Methanol : 0.7 · 800 + 0.2n2 = 0.995 · 700 + xn4 + 0.002 · n5 [molM/s]

Butanol : 0.0007 · 800 = 0.045 · n4 [molB/s]

Note that we have converted the percentages to mole fractions, so x represents the mole
fraction of methanol in the side stream. Also note that x+y+0.045 = 1 so the water fraction
y in the side stream can be found when we know x.
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(b) In summary, we have 3 independent equations with 4 unknowns: n2, n4, n5, x. Thus,
we need 1 extra piece of information (e.g., 1 additional equation, or the value of 1 of the
unknowns).

(c) We are given x = 0.02, and since x is an unknown the problem should now in principle
be solvable (the only potential problem is that the solution may be non-physical, e.g., negative
flows). Let us proceed with the solution. The amount of fusel (n2) can be obtained from the
butanol balance: n4 = 0.0007 · 800/0.045 mol/s = 12.44 mol/s. Substituting this into the two
other balances gives:

800 + n2 = 700 + 12.44 + n5 [mol/s]

560 + 0.2n2 = 696.5 + 0.249 + 0.002 · n5 [molM/s]

We have 2 equations in 2 unknowns. The last equation (the methanol balance) gives n2 =
683.7 + 0.01n5 which inserted into the total balance gives n5= 779.1 mol/s and we find
n2=691.5 mol/s (which is a physical solution, so it is OK).

(d) The problem is not solvable, because the specification n4 = 20 mol/s is not consistent
with the previous information (the butanol balance). In addition, we are missing a piece of
information to find the distribution between methanol and water.

Comment. Here, we solved the equations by hand. A more general approach is to add any

additional information as extra equations, and then solve the resulting equation set numerically.

For example, in part (c) we can add the equation x = 0.02 and then get 4 equations in 4 unknowns.

However, note that the equation set is not linear in this case because of the term xn4 in the mass

balance for methanol, so a non-linear equation solver would be needed. In part (d), we would not find

any solution, and most likely the equation solver would issue an error message such as “singular

matrix.”

Here are some exercises that you can solve yourself. State clearly any additional
assumptions!

Exercise 2.3 Mass balance distillation.∗ A 2000 kmol/h feed stream F with 60 mol%
methanol and 40 mol% water is separated in a distillation column and gives two products: A
“light” methanol product (distillate D) which contains 2 mol% water, and a “heavy” water
product (bottom’s B) which contains 5 mol% methanol.

(a) Draw a flow sheet and formulate two mass balances.
(b) Calculate the amount of methanol product.

Exercise 2.4 What is the best way to rinse a beaker?∗ We have a 0.5 l beaker where
there is a residue of 10 ml water solution with some salt S, with concentration 100 g S/l. We
want to rinse the beaker using pure water. After each rinsing there is a residue of 10 ml.

(a) What is the concentration in the beaker after two rinsings with 200 ml water each?
(b) What is the concentration in the beaker after four rinsings with 50 ml water each?
(c) What is the best way to rinse a beaker if we want to use as little water as possible?

Exercise 2.5 ∗ Absorption column. The absorption process in Figure 2.8 uses oil (stream
1) to remove benzene from polluted air (stream 2). (a) How many independent mass balances
can be set up? (b) Calculate the amount of oil (stream 1).

Exercise 2.6 An intermediate product stream has the following composition on weight basis:
23% HNO3 and 57% H2SO4 (the rest is water). However, this does not match the desired
composition of the sales product: 27% HNO3 and 60% H2SO4. Thus, we need to mix the
intermediate with concentrated HNO3 (90%) and concentrated H2SO4 (93%). How much of
the intermediate is used to make 1000 kg product?
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Stream

StreamStream

weight % air
weight % benzene

weight % oil
weight % benzene

weight % air
weight % benzene

100% oil

Stream

Figure 2.8: Absorption column

    40.0 kg/h     30.0 kg/h 

    0.900 kg A/kg     0.600 kg A/kg 

    0.100 kg B/kg     0.400 kg B/kg 

100.0 kg/h     

0.500 kg A/kg                                     1                       2                                             3 

0.500 kg B/kg 

      30.0 kg/h 

0.300 kg A/kg 

0.700 kg B/kg 

Figure 2.9: Flowsheet of simple example process
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Exercise 2.7 The continuous process in Figure 2.9 consists of a separator, a mixer (shown
very simplified as an arrow that is added to stream 1) and another separator. Find the amounts
and compositions of streams 1, 2 and 3 when steady-state conditions are assumed.

Example 2.10 Linear interpolation. In Perry’s Handbook (1984), the following data are
found for the density ρ [g/ml] of ethanol-water mixtures at 20 oC (weight% ethanol):

0.99823(0%), 0.98187(10%), 0.96864(20%), 0.95382(30%)

0.93518(40%), 0.91384(50%), 0.89113(60%), 0.86766(70%)

0.84344(80%), 0.81797(90%), 0.80424(95%), 0.78934(100%)

Problem: Determine the density of a mixture with 63 weight% ethanol using linear
interpolation.

Solution. Linear interpolation corresponds to plotting the given values for y (here ρ) as a
function of x (here a weight fraction) and extending straight lines between neighboring points.
With two neighboring points (x1, y1) and (x2, y2) the value of y is then for a given x given
by:

y = (1 − α)y1 + αy2; α =
x − x1

x2 − x1
(2.19)

The density of a mixture with 63 weight% ethanol is then estimated by a linear interpolation
to be 0.7 · 0.89113 + 0.3 · 0.86766 = 0.88409 g/ml.

Comment 1: Draw a figure with ρ as a function of weight fraction and you will see that
this is correct. Physically, this means that one can produce a mixture with 63 weight% by
mixing 0.7 weight fraction of a 60%-mixture and 0.3 weight fraction of a 70%-mixture. This
is also known as the lever rule.

Comment 2: Linear interpolation is accurate as long as the data points lie close to each
other. If we only had data for 0% and 100% then we would by linear interpolation find the
density 0.37 ·0.99823+0.63 ·0.78934 = 0.8666 g/ml which is quite different from the “correct”
value of 0.88409 g/ml found above.

Exercise 2.8 Density of ideal mixture. Show that if you neglect the mixing volume (ideal
mixture), then the density of a mixture can be calculated using the following formula (“mixing
rule for density of ideal mixture”)

ρid = v1ρ1 + v2ρ2 =
1

w1
ρ1

+ w2
ρ2

(2.20)

where v1 and v2 are volume fractions (before mixing), w1 and w2 are mass fractions (for
mass, before or after mixing is the same), and ρ1 and ρ2 are the density of the pure liquids.

This implies that for an ideal mixture it is not correct to use linear interpolation
with mass fractions for density, as done in Example 2.5. Rather, one should use volume
fractions, or eq. (2.20), as illustrated next.

Example 2.10 (page 54) continued. Here, we use the more correct interpolation formula
(2.20) to estimate the density of a mixture with 63 weight% ethanol

ρ =
1

w1
ρ1

+ w2
ρ2

=
1

0.7
0.89113

+ 0.3
0.86766

= 0.88396 g/ml

which is slightly lower than the value 0.88409 g/ml found in Example 2.10.
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Exercise 2.9 ∗ Mixing volume for ethanol-water. Use the density data from
Example 2.10 to determine the volume when you mix 1 l 96-volume% ethanol and 1 l water
at 20 oC. You will find that there is a “loss,” but before you do this, answer subtasks (a)-(d):

(a) What is the mass composition of 96 volume% ethanol? (Note that volume% always
refers to volumes before mixing!)

(b) Use the given density data to calculate the mass of water and ethanol in 1 l 96 volume%
ethanol.

(c) We will now look at a mixture of 1 l 96 volume% ethanol and 1 l water. Calculate the
composition of the mixture in weight% and volume-%.

(d) Use the given density data and eq. (2.20) to determine the density of your mixture.
(e) Finally: What is the volume of your mixture?
Solution. (a) 94.99 weight% ethanol. (b) 40.25 g water and 763.98 g ethanol. (c) 42.39

weight% ethanol and 48.20 volume% ethanol (the answer is somewhat more than 48 volume-%
because volume is not a conserved quantity, and the original 1 l of 96% therefore corresponds
to more than 1 l of pure water + ethanol). (d) 1/((w1/ρ1)+(w2/ρ2)) = 1/((0.239/0.91384)+
(0.761/0.93518)) = 0.92999 g/ml. (e) And finally: mixing reduces the volume from 2 l to
1.938 l – this is because water and ethanol “like each other.”

2.4 Recycle

Recycle

Reactor feed

Reactor

Fresh feed Reactor product

Figure 2.10: Flowsheet for process with reactor, separation and recycle

Recycle is a very effective and common method to

1. increase the yield of a process (financial gain)
2. avoid emissions (environmental gain)

Especially, it is common with chemical reactions to recycle unreacted reactants to
increase yield. An example can be seen in Figure 2.10 where unreacted A is recycled.
Note the difference between the “fresh” feed (1) to the process as a whole and feed
(2) to the reactor. The conversion of reactant A in the reactor is only 9.9% (per pass),
but because of the recycle the conversion of A in the process as a whole is 98.0%.
(The reasons for the low conversion per pass can be many: Maybe component B
causes “coking” in the reactor if its concentration is too high; maybe there is a reverse
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reaction that limits the conversion; maybe the reaction is exothermic and there is a
maximum temperature allowed.)

Exercise 2.10 ∗ Check of solution. Check that the solution given in the flow sheet in
Figure 2.10 satisfies the mass balances.

In practice, it may take some time to “build up” the amount and composition of
the recycle stream to its steady state value. Here, we go “directly” to the steady state,
that is, we assume that the amount of recycle has reached the value where it no longer
changes.

With recycle one must make sure that all components that cannot react (surplus
reactants and inerts) have a “way out” – otherwise they will accumulate in the process
and the recycle stream will go to infinity. Because of this one must often remove or
purge a fraction of the recycle stream to avoid accumulation of inerts (see Example 2.11
and Figure 2.11, page 56).

Let us now consider in detail a similar recycle example, where a purge stream is
needed to avoid accumulation of inerts.

Example 2.11 Reactor with recycle and purge. Consider the process in Figure 2.11.

5

3 4

7

2

6

1

      N
A

A (97%)
N (3%)
100 mol/s

B

A
N

Split

Reactor

 A -> B
Separator

Figure 2.11: Continuous process with reaction, separation, recycle and purge (used also in
EXCEL spreadsheet example).

The feed is 100 mol/s and contains components A (97%) and N (3%), where N is an inert
component. In the reactor, A is converted to B according to the reaction

A → B

The reaction is reversible and goes to equilibrium. Therefore, at the exit of the reactor (stream
3) it is given that

K =
cB

cA
=

nB,3

nA,3
= 0.3911

Unreacted A is separated from B and is recycled to the reactor. Let us initially assume ideal
separation, where all of components A and N go in stream 5, and all of B goes to the product
(stream 4) (we will later look at the case where a fraction x of the B from the reactor goes
to stream 5, but so far it is assumed that x = 0). To avoid accumulation of the inert in
the recycle system, we need to introduce a purge (stream 7). However, the purge gives an
undesirable loss of reactant A, which can be reduced by increasing the recycle.

Question. Find the amount of recycle that results in a loss of A of 9 mol/s.
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Without recycle. To motivate the use of recycle, let us first look at the case without
recycle, that is, n6 = 0. There are three components, so we can formulate three independent
component (mass) balances for the reactor

nA,3 = nA,2 − ξ = 97 − ξ [mol A/s]

nB,3 = nB,2 + ξ = ξ [mol B/s]

nN,3 = nN,2 = 3 [mol N/s]

Here, the “extent of reaction” ξ [mol/s] is the amount converted according to the reaction
A → B (which from the stoichiometry of the reaction A → B equals the amount of A reacted
and the amount of B formed). Furthermore, nB,3/nA,3 = K = 0.3911 (equilibrium). Inserting
from the mass balance for A and B this gives ξ

97−ξ
= 0.3911 and we find ξ = 27.27 [mol/s].

The mass balances then give for the reactor product (stream 3)

nA,3 = 69.73 [mol A/s]

nB,3 = 27.27 [mol B/s]

nN,3 = 3 [mol N/s]

With an ideal separator we then find that the product (stream 4) is 27.27 mol B/s, and there
is a loss of 69.73 mol A/s in stream 7 (= stream 5 in this case without recycle). This is much
larger than the loss of 9 mol/s that we are aiming for, so we clearly need to introduce recycle.

With recycle. We recycle a fraction f of stream 5 to the reactor (stream 6). We want
to find the value of f that results in a loss of A of 9 mol/s. The solution (stream data) is
summed up in the table below. All numbers are in mol/s.

1 2 3 4 5 6 7
Fresh feed Rx.feed Rx.prod Prod. Recycle Purge

A 97 313 225 0 225 216 9
B 0 0 88 88 0 0 0
N 3 75 75 0 75 72 3

Total 100 388 388 88 300 288 12

The numbers in this table were obtained by solving the mass balance “by hand” as follows:

1. The fresh feed (stream 1) is known and we also have information about the exit streams
(streams 4 and 7), so we start by formulating balances around the whole process:

2. Stream 7 (purge) can be set up directly: it contains 9 mol/s A (given loss) and 3 mol/s N
(from a balance for N over the whole process).

3. Stream 4 (product) is also easy to find: From a balance for A over the whole process, it
follows that 97 − 9 = 88 mol/s A is converted, and from the stoichiometry this must be
equal to the amount of B in stream 4.

4. ...... which is equal to the amount of B in stream 3.
5. From the equilibrium, the amount of A in stream 3 is equal to 88/0.3911 = 225 mol/s
6. .... which is equal to the amount of A in stream 5.
7. The compositions of streams 5 and 7 are equal, so that the amount of inert (N) in stream

5 is 3
9
· 225 = 75 mol/s.

8. We can now calculate stream 6 (=stream 5 - stream 7),
9. and finally, stream 2 (=stream 1 + stream 6), and we can fill in the rest of the table.

Comment. The amount of recycle (stream 6) is 288 mol/s which is 2.88 times the amount
of the fresh feed (stream 1). This means that the recycle fraction is f = 288/300 = 0.96. We
note that by recycling unreacted A, we have been able to reduce the loss of A from 69.73 mol/s
to 9 mol/s. This loss can be further reduced by
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1. Increasing the recycle fraction f . The loss of A can in theory be reduced to 0 by letting
f → 1, but the recycle flow will then go to infinity.

2. Introducing a new separation process which separates A from N.

The optimal choice of process and process conditions is in general determined by economics.

2.5 Systematic formulation and solution of mass

balances

In more complicated cases it is difficult to solve the mass balances “by hand” as done
in the example above. Instead, we must be systematic and formulate all the equations
(balances) before solving them. This is illustrated next.

Example 2.11 continued. Detailed equations for reactor with recycle. We want to
formulate all the equations for the process in Figure 2.11. This involves balances for the three
components over each unit (we do not include the total mass balance since this is the sum
of the three component balances). For the separator, we assume that a fraction x of B from
the reactor goes to stream 5, and assume ideal separation for the other two components. We
further assume that the recycle fraction is f .

The mass balance equations are: Mixing point. 3 mass balances (stream 2 = stream
1 + stream 6):

nA,2 = nA,1 + nA,6

nB,2 = nB,1 + nB,6

nN,2 = nN,1 + nN,6

Reactor. 3 mass balances (stream 3 = stream 2 + generated by reaction)

nA,3 = nA,2 − ξ

nB,3 = nB,2 + ξ

nN,3 = nN,2

Separator. 3 mass balances (stream 4 + stream 5 = stream 3):

nA,4 + nA,5 = nA,3

nB,4 + nB,5 = nB,3

nN,4 + nN,5 = nN,3

Splitter. 3 mass balances (stream 5 + stream 7 = stream 5):

nA,6 + nA,7 = nA,5

nB,6 + nB,7 = nB,5

nN,6 + nN,7 = nN,5

We have also some additional information that must now be stated in equation form. First,
for the reactor, we have the equilibrium relationship:

K = nB,3/nA,3

For the separator, there are 3 specifications for the separation of each component:

nA,5 = fAnA,3; fA = 1
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nB,5 = fBnB,3; fB = x

nN,5 = fNnN,3; fN = 1

For the splitter, it is given that the 3 components split the same way (with recycle fraction
f):

nA,6 = f · nA,5

nB,6 = f · nB,5

nN,6 = f · nN,5

In all there are 19 equations. How many unknowns are there? Stream 1 (nA,1, nA,2, nA,3) is
given and we further assume that the values of K (the equilibrium constant), f (the recycle
fraction) and x (the separation factor for B) are given. Thus, we have 19 unknowns: 6
unknown streams (stream 2 to stream 7) each with 3 unknown amounts, and in addition
the unknown extent of reaction ξ. In summary, we have 19 equations and 19 unknowns, so if
we assume that the 19 equations are independent (which they are), the system of equations
has a unique solution.

Comment: In our “hand calculations” (page 57), f was not given, so we had 20 unknowns.

But on the other hand, we specified nA,7 = 9 mol/s, so that we had 20 equations.

In general there are three ways of solving such problems:

1. Simultaneously: Solve all the equations as one large set of equations. This is the
most general method, but it requires that we have an equation solver, for example
we may use MATLAB. Today, most commercial process simulators use this method.

2. Sequentially: Start with the feed and proceed sequentially through the process. If we
encounter any unknown streams, then we make a guess of their value, for example,
by setting them equal to zero. We may then iterate until we achieve convergence
where the answer no longer changes. This method is commonly used when using a
spreadsheet (see below).

3. By hand: It is here very important to find a “smart” point to begin the calculations.
This can, for example, involve making balances over the whole process (as we did in
the example above, page 56-58) or assuming a basis somewhere. Often, it is smart
to begin with the reactor, for example, by choosing a basis of 100 mol/s reactor
feed. If this basis is not consistent with other given information, we can later scale
all the streams.

2.6 Use of spreadsheet program

Here, we solve the equations in Example 2.11 (continued) sequentially using a
spreadsheet program. The example also provides an introduction to Excel.

Example 2.11, further continued. Spreadsheet solution (and an introduction to
Excel), see Table 2.1.

For the given example we use the following sequential solution procedure:

1. We start with stream 1 (given).
2. We assume, initially, that the recycle (stream 6) is 0 mol/s (this is correct for the case

without recycle, but not for the case with recycle).
3. We now know stream 2 and with the assumption of equilibrium at the exit of the reactor

we can determine the extent of reaction ξ and the reactor product (stream 3).
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Table 2.1: Excel spreadsheet for mass balance: Without recycle

A B C D E F G H
1 exercise w/ SPREADSHEET
2 Data
3 Feed 100
4 Composition 0,97 A
5 0 B
6 0,03 N
7 equilibrium cont 0,3911
8 x (fract B str5) 0
9 f (recycle. fract.) 0,96
10
11
12 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7
13 Amount A 97 97 69,72899 0 69,72899 66,93983 2,789159
14 Amount B 0 0 27,27101 27,27101 0 0 0
15 Amount N 3 3 3 0 3 2,88 0,12
16 Total 100 0 100 27,27101 72,72899 69,81983 2,909159
17
18 Extent of reaction 27,27101

4. With the given data for the separator, we can calculate streams 4 and 5. We will consider,
initially, the case with ideal separation (x = 0).

5. With the given recycle fraction f , we find stream 7 and a “new” stream 6.
6. We then return to step 3 and find a new stream 2; from this we calculate a new stream

3, etc. The iterations continue until it converges to the steady state solution, that is, until
n6 no longer changes (this can take many iterations, especially if f is close to 1).

This procedure is used in the Excel spreadsheet described in the following.

START OF EXCEL MINI-COURSE
See Table 2.1.

1. Write the title in cell C1 (For spreadsheet novices: Click first on cell C1 with the mouse.
This will highlight the border around the cell. Enter the text (do not be concerned if
the text continues outside the cell) and press ‘‘Enter.’’

2. Enter the process specifications: Begin by entering ‘‘Data’’ in cell B2, and continue
filling data into the cells in rows 3 to 9. Note that in my version of Excel, a comma
is used as a decimal point (see Table 2.1), that is, I enter 0,97 instead of the ‘‘normal’’
0.97 (the decimal point standard can be changed by going to Tools, Options, International).

3. Fill in the text in cells A13-A16 and in cells B12-H12 (Stream 1 to 7). We now formulate
the mass balances.

4. Begin by calculating the amount of A in stream 1 (cell B13). You can do this by entering
‘‘=B3*B4’’ in cell B13, that is, by entering cell addresses. But as all veteran spreadsheet
users know, it is quicker and simpler to click on the individual cells you are referring
to instead of entering cell addresses. So click instead on cell B13 and enter ‘‘=’’. This
tells the spreadsheet that you are about to enter a formula. Then choose B3 (total amount
of feed) with the mouse (the letters ‘‘B3’’ will now appear in cell B13). Enter the symbol
for multiplication, ‘‘*’’. Then choose cell B4 (fraction A) with the mouse. The formula
is now complete; finish by pressing ‘‘enter.’’
The number 97 should now appear in cell B13. Do the same with components B and N in stream
1 (cells B14 and B15).

5. Now, we want to enter the total amount of stream 1 in cell B16. It is of course equal
to B3, but do not use this. Instead, we want to set cell B16 equal to the sum of the three
cells above (the reason for this is that we will later copy this to all the other total
amounts). This can be done by entering = in cell B16. The text SUM will now appear above
cell A1. Click on this. The program will now propose to add the three cells above -- reply
OK to this.

A. Without recycle.
6. Go to stream 6 and fill in 0’s for the amounts of A, B and N in stream 6 -- we assume
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for now that we have no recycle.
7. The formula for the total amount of stream 6 in cell G16 can be copied from cell B16 by

using ‘‘Copy’’ (ctrl-C) and ‘‘Paste’’ (ctrl-V). You might as well continue doing this
for the total amount also of the other five streams.

8. Stream 2 is the sum of stream 1 and stream 6. You can first go to A in stream 2 (cell
C13) and enter = and then select A in stream 1 (cell B13), enter +, select A in stream
6 (cell G13), and press enter. The resulting formula can be copied also for components
B and N in the two cells below (for example by using ctrl-c and then ctrl-v twice). 97,
0, 3, 100 should now appear for stream 2.

9. We are now ready to calculate stream 3, which is the reactor product. We know the feed
(stream 2) and the equilibrium constant K, so in principle this should be fine. We wish
to use the extent of reaction ξ as an (auxiliary) internal variable. We have from the
mass balance over the reactor that nA,3 = nA,2−ξ; nB,3 = nB,2+ξ. At the exit of the
reactor we have equilibrium, nB,3/nA,3 = K. By combining these two equations we are
able to derive ξ = (K·nA,2−nB,2)/(1+K). With the given cell addresses this is equal
to (B7*C13 - C14)/(1+B7). Enter this into the auxiliary cell D18. After pressing ‘‘enter’’
the number 27.27101 should appear.

10. You can now calculate stream 3: nA,3 = nA,2 − ξ, nB,3 = nB,2 + ξ, nN,3 = nN,2. Enter
these formulas by using the calculated value of ξ in cell D18 (for example ‘‘=C13-D18’’
in cell D13). The numbers 69.73, 27.27, 3, 100 should now appear for stream 3.

11. Stream 5 contains: all A from stream 3 (‘‘=D13’’ in cell F13) , the fraction x of B from
stream 3 (=D14*B8 in cell F14) and all N from stream 3. Since x=0, 69.73, 0, 3, 72.73
should appear for stream 5.

12. Stream 4 = Stream 3 - Stream 5 (‘‘=D13-F13’’ in cell E13; and a copy of this in the two
cells below). It should appear 0, 27,27, 0, 27,27 in stream 4.

B. Let us now continue with recycle included.
13. Stream 6 (recycle) is a fraction f of stream 5 (‘‘=F13*B9’’ in cell G13). Excel will display

an error message about a ‘‘circular reference.’’ This is because stream 6 affects itself
via the calculation of stream 2 etc. To fix this click on Tools on the top menu and then
Options and then Calculation. Choose manual, check iteration and set Maximum iterations
to 1.

14. Now, try calculating stream 6 again (‘‘=F13*B9’’ in cell G13). You should not see any
error message. Continue by filling in the corresponding equations for components B and
N. It should appear 66.94, 0, 2.88, 69.82 for stream 6.

15. Stream 7 = stream 5 - stream 6 (‘‘=F13-G13’’ in cell H13 etc.). It should appear 2.79,
0, 0.12, 2.91 for stream 7.
Your spreadsheet should now be as shown in Table 2.1.

16. You can now continue calculating by pressing the F9 key. Each time you press F9, the new
value for stream 2 will be inserted and a new calculation will be carried out. Keep F9
pressed until the calculation converges (with x=0 and f=0.96 we should end up with a total
of 12.00 [mol/s] in stream 7 (purge) and 288.00 [mol/s] in stream 6 (recycle); see the
table on page 57.

We will now make use the main strength of a spreadsheet: How easy it is to change the data
and recalculate. Enter for example x=0.2 (20% of B goes in stream 5). By keeping F9 pressed,
you will find that the amount purged (stream 7) is 14.75 [mol/s] and the amount recycled
(stream 6) is 354.03 [mol/s].

END OF EXCEL MINI-COURSE

Solve the following on your own, using the spreadsheet from the previous Example:

Exercise 2.11 ∗ (a) What is the purge and recycle if x = 0.5 and f = 0.96?
(b) What is the purge and recycle if x = 0.5 and f = 0.99?
(c) What is the purge and recycle if the feed contains 99% A and 1% N (x = 0, f = 0.96)?

Solve the following on your own, using hand calculations (x = 0):

Exercise 2.12 ∗ (a) What is the recycle (stream 6) if the loss of A is only 1 mol/s? (b) What
is the recycle (stream 6) if the feed does not contain any inert (that is, the feed is 100 mol
A/s) and we desire 0 loss of A?
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Recycle

Reactor feed

Reactor

Fresh feed Reactor product

1 mol-% A

90 mol-% A

Figure 2.12: Flow sheet for exercise process with reactor, separation and recycle

Exercise 2.13 ∗ Consider the process in Figure 2.12 where the “heavy” recycle stream (stream
4) is 2000 mol/s. What is the reactor conversion for each pass (XA = (nA,2 − nA,3)/nA,2) ?

Exercise 2.14 Consider the process in Figure 2.12 where the reactor conversion for each
pass is 3% (i.e., XA = (nA,2 − nA,3)/nA,2 = 0.03) ? What is the recycle?

Exercise 2.15 Consider the process in Figure 2.12 where we have equilibrium at the exit of
reactor with Kx = x2

B/xA = 0.1. What is the recycle flow?

You may not get very excited about the reactions A → 2B or A → B used in the
above examples, but this avoids confusing the issue. The approach for real reactions
is very similar; and we will take a closer look at balances for systems with chemical
reactions in Chapter 3.

2.7 Examples of recycle without reaction

Let us now take a look at an example of recycle without reaction.

Example 2.12 Continuous crystallization process with recycle. 5000 kg/h of an
aqueous solution with 20% (all numbers are in weight%) of a potassium salt (abbreviated K)
is mixed with a recycle stream. This is sent to an evaporator where water is removed so that
the stream now contains 35% K. This stream is sent to crystallization/filtration. The filtrate
(liquid) with 30% K is recycled. The filter cake (product) consists of mostly solid crystals (K),
but 1/26 of the product is remaining liquid (filtrate). Determine all the stream amounts.

Solution. The flow-sheet is sketched in Figure 2.13 where we have introduced the
(unknown) mass flows mi [kg/h] for five streams. We have not introduced a symbol for the
combined feed to the evaporator because this is strictly speaking unnecessary if we choose the
control volume around the evaporator including the mixing point as shown in the figure.

Note that in the flow sheet we have split the product (filter cake) in two imaginary streams:
Crystals (m4) and filtrate (m5). It is specified that the product consists of 1/26 liquid, that
is, we have the following extra piece of information (which is not shown on the flow sheet)

m5 = (m4 + m5)/26 or m4 = 25m5 (2.21)
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Feed
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Crystals
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Recycled filtrate

Balance over 

the whole process

Figure 2.13: Continuous crystallization process with recycle

We have two units and can formulate balances around each of these. We choose the two
control volumes as the whole process and the evaporator including the mixing point (we could
have replaced one of these with the crystallizer; try this). For each of the two control volumes
we can set up a total mass balance and a component mass balance for K.

Total balance and component balance for K (“Out = In”) over the whole process:

5000 = m1 + m4 + m5 [kg/h] (2.22)

0.20 · 5000 = 1 · m4 + 0.30m5 [kgK/h] (2.23)

Total balance and component balance for K over the evaporator including the mixing point:

5000 + m3 = m1 + m2 [kg/h] (2.24)

0.20 · 5000 + 0.30 · m3 = 0 + 0.35m2 [kgK/h] (2.25)

This gives 5 equations with 5 unknowns. The five equations can be solved simultaneously.
Alternatively, for hand calculations, we should start at a point where we have sufficient

information. If it is difficult to begin, it is often smart to choose a basis for a stream in the
recycle loop that has a known composition (and then rescale all the streams at the end to
match the given feed stream). For example, we could choose m2 = 100 kg as a basis, and start
applying balances from this point.

However, in our case, we can avoid this by starting with the K-balance over the whole
process; from (2.21) we have m4 = 25m5 which inserted into the total balance for K (2.23)
gives m5 = 39.53 kg/h and m4 = 988.14 kg K/h. The total balance over the whole process
(2.22) then gives m1 = 3972.3 kg/h. We are then left with two equations, (2.24) and (2.25),
in two unknowns, m2 and m3. The solution is m2 = 13834 kg/h and m3 = 12806 kg/h. In
summary, we have then:

Feed Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
m [kg/h] 5000 3972 13834 12806 988 40

K [weight %] 20% 0% 35% 30% 100% 30%

Comments.

1. We should always check if the solution is correct. For example, we can check the water
balance over the whole process

0.8 · 5000 = m1 + 0.7m5 [kg/h]

(which is correct) and the water balance over the crystallizer

0.65m2 = 0.7(m3 + m5) [kg/h]



64 CHEMICAL AND ENERGY PROCESS ENGINEERING

(which also is correct).
Extra exercise: Check the total balance and K-balance over the crystallizer.

2. The feed to the evaporator (external feed + stream 3) is 17806 kg/h and contains 27.2 %
K (show this!).

3. The recycle stream is large. This is because relatively little K is removed in the crystallizer
(the amount of K in the liquid is only reduced from 35% to 30%).

Try to do the following on your own:

Exercise 2.16 ∗ Another recycle problem. 2 kg/s of an aqueous solution with 10 weight%
of a salt (S) is mixed with a recycle stream. The combined stream is sent to an evaporator
where pure water is removed as gas so that the remaining liquid contains 45% S. This is then
crystallized and sent to a filter where pure salt (S) is removed while the filtrate (liquid), which
contains 20 % S, is recycled.

(a) Sketch a flow sheet and formulate the mass balances. Find the amount of recycle.
(b) Assume now that the feed in addition contains 1 weight% of another salt (T). The salt

T always remains in the water solution (liquid phase), so we purge (drain) 0.04 kg/s of the
recycled stream in order to avoid accumulation of T. Otherwise, all the data given above is
the same (e.g., the feed is 2 kg/s and contains 10% S, etc.) What is fraction of T in the
purge? Calculate the amount recycled.

Batch processes with recycle

Recycle can also be used with batch processes. For example, some residue can be
recycled to the next batch, and the assumption of “steady state” means that this has
been done an infinite number of times so that the composition and amount of the
residue has reached its steady state value.

Example 2.13 Batch process with recycle. A factory produces a medicine by taking
1 g of active component A and mixing it with water to obtain 1000 l. The product is then
drained, but there will always be a rest of 100 l which is “recycled” to the next batch. The
first batch has a composition of 1 mg/l; the second batch 1.1 mg/l; the third batch 1.11 mg/l;
the fourth batch 1.111 mg/l and so on. (Exercise: show this!)

Comment: The composition will in this case quickly reach a steady state value even though
we never reach the steady-state exactly. We can check the calculations by formulating a steady
state mass balance with the assumption that nothing is accumulated. We can make a total
balance for component A at steady state: The product of 900 l in each batch must contain 1
g A, that is, the composition is 1 g/900 l = 1.111 mg/l – which is correct.

2.8 Flash calculations

Flash calculations are used for mass balance problems with equilibrium between the
vapor and liquid phases. This topic is discussed in more detail in Section 7.5 (page 189),
but the material can be covered at this point, if desired. A short summary is given
here. We write the vapor-liquid equilibrium (VLE) for a multicomponent mixture on
K-value form,

yi = Kixi
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where yi and xi are the mole fractions of component i in the vapor and liquid phases,
respectively. The “K-values” Ki depend on temperature T , pressure p and composition
(xi and yi), but in many cases the dependency on composition can be neglected. For
example, this is the case for ideal mixtures which follow Raoult’s law:

Ki = psat
i (T )/p

where the saturation pressure psat
i (T ) is the equilibrium vapor pressure of pure

component i at temperature T . A simple (and important) flash is to specify p and T
(pT -flash). It is simple because the Ki’s are then constant for an ideal mixture. It is
important, because a pT -flash corresponds to the common process where a partially
evaporated feed stream (with flowrate F and mole fractions zi) is separated into a
liquid (L) and vapor product (V ); see Figure 2.14. For each of the Nc components we

p, T

F

V

L

z

x

y

i

i

i

Figure 2.14: Flash tank

can write a material balance

Fzi = Lxi + V yi [mol i; mol i/s] (2.26)

Similarly, the total mass balance is

F = L + V [mol; mol/s] (2.27)

Substituting yi = Kixi into (2.26) gives Fzi = Lxi + V Kixi, and solving with respect
to xi gives xi = (Fzi/(L + V Ki). Introducing L = F − L (the total mass balance)
gives

xi =
zi

1 + V
F (Ki − 1)

Here, we cannot directly calculate xi because the vapor split V/F is not known. To find
V/F we may use the fact that the liquid mole fractions must sum up to 1, ΣNc

i=1xi = 1,
or alternatively that the vapor mole fractions must sum up to 1, Σiyi = ΣiKixi = 1.
However, it has been found that an even better choice is to use the combination
Σi(yi −xi) = 0, because it results in an equation with good numerical properties; this
is the so-called Rachford-Rice flash equation,

Σi
zi(Ki − 1)

1 + V
F (Ki − 1)

= 0 (2.28)
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which for given Ki’s is a monotonic function in V/F and is easy to solve numerically.
A physical solution must satisfy 0 ≤ V/F ≤ 1. After having obtained V/F from
(2.28), we can find xi and yi. For more details on the pT -flash, including examples
and exercises, see page 193. Bubble point and dew point calculations are discussed on
page 189 and onwards.

2.9 Summary: Procedure for deriving balance
equations

In Table 2.2 (page 67) we present a systematic procedure for deriving balance
equations. Step 1 is to obtain an overview of the process by making a flow sheet
for the process. On the flow sheet, the streams are represented by lines while the
equipment (unit operations) are represented by boxes or are given special symbols
(some are shown in Chapter 1.6). In order to gain an overview one should write, for
each stream, the total amount, composition, temperature and pressure. For gases, the
composition is usually given on a mole basis (which is equivalent to volume basis for
ideal gas). For liquid processes, also a mass basis is common. In some cases where
the amount of water varies, the composition is given on a pure water (dry) basis.
For example, this is common when giving the composition of air. Note that we show
the nominal values (normal operation) for pressure, temperature and flow on the flow
sheet. Do not confuse this with mechanical constraints, for example for maximum
pressure or temperature, which are sometimes indicated on some units.

After having drawn the flow sheet, enter stream data and quantify any
other information in equation form. The next step is to formulate the balance
equations, which is usually elementary accounting. However, it is important to work
systematically, especially on larger and more complicated processes.

To quantify flowrates, an initial basis for a selected stream is often chosen, for
example 1 kg or 100 mol/s. If necessary, we can later rescale (up or down) all the
streams to the desired quantity. Mass, energy, volumes, etc. (all extensive variables)
will scale with the same factor provided the efficiencies of the units remain constant.

2.10 Degrees of freedom and solvability

In principle, it is easy to formulate and solve the mass and energy balance equations,
but in practice it is not always so easy to tell whether we have enough information
to solve the problem, or if we possibly have duplicated some pieces of information. In
this section, we try to get some insight into these issues.

In general, the model equations for a process are formulated based on the following
information:

1. Mass balances (1 for each of the Nc components for each control volume).
2. Energy balance (1 for each control volume).
3. Stoichiometry of chemical reactions (which we use in the component mass

balances).
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Table 2.2: Procedure for deriving balance equations

1. Make a simple flow sheet of the process including all streams and unit
blocks. (This give an excellent overview!)

2. Choose a basis (if necessary). This means that one specifies the amount of one
stream, for example, the feed rate if is not given. A “clever” choice of basis can
often simplify the calculations, and we can later rescale the flows (see item 10).

3. Enter the stream data and other given information on the flow sheet
and provide symbols for the unknown variables. In general, a stream with
Nc components is specified by giving the amounts of each component plus two
specifications, that is, in total Nc + 2 independent pieces of information. Typically,
we specify temperature and pressure, that is,

Stream data =






total amount
composition
temperature

pressure






It is then simple to identify missing data.

• We have here chosen to specify the total amount and composition, but we could
instead specify the amounts of each of the Nc components.

• Enthalpy is often specified instead of temperature because, in general, it is a
more unambiguous specification (see page 332).

• If we only are interested in mass balances, there is usually no need to specify
temperature and pressure.

4. Quantify other given information not shown on the flow sheet. This can
be data for chemical reactions (for example conversion, equilibrium constant or
reaction rate) and data for separation units.

5. Use consistent units. For the mass balance this means choosing mass or
molar basis. To convert between various specification, one typically needs data
for densities and molar masses.

6. Check if the problem is solvable. You should not go too far here, but a quick
analysis (see page 70) is recommended before you start defining control volumes
and formulating balances.

7. Define control volumes. One can usually make control volumes around each
unit, but there are other possibilities:

• Mixing points are often combined with the following (“downstream”) unit.
• Splitters are often combined with the previous (“upstream”) unit.
• Total balances are often formulated for the whole process, which then replaces

the balances above one of the single units.

8. Formulate balances for total mass, component mass, energy, etc. for each control
volume. Be careful to avoid extra dependent equations (which can be derived from
other equations and hence do not contain extra information); for example, the total
mass balance is equal to the sum of all component balances.

9. Solve the equations. Start by checking whether the equation system can be
solved, that is, make sure that the number of independent equations = number
of unknowns (see page 66).

10. If necessary, scale the solution to the desired throughput. This is done by
applying the same scale factor on all extensive variables (flows, heat duties, etc.),
which assumes that the efficiencies of the process units are independent of scaling.
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4. Process specifications (for example given feed composition, given split fractions,
given composition of streams, equilibrium constants, reactor temperature, product
purities, etc.).

5. Physical constraints and definitions (for example that mole fractions sum up
to 1, and that flow rates are positive).

6. Physical quantities and laws (constitutive equations; for example ideal gas law).

How many independent equations can we formulate? For mass balances, the
following applies:

• For a process with n units (blocks) and Nc components, we can formulate
n · Nc independent mass balances. This also applies for cases with
chemical reactions.

Furthermore we can formulate

• 1 energy balance for each unit (typically used to determine temperature)
(see Chapter 4).

• 1 force balance/mechanical energy balance for each unit (typically used
to determine pressure) (see Chapter 9).

Do not fool yourself by including “extra” balances that do not contain any new
information (but of course they can be used to check the calculations):

• The balance for total mass is the sum of the balances for the Nc components.
• “The overall (total) balance” over the whole process (for a component or total mass)

is the sum of the corresponding balances for all the n units.

Example 2.12 continued. Let us return to the recycle example on page 62. Here we have

Nc = 2 components (water and potassium salt) and n = 3 units (mixer, evaporators and

crystallizer/filtration), so we can formulate n · Nc = 6 independent mass balances. However,

in the example we combined the mixer and evaporator. Then, the evaporator feed is not a

variable and we need only 4 balances.

Do we have enough information to find a solution? This is an important
question which is not always easy to answer. Here we will describe two ways: the
mathematical “equation-counting” method and a “faster” method based on physical
insight.

2.10.1 The equation-counting method

In principle, one can determine whether a problem is solvable by counting the number
of independent equations and subtracting the number of unknown variables. The result
is the number of degrees of freedom

nDOF = nunknowns − nindependent equations

and we have that

1. If nDOF = 0 there are no remaining degrees of freedom. That is, we have as many
equations as we have unknowns and the problem is solvable (provided the equations
are truly independent).
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2. If nDOF > 0 then there are more unknowns than independent relations between
them. We then need nDOF additional pieces of information in order to find a unique
solution to the problem, otherwise the problem is under-specified and has an infinite
number of solutions.

3. If nDOF < 0 then there are more independent equations than unknowns, that is,
the system is over-specified. This is most likely because the equations are not really
independent, that is, we have somehow used the same information twice. But there
are also cases where the information or the requirements are inconsistent, so that
the system is unsolvable.

Example 2.11 (page 56) continued. There are three components (A, B and N) and by
setting up mass balances for the four units (mixing point, reactor, separator and splitter) we
derive 12 mass balance equations. We have, in addition, 1 equilibrium equation, 3 equations
for the given split fractions in the ideal separator and 3 equations for the splitter, that is,
in all 19 equations. With the given feed stream there are 20 unknowns (the amount of A, B
and N in the 6 streams, the extent of reaction for one reaction and, in addition, the split
fraction). We thus find that nDOF = nunknown − nindep. equat. = 20 − 19 = 1, that is, we lack
1 piece of information. Thus, if we for example specify the loss of A, the equation system is
in principle solvable (which we can verify by solving the equations).

However, in practice, it may be difficult to determine the number of degrees
of freedom using this approach. First of all, the method can be somewhat time-
consuming. It is also easy to make mistakes. For example, even with nDOF = 0, it
might well be the case that we have dependent equations (with the same information)
so that the system is actually not solvable. The following alternative simplified method
may therefore be helpful.

2.10.2 Simplified “quick” physical analysis

An alternative way of determining whether the system is solvable is to use Table 2.3
(page 70). Here insight about various process units is used to check whether we have
enough information to solve the problem.

Example 2.11 (page 56) continued (quick analysis of degrees of freedom). We
want to determine whether the problem is solvable by using the method in Table 2.3. We know
the feed stream. No further information is needed for the mixing point. In the reactor one
independent reaction takes place, and we have given the equilibrium constant (so this is OK!).
There is given sufficient information for the separator to calculate how all the components
split into the two products. For the splitter we need one piece of information and we have
given the amount A lost in the purge. From this quick analysis we conclude that the problem
is indeed solvable.

Example 2.14 Paper machine with fiber recycle. A simplified sketch of a paper
machine with 7 units (blocks) is shown in Figure 2.15. Here, a block without a symbol indicates
a simple stream split or mix, while a block with a line is a separator between the water-rich
phase (lower stream) and the fiber-rich phase (upper stream). In the paper machine itself,
large amounts of water are required, and large recycles are necessary to avoid loss of fiber to
the drain (stream J).

Assume that each stream has two “components:” water and fiber. We then need to keep
track of two variables in each stream, which we here choose as the flow (kg total/s) and fiber
fraction ci [kg fiber / kg total]. Assume a steady state situation.
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Table 2.3: Quick analysis of whether a problem is solvable

In addition to the equations for mass and energy balances for each process unit, we
need the following pieces of information to solve the problem (and compute all stream
data):

• Feed streams: We must know “everything” – that is, the amount of each
component and, if necessary, the temperature, pressure and phase distribution.

• Mixer: Do not need more data (as mass and energy balances give everything).

• Reactor: Need one piece of information for each independent reaction, for example,
a given conversion, extent of reaction or equilibrium constant of each independent
reaction. (See page 88 to determine the number of independent reactions.)

• Splitter with two outlet streams with the same composition as the feed: Need one
piece of information (the split factor f).

• Separator (distillation, flash, crystallization, etc.) with two outlet streams with
different compositions: Need Nc pieces of information where Nc is the total number
of components, for example the split fraction fi for each component. If we have a
separator with inflow (0) and two outlet streams (1 and 2), we then have for any
component i

mi,1 = fimi,0; mi,2 = (1 − fi)mi,0 [kg; kg/s; mol; mol/s]

• Heat exchanger: Need one piece of information in order to determine the amount
of heat transferred.

• Compressor/turbine/pump: Need one piece of information to determine the
supplied/performed work (in addition to the efficiency of the equipment).

A quick analysis then is:

If we lack one or more of these pieces of information, then they must be
replaced by the same number of other independent pieces of information.
For example, the composition of a product stream can be given instead of
the composition of a feed stream, or instead of information about splits
fractions in a separator.

Comments:

1. Pressure. In addition to what is listed above we need information about the
pressure in all units where this is necessary for the calculations.

2. Dynamics. For dynamic computations, where time enters as a variable, we also
need to know the initial state of the system, as expressed by the holdup (inventories)
of all extensive variables (inventory of all components, masses and energy) in all
units. This is not necessary for steady state calculations where all inventories are
assumed constant.
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Paper machine

To drain

L K

Figure 2.15: Mass flows around a paper machine

How much information do we need to solve the problem?
A quick analysis gives that we need 9 pieces of information: 2 for the feed, 2 for each of

the 3 separators and 1 for the splitter (no information is needed for the 3 first mixers).
We get the same answer from the equation-counting method: There are 24 unknowns (2

in each of the 12 streams), 14 mass balance equations (2 for each for the 7 units), and for
the splitter we know that cH = cI (1 equation), that is, we have 15 equations. We then lack
24-15=9 pieces of information.

Exercise 2.17 ∗ Paper machine with fiber recycle (continued).
(a) Formulate all the mass balances.
(b) Find all the stream amounts [kg/s] and fiber fractions [kg/kg] when we have the following

9 specifications: A = 100, cA = 0.1, F = 49, cF = 0.2, H = 200, cH = 0.015, L = 20, K =
5000, cK = 0.002. What is the “wire retention” RW = cF F/cDD?

Example 2.15 Methanol process with recycle and purge. Methanol is formed in a
gas phase reactor from a feed with CO2 and hydrogen according to the reaction

CO2 + 3H2 → CH3OH + H2O

The “fresh” feed (stream 0) consists of a stoichiometric mixture of CO2 and hydrogen plus
5 mol% of some inert component (I). The product stream from the reactor is cooled so that
all of the methanol and water is condensed and can be removed as liquid (stream 3) in the
separator. The remaining gas is recycled to the reactor with the exception of a small purge
stream which is necessary in order to avoid accumulation of inerts. The amount of purge is
adjusted so that the combined feed to the reactor contains 20 mol% inerts. The conversion
in the reactor (for each pass) is 60%. Calculate the required amount of fresh feed when the
desired production rate of pure methanol is 2500 t/d (tons per day).

Analysis of the problem. The flow sheet is shown in Figure 2.16. Do we have enough
information? Let us do a quick analysis using Table 2.3:

For the feed (stream 0) the composition is known (the ratio CO to H2 is 1 : 3 since the
feed is stoichiometric, and there are 5% inerts). The feed amount is not given, but instead the
production rate of methanol is given (so we have enough information so far). For the mixing
point, we need no more information (as mass balances give everything). In the reactor, 1
(independent) reaction takes place, so we need 1 piece of information and the conversion is
indeed specified. In the separator, we must be able to determine the split of each component,
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(purge)

Feed

(Stream 0)
Reactor

(methanol/water)

Figure 2.16: Flow sheet for a methanol process

and this is OK since it is given that the split is “perfect.” For the purge, which is stream split,
we need information about the split fraction. This is not specified but instead it is specified that
the reactor feed contains 20% inerts. We can therefore, based on a quick analysis, conclude
that we have enough information to solve the problem.

In principle, all that is needed is to formulate mass balance for the 5 components
(CO2, H2, CH3OH, H2 and inert) for the 4 blocks (mixer, reactor, separator and purge),
add the specified information and solve the problem. But we have many equations, 20 from
the mass balances alone (although some of them “disappear” since ammonia and water are
not recycled), and solving them is not a trivial matter unless a computer is used. Here, we
want to use hand calculations, and the “trick” is to find a “smart” basis, that is, find a point
in the process where we have enough information to start the calculations. Since one can
relatively easily determine the composition of the reactor feed (stream 1), the easiest way is
probably to start here, that is, we choose as a basis n1,tot = 100 [mol] (we could as well used
units [mol/s]).

Solution. Since there is only one reaction and the feed is stoichiometric, and since CO2

and H2 split in the same way in the separator, the ratio between CO2 and H2 will remain
stoichiometric in all streams, that is, in all streams we have

nH2 = 3nCO2

Since stream 1 contains 20% inert we therefore find for stream 1 (note that chosen
n1,tot = 100 mol):

nCO2,1 = 20, nH2,1 = 60, nI,1 = 20 [mol]

It is given that the conversion in the reactor is XA = 0.6 (where A is CO2 or H2). More
precisely, the definition of conversion is

XA =
mol A reacted

mol A supplied
=

nA,2 − nA,1

nA,1

or
nA,2 = nA,1(1 − XA)

Applying this for CO2 and H2 gives for stream 2

nCO2,2 = 20 − 20 · 0.6 = 8 mol

nH2,2 = 60 − 60 · 0.6 = 24 mol

Correspondingly, reactor mass balances for CH3OH and H2O give

nCH3OH,2 = nH2O,2 = 20 · 0.6 = 12 mol
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The mass balance for inert gives

nI,2 = nI,1 = 20 mol

Water and methanol are condensed and removed as a liquid product (stream 3) and the
remaining light components constitute stream 4. Mass balances for the separator give:

nCO2,4 = 8, nH2,4 = 24, nI,4 = 20, ntot,4 = 52 [mol]

A fraction f of stream 4 is recycled to give stream 6. Mass balances for the stream split give

nCO2,6 = 8f, nH2,6 = 24f, nI,6 = 20f, ntot,6 = 52f

We can now set up three mass balances around the mixing point (since we here have three
components: CO2, H2 and I). However, we have already “used up” one of these balances
since we fixed the stoichiometric ratio (H2 to CO2) in stream 1. We therefore only have two
independent mass balances for the mixing point, which we choose to set up as total balance
and the inert balance

Total balance : n0 + 52f = 100

Inert balance : 0.05n0 + 20f = 20

We then have 2 equations with 2 unknowns. Solution gives the recycle fraction f = 0.862 and
a fresh feed amount n0 = 55.17 mol. (Comment. If the reactor feed was not stoichiometric,
we would have needed to introduce a parameter for the composition in stream 1 and would
have ended up with three balance equations with three unknowns.)

The mass balances with 100 mol in stream 1 as a basis are summarized in the table (all
numbers in mol):

Feed Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6
CO2 13.10 20 8 0 8 1.10 6.90
H2 39.31 60 24 0 24 3.31 20.69

CH3OH 0 0 12 12 0 0 0
H2O 0 0 12 12 0 0 0

I 2.76 20 20 0 20 2.76 17.24
Sum 55.17 100 76 24 52 7.17 44.83

In order to get the actual amount of fresh feed, we need to scale all the numbers. The molar
mass of methanol is 32 · 10−3 kg/mol and we then find that 2500 t/d methanol corresponds
to 904 mol/s, that is, the scale factor is 904/12 = 75.33 (mol/s)/mol. The actual amount of
fresh feed then is 55.17mol · 75.33s−1 = 4156 mol/s, and all the numbers in the table need to
be multiplied by 75.33.

Example 2.16 Reactor with recycle (and a small warning). The first Norwegian
edition of this book presented as an introductory example an exercise which turned out to
be under-specified, that is, it lacked information. As we will see there are 11 equations, but
only 10 of them turn out to be independent, so we have nDOF = nunknown − nindep. equat. =
11− 10 = 1. This is not always easy to discover (no students reported anything suspicious to
me!), so this example serves as a small warning.

Flawed problem statement. “Consider the continuous process in Figure 2.12 (page 62)
where the amount of (unconverted) A in the product is 2 mol/s. A steady state situation
is assumed. Formulate the equations and show that the solution given in the flow sheet in
Figure 2.10 is correct.”
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Solution to flawed problem statement. The mass balances for components A and B
give for the mixing point,

nA,2 = nA,1 + nA,4 [mol A/s]

nB,2 = nB,1 + nB,4 [mol B/s]

for the reactor,

nA,3 = nA,2 − ξ [mol A/s]

nB,3 = nB,2 + 2ξ [mol B/s]

(where ξ is the extent of reaction and the factor 2 comes from the stochiometry, A → 2B),
and for the separator,

nA,4 + nA,5 = nA,3 [mol A/s]

nB,4 + nB,5 = nB,3 [mol B/s]

This gives 6 equations with 11 unknowns (amount of A and B in the 5 streams plus ξ). But
we have 5 other pieces of information; 2 specifications for the feed and 1 for the product,

nA,1 = 101 mol A/s, nB,1 = 0, nA,5 = 2 mol A/s

together with 2 specifications for the separator,

nA,5

nA,5 + nB,5
= 0.01,

nA,4

nA,4 + nB,4
= 0.90

This gives 11 unknowns and 11 equations, that is, the problem seems to be solvable. Indeed,
we find that the solution given in Figure 2.10 satisfies the equations (with ξ = 99).

However, as already indicated, there is a “small” problem here: the above equation system
actually has an infinite number of solutions. This can be seen by trying to solve the equations
in detail, rather than just checking that the solution given in Figure 2.10 satisfies the
equations. After some substitution of variables, we end up with an equation of the kind
nA,4 = nA,4 or “0 = 0” (which of course is correct, but it has an infinite number of solutions).
It turns out that we can freely choose the amount of the recycle stream (n4) and always find a
solution. For example, one possible solution is to have zero recycle (nA,4 = nB4 = 0), where
stream 2 is equal to stream 1 (the feed) and stream 3 is equal to stream 5 (the product).

If you know some linear algebra, you will see that the 6 mass balances and the 5
specifications give a set of linear equations which can be written in the form

Ax = b

where the vector x contains the 11 unknowns and A is a 11 × 11 matrix:

x = [nA1, nB1, nA2, nB2, nA3, nB3, nA4, nB4, nA5, nB5, xi]

A = [ -1 0 1 0 0 0 -1 0 0 0 0 ;
0 1 0 1 0 0 0 -1 0 0 0 ;
0 0 -1 0 1 0 0 0 0 0 1 ;
0 0 0 -1 0 1 0 0 0 0 -2 ;
0 0 0 0 -1 0 1 0 1 0 0 ;
0 0 0 0 0 -1 0 1 0 1 0 ;
1 0 0 0 0 0 0 0 0 0 0 ;
0 1 0 0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0.99 -0.01 0 ;
0 0 0 0 0 0 0.1 -0.9 0 0 0 ;
0 0 0 0 0 0 0 0 1 0 0 ]

b = [0 0 0 0 0 0 101 0 0 0 2]’
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Let us check that the solution given in the Figure 2.10 (page 55) satisfies these equations:

x0 = [101 0 1001 100 902 298 900 100 2 198 99]’
A*x0 - b
% MATLAB answers: ans = 0-vector (so it’s OK)

However, it is not the only solution. In general, as linear equation system has the solution
x = A−1b, but in this case it turns out that the matrix is A is singular (and MATLAB issues
a warning about this), that is, the 11 equations are not independent. This is confirmed by
computing the rank of matrix A, which is 10 (and not 11 as it should to be full rank):

% MATLAB:
x = inv(A)*b
% MATLAB answers: Warning: Matrix is singular to working precision.
rank(A)
% MATLAB answers: ans = 10

Why is the problem statement flawed? It is not immediately clear what the problem
is, because all the information seems to be independent, but it is not. The problem is the
following: We have specified nA,5 = 2 mol A/s. Since the feed is 101 mol A/s, it then follows
that 99 mol A/s is converted, and the stoichiometry of the reaction A → 2B tells that 198
mol B/s is formed. Since there is only one exit stream, this B must end up in the product
(stream 5). The fraction A in the product is therefore 2/(2 + 198) = 0.01. In the problem
statement, this is also given as a seemingly independent piece of information (“product with
1% A”), but it is not. If we for example change the specification for the amount A in the
product from 2 mol/s to nA,5 = 3 mol/s, then we end up with two contradicting pieces of
information, and the problem has no solution.

In order to obtain a solvable problem we need to replace one of the specifications “product
with 1% A” and “A in the product is 2 mol/s” by another piece of information. After a little
thinking, we realize that we need some information that (indirectly) determines the amount
of recycle (stream 4), for example, by specifying one of the following

• Amount of stream 4 (Exercise 2.13).
• Conversion of A for each pass through the reactor (Exercise 2.14).
• Equilibrium constant for the reactor (Exercise 2.15).

Exercise 2.18 ∗ The equilibrium reactor with recycle in Example 2.11 (page 56) can be
described by a set of linear equations Ax = b. Find A and b, and use MATLAB to find
the solution x = A−1b, and check that this is consistent with what we have previously found.

2.11 Simulation versus design

Let us finally make a remark about the difference between simulation (analysis) and
design in problem solving.

1. Analysis / Simulation. In analysis, the process and its equipment is given (so the
equations are given) and we want to analyze the relationship between the variables;
usually the stream data. All examples we have considered so far all come under the
heading of analysis. A special case of analysis is simulation where the task is to
compute the outflows (of a unit or process) given data about the inflows.

2. Design. In design (process design), the feed streams (inflows) and outlet streams
(outflows) are given and we want to find a process where this can be achieved
in a profitable way. In design, we need to make both structural and parametric
decisions:
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(a) First we need to determine the structure of the flow sheet (which units do we
need and how they should be connected), that is, at this point the equations are
not known. Systematic methods for determining the structure are often called
process synthesis.

(b) With a given flow sheet (structure), the equations are known and we need to
determine the parameters, that is, the dimensions of the equipment, for example
the volume of a tank or the area of a heat exchanger. This is often called
(equipment) design.

The final equations are the same in the cases of simulation and design – the difference
is which variables are unknown; in simulation some of the flows are unknown and in
design some of the equipment parameters are unknown.

2.12 Summary

When using the balance principle one needs to:

1. Define the control volume (the system’s boundary). This is not as trivial
as one might think, and choosing the “right” control volume can often simplify
the further calculations.

2. Define the period of time to be considered. This is usually not very diffi-
cult:

• For a batch process, it is often the period of time from filling the reactant
(at initial time t0) to draining of the product (at the end (final) time), that
is, ∆t = tf − t0.

• For a continuous process, we usually set up balances at a given time t (and
the balances are per unit of time). For the special (and very common) case
of a steady-state process, the variables are constant and do not change with
time.

3. Formulate balance for quantity B. Often it is not obvious which quantity(ies)
to use. In general, for a given control volume, one can set up the following
balances:

• 1 total mass balance
• Nc − 1 component balances (where Nc is the number of components)

Note: The sum of all Nc component balances is the total mass balance
• 1 energy balance (needed if we want to find the temperature or heat transfer

or work)
• 1 momentum balance or mechanical energy balance (needed if we want to find

the relationship between flows and pressure)



3

Mass balances with reaction

In this chapter, we formulate steady state component balances for systems that undergo

chemical reactions. We need information about the extent of reaction for each independent

chemical reaction and we discuss alternative ways of specifying this. If you are not particularly

interested in chemical reactions, then this chapter may be skipped.

3.1 Introduction

In order to describe a chemical reactor we need, in addition to the mass and energy
balances, to know how much is converted in each independent chemical reaction. The
information can be given in the form of:

1. Conversion or extent of reaction (overall description)
2. Assumption of chemical equilibrium (thermodynamic description)
3. Kinetic data and type of reactors (detailed description; see Chapter 10)

In this chapter we concentrate on the overall description, but at the end we consider
an example where we assume chemical equilibrium and use the equilibrium constant.

3.2 The component balance

First, a reminder of the general balance equation (2.1):

Change of inventory = In − Out + Generated − Lost

Here, we use molar balances and combine the terms “Generated - Lost” in the term
“(Net) generated by chemical reaction.” Note that this term can be negative if the
component is removed in the reaction. The mass balance for an arbitrary component
A is then (over a period of time or per unit of time):

Change of A = In A − Out A + Net generated of A by reaction

Let

nA = inventory of component A [molA]

GA = net amount of A generated by reaction [mol A; mol A/s]
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Note! G
A
 may be negative

(if A is a reactant)
out

(Inventory)

Figure 3.1: Component balance with chemical reaction

The general mass balance on molar basis is then

1. Over a time period ∆t (for batch process);

∆nA = nA,in − nA,out + GA [mol A] (3.1)

2. At time t (rate for continuous process)

dnA

dt
= nA,in − nA,out + GA [mol A/s] (3.2)

where we have omitted the dots in the last equation to simplify notation.

3.3 Steady-state component balance

We assume in the remainder of this chapter that there is no accumulation (that is,
∆nA = 0 or dnA/dt = 0), such that the mass (molar) balances (3.1) and (3.2) for an
arbitrary component A can be written

nA,out = nA,in + GA [mol A; mol A/s] (3.3)

The standard notation in reaction engineering is to use the symbol nA,0 for the inflow
(nA,in) and nA for the outflow (nA,out), and we adopt this here. The steady-state
component balance (3.3) then becomes

nA = nA,0 + GA [mol A; mol A/s] (3.4)

where in this case

nA = amount of A in outstream (reactor product) [mol A; mol A/s]

nA,0 = amount of A in instream (reactor feed) [mol A; mol A/s]

We can use the steady-state balance equation (3.4) for two cases – a batch reactor
and a continuous reactor.

1. Batch reactor. At the start, we charge an amount nA,0 [mol A] (in addition there
can be other components). We then let the reactions proceed, and remove the
reactor product nA [mol A] at the end. We assume that the reactor is empty
both before charging and removing so that there is no accumulation over the time
period. The mass balance for component A over the reactor from beginning to
end is then as given in (3.4) with units [mol A].
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Fill in

ContinuousBatch

End
Empty out

Figure 3.2: Cases where the balance (3.4) applies

2. Continuous reactor without accumulation (steady-state process). We have
a continuous feed nA,0 [mol A/s] (we omit the dot notation). In the reactor,
chemical reactions occur such that the product stream is nA [mol A/s]. We have
no accumulation, that is, at any given time the amount of A in the reactor is
constant. The mass balance for component A over the reactor (at some arbitrary
time) is then as given in (3.4) [mol A/s].

3.4 Conversion and extent of reaction

The term GA is included to account for the amount generated by chemical reaction.
Here, we look at an overall description of the reactions. Two alternative ways of
obtaining GA is to specify

• Conversion X (for a component); this is commonly used as a specification.
• Extent of reaction ξ (for a reaction); this is recommended as an internal variable

for calculations.

In order to define X and ξ, we first need to define the stoichiometric coefficient.

Stoichiometric coefficient ν (Greek letter nu) – results from writing the reaction
equation in the form

0 =
∑

i

νiAi

For example, for the reaction 2H20 = 2H2+O2 is written as 0 = −2H20+2H2+
O2 and we get νH2O = −2, νH2 = 2 and νO2 = 1. Note that the stoichiometric
coefficient is negative for reactants.

Extent of reaction ξj (Greek letter xi) – an extensive quantity that tells how far a
given reaction j has proceeded:

ξj =
mol component (A) generated in reaction j

stoichiometric coefficient for component (A) in reaction j
(3.5)

Note that this definition results in the same value for the extent of reactions,
irrespective of which components in the reaction we consider. In the case of a
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single reaction, we find for an arbitrary component A

ξ =
nA − nA,0

νA
(3.6)

or
nA = nA,0 + νAξ

︸︷︷︸

GA

[mol A; mol A/s]

For multiple reactions, each with an extent of reaction ξj [mol], the amount of
product is:

nA = nA,0 +
∑

j

νA,jξj

︸ ︷︷ ︸

GA

[mol A; mol A/s] (3.7)

where νA,j is the stoichiometric coefficient for component A in reaction j.

Note. For calculations, you are recommended to use the mass balance as given in
(3.7), with the extents of reaction ξj as “internal variables.”

Example 3.1 A reactor is supplied with 4 mol of A and 2.5 mol of B. 3 mol of A is converted
to the desired product D and 0.2 mol of A is converted to the undesired byproduct U, according
to the following reactions:

reaction 1 : 2A + B → D

reaction 2 : A → U

The extent of reaction for the two reactions is

ξ1 =
−3 mol

−2
= 1.5 mol, ξ2 =

−0.2 mol

−1
= 0.2 mol

The mass balance (3.7) then gives the amount of component A in the product:

nA = nA,0 + (−2)ξ1 + (−1)ξ2
| {z }

GA

= 4 mol − 3 mol − 0.2 mol = 0.8 mol

Similarly, the mass balance (3.7) gives for the other components:

nB = nB0 + (−1)ξ1 = 2.5 mol − 1.5 mol = 1.0 mol

nD = nD0 + (+1)ξ1 = 0 mol + 1.5 mol = 1.5 mol

nU = nU0 + (+1)ξ2 = 0 mol + 0.2 mol = 0.2 mol

The conversion is the fraction of a given compound that reacts (reactant). For
reactant A, we define

XA =
mol reactant A consumed by reactions

mol reactant A supplied to the system
=

nA,0 − nA

nA,0
(3.8)

which gives the component mass balance:

nA = nA,0 −nA,0XA
︸ ︷︷ ︸

GA

= nA,0(1 − XA) [mol A; mol A/s] (3.9)

Note that the conversion XA is dimensionless and is always between 0 and 1.
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A comparison of (3.9) and (3.7) gives

GA =
∑

j

νAjξj = −nA,0XA [mol A]; [mol A/s] (3.10)

which provides the relationship between extent of reaction and conversion. For
example, in the case of a single reaction we get

ξ =
nA,0XA

(−νA)
(3.11)

The conversion will generally differ for various reactants, and it is normally defined
for the limiting reactant:

Limiting reactant (or key reactant) is the reactant that limits the maximum value
of the extent of reaction of a given (desired) reaction. If ni,0 is the amount of
feed of component i, then total conversion of this compound corresponds to an
extent of reaction

ni,0

|νi|
. The maximum extent of reaction is the minimum among

these, that is,

ξmax = min
i=reactant

{ni,0

|νi|
} =

nLR,0

|νLR|
(3.12)

and the limiting reactant (LR) is the component i = LR that achieves the
minimum value.

The conversion (for a given component A) is in (3.8) defined as the total conversion
of A in all reactions, but sometimes we refer to the conversion XA,j for a component
A in a given reaction j. From (3.11), this can be defined as XA,j = −νA,jξj/nA,0.

Example 3.1, continued. The conversion of reactant A (in the two reactions) is

XA =
3 mol + 0.2 mol

4 mol
= 0.8

The conversion of reactant A in reaction 1 (where A is a limiting reactant) is XA,1 = 3 mol
4 mol

=

0.75. The conversion of reactant B (which only takes part in reaction 1) is XB = 1.5 mol/

2.5 mol = 0.60.

Example 3.2 Reactor for production of acrylonitrile. Acrylonitrile is produced from
propylene, ammonia and oxygen:

C3H6 + NH3 +
3

2
O2 → C3H3N + 3H2O

The feed contains 10 mol% propylene, 12% ammonia and 78% air. The conversion for the
limiting reactant is 30%. Calculate the extent of reaction and product composition.

Solution. The stoichiometric coefficients for the reaction are

νC3H6 = −1, νNH3 = −1, νO2 = −1.5, νC3H3N = 1, νH2O = 3

As a basis, we choose n0 = 100 mol feed. We assume that the composition of air is 79 mol%
N2 and 21% O2. The feed to the reactor is then [mol]

nC3H6,0 = 10

nNH3,0 = 12

nO2,0 = 0.21 · 78 = 16.4

nN2,0 = 61.6



82 CHEMICAL AND ENERGY PROCESS ENGINEERING

In order to find the limiting reactant, divide the feed amount by the stoichiometric coefficient
for each component:

nC3H6,0

|νC3H6 |
= 10 mol,

nNH3,0

|νNH3 |
= 12 mol,

nO2,0

|νO2 |
= 10.93 mol

Thus, propylene (C3H6) is the limiting reactant and the maximum obtainable extent of
reaction is 10 mol. Since 30% of the limiting reactant is converted, this means that the extent
of reaction for the reaction is

ξ = 0.3 · 10 mol = 3 mol

When the extent of reaction is known, it is simple to obtain the product distribution from the
mass balance (3.7) (“Out = In + Generated” [mol] for each component):

nC3H6 = nC3H6,0 − ξ = 10 − 3 = 7.0 mol

nNH3 = nNH3,0 − ξ = 12 − 3 = 9.0 mol

nO2 = nO2,0 − 1.5ξ = 16.4 − 1.5 · 3 = 11.9 mol

nC3H3N = nC3H3N,0 + ξ = 0 + 3 = 3.0 mol

nH2O = nH2O,0 + 3ξ = 0 + 3 · 3 = 9.0 mol

nN2 = nN2,0 + 0 = 61.6 mol

Check: The conversion for propylene (limiting reactant) is

XC3H6 =
nC3H6,0 − nC3H6

nC3H6,0
=

10 mol − 7 mol

10 mol
= 0.3

which is consistent with the given information.

3.5 Selectivity and yield

For cases with side (by) reactions, the selectivity or yield is often specified. Let us
assume that reactant A (usually the limiting) is converted to a desired product in
reaction 1 and to an undesired byproduct in reaction 2:

−νA,1 A + · · · → Desired product + · · · ; ξ1 [mol reacted]

−νA,2 A + · · · → Undesired byproduct + · · · ; ξ2 [mol reacted]

The selectivity φ is the fraction of reactant (usually the limiting) that is converted
to the desired product.

φ =
mol reactant converted to desired product

mol reactant converted in total
=

νA,1ξ1

νA,1ξ1 + νA,2ξ2
(3.13)

φ has a value between 0 and 1, and φ = 1 if there is no side reaction.

The yield is the amount of (desired) product generated as a fraction of the maximum
theoretically obtainable (usually for the limiting reactant),

Y =
mol product generated

mol product generated if all of the reactant generated product
(3.14)
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With a little thinking, we find that this is equal to the fraction of supplied
reactant that forms the desired product, that is,

Y =
mol reactant converted to desired product

mol reactant supplied
=

|νA,1| ξ1

nA,0
(3.15)

Y has value between 0 and 1. Unless stated otherwise, the yield is usually defined
for the limiting reactant.

The relation Y = φX applies between yield, selectivity and conversion when one
considers the limiting reactant:

converted to desired

supplied
︸ ︷︷ ︸

Y

=
converted to desired

total converted
︸ ︷︷ ︸

φ

· total converted

supplied
︸ ︷︷ ︸

X

(3.16)

This is derived more exactly by combining (3.10), (3.13) and (3.15). We note that a
high yield Y requires both a high conversion X and a high selectivity φ. If there are
no side reactions, that is, φ = 1, the yield of desired product is equal to the conversion
of reactant.

Example 3.3 Dehydrogenation of ethane. The following reactions take place in a
continuous steady-state reactor

C2H6 → C2H4 + H2 [ξ1 mol reacted]

C2H6 + H2 → 2CH4 [ξ2 mol reacted]

where the last reaction is undesired. The feed contains 85 mol% ethane (C2H6) and the rest
inerts (I). The conversion of ethane is 50.1% and the yield of ethylene (C2H4) is 47.1%.
Calculate the composition of the reactor product, the selectivity and the yield.

Solution. As a basis, we choose 100 mol feed. We use the extent of reaction for the two
reactions to express the mass balances (3.4) for the components [mol]:

nC2H6 = 85 − ξ1 − ξ2 (3.17)

nC2H4 = ξ1

nH2 = ξ1 − ξ2

nCH4 = 2ξ2

nI = 15

where we want to determine ξ1 and ξ2. The conversion of ethane is 0.501, that is, from (3.8)

XC2H6 =
nC2H6,0 − nC2H6

nC2H6,0
=

85 − nC2H6

85
= 0.501

and we find nC2H6 = 42.4 mol. The yield of ethylene is 0.471, i.e., from (3.15)

Y =
nC2H4 − nC2H4,0

nC2H6,0
=

nC2H4 − 0

85
= 0.471 (3.18)

we find nC2H4 = 40.0 mol, that is,

ξ1 = 40.0 [mol]
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The mass balance for ethane (3.17) then gives

ξ2 = 85 − 40.0 − 42.4 = 2.6 [mol]

and we can determine all the product amounts from the mass balances. We find [mol]

nC2H4 = 40, nH2 = 37.4, nCH4 = 5.2, nI = 15, ntot = 140

The composition of the reactor product is

30.3%C2H6, 28.5%C2H4, 26.7%H2, 3.7%CH4, 10.7%I

The selectivity for ethylene from ethane is from (3.13)

φ =
ξ1

ξ1 + ξ2
=

40 mol

42.6 mol
= 0.939

Check: From (3.16), the yield of ethylene is Y = φX = 0.939 · 0.501 = 0.471 which is
consistent with the specification.

Example 3.1 (page 80), continued. The selectivity for conversion of A to product

D is, from (3.13), φ = 3 mol/3.2 mol = 0.9375. From (3.15), the yield of D from A is

Y = 3 mol/4 mol = 0.75. The conversion of reactant A in the two reactions is XA =
3 mol+0.2 mol

4 mol
= 0.8, and as expected from (3.16) we have Y = φXA.

Exercise 3.1 ∗ A reactor is supplied with 1 mol methanol (CH3OH) and 0.7 mol O2. 0.75
mol methanol is converted to the desired product (formaldehyde),

CH3OH +
1

2
O2 = HCHO + H2O

while 0.2 mol methanol is burnt in an undesired side reaction,

CH3OH +
3

2
O2 = CO2 + 2H2O

(a) Determine the limiting reactant and its conversion. (b) Calculate the extent of reaction
for the reactions and the product distribution. (c) Determine the selectivity for methanol to
formaldehyde and the yield. (d) Finally, check that Y = φ · X.
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Comments.

1. Ideally, we want to maximize both the yield Y and the selectivity φ. However, these
are often conflicting objectives because a high selectivity φ is often obtained with
a low conversion X , whereas Y = φX (3.16) says that a high yield is obtained with
a high conversion. Usually, it is more important for industrial production to have a
high selectivity rather than a high conversion. This is because unconverted reactant
can be recycled, while “wrongly converted” reactant is often a loss. The reaction
conditions are therefore often chosen such that we have high selectivity and low
conversion (and thereby low yield) in the reactor. Note that this is for each pass
(per pass) through the reactor, and with recycle the overall yield and conversion
for the process are usually much higher.

2. Chemists (that is, those who work on a lab-scale) usually include separation losses
etc. when calculating the yield, but this is not included in our definition since we
refer to “mol product generated” and not “mol product.”

3. Warning. There are many other terms and conflicting definitions for selectivity
and yield, so be careful to check the definition when reading other literature. For
example, some authors (e.g., Levenspiel) call “our” selectivity φ the fractional yield
while yet others (e.g., Scott-Fogler) call it the reaction yield. The “selectivity” is
then instead defined as S = (mole reactant to desired product)/ (mole reactant
to byproducts) or S′ = (mole desired product)/(mole byproduct). S and S′ give
different numerical values unless it takes the same amount of reactant to form 1
mol of desired product as to form 1 mol of byproduct. The quantities φ (“our
selectivity”) and S are closely related since S = φ

1−φ , but “our” selectivity φ has

the advantage that its value is between 0 and 1, while S and S′ are between 0 and
∞.

3.6 Reaction and recycle

In most processes with reaction, there is some recycle of un-converted reactant to
the reactor. This reduces losses and increases the overall yield and conversion. For
hand calculations, one must often combine the mass balances for several units (for
example reactor, separator, purge, mixer) in order to solve the problem; see for
example, Example 2.11 (page 56) and Example 2.15 (page 71) for details. Here are
some additional exercises:

Exercise 3.2 ∗ Reactor with recycle. Propane is de-hydrogenated to propylene in a
catalytic reaction

C3H8 → C3H6 + H2

The overall conversion of propane is 95% (for the overall process). The reactor product is
separated into two streams: a “light” product with H2, C3H6 and 0.555% of the C3H8 in
reactor outlet, and a “heavy” recycle with the remaining C3H8 and 5% of the propylene in
the reactor product. The recycle is fed back to the reactor.

(a) Draw a flow sheet and perform a quick analytic check if the problem is solvable, for
example using Table 2.3.

(b) Calculate the composition of the product.
(c) What is the recycle ratio (amount recycled/amount fresh feed)?



86 CHEMICAL AND ENERGY PROCESS ENGINEERING

(d) Find the conversion in the reactor.

Exercise 3.3 Production of bioproteins.

Figure 3.3: Plant for production of bioproteins from natural gas

Bioproteins can be produced from natural gas by fermentation. The following stream data
for a 50000 ton bioprotein per year plant are found in a design report:

Stream Total Biomass Biomass CO2 H2O O2 CH4 NH3

kg/h weight% kmol
h

kmol
h

kmol
h

kmol
h

kmol
h

kmol
h

1 (feed) 0% 0 0 844 566 51.6
2— 2% 258 0 0 0 0
3 15% 258 0 0 0 0
4 = 5 20% 258 0 0 0 0
6 (product) 6347 100% 258 0 0 0 0 0
7 (waste gas) 0% 0 0
8 286650 0% 0 0 15925 0 0 0

The overall reaction is given as

3O2(g) + 2CH4(g) + 0.2NH3(g) → CH1.8O0.5N0.2(s) + CO2(g) + 3.4H2O(l)

where CH1.8O0.5N0.2 is the bioprotein (biomass). The feed also contains some salts and
nutrients which are not included.

Problem: Fill in the table and correct any errors in the given mass balances and reaction
stoichiometry (try to find the most likely errors).

It is recommended that you start by answering the following questions: (i) Is the reaction
stoichiometry correct, and if not, how can it be corrected? (i) What is the limiting reactant
and what is its conversion? (iii) What is the extent of reaction? (iv) How many production
hours are assumed per year?

3.7 Atomic balances

The balances given above are component balances (molecular balances), for
example for ethylene or methane. One can also formulate atomic balances, for example
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balances on the atoms H and C. Note that the number of atoms is conserved, so there
is no need for a term for “generated by reaction.” However, the atomic balances
do not give us any additional information, since we have indirectly “used up” the
atomic balances when balancing the chemical reactions to obtain the stoichiometric
coefficients; see Appendix A.2 (page 329.)

Example 3.2 (page 81), continued. In order to illustrate the use of atomic balances,
consider the atomic balance for H in the reactor for production of acrylonitrile. The following
reaction takes place

C3H6 + NH3 +
3

2
O2 → C3H3N + 3H2O (3.19)

Four of the components contain hydrogen and the steady-state atomic balance for H gives
(“Out H = In H”):

6nC3H6 + 3nNH3 + 3nC3H3N + 2nH2O = 6nC3H6,0 + 3nNH3,0 + 3nC3H3N,0 + 2nH2O,0

and if we insert the numbers we previously obtained, we find that they satisfy this equation

6 · 7 + 3 · 9 + 3 · 3 + 2 · 9
| {z }

96

= 6 · 10 + 3 · 12 + 3 · 0 + 2 · 0
| {z }

96

As expected, the atomic balance does not give any new information compared to the component
balances.

Thus, when using our “standard method” based on component balances, we don’t
need to use atomic balances. Nevertheless, there are cases where it may be simpler to
use atomic balances. This is shown in the next example.

Example 3.4 Use of atomic balances. For a process, the net (overall) feed and product
streams are given in Table 3.1. We want to fill in the three missing numbers in the table. We
solve the exercise using 1) component balances and 2) atomic balances, to confirm that the
results are the same.

Table 3.1: Stream data for Example 3.4

Feed [mol] Product [mol]
CH4 110 0
CH3OH 0 32
H2O 200 nH2O

O2 nO2,0 0
H2 0 2
CO 0 1
CO2 0 nCO2

1. Solution with “standard method” (component balances and extent of
reaction.) As discussed in Section 3.8 (page 88), we can formulate 4 independent reactions
for the 7 components given in the table. We choose to consider the following reactions:

CH4 + H2O = CO + 3H2; ξ1 [mol]

CO + 2H2 = CH3OH ; ξ2 [mol]

CO + H2O = CO2 + H2; ξ3 [mol]

CO +
1

2
O2 = CO2; ξ4 [mol]
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The component balances nA = nA,0 +
P

j νA,jξj for the seven components give when inserting
numbers from Table 3.1:

methane : 0 = 110 − ξ1

methanol : 32 = 0 + ξ2

water : nH2O = 200 − ξ1 − ξ3

O2 : 0 = nO2,0 − 0.5ξ4

H2 : 2 = 0 + 3ξ1 − 2ξ2 + ξ3

CO : 1 = 0 + ξ1 − ξ2 − ξ3 − ξ4

CO2 : nCO2 = 0 + ξ3 + ξ4

This gives 7 equations in 7 unknowns. First, we determine the extent of reactions:

• The methane balance gives ξ1 = 110 mol.
• The methanol balance gives ξ2 = 32 mol.
• The H2 balance gives ξ3 = 2 − 330 + 64 = −264 mol.
• The CO balance gives ξ4 = −1 + 110 − 32 + 264 = 341 mol.

It is then simple to find the three missing amounts from the three remaining balances:

• nH2O = 200 − 110 + 264 = 354 mol.
• nO2,0 = 0.5 · 341 = 170.5 mol.
• nCO2 = −264 + 341 = 77 mol.

2. Solution using atomic balances. We can set up three independent atomic balances
for C, H and O. The atomic C-balance (“C in = C out”) gives

nCH4,0 + nCH3OH,0 + nCO,0 + nCO2,0 = nCH4 + nCH3OH + nCO + nCO2

Inserted numbers from Table 3.1:

110 = 32 + 1 + nCO2

and we find nCO2 = 77 [mol]. Similarly, the H-balance gives:

4 · 110 + 2 · 200 = 4 · 32 + 2nH2O + 2 · 2

and we find nH2O = 354. Finally, the O-balance gives:

200 + 2 · nO2,0 = 32 + 354 + 1 + 2 · 77 ⇒ nO2,0 = 170.5 [mol]

As expected, the two methods are consistent, but we see that the direct use of the atomic
balances is actually much simpler in this particular case.

3.8 Independent reactions and matrix formulation

This subsection is very interesting, especially if you like to write things compactly using
matrices and vectors, but it can be skipped as it is not strictly needed for reading the
rest of the book.

It is important to know the number of independent reactions because this tells us
how many independent pieces of information we need to specify for the reactor at
steady state. If we for example have 2 independent reactions then the conversion in a
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reactor is completely described by 2 extent of reactions (ξ1 and ξ2), by 2 conversions,
or by specifying two product amounts. Let

Nc - no. of components that participate in reactions (excluding inerts)
Na - no. of independent atomic balances for these Nc components
Nr - no. of independent chemical reactions for these Nc components

We then have (see Appendix A.2, page 329):

Nr = Nc − Na (3.20)

Example 3.5 In Example 3.3 (page 83) with Nc = 4 components (C2H6, C2H4, H2, CH4)
there are Na = 2 independent atomic balances (for C and H), that is, there are Nr = 4−2 = 2
independent chemical reactions (as expected).

Example 3.6 We consider a methanol reactor with 7 components: CO, CO2, H2, CH3OH,
H2O, CH4 and N2. However, the latter two (CH4 and N2) are chemically inert in this case,
so there are only Nc = 5 components that participate in the chemical reactions. For these 5
components we can set up Na = 3 independent atomic balances (for C, H and O). Thus, we
can formulate Nr = Nc − Na = 5 − 3 = 2 independent reactions.

Example 3.7 Note that the atomic balances can depend on each other, such that Na is less
than the number of atoms. For the components CH4, CH3OH and O2 (Nc = 3) we have 3
atoms (C, H and O), but only Na = 2 independent atomic balances (because C and H “follow
each other” in the ratio 1:4 in CH4 and CH3OH, and thus may be viewed as a “combined
atom” CH4). We therefore have only Nr = Nc − Na = 1 independent chemical reaction,
which is CH4 + 1

2
O2 = CH3OH.

Now we get into the fun matrix part, which you may have to skip if you are not
familiar with matrices.

Atom matrix A. In some cases, it may be difficult to find the number Na of
independent atomic balances. In such cases, one can obtain the atom (species) matrix
A, which is simply a “table” of the number of atoms in each of the Nc components
(species, molecules).

A - matrix of chemical composition (atoms) of each component (1 column
for each component; 1 row for each atom)

(Note that A depends on the order we choose to list the components, and the order
we list the atoms). We then have that the number of independent atomic balances is
Na = rank(A). The concept of rank of a matrix is known from mathematics.

Example 3.5 continued. We want to check that there are indeed Na = 2 independent
atom balances. For the components

C2H6, C2H4, H2, CH4

and atoms C and H, the atom matrix is

A =

»
2 2 0 1
6 4 2 4

–

As expected, we find Na = rank(A) = 2 (this can be checked in MATLAB with the command

>>rank(A)).
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Example 3.8 In Example 3.2 (page 81) only one reaction was specified for the following
Nc = 5 components:

C3H6, NH3, O2, C3H3N, H2O

Can this be correct? The atom matrix for the five components and the four atoms H, C, N
and O is:

A =

2

6
6
4

3 0 0 3 0
6 3 0 3 2
0 1 0 1 0
0 0 2 0 1

3

7
7
5

Here, column 1 gives the atomic composition of C3H6, column 2 that of NH3, etc. The 4
rows in A are independent, which is confirmed by computing Na = rank(A) = 4, so the 4
atom balances are independent. This implies that we have only Nr = Nc − Na = 5 − 4 = 1
independent chemical reaction. Thus, the specified reaction (3.19) is the only one possible
(try yourself if you doubt this).

Stoichiometric matrix N . It is not always obvious whether a proposed reaction
set contains independent reactions. To check this, we can compute the rank of the
stoichiometric matrix N , where N is simply a “table” of the stoichiometric coefficients
for the proposed reactions.

N - matrix of stoichiometric coefficients for components (1 column for each
component; 1 row for each reaction)

The number of independent reactions in the proposed set is Nr = rank(N).

Example 3.5 further continued. For the components C2H6, C2H4, H2 and CH4, we
formulate two reactions

C2H6 → C2H4 + H2

C2H6 + H2 → 2CH4

The stoichiometric matrix becomes

N =

»
−1 1 1 0
−1 0 −1 2

–

We find rank(N) = 2 so the two reactions are independent. If we extend the reaction set with
the reaction

C2H4 + 2H2 → 2CH4

we get the extended stoichiometric matrix

Ne =

2

4

−1 1 1 0
−1 0 0 2
0 −1 −2 0 2

3

5

We find rank(Ne) = 2, so only 2 of the proposed 3 reactions are independent.

Component mass balances in matrix form. With many components and
reactions, it is convenient to write the steady-state component mass balances nA =
nA,0 + GA (3.4) (“Out A = In A + Generated A”) in matrix form

n = n0 + NT ξ
︸︷︷︸

G

(3.21)

where
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n =





nA

nB
...



 - vector of component amounts in reactor product [mol; mol/s]

n0 - vector of component amounts in reactor feed [mol; mol/s]
ξ - vector of extents of reaction [mol; mol/s]

G = NT ξ - vector of component amounts generated in reactions [mol; mol/s]

Atom balances and consistency between A and N . If n is the vector of
component amounts, then the vector of atom amounts is

a = An [mol atoms; mol/s atoms]

Now, multiply the component mass balance equation (3.21) on both sides by the
matrix A to get An = An0 +ANT ξ, or a = a0 +ANT ξ [mol atoms]. Now, since atoms
are conserved quantities, we must have a = a0 (same amount of atoms in product and
feed). It then follows that ANT ξ = 0, and since this must hold for any ξ, we must

always have that ANT = 0 or equivalently

NAT = 0 (3.22)

This consistency relationship between the atom matrix A and stoichiometric matrix
N can be useful when checking for errors (for example in MATLAB; we must always
have that N*A’ gives a matrix with only 0’s).

Example 3.5 even further continued. For the reactions,

C2H6 → C2H4 + H2

C2H6 + H2 → 2CH4

we find that

NAT =

»
−1 1 1 0
−1 0 −1 2

–
2

6
4

2 6
2 4
0 2
1 4

3

7
5 =

»
−2 + 2 + 0 + 0 −6 − 4 + 2 + 0
−2 + 0 + 0 + 2 −6 + 0 − 2 + 8

–

=

»
0 0
0 0

–

and we have as expected NAT = 0.

Exercise 3.4 ∗ Propose a reaction set, that is, formulate two independent reactions for
Example 3.6 (page 89. Find N , A, and compute rank(N), rank(A) and NAT .

Exercise 3.5 In each of the following cases you should find the number of independent
reactions and propose a reaction set. None of the components are chemically inert.

(a)∗ H2, H2O, NO and NO2.
(b) H2, H2O, O2, NO, NO2, and N2.
(c)∗ H2, H2O, O2, NO, NO2, HNO3, NH3 and N2.
(d) NO, NO2 , N2O, N2, O2, NH3 and H2O.

3.9 Reaction with chemical equilibrium

Here, we consider an example where the reaction is in equilibrium. The example
demonstrates the usefulness of introducing the extent of reaction as an internal variable
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for the calculations. A nice additional example is the ammonia synthesis equilibrium
reactor on page 176.

Example 3.9 Mass balance for methanol reactor with equilibrium. We consider
a methanol reactor where the reactor feed has the following composition (in mol%):

CO : 3.8%

CO2 : 2.0%

H2 : 76.4%

CH3OH : 0.3%

H2O : 0.2%

CH4 : 16.8%

N2 : 0.5%

Here, the latter two components are chemically inert in our reaction reactor. The reactor
operates at 100 bar and the exit temperature is 270 oC. Methanol can be generated in the
following two independent reactions

CO + 2H2 = CH3OH [ξ1 mol reacted]

CO2 + 3H2 = CH3OH + H2O [ξ2 mol reacted]

We want to calculate the reactor product composition when it is given that the product contains
5.0% methanol and we assume the “shift” reaction

CO + H2O = CO2 + H2

is in equilibrium at 270 oC with equilibrium constant K = 30.
Solution. Let us first point out that the shift reaction (CO + H2O = CO2 + H2) is equal

to the difference of the two formation reactions for methanol, such that there are only two
independent reactions (see also Example 3.6, page 89). Thus, if we introduced an extent of
reaction ξ3 also for the shift reaction, we would get an unnecessary extra variable. This would
not in itself constitute a problem, but the resulting equation set would be undetermined. In
order to get a unique solution, we would then have to “randomly” assign a value to one of the
variables ξ1, ξ2 or ξ3. In our case, where we do not use the shift reaction, this corresponds to
setting ξ3 = 0.

Let us quickly analyze the solvability of the problem. We have given all information about
the feed and have in addition two other pieces of information; and since there are two
independent reactions we should, according to Table 2.3 (page 70), have enough information.

We choose as a basis n0=100 [mol] (the feed). The mass balances for the components over
the reactor give, with the extents of reactions as “internal” variables, the following product:

nCO = 3.8 − ξ1

nCO2 = 2.0 − ξ2

nH2 = 76.4 − 2ξ1 − 3ξ2

nCH3OH = 0.3 + ξ1 + ξ2

nH2O = 0.2 + ξ2

nCH4 = 16.8

nN2 = 0.5

ntot = 100 − 2ξ1 − 2ξ2
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From the given information we further have that

nCH3OH

ntot
= 0.05

and since the shift reaction is in equilibrium, we get with the assumption of ideal gas (see
page 386)

K =
pCO2/p⊖ · pH2/p⊖

pCO/p⊖ · pH2O/p⊖
= 30

where p⊖=1 bar and the partial pressure for component i is defined as pi = nip/ntot, where
p is the (total) pressure. The last equation gives

nCO2 · nH2

nCO · nH2O
= 30

where the pressure p dropped out because we have the same number of moles on both sides of
the shift reaction. Now, inserting from the mass balances gives two equations in two unknowns
(the extent of reactions ξ1 and ξ2):

0.3 + ξ1 + ξ2

100 − 2ξ1 − 2ξ2
= 0.05 (3.23)

(2.0 − ξ2)(76.4 − 2ξ1 − 3ξ2)

(3.8 − ξ1)(0.2 + ξ2)
= 30 (3.24)

These two equations are difficult to solve analytically, so we solve them numerically (this
is a nice exercise in numerical mathematics). The following solution method can be used –
although, I am afraid that the numerical mathematics people will not be too impressed if they
see it ,.

1. Guess ξ1 and calculate ξ2 from (3.23)
2. From these calculate the left hand side (LHS) of (3.24) and check if it is close to K = 30.

We find that:
ξ1 = 1 ⇒ ξ2 = 3.27 ⇒ LHS = −8.5

ξ1 = 2 ⇒ ξ2 = 2.27 ⇒ LHS = −4.0

ξ1 = 3 ⇒ ξ2 = 1.27 ⇒ LHS = 41.1

ξ1 = 2.9 ⇒ ξ2 = 1.37 ⇒ LHS = 29.5

which is close enough, that is, we have

ξ1 = 2.9; ξ2 = 1.37 [mol]

The product stream is then [mol]

nCO = 3.8 − ξ1 = 3.8 − 2.9 = 0.9

nCO2 = 2.0 − ξ2 = 2.0 − 1.37 = 0.63

nH2 = 76.4 − 2ξ1 − 3ξ2 = 76.4 − 5.8 − 4.11 = 66.49

nCH3OH = 0.3 + ξ1 + ξ2 = 0.3 + 2.9 + 1.37 = 4.57

nH2O = 0.2 + ξ2 = 0.2 + 1.37 = 1.57

nCH4 = 16.8

nN2 = 0.5

ntot = 100 − 2ξ1 − 2ξ2 = 100 − 5.8 − 2.74 = 91.46
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Exercise 3.6 ∗ Equilibrium for synthesis gas reactor. The first step in the production
of methanol and ammonia is to produce “synthesis gas” consisting of H2, CO and CO2. This
is also a common process for producing hydrogen. Consider a case where the synthesis reactor
operates at 21 bar and the feed is a mixture of water vapor and natural gas in the ratio 2.5:1.
The natural gas consists of CH4 (95.5 mol%), C2H6 (3.0%), C3H8 (0.5%), C4H10 (0.4%)
and N2 (0.6%). The three “heavier” hydrocarbons (n ≥ 2) are assumed to react completely
(100% conversion) according to the reactions

CnH2n+2 + nH2O → nCO + (2n + 1)H2

In addition, we have the following equilibrium reactions:

CH4 + H2O = CO + 3H2; K1 = 710

CO + H2O = CO2 + H2; K2 = 0.81

where the latter is the shift reaction. Determine the composition of the product (synthesis gas).
(Comment: The temperature at the reactor exit is 880 oC. The first reaction is actually not
quite in equilibrium and to partly correct this, we have used the thermodynamic equilibrium
constant at 864 oC).

(You get two equations with two unknowns that must be solved numerically, for example
with MATLAB.)

3.10 Summary

Conversion (for a component) and extent of reaction (for a reaction) are two alternative
ways of providing an overall description of chemical reactions. The conversion has the
advantage that it is dimensionless, and for this reason it is often used when specifying
the reactions. However, the extent of reaction is more practical for calculations. For
this reason, it is recommended to use the extent of reaction as an “internal variable,”
especially when there are several reactions.

The values for the extent of reaction or conversion can be calculated from a
more detailed description of the reaction process, such as equilibrium constants
(thermodynamics) or from kinetic data. In the latter case, we also need to know
the type and quantity of the reactor. This is dealt with in Chapter 10.

Exercise 3.7 Define the following quantities:

• Stoichiometric coefficient, ν
• Number of independent reactions
• Limiting reactant
• Conversion, X (used in order to give information)
• Extent of reaction, ξ [mol; mol/s] (used during calculations)
• Selectivity, φ
• Yield, Y

Note that the quantities X, φ and Y are dimensionless and take on values between 0 and 1.
Show that Y = φX.
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The energy balance

The energy balance (which is a generalization of the 1st law of thermodynamics) is needed in
order to calculate temperature, heat transfer or work. In this chapter, we derive the energy
balance for open flow systems, and show that the enthalpy H provides a practical way of
combining a stream’s internal energy U and flow work.

Before you start reading this chapter, you should make sure you are well acquainted

with the contents of Appendix A which contains basic topics from physical chemistry and

thermodynamics. In particular, check out the section on thermochemistry (page 357).

4.1 The general energy balance (open system)

outChange in

inventory:

Figure 4.1: General energy balance

Energy (E) is a conserved quantity, and from (2.7), the general energy balance
over a time period t0 (initial state) to tf (end state) is for an open system:

Change in inventory of energy = Net supplied energy

Ef − E0
︸ ︷︷ ︸

∆E

= Ein − Eout + Q + W [J ] (4.1)

Here

• E0 = E(t0): the system’s (total) energy in its initial state
• Ef = E(tf ): the system’s (total) energy in its final state
• ∆E = Ef − E0: change in system energy over the time period
• Ein and Eout: energy “indirectly” supplied and removed by mass streams (bulk

transport)
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• Q: supplied heat from the surroundings (through wall)
• W : supplied work (from the surroundings).

In rate form, the energy balance at time t becomes (see proof of (2.8)):

dE

dt
= Ėin − Ėout + Q̇ + Ẇ [J/s] (4.2)

In the following, we will (as usual) omit the dots.

4.2 Energy forms

In this chapter, we consider the following contributions to the energy E (there are
many more, which are usually not important for us):

(Total) Energy = internal energy + potential energy + kinetic energy

or
E = U + EP + EK

where E is (total) energy, U is internal energy, EP is potential energy and EK is
kinetic energy. By kinetic energy (EK), we mean motion on a macro scale, and not
the unordered temperature-dependent molecular motions (for example translation,
rotation and vibration) which are included in the internal energy U .

In addition, one can have other energy forms, such as electric energy, surface energy
and rotational energy, see (A.21) page 345, but these are not considered in this chapter.

The internal energy (U) represents the energy of the molecules and includes most
of the energy forms of interest for us, such as chemical energy, thermal energy,
vaporization energy, etc. For ideal gases (and for most liquids and solids) the internal
energy is only a function of temperature and composition, that is, it is independent
of pressure (see page 353).

Potential (EP ) and kinetic energy (EK) are usually neglected in “our” energy
balances because their changes are small. This is illustrated by the following example.

Example 4.1 Waterfall. To illustrate that changes in potential and kinetic energy can
often be neglected when compared to typical changes in internal energy, we will calculate the
increase in temperature when water falls down 100 m. We consider a mass m=1 kg.

1. At the top of the waterfall, water has a potential energy,

EP,1 = mgh1 ≈ 1 kg · 10 m/s2 · 100 m = 1000 J

At the top, the velocity v1 is small, and the kinetic energy is approximately zero (EK,1 ≈ 0).
2. During its fall, the potential energy is converted to kinetic energy

EK,2 = m
v2
2

2
[J]

More precisely, the energy balance (which we will return to soon) tells that E2 = E1. When

we neglect friction losses, this gives EK,2 = EP,1 or
mv2

2
2

= mgh1, and we find that the
water velocity v2 at the bottom of the waterfall is

v2 =
p

2gh1 =
p

2 · 10m/s2 · 100m = 45 m/s
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1

2

3

Figure 4.2: Waterfall: potential energy (1) → kinetic energy (2) → Internal (thermal) energy
(3)

3. At the sudden “stop” at the bottom of the waterfall, the kinetic energy is converted to
internal energy . More precisely, the energy balance gives E3 = E2, or U3 = U2 + EK,2

because we assume EK,3 ≈ 0. The change in the internal energy is ∆U = U3 − U2 =
mCV ∆T where CV ≈ Cp = 4180 J/kg K for water. The energy balance then gives

mCp∆T =
mv2

2

2
⇒ ∆T =

v2
2/2

Cp
=

gh1

Cp
=

10m/s2 · 100m

4180J/kg K
= 0.24K

that is, the increase in temperature after the fall from 100 m is only ∆T = T3 − T2 =
T3 − T1 = 0.24 K.

Note that 0.24 K is a small number when compared to typical temperature changes in our
processes. This is confirmed by computing the supplied specific energy (per kg) in the waterfall
which is EP,1/m = gh1 = 10 m/s2 · 100 m = 1000 m2/s2 = 1 kJ/kg. This is a small number
compared to, for example, the heat of vaporization for water, which is 2450 kJ/kg.1

We summarize the waterfall example with the following conclusions:

• In process plants, height differences are typically less than 60 m (which is less than
the waterfall of 100 m considered in the example), and changes in potential
energy can usually be neglected compared to typical changes in internal
(thermal) energy.

• In process plants, flow velocities are typically about 1 m/s for liquids and up to
20 m/s for gases at 1 bar. This is much less than the velocity of 45 m/s at the
bottom of the waterfall in the example, and we therefore conclude that changes
in kinetic energy can usually be neglected compared to typical changes in
internal (thermal) energy.

In the following we will, unless otherwise stated, neglect changes in kinetic and
potential energy, that is, we assume that the energy is equal to the internal energy,

E = U
1 For comparison, we can calculate the energy released energy if a mass ∆m disappears in a nuclear

reaction following Einstein’s famous formula: ∆E/∆m = c2 = (3 · 108m/s)2 = 9 · 1016 J/kg =
9 · 1013 kJ/kg. This is about 1014 times larger than the potential energy in our waterfall (1000
J/kg). This explains why everyone in the 1950’s, when the first nuclear power plants were build,
assumed that nuclear energy would be the world’s dominant future energy source.
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With this assumption, the general energy balance (4.1) becomes

Uf − U0
︸ ︷︷ ︸

∆U

= Uin − Uout + Q + W [J ] (4.3)

(but notice that we can always generalize this by replacing U by E).

4.3 Work forms

Work is organized transfer of energy, for example, when the system is moved under
the influence of an external force. There are many forms of work (see page 344):

• Volume change work W∆V (system pV work) is the work associated with changes
in the system’s volume.

• Flow work Wflow (stream pV work) is the work associated with the volume
displacements of streams that enter and exit the system.

• Shaft work Ws is the mechanical work supplied (or extracted if it negative)
using movable machinery (pump, compressor, turbine) associated with changes in
pressure.

• Electrochemical work Wel is the supplied work (or extracted if it negative) when
the system (e.g., operating as a battery or fuel cell) is connected to an external
electric circuit.

• and other work Wother, for example surface work when the surface area changes
or electromagnetic work.

The total work supplied to the system from the surroundings is

W = Wflow + W∆V + Ws + Wel + Wother
︸ ︷︷ ︸

Wn

(4.4)

where we have chosen to distinguish between the “useless” flow work Wflow associated
with bringing the flows in and out, and the remaining “useful” (non-flow) work Wn.
Included in Wn is work for the system’s volume changes (W∆V ), mechanical shaft
work (Ws), electrochemical work (Wel), etc.

Sign of work W . Everyone agrees that Q is the heat supplied to the system from
the surroundings. However, for work W , there are two sign conventions in common
use. In this book, we use the newer IUPAC convention which says that W is supplied
work. Thus, positive work means that work is supplied to the system (for example,
with a compressor), while negative work means that the system performs work on the
surroundings (for example, with a turbine or by increasing the system’s volume or by
taking out electrical work). 2

2 The IUPAC convention, which we use in this book, is that W is positive when work is supplied
to the system This is consistent, because all transfers are defined as positive when supplied to
the system. The older convention, still commonly used by mechanical engineers, is that the W is
positive when the system performs work. This convention probably dates back to the introduction of
steam engines about 300 years ago. In that era, engineers were particularly interested in heat engines
for pumping water or driving machinery. The desired output was work W and the required input
was heat Q. It made sense to describe both as positive quantities. The main practical implication
of using the older sign convention is that the term Q + W in the energy balance instead becomes
Q − W .
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pV -work. Let us take a closer look at the two terms W∆V and Wflow related to
pressure-volume (pV ) work:

1. Volume change work W∆V is the work related to changes in the system’s volume.
We have (see (A.26) for derivation):

W∆V = −
∫ Vf

V0

pexdV [J, J/s] (4.5)

where pex is the pressure of the surroundings, V0 is the volume in the initial state
and Vf is the volume in the final state. Obviously, a volume increase requires that
the system performs work on the surroundings, so the negative sign is due to the sign
convention that W is supplied work. For the case of reversible volume change work,
we have pex = p. For steady-state processes, the volume is constant so W∆V = 0.

2. The flow work Wflow is the “useless” work that a stream performs as it enters
(in) or exits (out) the system. We have (see a more detailed derivation below):

Wflow = Wflow,in − Wflow,out = pinVin − poutVout [J, J/s] (4.6)

Here Wflow,in = pinVin is the work that the inlet stream(s) with pressure pin and
volume Vin supplies to the system when it is “pushed into” (or forces itself into)
the system. Correspondingly, the term Wflow,out = poutVout is the work that the
outlet stream(s) with pressure pout and volume Vout performs on the surroundings
as it is “pushed out of” the system.

The total energy supplied to the system from a stream is the sum of the contributions
from the stream’s internal energy and its flow work, and we recognize this sum as the
stream’s “enthalpy”:

Hin = Uin + Wflow,in = Uin + pinVin (4.7)

Hout = Uout + Wflow,out = Uout + poutVout (4.8)

that is,

A stream’s enthalpy is the sum of its internal energy and flow work

You may have wondered why for chemical reactions one usually specifies the
enthalpy H and not the internal energy U . Now you know one reason: it is more
practical to use enthalpy because H also includes the associated flow work for an open
system.

Derivation of flow work and enthalpy, (4.6)-(4.8). Let’s see what happens when a stream
supplies a small mass dmin [kg] to the system. First of all, the small mass carries an internal energy
given by

dUin = uin · dmin [J ]

(where uin [J/kg] is specific internal energy). In addition, the small mass has a volume dVin [m3], and
when entering the small mass performs a work on the system because it must displace some mass
that is already in the system. From Newton’s 2nd law, work is force times distance, that is, we have
(see Figure 4.3):

dWflow in = F · dl = pinA · dVin

A
= pindVin

We introduce specific quantities for volume (v [m3/kg]) and enthalpy (h [J/kg]). The total energy
(internal energy + flow work) supplied with the small mass is then

dUin + dWflow in = dUin + pindVin = (uin + pinvin)
| {z }

hin[J/kg]

dmin = dHin
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“Push in”

Work performed:

Figure 4.3: Work that a small mass supplies to the system as it enters the system

which is equal to the enthalpy of the small mass. We also see from this that flow work for the inflow(s)

with volume Vin is equal to Wflow,in = pinVin [J]. A corresponding derivation can be made for the

outlet stream(s), but with opposite sign. 2

4.4 Alternative formulations of the energy balance

Here, we summarize the general energy balance and consider some different forms of
it. The general energy balance for an open system is given in (4.1):

Ef − E0 = Ein − Eout + Q + W [J ]

For cases where changes in internal energy dominate (that is, we neglect changes in
the system’s kinetic and potential energy, etc.), we can set E ≈ U , and the energy
balance is as given in (4.3):

Uf − U0 = Uin − Uout + Q + W [J ]

There are many forms of work, but first of all let us divide the work into the “useless”
flow work and the remaining “useful” non-flow work, that is,

W = Wflow + Wn (4.9)

where from (4.6) Wflow = pinVin + poutVout. By introducing the streams’ enthalpy
defined by

Hin = Uin + pinVin; Hout = Uout + poutVout

the general energy balance (4.3) for an open system can then be written in enthalpy
form (see Figure 4.4):

Uf − U0
︸ ︷︷ ︸

∆U

= Hin − Hout + Q + Ws + W∆V + Wel + Wother
︸ ︷︷ ︸

Wn

(4.10)

Here
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Vf

-   p   dVex

Change

Figure 4.4: General energy balance in enthalpy form (kinetic and potential energy not
included)

• ∆U , Uf − U0 is the change in the system’s internal energy (over time period ∆t)
• Hin and Hout are the enthalpies (sum of internal energy and flow work) that follow

the mass flows
• Q is the supplied heat from the surroundings (through the wall)

• W∆V = −
∫ Vf

V0
pexdV is the work for changes in the system’s volume

Special case I: Closed system

For a closed system, there is no mass exchange, so Hin = 0, Hout = 0 and Wflow = 0
and the general energy balance (4.10) becomes:3

Uf − U0
︸ ︷︷ ︸

∆U

= Q + W [J ] (4.11)

which is usually called the 1st law of thermodynamics. Here, we have used the fact
that W = Wn since Wflow = 0. For a closed system, Ws = 0 (since shaft work gives a
volume change, which is already included in the term dW∆V ), and it follows that

W = Wn = W∆V + Wel + Wother = −
∫ Vf

V0

pexdV + Wel + Wother (4.12)

For the special case of a reversible process, pex = p. The energy balance for a closed
system is discussed in more detail on page 346.

A further special case is an isolated system, which is a closed system without
heat and work exchange, that is, with Q = 0 and W = 0. The energy balance for an
isolated system is that the internal energy is constant, i.e., Uf = U0.

3 Unless otherwise stated, ∆X indicates changes in the quantity X for the system. For example,
∆U = Uf −U0 is change in the system’s internal energy. Sometimes this is indicated more explicitly
by writing ∆Xsystem.
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Special case II: No accumulation (steady-state process)

Another very important special case (the most important in this book) is a process
where the system’s variables (including energy) do not change over the time we
observe the system. That is, we have no accumulation and ∆Usystem = Uf − U0 =
0. Furthermore, Vf = V0, so the volume change work is zero, that is, W∆V =

−
∫ Vf

V0
pexdV = 0. The general energy balance (4.10) becomes

Hout − Hin
︸ ︷︷ ︸

∆Hflows

= Q + Ws [J; J/s] (4.13)

where Hin and Hout are the enthalpies of the streams, Q is supplied heat and Ws

is supplied shaft work. Note that this energy balance (4.13) applies both to a steady
state flow process (then with unit [J/s]) and to a batch process without accumulation
(then with unit [J]).

What happened to the Wel in (4.13)? I have simply been lazy and omitted
it, that is, Ws in (4.13) should strictly speaking include the supplied electrochemical
work Wel plus “other” work Wother. (Wel is important for many processes, such as
fuel cells; but we can usually safely set Wother = 0 for steady-state processes). This
laziness comes on top of already omitting kinetic and potential energy (EK and EP ). In
summary, from now on in this book, when you encounter a “general” energy balance,
like in (4.13), use the following “energy balance reading rule” (unless the terms
are already included):

• Shaft work Ws really means Ws + Wel + other work forms.
• Internal energy U really means E = U + EK + EP + other energy forms.
• Enthalpy H really means H + EK + EP + other energy forms.

Another important special case of (4.13) is a steady state adiabatic process
without shaft (or electrochemical) work. Here Q = 0 and Ws = 0 and the
energy balance (4.13) is simply (see Figure 4.7)

Hout = Hin or Hout − Hin
︸ ︷︷ ︸

∆Hflows

= 0 (4.14)

That is, the enthalpy of the outflow(s) is equal to the enthalpy of the inflow(s). The
simple “enthalpy balance”4 (4.14) is very important for practical calculations, and
applies for example to

• mixing process (often with pressure change)
• flow through valve (always with pressure change)
• adiabatic process with phase change
• adiabatic chemical reactor

4 We see that the energy balance (4.13) takes the form of a “enthalpy balance,” but this is actually a
misleading term since enthalpy is not a conserved quantity. For this reason, the expression “enthalpy
balance” should be avoided or one should at least use quotation marks.
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Comments on the general energy balance (4.10).

1. The general energy balance (4.10), and its corresponding dynamic version in (11.11), covers
most of “our” cases.

2. The energy balance can be in units [J], [J/s], [J/mol] or [J/kg] depending on what we have
chosen as a basis for mass.

3. ∆-variables are often used and the general energy balance (4.10) then becomes

∆Usystem
| {z }

Uf−U0

+ ∆Hflows
| {z }

Hout−Hin

= Q + Ws (4.15)

4. We can also write the energy balances in differential form (this is common in
thermodynamics). With our standard assumption of internal energy being the dominant
energy form (dE = dU), the differential version of the general energy balance (4.3) is

dUsystem + dUflows = dQ + dW (4.16)

Here, as above, we divide the work into “non-flow” and (useless) “flow” work

dW = dWn + d(pV )flows

By introducing the enthalpy for streams, we then get the differential version of (4.15):

dUsystem + dHflows = dQ + dWn (4.17)

where dWn = dWs + dWdV + dWel + dWother and dWdV = −pexdV .

• For a closed system, we have dHflows = 0 and dWs = 0 (since shaft work is
included in the term dWdV ), and with dWother = 0, the energy balance becomes
dUsystem = dQ + dWdV + dWel = dQ − pexdV + dWel.

• For a steady state flow process, we have dUsystem = 0 and dV = 0, and the energy
balance with dWother = 0 becomes dHflows = dQ + dWs + dWel.

5. Warning. When using ∆-variables, we have distinguished between the change in energy
within the system limit (∆Usystem) and the change in energy for streams that enter and
leave the system (∆Uflows). However, this distinction is usually not made, which can easily
lead to confusion. For example, the energy balance (4.13) for a steady-state flow process
(open system) is often written in the form ∆H = Q + Ws, which for cases without shaft
work (for example for a heat exchanger or for a chemical reactor with heat exchange) gives

∆H = Q (steady − state flow process with no work) (4.18)

where it is understood that ∆H = ∆Hflows = Hout − Hin. Let us now consider a closed
system where the energy balance (4.11) gives ∆U = Q−

R Vf

V0
pexdV (where ∆U = Uf −U0).

Assuming that volume changes occur reversibly such that pex = p, and assuming constant
pressure p, the energy balance then becomes ∆U = Qrev − p∆V (where ∆V = Vf − V0),
which with the introduction of enthalpy ∆H = ∆U + ∆(pV ) = ∆U + p∆V gives

∆H = Qrev (closed system with constant pressure) (4.19)

where it is understood that ∆H = ∆Hsystem = Hf − H0. I recall that the similarity
between the two energy balances (4.18) and (4.19) confused me when I was a student –
so be attentive! The similarity has led many – including professors that teach physical
chemistry – to erroneously believe that use of enthalpy in the energy balance assumes
constant pressure. But this is not the case for a flow process (open system), where enthalpy
enters the energy balance (4.18) as the sum of the stream’s internal energy and flow work,
and has nothing to do with constant pressure (end of Warning).
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For most of the calculations in this book, we consider the special cases of steady-
state process (equation 4.13) or closed system (equation 4.11), but let us first consider
an example where we must use the energy balance in its general form (4.10).

Example 4.2 Filling a tank with gas.

out

Change

energy:

Figure 4.5: (a) Filling a tank with gas. (b) Emptying a tank with gas.

An empty (evacuated) tank is being filled with air at temperature Tin = 300 K as shown
in Figure 4.5a. Find the final temperature Tf in the tank after the filling is complete. We
assume ideal gas, adiabatic process (Q = 0) and γ = Cp/CV = 1.4 constant. Although it may
seem strange that no data are given for the external pressure or volume of the tank, it will
become apparent that this limited amount of information is enough to solve the exercise. As
a basis, let us assume that 1 mol gas is being filled.

Solution. The volume of the tank is constant (Vf = V0) and there is no shaft work
(Ws = 0) or other non-flow work. Furthermore, U0 = 0 since initially there is no mass
in the tank, and there is no outlet stream so Hout = 0. The general energy balance (4.10)
then becomes

Uf = Hin (4.20)

that is, the internal energy in the tank is equal to the enthalpy of what has been filled in. We
express (as usual) the internal energy by the enthalpy,

Uf = Hf − pfVf = Hf − RTf [J/mol]

where the last equality holds since pV = RT for 1 mol of ideal gas. The energy balance (4.20)
then gives

Hf − Hin = RTf

For an ideal gas, enthalpy is only a function of temperature (that is, independent of pressure)
and with the assumption of constant heat capacity we have Hf − Hin = Cp(Tf − Tin) (see
also (A.49)), which is the enthalpy change when 1 mol of gas is taken from the in-state to
the state f . The energy balance for 1 mol then becomes

Cp(Tf − Tin) = RTf

which solved with respect to Tf and inserted Cp − CV = R [J/mol K] gives

Tf =
Cp

CV
Tin = γTin (4.21)
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For air γ = Cp/CV = 1.4, and we find Tf = 1.4 · 300 = 420 K, that is, the temperature
rises by 120 K to 420 K. The temperature increase is due to the flow work performed by the
inflowing gas.

We assumed as basis 1 mol gas, but the answer is the same no matter what amount of
air we fill in. This implies that the temperature in the tank immediately goes up to 420 K
and stays there during the filling. This assumes that we initially have vacuum, neglect heat
transfer to the tank’s walls (Q = 0), and have constant heat capacity and ideal gas.

Example 4.3 Emptying a tank with gas. A tank (container) contains a gas at 10 bar
and 300 K (state 0), Figure 4.5b. The tank is emptied such that the final pressure becomes 1
bar. Calculate the final temperature in the tank (state f) when adiabatic process is assumed
and γ = Cp/CV = 1.4.

Solution. This resembles the previous example (except that the process is reversed and the
temperature drops), but it is actually not quite as simple to solve (try yourself !). It turns out
that we need to use the differential version of the energy balance and integrate in order to
solve the exercise; and we find that the temperature drops gradually from 300 K and down

to 155 K, according to (C.2), Tf/T0 = (pf/p0)
R

Cp , where pf is the dropping pressure in the
tank. To read the rest of the story see page 393.

It is interesting to summarize our findings for (a) filling and (b) emptying a tank
with ideal gas, see Figure 4.5. (a) During filling, we find that the temperature “jumps”

up to Tf =
Cp

CV
Tin and stays at this value during the rest of the filling. (b) During

emptying, the temperature Tf drops gradually as the pressure drops.

4.5 Calculation of enthalpy

4.5.1 Standard method: Absolute enthalpy

In order to use the energy balance, (4.10), (4.11) and (4.13), we need to calculate the
enthalpy H . Since enthalpy is a state function, it is in principle easily obtained from
the stream data; the enthalpy of each stream (the “absolute” enthalpy) is the sum of
the contributions from the components in the streams:

Hin =
∑

components i

ni,in · Hm(i, in) (4.22)

Hout =
∑

components i

ni,out · Hm(i, out) (4.23)

where Hm(i) [J/mol] is the (partial) molar enthalpy for component i in the mixture
(alternatively, we can use mass basis). Calculation of enthalpy is discussed in more
detail in Appendix A.13 (page 354). In general, Hm(i) is a function of the composition,
temperature and pressure, but we can often introduce short-cuts:

• For liquids and solids, and for gases at moderate pressure, the dependency on
pressure p can be neglected.

• For near-ideal mixtures (for example, ideal gas, solids and liquid mixtures of similar
compounds), the heat of mixing can be neglected (that is, Hm(i) is independent
of composition) and we have Hm(i) = H∗

m(i) where H∗
m(i) is the enthalpy of pure

component i.
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Enthalpy must always be given relative to a reference state (where H = 0), and the
reference state must be chosen so that all streams can be “formed” from it. It is always
“safe” to use the elements at Tref = 298.15 K and pref = p⊖ = 1 bar as the reference
state. For ideal gas at temperature T , we then have (see page 355 for more details on
temperature dependency):

Hm(i, T ) = H∗
m(i, T ) = ∆fH

⊖
m(i, 298) +

∫ T

298

Cp,m(i, T )dT [J/mol] (4.24)

where ∆fH
⊖
m(i, 298) is the heat of formation for pure component i as ideal gas at

298.15 K and 1 bar. As mentioned on page 365, there are many other possible choices
for the reference state. In particular, for systems with no chemical reaction, it is
cumbersome to go all the way back to the elements. It is nevertheless recommended
that one normally chooses the elements at 298 K as reference state.

Reference

absolute
enthalpy

enthalpy
change

H outHin

H = O

Out

In

Hout - Hin

Figure 4.6: Alternative methods for evaluation of enthalpy.

4.5.2 Alternative method: Direct evaluation of enthalpy
change (the “subprocess” method)

Instead of the standard approach with absolute enthalpies, there exists an alternative
method (“method 2”), where one avoids introducing a reference state. The basis is
that in many cases, for example in the steady-state energy balance (4.13), we do not
need to evaluate absolute enthalpies, Hin and Hout, but rather their change, Hin−Hout

(see Figure 4.6). Since enthalpy is a state function, the change Hout−Hin can be found
as the sum of the enthalpy changes for a series of imaginary individual subprocesses
that bring us from the inlet to the outlet streams,

Hout − Hin =
∑

i

∆iH

Here, ∆iH is the enthalpy change for (the imaginary) subprocess i. Because we
evaluate differences, there is no need to explicitly introduce reference states. This
alternative method obviously gives the same result and is particularly well suited for
hand calculations. (Actually, with some thinking, one realizes that the alternative
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method corresponds to choosing the combined inlet streams as the reference state, so
it is all the same!)

In the examples below, we will use both methods for evaluation of enthalpy:

Method 1. Absolute enthalpy (this is the recommended standard method).

Method 2. Enthalpy change for subprocesses (this is often simpler for hand
calculations and yields more physical insight).

4.6 Energy balance for mixing processes

out

Figure 4.7: The steady state energy balance is Hout = Hin [J/s] for an adiabatic process
(Q = 0) without shaft work (Ws = 0).

In this section, we consider steady-state mixing processes (see Figure 4.7 where Hin

may consist of several streams). For a mixing process, we have Q = 0 (adiabatic) and
Ws = 0 (no shaft work) and the energy balance simply becomes (see (4.14)),

Hout = Hin [J; J/s; J/kg, J/mol, etc.] (4.25)

We next consider some examples. Make sure that you understand these!

Example 4.4 Mixing of cold and hot water. Water with temperature T1 (stream 1) is
mixed with water with temperature T2 (stream 2) to produce water with temperature T3 (outlet
stream). Formulate the energy balance for the process when constant heat capacity is assumed.
Solution. The mass balance gives (see Figure 4.8)

m3 = m1 + m2 [kg]

and the energy balance Hout = Hin gives

H3 = H1 + H2

Method 1 (absolute enthalpies). No reaction takes place and we choose to use water
(pure component) as liquid at Tref as the reference state. With constant heat capacity Cp

[J/kg K], the (absolute) enthalpies for the three streams then become

H1 = m1Cp(T1 − Tref)

H2 = m2Cp(T2 − Tref)

H3 = m3Cp(T3 − Tref)
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and the energy balance gives

m3Cp(T3 − Tref)
| {z }

H3

= m1Cp(T1 − Tref)
| {z }

H1

+ m2Cp(T2 − Tref)
| {z }

H2

[J] (4.26)

Multiplying the mass balance m3 = m1 + m2 by CpTref gives

m3CpTref = m1CpTref + m2CpTref

and subtracting this from the energy balance (4.26) gives

m3CpT3 = m1CpT1 + m2CpT2

By introducing the mass balance m3 = m1 + m2, this becomes

m1Cp(T3 − T1) + m2Cp(T3 − T2) = 0 (4.27)

We note that the reference temperature Tref drops out. This could alternatively have been
found by using the “trick” of directly setting Tref = 0. In general, the reference state always
drops out for simple heating processes without phase transition and reaction.

Stream

Stream

Stream

Mixer

Figure 4.8: Flow sheet for mixing of cold and hot water
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Figure 4.9: State diagram for mixing of cold and hot water: enthalpy change from inlet
(streams 1 and 2) to outlet (stream 3) streams are obtained by adding imaginary subprocesses

Check with method 2: Enthalpy change for subprocesses. As an alternative, we
directly evaluate the enthalpy change Hout − Hin (going from inlet streams 1 and 2 to outlet
stream 3) by adding the following imaginary subprocesses as shown in Figure 4.9):

1. “Heat” (it could actually be cooling) stream 1 from T1 to T3: ∆1H = m1Cp(T3 − T1).
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2. “Heat” stream 2 from T2 to T3: ∆2H = m2Cp(T3 − T2).
3. Mix the two streams at temperature T3: There is no heat of mixing (since both are water

at the same temperature), that is, ∆3H = 0.

Since enthalpy is a state function, we get Hout −Hin = ∆1H + ∆2H + ∆3H, and the energy
balance Hout − Hin = 0 gives

m1Cp(T3 − T1) + m2Cp(T3 − T2) = 0

which (of course) is identical to what we found in (4.27). Note that the alternative method is
much simpler in this case.

Comment. Flow sheet and state diagram. At this point, it is useful to note the
difference between the flow sheet in Figure 4.8 and the state diagram in Figure 4.9.

• In the flow sheet, which represents the actual process, the process units (where the
changes take place) are blocks, while the streams (with their given states) are arrows
(lines). The flow sheet is the most important in process engineering.

• In the state diagram, which represents imaginary changes from inlet to outlet
streams, it is opposite: the states are circles and the changes are arrows.

Example 4.5 Mixing of two ideal gas streams with different compositions.5 10
mol/s of a gas stream at 300 K and 6 bar with heat capacity Cp,1 = 30 kJ/mol K (stream
1) and 20 mol/s of another gas stream at 500 K and 5 bar with heat capacity Cp,2 = 65
kJ/mol K (stream 2) are mixed to produce a combined stream (“out”) at 4 bar. What is the
temperature of the mixture when ideal gas and constant heat capacities are assumed?

Mixer
out

out

out

Stream

Stream

Figure 4.10: Flow sheet for mixing of two gas streams

Solution. Let us first note that the pressures are not important, because enthalpy is
independent of pressure for ideal gas (but we note that the outlet stream has a lower pressure
than the inlet, which is reasonable). The mass balance gives (see Figure 4.10):

nout = n1 + n2 = 10 + 20 = 30 [mol/s]

The energy balance (4.25) gives

Hout = H1 + H2 [J/s]

Absolute enthalpies (method 1). With the pure components at Tref as the reference state
and with the assumption of constant heat capacity, the absolute enthalpies of the streams are

Hout = noutCp,out(Tout − Tref)

5 We get the same result in this example if we consider ideal mixing of two liquid streams.



110 CHEMICAL AND ENERGY PROCESS ENGINEERING

H1 = n1Cp,1(T1 − Tref); H2 = n2Cp,2(T2 − Tref)

where Cp [J/mol K] is the molar heat capacity. For an ideal mixture, we have that the heat
capacity Cp,out of the mixture is equal to the molar average value (see (A.51) on page 356),
that is

Cp,out =
n1Cp,1 + n2Cp,2

nout
[J/mol K]

Combining these equations gives

(n1Cp,1 + n2Cp,2)Tout = n1Cp,1T1 + n2Cp,2T2

As expected, Tref drops out, and we find that (sorry for being lazy here and not inserting
units, but it works since I am sticking to SI units; except that energy is in kJ rather than in
J):

Tout =
n1Cp,1T1 + n2Cp,2T2

n1Cp,1 + n2Cp,2
=

10 · 30 · 300 + 20 · 65 · 500
10 · 30 + 20 · 65 = 462.5 K

Check with method 2: Enthalpy change for individual subprocesses. In order
to form the outlet stream from the inlet streams, we consider the following idealized
subprocesses:

1. Heat stream 1 from T1 to Tout: ∆1H = n1Cp,1(Tout − T1).
2. “Heat” stream 2 from T2 to Tout: ∆2H = n2Cp,2(Tout − T2) (this is actually cooling since

Tout < T2).
3. Mix the two streams at temperature Tout: For an ideal gas, the heat of mixing is zero and

∆3H = 0.

We then have Hout −Hin = ∆1H +∆2H +∆3H and the energy balance Hout −Hin = 0 gives

n1Cp,1(Tout − T1)
| {z }

∆1H>0

+ n2Cp,2(Tout − T2)
| {z }

∆2H<0

= 0

One way to interpret this equation is that the heat ∆2H released when stream 2 is cooled to
the mixture’s temperature is balanced with the heat ∆1H needed to heat stream 1. Solving the
equation gives Tout = 462.5 K, which agrees with our standard absolute enthalpy method.

H  O(g)

H  O(l)

2

2

H  O(l)2

m
t

1

1 = 200  C( )

m  = 3 kg/s
t   = 15  C

2

2

m
t   = 85  C

3

3
)(

( )

o

o

oMixer

Figure 4.11: Flow sheet for heating water by mixing with steam

Example 4.6 Heating by mixing water with steam. Steam (= water vapor) at 200
oC (stream 1) is mixed with 3 kg/s of cold water (liquid) at 15 oC (stream 2) to produce
hot water at 85 oC (stream 3). How much steam (m1 [kg/s]) is needed? (Data: The heat
of vaporization for water at 100 oC is 40.6 kJ/mol, which is equal to 2257 kJ/kg. The heat
capacities for water are assumed to be constant and equal to 4.18 kJ/kg K (liquid) and 1.87
kJ/kg K (vapor)).

Solution. The flow sheet is shown in Figure 4.11. We use “method 2” and directly evaluate
the enthalpy change by adding the following imaginary subprocesses:
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1. Stream 1 (steam) is cooled from t1 = 200oC to tb = 100oC: ∆1H = m1Cp(g)(tb − t1).
2. Stream 1 is condensed at 100 oC: ∆2H = m1(−∆vapH) = m1(−2257) [kJ] (the negative

sign is because condensation is the opposite process of evaporation).
3. Stream 1 (which now is liquid) is cooled from tb = 100oC to the final mixture temperature

t3 = 85oC: ∆3H = m1Cp(l)(t3 − tb).
4. Stream 2 is heated from t2 = 15oC to the mixture temperature t3 = 85oC: ∆4H =

m2Cp(l)(t3 − t2).
5. The two streams (which are now both water at 85 oC) are mixed to form the outlet stream.

There is no heat of mixing, so ∆5H = 0.

Thus, we have Hout − Hin =
P

i ∆iH = ∆1H + ∆2H + ∆3H + ∆4H + ∆5H and since the
energy balance for a mixing process is Hout −Hin = 0, we get (sorry again for being lazy and
not inserting units, as I actually strongly recommend that you do):

m1 · 1.87 · (−100) + m1(−2257) + m1 · 4.18 · (−15) + 3 · 4.18 · 70 = 0 [kJ/s]

and we find m1 = 0.350 kg/s.

We note from the examples above that the alternative method with evaluation
of enthalpy changes for subprocesses (“method 2”) is often simpler when performing
calculations by hand. However, in general (and particularly when using a computer and
for dynamic processes) it is recommended to use absolute enthalpies for the streams
(“method 1”), see (4.22)–(4.23).

Exercise 4.1 Solve Example 4.6 by evaluating the absolute enthalpies (“method 1”). (a)
Choose the reference state as liquid at tref = 15oC. (b) Choose the reference state as liquid
at tref = 85oC (the calculations in the latter case are almost identical to the ones given in
Example 4.6).

4.6.1 Exercises

Below are some relatively simple exercises, where it is necessary to combine the mass
and energy balances.

Exercise 4.2 ∗ Mixing of hot saltwater. 2.5 kg/s of hot saltwater with 1 weight% salt and
a temperature of 37 oC is to be produced by mixing the following streams: Stream 1 is pure
water at 8 oC. Stream 2 contains 10% salt at 80 oC. Stream 3 contains 1% salt at 50 oC.
How much is needed of each stream? State clearly all assumptions. (b) How much is needed
if stream 3 contains 2% salt?

Exercise 4.3 Process for producing oil-water mixture (emulsion). 1 kg/s of a water
solution (emulsion) with 30 weight% oil and temperature 20 oC is produced in a two-step
process. In step 1, streams 1 and 2 are mixed and, in step 2, the product is cooled to the
desired temperature. Stream 1 is pure water at 15 oC and stream 2 is pure oil at 90 oC (for
simplicity, use physical data for water for all streams). Calculate the amount of streams 1
and 2 and also the cooling need.

Exercise 4.4 ∗ A different process for producing oil-water mixture. 1 kg/s of a
product (stream 4), which is a water solution with 30 weight% oil and temperature 20 oC,
is produced in a two-step process. In step 1, streams 1 and 2 are mixed and, in step 2, pure
water (stream 3) is removed by decanting the water phase (since oil and water naturally form
two phases, unless we make an emulsion by strongly mixing the two phases). Stream 1 is pure



112 CHEMICAL AND ENERGY PROCESS ENGINEERING

water at 15 oC and stream 2 is pure oil at 90 oC. Calculate the amount of the four streams.
(This looks a lot like exercise 4.3 but note that you here are mixing directly to the desired
temperature.)

Exercise 4.5 ∗ Repeat Exercise 4.4 but assume that the decanted stream (stream 3) contains
2 weight% oil.

Exercise 4.6 Yet another process for oil-water mixture. 1 kg/s of a water solution
with 30 weight% oil and a temperature 20 oC is produced in a two-step process. In step 1,
streams 1 and 2 are mixed and, in step 2, pure water (stream 3) is removed by evaporation
(the vapor is removed under vacuum). Stream 1 is pure water at 15 oC and stream 2 is pure
oil at 90 oC. Calculate the amounts of the four streams. (This is very similar to exercise 4.3
but the cooling is here by evaporation. You can use physical data for pure water; see exercise
A.5, for calculating the heat of vaporization of water at 20 oC.)

4.6.2 Heat of mixing and temperature change during mixing

It is recommended that you read Appendix A.14 on thermochemistry before you
continue.

In the above examples, we have neglected the heat of mixing and this is often a
reasonable assumption if the components do not interact strongly (bond) with each
other. However, there are important exceptions. For example, when mixing water
with strong acids or bases, the heat of mixing (solution heat, dilution heat) can be
considerable.

The heat of mixing ∆mixH is defined as the heat that must be supplied in order
to keep a constant temperature when mixing streams with different compositions (but
with the same temperatures). A negative heat of mixing, ∆mixH < 0, means that the
mixing generates heat, so cooling (Q < 0) is required to keep a constant temperature.
The heat of mixing effect is caused by changes in the bonds between the molecules,
and can be viewed as a “weak version” of the heat of reaction. Heat of mixing is
further discussed in Appendix A.14.2 (page 359); some data are given on page 417.

Adiabatic temperature change. Now, assume Q = 0, and consider the following
problem: What is the mixture’s (“outlet stream’s”) temperature Tmix when we mix
two (inlet) streams with the same temperature T0? From the energy balance, enthalpy
is constant for a mixing process, that is,

Hout − Hin = 0 (4.28)

However, this does not mean that the temperature is constant. We evaluate the
enthalpy change Hout−Hin = ∆1H+∆2H as the sum of two imaginary subprocesses:

1. Mixing at constant temperature (T0): ∆1H = ∆mixH(T0) = heat of mixing.
2. Take (“heat”) the mixture from T0 to Tmix: ∆2H = Cp(Tmix − T0) (here we have

assumed that Cp for the mixture is constant in this temperature region).

From (4.28), ∆1H + ∆2H = 0, and we derive that the adiabatic temperature change
for the mixing process is:

∆T = Tmix − T0 =
−∆mixH(T0)

Cp
(4.29)
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Example 4.7 Mixing of salt with water. Calculate the temperature rise when we mix
100 g CaCl2 (“road salt”) and 0.9 kg water such that we end up with 1 kg of solution.

Solution. From the data on page 417, the heat of mixing for a dilute solution is −75
kJ/mol salt (a negative number means that heat is “released” during mixing) which, with a
molecular weight 111 g/mol, is equal to −0.68 kJ/g salt, that is, for our case with 100 g salt
per kg solution we have ∆mixH = −68 kJ/kg solution. The heat capacity for the solution is
assumed to be the same as for water, that is, Cp = 4.18 kJ/kg K, and we assume that water
and CaCl2-salt are at the same temperature before the mixing. The temperature rise is then
from (4.29)

∆T =
−∆mixH

Cp
=

68 kJ/kg

4.18 kJ/kg K
= 16 K

Comment: On molar basis, we have 1.6% salt and 98.4% water so this is indeed a dilute
solution.

Example 4.8 “Add acid to water, not water to acid.” Mixing acid and water can be
dangerous! The heat of mixing is negative, ∆mixH < 0, which means that heat is released.
Mixing may result in a large and sudden temperature increase that gives flash boiling, and
you may splash acid all over yourself. To reduce the danger, you should add acid to water
(and not the other way around), We want to check this well-known lab rule using the heat of
mixing data given on page 417. More precisely, we want to calculate the adiabatic temperature
rise when we (a) mix 1 g pure sulfuric acid (H2SO4) with 1 kg water, and (b) mix 1 g water
with 1 kg pure sulfuric acid.

Solution. (a) “Acid to water”: We have 1 g (= 1 g
98.1 g/mol

= 0.0102 mol) H2SO4 and

1 kg (= 1000 g
18 g/mol

= 55.5 mol) water, that is, the mol ratio between water and acid is

n = 55.5mol/0.0102mol = 5444. From the data on page 417, the heat of mixing is -96
kJ/mol H2SO4, that is, ∆mixH = −96 · 0.0102 = −0.98 kJ/ kg solution, and with a heat
capacity Cp = 4.18 kJ/kg K (water) the temperature rise is ∆T = 0.98/4.18 = 0.23 K.

(b) “Water to acid”: We have 1g (0.0555 mol) water and 1 kg (10.2 mol) H2SO4, that
is, the mol ratio is n = 0.0555/10.2 = 0.0054. The data on page 417 give that the heat of
mixing is -0.226 kJ/mol H2SO4, that is, ∆mixH = −0.226 · 10.2 = −2.30 kJ/ kg solution,
and, with a heat capacity Cp = 1.42 kJ/kg K (H2SO4), the adiabatic temperature rise is
∆T = 2.30/1.42 = 1.62 K, that is, about 7 times higher (than adding the same amount of
acid to water).

Conclusion: The lab rule is confirmed.

Of course, in the previous exercise with mixing of acid and water, the final
temperature change is the same if we mix a given amount of acid and water,
irrespective of how we do the mixing. However, if we start by adding water to acid,
we get a large initial temperature increase, but then the temperature will drop as we
further dilute it with water. This large temperature overshoot does not occur if we
add acid to water. In the next exercise, you should find the final temperature change.

Exercise 4.7 ∗ We want to find the (final) temperature change when we mix 0.5 kg pure
sulfuric acid (H2SO4) with 1 kg of pure water to make a 33 weight% sulfuric acid solution.
The feeds are at 20 oC. (a) The heat capacity for 33 weight% sulfuric acid is cP = 3 kJ/kg
K. Use the data on page 417 to show that ∆mixH(20oC) = −217 kJ/kg solution. (b) Find the
adiabatic temperature rise. (c) Determine the cooling need to keep the temperature at 20 oC
in a process where we mix 0.5 kg/s pure sulfuric acid (H2SO4) with 1 kg/s of pure water.
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4.7 Valve: Isenthalpic pressure relief

always
ideal gas (real fluid)

Figure 4.12: Pressure relief of (a) ideal gas and (b) real fluid

A very important industrial process is pressure relief (pressure reduction) through
a valve (choke), see Figure 4.12. The process is adiabatic (Q = 0) and no shaft
work (Ws = 0) is performed. We neglect changes in kinetic and potential energy
(neglecting potential energy changes is safe for a valve, but for gases there is an
increase in kinetic energy because the density drops over the valve). We then have for
a steady-state process (without accumulation) Hout = Hin. In a valve, there is only
one instream and one outstream, and to show this more clearly, we replace “in” by
“1” and, correspondingly, “out” by “2.” The energy balance then becomes

H2 = H1 (4.30)

that is, we have an isenthalpic process, where the stream’s enthalpy is constant. This
is a very important result and is used a lot! Note that the pressure changes.

Example 4.9 Expansion (pressure relief) of ideal gas in valve. A gas stream at 10
bar and 303 K is relieved to 2 bar through a valve. What is the gas temperature after the valve
if we assume ideal gas?

The energy balance gives H2 = H1, and since n2 = n1 [mol/s] (mass balance), we get
that the molar enthalpy is constant. For an ideal gas with constant composition, the (molar)
enthalpy is only a function of temperature and we conclude that

ideal gas : T2 = T1

that is, the temperature is constant (!) at 303 K. This assumes that we have ideal gas and
can neglect changes in kinetic energy; see page 126 for an example of a leaking valve where
we cannot neglect changes in kinetic energy.

For a real gas, the process is also isenthalpic, H2 = H1, but here we normally
get some cooling over the valve (T2 < T1) because it usually takes some energy to
pull the gas molecules apart – this is the so-called Joule-Thompson effect. Note the
words “normally” and “usually” because there are also “unusual” conditions where
the temperature may increase (T2 > T1) during expansion of gas in a valve (this is at
very high pressures where it may take energy to push the molecules closer together;
see the discussion in the next section).

When performing such calculations for real fluids, it is practical to use
thermodynamic diagrams as discussed in the next section. The example with expansion
of a gas is continued for a real gas (ammonia) in Example 4.10.
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4.8 Real fluids: Thermodynamic state diagrams

Thermodynamic (state) diagrams are very useful for performing calculations for pure
components. The diagrams also offer provide insight and it is recommended that you
spend some time studying such diagrams. Three thermodynamic state diagrams are
found in the Appendix:

• pH diagram for methane (page 418)
• pH diagram for ammonia (page 419)
• HS diagram for water (page 420)

Enlarged versions of these diagrams plus diagrams for additional components are found
at the book’s home page.

Critical point

T = -150 C

p

H

gas

liquid

superctitical

saturated

(two-phase)

region

Figure 4.13: Pressure-enthalpy (pH) diagram for methane (see also page 418)

4.8.1 Pressure enthalpy (pH) diagram

For a given amount (say, 1 kg) of a pure component, it is sufficient to specify two
independent variables to uniquely determine its state (see page 332). In the pH
(pressure-enthalpy) diagram in Figure 4.13, the two independent variables are
specific enthalpy h [kJ/kg] and pressure p [MN/m2] (the latter on log scale). On the
diagram are shown lines for constant temperature [oC] (isotherms), constant specific
entropy [kJ/kg K] and constant specific volume [m3/kg]. We see that the isotherms
are roughly vertical, except in the two-phase region where they are horizontal. In the
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pH-diagram, we identify four regions; liquid at the left, two-phase in the lower middle,
gas at the lower right and supercritical at the upper right. Actually, the liquid and
gas regions are not as clearly defined as most people think, because if we go via the
supercritical region, then it is possible to go from liquid to gas (and reverse) without
observing any phase transition or discontinuity in properties.

How do we then define gas and liquid? Let us start with the two-phase “saturated” vapor-

liquid region (gas in the saturated region is referred to as vapor) which has a clear boundary and is

therefore well defined. Liquid is normally defined as the region where T < Tc (critical temperature)

and p > psat(T ). Gas is the region where p < pc (critical pressure) and T > Tsat(p). The remaining

region where T > Tc and p > pc is the supercritical region. However, you should not be too

concerned about the exact definitions because there is no fundamental difference between liquid and

gas, at least not if the gas is at sufficiently high pressure so that we do not have ideal gas.

Exercise 4.8 Use these definitions to identify more exactly the four regions (liquid, gas,
saturated, supercritical) on the pH-diagram for methane.

pH-diagram for methane. Let us take a closer look at the pH diagram in
Figure 4.13 (for larger size, see page 418). The enthalpy and entropy are given with
ideal gas at 0 K as the reference state, but this is irrelevant for use of the diagram.
Let us follow the isotherm at −150oC (which is lower than the critical temperature of
−83oC): We begin at 400 bar (=40 MN/m2) (in the top left corner of the diagram).
Here the enthalpy is −195 kJ/kg. The critical pressure for methane is 45 bar, so we
are well above the critical pressure. We lower the pressure and follow the isotherm.
At 10 bar the enthalpy has fallen to −240 kJ/kg, that is, we need to remove enthalpy
(cool) to keep a constant temperature as pressure decreases (!); this is the opposite
of what we “normally” expect for a non-ideal gas. The reason is that we are in the
“unusual” high-pressure part of the diagram where the repulsive forces between the
molecules dominate – the result is that the isotherms tilt to the right – and the Joule-
Thompson temperature change through a valve is positive rather than negative. At
lower pressures, still following the −150oC isotherm, methane behaves more like one
would expect for a liquid. First of all, the lines for constant volume are roughly vertical,
that is, the volume is independent of pressure. Furthermore, the isotherms are roughly
vertical, that is, enthalpy does not depend on pressure. We enter the two-phase region
a little below 2.5 bar. Supply of heat (enthalpy) will here result in liquid evaporating
under constant pressure and temperature. The isotherm is therefore horizontal in the
two-phase region. Finally, all the liquid has evaporated and we are at the right of the
two-phase region where we have gas. At this point the enthalpy has increased to about
246 kJ/kg. The isotherms are again almost vertical, which shows that the gas is close
to ideal.

Let us now follow the isotherm at 0oC (which is well above the critical temperature
of −83oC): Let us start at 400 bar where the enthalpy is 320 kJ/kg. When we lower
the pressure at constant temperature, we remain now in the “gas” region the whole
time, and since the isotherms tilt to the left, we need to supply heat (enthalpy) in
order to keep a constant temperature. Thus, we are here in the more “normal” region
where the attractive forces between the molecules dominate and we need to use energy
to pull them apart – thus, the Joule-Thompson effect is negative, as we normally
expect (see also Example 4.10). At 100 bar the enthalpy is 450 kJ/kg, and at 20 bar
it is 560 kJ/kg. At lower pressures the isotherms becomes more vertical as the gas
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behaves more ideally. At 1 bar the enthalpy is about 570 kJ/kg.

4.8.2 Enthalpy-entropy (HS) diagram

Here, the two independent variables are specific enthalpy h [kJ/kg] and specific entropy
s [kJ/kg K], and on the diagram are shown lines for constant pressure and temperature.
The HS-diagram for water in the Appendix (page 420) shows the gas and supercritical
regions together with parts of the two-phase region.

4.8.3 Cooling by expansion in a choke valve

There are two ways of generating cold by expanding a fluid to lower pressure in a
choke valve (see Figure 4.12):

1. Joule-Thompson effect. If we expand a real gas in a valve, there is normally a
negative temperature change (∆T = T2 − T1 < 0) because of the Joule-Thompson
effect; see the expansion of ammonia gas in Example 4.10. Note that the term Joule-
Thompson effect refers to a gas, or more generally a fluid that does not undergo a
phase change. The Joule-Thompson effect is zero for an ideal gas.

2. Flashing effect. If we expand a liquid over a valve, then at a sufficiently low
pressure p2 we get evaporation where gas is formed. Since evaporation requires
energy, this “flashing” will give in a negative temperature change (cooling), but
this is not referred to as a Joule-Thompson effect. Normally, the cooling effect
of flashing is significantly larger than the Joule-Thompson effect. For this reason,
refrigerators and air condition systems are usually based on cycles where the main
cooling is generated by flashing (sometimes referred to as “auto-refrigeration”); for
more details see Example 8.6 (page 206).

p

phases

Figure 4.14: Joule-Thompson effect: Cooling by expanding ammonia gas from 10 bar (point
1) to 2 bar (point 2) over a valve (H1 = H2)
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Example 4.10 Expansion of real gas (ammonia) over a valve. Again, consider the
expansion (pressure relief) from 10 bar to 2 bar in Example 4.9 (page 114), but now with a
real gas (ammonia) instead of an ideal gas. The energy balance gives

H2 = H1

and from the pressure-enthalpy diagram for ammonia (see Figure 4.14; more detailed on
page 419), we read off the enthalpy at T1 = 303K (30 oC) and 10 bar as H1 = 1400 kJ/kg
(this is compared to the reference state which here is saturated liquid at 0 oC, where for some
unknown reason H = 100 kJ/kg has been chosen; but the absolute value is irrelevant for the
calculations). The enthalpy is constant during the process, and we read from the diagram
that the temperature at 2 bar drops to about t2 = 8 oC, that is, we have a temperature drop
(Joule-Thompson effect)

∆T = T2 − T1 = −22 K

We note that ammonia does not behave as an ideal gas in this region.
Flashing. If we start with ammonia as saturated liquid at 10 bar (from the diagram this

corresponds to a temperature of 24oC) and “flash” it down to 2 bar in the two-phase region,
then the temperature drops to about −20oC, corresponding to a temperature change ∆T = −44
K. Thus, flashing gives twice the temperature drop of a Joule-Thompson valve in this case.

Exercise 4.9 ∗ A stream of 10 kg/s of methane gas at 200 bar and 0 oC is throttled (choked)
down to 1 bar. (a) What is the temperature after the choking? (b) How much heat must be
supplied to get the temperature back to 0 oC?

4.9 Energy balance with chemical reaction

We discussed the mass balance for systems with chemical reaction in Chapter 3. As
shown in (3.7), for a steady state process, the component mass balance for an arbitrary
component A, is for the case with reactions

nA,out = nA,in +
∑

reactions j

νA,jξj [mol A; mol A/s]

where ξj [mol; mol/s] is the extent of reaction for reaction j. Because the mass of
a component is not a conserved quantity, we note that we need an “extra term”
GA =

∑

j νA,jξj [mol A; mol A/s] to account for the chemical reactions.
On the other hand, energy is a conserved quantity, and chemical energy is included

in the internal energy U (and is thereby included in the enthalpy H). It is therefore
not necessary to include an “extra term” in the energy balance for cases with chemical
reaction. Thus, the energy balance (4.13) for a steady-state process applies also to the
case with reactions,

Hout = Hin + Q + Ws [J/s] (4.31)

It may seem a bit strange that there is no “extra term” for the heat of reaction,
but this is because the enthalpy H (which normally has the elements as the reference)
includes also the chemical energy. We will now illustrate the use of the energy balance,
and its combination with the mass balance, for some cases with chemical reaction.
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Example 4.11 Combustion of methane. In an adiabatic combustion chamber at 1 bar,
a continuous and complete combustion of methane (natural gas) takes place according to the
reaction

CH4 + 2O2 = CO2 + 2H2O(g)

The feed is methane and air at 25 oC and excess air is used such that there is 2.5 times more
oxygen in the feed than what is needed stoichiometrically. The air is assumed to be 79% N2

and 21% O2. The remaining data can be taken from the table on page 416. Task: Calculate
the temperature T in the combustion chamber.

Solution. We choose as a basis 1 mol of CH4 feed. From the stoichiometry, we then have
that the feed (inflow) contains 5 mol O2 and 0.79

0.21
· 5 mol = 18.81 mol N2. The extent of

reaction is ξ = 1 mol, and from the mass balance (nA = nA,0 + νAξ) the product stream
becomes as shown in Table 4.11.

Table 4.1: Stream data for combustion of methane

Feed stream Product stream C⊖
p (298) ∆fH

⊖(298)
In [mol] Out [mol] [J/K mol] [kJ/mol]

CH4 (g) 1 0 35.31 −74.81
O2 (g) 5 3 29.36 0
CO2 (g) 0 1 37.11 −393.51
H2O (g) 0 2 33.58 −241.82
N2 (g) 18.81 18.81 29.13 0
T [K] 298 1382
H [kJ] −74.81 −74.81

The (absolute) enthalpy of a stream is from (4.22) given as

H =
X

components i

ni · Hm(i, T ) (4.32)

where ni is the number of moles of component i in the stream. From (4.24), the molar enthalpy
of each component as ideal gas when we assume constant heat capacity is

Hm(i, T ) = ∆fH
⊖
m(i, 298) + Cp,m(T − 298.15) [J/mol]

Here we have chosen the elements at 298 K as reference. Let us now put in numbers from
Table 4.11. Since the inflow is at 298.15 K, there is no Cp-contribution here and thus

Hin =
X

i

ni,inHm(i, Tin) = 1 · (−74.81) + 5 · 0 + 18.81 · 0 = −74.81 kJ

or Hin = −74810 J. The enthalpy of the outlet stream is (everything is calculated in [J]):

Hout =
X

i

ni,outHm(i, Tout) = 3 · 0 + 1 · (−393510) + 2 · (−241820)
| {z }

heat of formation

+ (3 · 29.36 + 1 · 37.11 + 2 · 33.58 + 18.81 · 29.13) (Tout − 298.15)
| {z }

Cp−contribution

or Hout = −877150 + 740.285 · (Tout[K] − 298.15) [J]. The energy balance Hout = Hin then
gives that the (outlet) reactor temperature is

Tout = 298.15 +
877150 − 74810

740.285
= 298.15 + 1083.8 = 1382.0 K (1109oC)
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Adiabatic temperature change for chemical reaction. Let us generalize the
previous example. In an adiabatic reactor, the temperature will change due to the
contribution from the heat of reaction. When constant heat capacity is assumed, the
energy balance gives that the adiabatic temperature change is

∆rT = Tr − T0 =

∑

j ∆rH
⊖
j (T0)ξj

Cp
(4.33)

where Tr is the adiabatic reaction temperature, ∆rH
⊖
j (T0) [J/mol] is the standard

heat of reaction for reaction j at the feed temperature T0, ξj [mol] is the extent of
reaction for reaction j, Cp =

∑

i niC
⊖
p (i) [J/K] is the (total) heat capacity of the

product and ni [mol] is the composition of the product.

In Example 4.11, we have that T0 = 298.15 K and

∆rH
⊖(298K) = ∆fH

⊖(CO2) + 2 · ∆fH
⊖(H2O) − ∆fH

⊖(CH4) − 2∆fH
⊖(O2)

= (−393.51) + 2(−241.82) − (−74.81) − 2 · 0 = −802.34 kJ/mol (4.34)

and with ξ=1 mol and Cp = 740.3 J/K, the adiabatic temperature change is ∆rT = 802340
740.3

K =

1084 K (which, as expected, is the same as found above).

Exercise 4.10 Derive (4.33), for example, by adding the two imaginary subprocesses for (1)
reaction at T0 and (2) heating from Tin = T0 to the reaction temperature Tout = T0 + ∆rT
(“method 2”; see also Figure 4.16).

Example 4.12 Energy balance for methanol reactor. This is a continuation of
Example 3.9 on page 92. Methanol is formed from CO and CO2 by two exothermic reactions,

CO + 2H2 = CH3OH ; ∆rH
⊖(298) = −90.1 kJ/mol

CO2 + 3H2 = CH3OH + H2O; ∆rH
⊖(298) = −49.0 kJ/mol

We assume ideal gas and thus neglect pressure’s influence on enthalpy. Data for the
composition of the total feed (stream 1+2) and the product (stream 3), together with
thermodynamic data, are given in Table 4.2.

Table 4.2: Stream data for methanol reactor

Component Stream 1+2 Stream 3 C⊖
p (298) ∆fH

⊖(298)
[mol] [mol] [J/K mol] [kJ/mol]

CO(g) 3.8 0.9 29.14 −110.53
CO2(g) 2.0 0.63 37.11 −393.51
H2(g) 76.4 66.49 28.82 0
CH3OH(g) 0.3 4.57 43.89 −200.66
H2O(g) 0.2 1.57 33.58 −241.82
CH4(g) 16.8 16.8 35.31 −74.81
N2(g) 0.5 0.5 29.13 0
Total 100 91.46

The reactions take place in a quench reactor where cold feed gas is injected along the reactor,
see Figure 4.15. The feed to the reactor consists of a fraction f at 60 oC (stream 2) and a
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Feed

Figure 4.15: Methanol reactor with pre-heating of feed and quenching along the reactor

fraction (1 − f) that is pre-heated to 170 oC (stream 1). The task is to find the value of f
when it is given that the outlet temperature from the reactor is 270 oC (stream 3).

Solution. With 100 mol of total feed (given basis), we have

n1 = 100(1 − f); n2 = 100f ; n3 = 91.46 [mol] (4.35)

and the task is to find f . The energy balance for an adiabatic reactor is Hout = Hin, that is,

H3 = H1 + H2 [J ]

n3Hm,3 = n1Hm,1 + n2Hm,2 [J ] (4.36)

where Hm,j is the molar enthalpy for stream j. Everything takes place in the gas phase so the
“absolute” enthalpy for each stream j with the elements as the reference state is

Hm,j = ∆fH
⊖
j (298) +

Z Tj

298.15K

Cp,m,j(T )dT [J/mol] (4.37)

where for our case with constant heat capacity

Hm,j = ∆fH
⊖
j (298) + Cp,m,j(Tj − 298.15K)

Here, Hm,j [J/mol] is the enthalpy change to form 1 mol of stream j from the elements at
298.15 K and then heat the stream to Tj. Note that here we have introduced the enthalpy
of formation ∆fH

⊖
j (298) [J/mol] for stream j and the heat capacity Cp,m,j [J/mol K] for
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stream j. For ideal gas, these are equal to the molar average of the sum of the contributions
for the components, see (A.43). For the feed streams (streams 1 and 2), we then get

∆fH
⊖
1 (298) =

1

ntot

X

i

ni∆fH
⊖(i) =

X

xi,1∆fH
⊖(i)

= 0.038 · (−110.53) + 0.02 · (−393.51) + 0.764 · 0 + 0.003 · (−200.66)

+0.002 · (−241.82) + 0.168 · (−74.81) + 0.005 · 0 = −25.72 kJ/mol

Correspondingly, the molar enthalpy of formation for the product stream (stream 3) is:

∆fH
⊖
3 (298) = −31.72 kJ/mol

The molar heat capacity for streams 1 and 2 are

Cp,m,1(298) = Cp,m,2(298) =
X

i

xiC
⊖
p (i, 298) = 0.038 · 29.14 + 0.02 · 37.11 + 0.764 · 28.82

+0.003 · 43.89 + 0.002 · 33.58 + 0.168 · 35.31 + 0.005 · 29.13 = 30.14 J/K mol

Correspondingly, for stream 3, Cp,m,3(298) = 30.91 J/mol K. This is the heat capacity at 298
K, but we assume that the heat capacity is constant independent of the temperature.

This gives the following “absolute” molar enthalpies for the three streams with the elements
at 298.15 K as reference:

Hm,1 = −25.72 + 30.14 · 10−3 · 145 = −25.72 + 4.37 = −21.35 kJ/mol

Hm,2 = −25.72 + 30.14 · 10−3 · 35 = −25.72 + 1.05 = −24.67 kJ/mol

Hm,3 = −31.72 + 30.91 · 10−3 · 245 = −31.72 + 7.57 = −24.15 kJ/mol

Together with (4.35), this gives when inserted into the energy balance (4.36), f = (22.09 −
21.35)/(24.67 − 21.35) = 0.22, that is, 22% of the feed must be supplied as cold quench gas.

Check: Enthalpy change for subprocesses (“method 2”). Here, we solve the problem
by direct evaluation of the enthalpy changes. We know the heat of reaction at 298 K and to
go from the inlet streams to the outlet stream, we imagine the following subprocesses (see
Figure 4.16):

1. Produce the reactor feed at temperature T0 (here we choose T0 = 298.15 K):
(a) Take stream 1 from T1 = 443K (170 oC) to 298.15 K (cooling): ∆1,aH = n1Cp,m,1(T1−
298.15) = 100(1 − f) · 30.14 · (298.15 − 443)J = −437(1 − f) kJ.
(b) Take stream 2 from T2 = 333K (60 oC) to 298.15 K (cooling): ∆1,bH = n2Cp,m,2(T2−
298.15) = 100f · ·30.14 · (298.15 − 333)J = −105f kJ.
(c) Mix the two streams at 298.15 K (there is no heat of mixing since the compositions
are identical), ∆1,cH = 0.

2. React at T0 such that we form the outlet stream at T0 = 298K. There are two reactions
and the enthalpy change for this subprocess is:

∆2H = ξ1∆rH
⊖
1 (298) + ξ2∆rH

⊖
2 (298)

From Example 3.9 (page 92) (and also from the data in the table), the extent of reactions
are ξ1 = 2.9 mol and ξ2 = 1.37 mol. The two heat of reactions can be obtained from the
data for the heat of formation ∆fH

⊖(i, 298) given in Table 4.2. For the first reaction, we
get

∆rH
⊖
1 =

X

i

νi∆fH
⊖(i) = (−1) · −110.53 + (−2) · 0 + (+1) · (−200.66) = −90.13 kJ/mol
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Figure 4.16: Energy balance for reactor with heat of reaction as subprocess

(that is, the reaction is exothermic). And, correspondingly, for the second reaction

∆rH
⊖
2 = (−1) · −393.51 + (−3) · 0+ (+1) · (−200.66) + (+1) · (−241.82) = −48.97 kJ/mol

(also exothermic). This gives “the heat released by reaction” ∆3H = 2.9mol ·
(−90.13)kJ/mol + 1.37mol · (−48.97)kJ/mol = −328.47 kJ.

3. Heat stream 3 from T0 = 298.15 K to Tout = T3 = 543K (270 oC): ∆3H = n3Cp,m,3(T3 −
298.15) = 91.46 · 30.91 · (543 − 298.15)J = 692.6 kJ.

We thus find that
Hout − Hin = ∆1aH + ∆1bH + ∆2H + ∆3H

and the energy balance Hout − Hin = 0 gives

−437(1 − f) − 105f
| {z }

∆1H

−328.47
| {z }

∆2H

+692.6
| {z }

∆3H

= 0 [kJ]

Since the reactor operates adiabatically, we can state this with words: “The cooling needed
for the subprocesses 1 and 2 (negative sign) must balance the heating needed for subprocess 3
(positive sign).” We solve the equation and find, as before, f = 0.22.

Comment. The outlet stream (the reactor product) is at 270 oC and we could alternatively
have chosen T0 = Tout = 270 oC (see Figure 4.16). With data for heat of reaction at 270
oC (which we can easily find, see (A.59) and (A.60)), we can then compute Hout − Hin by
cosidering the following subprocesses:

1. (a) Take stream 1 from 170 oC to 270 oC (heating needed).
(b) Take stream 2 from 60 oC to 270 oC (heating needed).

2. React at 270 oC (cooling needed since the reactions are exothermic).

Note that the contribution ∆3H in Figure 4.16 is zero since Tout = T0.
The solution is obviously the same, that is, f = 0.22 (try it yourself !).
A third alternative is to react at the feed temperature, that is, to choose T0 = Tin, but in

this case this is impractical since the feed streams have different temperatures.
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Because enthalpy is a state function, we note that there are many ways to get the
same answer.

Exercise 4.11 Styrene process.

Figure 4.17: Simplified flow sheet for the styrene process

Ethyl benzene reacts to styrene in a catalytic gas phase reaction

C8H10(g) = C8H8(g) + H2 ; ∆rH
⊖(600oC) = +124.5 kJ/mol

In Figure 4.17, a simplified version of the process’ flow sheet is shown. The process takes
place at 1 atm. Feed and recycled ethyl benzene in liquid phase at 25 oC are mixed and heated
from 25 oC to 500 oC in an evaporator (A). Ethyl benzene, now in the gas phase, is mixed
with steam (water vapor) at 700 oC, and fed to the reactor at 600 oC (B) (the steam is added
to avoid undesired side-reactions and remove carbon from the catalyst). The reaction product
is cooled to 25 oC (D), such that ethyl benzene, styrene and water are condensed, while H2 is
removed as a gas product. Water and hydrocarbons are insoluble and are separated in a liquid
separator (E). The water is evaporated (F) and recycled to the reactor. The hydrocarbon
stream is separated in a distillation column (G) into almost pure ethyl benzene (which is
recycled to the evaporator) and pure styrene (product). The amount of styrene product should
be 1 kg/s.

Data:
Ethyl benzene (EB): Cp(l) = 182 J/mol K; ∆vapH = 36.0 kJ/mol (at tb = 136oC); Cp(g) [J/mol K]
= 118 + 0.30 · t [ oC].
Styrene (S): Cp(l) = 209 J/mol K; ∆vapH = 37.1 kJ/mol (at tb = 145 oC); Cp(g) [J/mol K]
= 115 + 0.27 · t [ oC].
Water (H2O): Cp(l) = 75.3 J/mol K; ∆vapH = 40.7 kJ/mol (at tb = 100 oC); Cp(g) [J/mol K]
= 33.4 + 0.01 · t [ oC].

Hydrogen: Cp(g) = 29.1 J/mol K .

Task: (a) Calculate the amount of feed and recycled ethyl benzene (all in mol/s).
(b) Calculate the amount of water that circulates in the reactor system (in mol/s).
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(c) Calculate the amount of supplied or removed heat (energy) in the evaporators (A and
F) and in the reactor (C) (in J/s).

(d) Discuss the possibility of reducing the energy consumption.
(e) A feed stream to replace loss of water in the products is not shown in the flow sheet but

should be included. How large must this make up feed be if the vapor pressure of water at 25
oC is 0.03 atm such that the hydrogen product contains 3 mol% of water?

4.10 Energy balance with kinetic and potential
energy

So far in this chapter, we have neglected changes in kinetic and potential energy. With
these contributions included, the general energy balance (4.10) becomes

(U + EK + EP )f − (U + EK + EP )0 = (H + EK + EP )in − (H + EK + EP )out

+ Q + Ws + W∆V + Wel + Wother
︸ ︷︷ ︸

Wn

[J ](4.38)

For a process stream with mass m [kg], the potential energy is

EP = mgz [J ]

where z [m] is the height relative to a chosen reference and g [m/s2] is the acceleration
of gravity. The kinetic energy is

EK = mα
v2

2
[J]

where the average (mean) velocity v defined as

v[m/s] =
V̇ [m3/s]

A [m2]

where V̇ [m3/s] is the volumetric flow and A [m2] is the cross section (for example, the
cross section of a pipe). The factor α corrects for the velocity not being the same all
over the cross section. For turbulent flow (the most common case), the velocity profile
is almost flat and α ≈ 1, while for laminar pipe flow the velocity is higher towards
the middle of the pipe and we have α = 2 (this is discussed in more detail in fluid
mechanics).

Laminar pipe flow Turbulent pipe flow

(average profile)

Figure 4.18: Velocity profiles for flow in pipe
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Figure 4.19: Steady-state energy balance with kinetic and potential energy

Steady-state process

Here, we again consider a steady state continuous process such that the left side of
(4.38) is zero. We also assume Wel = 0 and Wother = 0. The steady-state energy
balance with potential and kinetic energy included for the case with only one inlet
stream and one outlet stream (see Figure 4.19) then becomes

H2 + mα2
v2
2

2
+ mgz2 = H1 + mα1

v2
1

2
+ mgz1 + Q + Ws [J ; J/kg; J/s] (4.39)

Here, we have replaced “out” by 2 and “in” by “1” in order to simplify the notation
and clearly state that we only have one inlet stream and one outlet stream. It is trivial
to generalize to the case with several streams.

As before, there are many choices of basis, for example mass basis [J/kg] (where
m = 1 kg) or per unit of time [J/s] (where m = ṁ [kg/s] is the mass flow).

The velocities can be found from the mass balance. The mass flow [kg/s] at the
inlet is ṁ1 = ρ1V̇1 = ρ1v1A1 and at the outlet ṁ2 = ρ2V̇2 = ρ2v2A2, where v1 and
v2 [m/s] are the average velocities. The mass balance ṁ1 = ṁ2 [kg/s] then gives the
“continuity equation”

ρ1v1A1 = ρ2v2A2 (4.40)

For an incompressible fluid (most liquids), we have that ρ1 = ρ2, and we find that

v1A1 = v2A2 [m3/s] (4.41)

and we see that the velocity is uniquely determined by the cross section area.
Compared to changes in internal energy, the changes in potential and kinetic energy

are usually negligible. This has already been illustrated using the waterfall example
on page 96. However, if the velocity becomes very large (over 100 m/s), then the
contribution from kinetic energy can become considerable. This is illustrated in the
next example, where we consider icing that may occur on a valve that leaks because
enthalpy is converted to kinetic energy.

Example 4.13 Leaking valve. A leaking valve is often detected because ice is formed –
also for cases where the gas temperature inside the pipe is well above 0 oC. This is because
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the gas velocity at the leakage point can become very large, and the energy needed for this is
obtained by lowering the temperature.

Consider an example where the temperature is 300 K and the pressure is 3 bar inside the
pipe. We consider four different cases for the velocity of the gas leaking out: 100 m/s, 200
m/s, 300 m/s and equal to the speed of sound.

Here, the speed of sound cs for an ideal gas is equal to

cs =

r

γ
R

M
T =

p

cp(γ − 1)T [m/s] (4.42)

where cp [J/kg K] is specific heat capacity, γ = cp/cV and M is the molar mass [kg/mol].
We use numbers for air as the ideal gas and assume constant cp = 1 kJ/kg,K and γ = 1.4.

Exercise: Calculate the temperature change ∆T for the leaking gas for the four cases.

Leak

ice ice

(sound
velocity)

Figure 4.20: Leaking valve

Solution. The energy balance (4.39) on mass basis becomes

h2 + α2
v2
2

2
+ gz2 = h1 + α1

v2
1

2
+ gz1 + ws + q [J/kg]

Here, we have ws = 0 (no work) and q = 0 (adiabatic process) and we neglect potential energy
g(z2 − z1) ≈ 0). The energy balance gives

h2 + α2
v2
2

2
= h1 + α1

v2
1

2
[J/kg]

In our case, we can set v1 ≈ 0 (inside the pipe) and we assume that we have turbulent flow
at the leakage point such that α2 ≈ 1. The energy balance then gives

Ideal and real gas : h2 − h1 = −v2
2

2

Assuming ideal gas and constant heat capacity, we have further that h2 − h1 = cp(T2 − T1)
and we find

Ideal gas : ∆T = T2 − T1 = − v2
2

2cp
(4.43)

For v2 = 100 m/s, we then get

∆T = − 1002

2 · 1000 = −5 K

and the temperature for the other cases are given in the table:
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v2 [m/s] ∆T = T2 − T1 [K]
100 −5
200 −20
300 −45

316.2 −50

For the last case, when the velocity is the speed of sound, v2 = cs =
p

cp(γ − 1)T2, we get
from (4.43),

T2 − T1 = − v2
2

2cp
= − (γ − 1)T2

2
(4.44)

which solved in respect to T2 gives

T2 =
T1

1 + γ−1
2

=
T1

1.2
= 250 K ⇒ T2 − T1 = −50K

Comment. The velocity at the smallest cross section can never exceed the speed of sound.
At sonic conditions (v2 = cs speed of sound), we find by combining (4.44) and (A.40)
(which applies frictionless (reversible) flow), that the pressure ratio p2/p1 is equal to the
critical pressure ratio Ψ, where

Ψ =

„
2

γ + 1

« γ
γ−1

(4.45)

If the pressure ratio exceeds the critical pressure ratio,

(p2/p1) ≥ Ψ (4.46)

we will have sonic conditions (v2 = cs) at the smallest cross section of the contraction
(nozzle), provided we have a smooth nozzle with no friction. In reality, the speed v2 will
be lower. For air, γ = 1.4 and we get Ψ = 0.53. This means that if the surrounding pressure
is p0 (for instance, 1 bar in our case) and p1 exceeds p0/Ψ (that is, in our case if p1 exceeds 1
bar/0.53 = 1.88 bar; which it does since p1 = 3 bar), then for frictionless flow the pressure at
the smallest cross section (at the leakage point) is equal to p2 = Ψp1 (that is, p2 = 0.53 ·3 bar
= 1.59 bar in our case) and here the velocity will be equal to the speed of sound (or lower).

Concluding our example, we see that it is likely that the velocity at the leakage point is close
to the speed of sound (which is a little more than 300 m/s), and the resulting temperature
drop of about 50K makes icing very likely to occur.

4.11 Summary of energy balance

The general energy balance over the time period from t0 to tf is

Uf − U0
︸ ︷︷ ︸

∆U=∆Usystem

+ Hout − Hin
︸ ︷︷ ︸

∆Hflows

= Q + Ws + W∆V + Wel + Wother

where Hin = Uin + pinVin is the sum of the inlet flow’s internal energy and flow work,
and Hout = Uout + poutVout is the sum of the outlet stream’s internal energy and flow
work. The above energy balance is for the most common case where the energy only
includes internal energy (in the molecules). If other energy forms are important, such
as kinetic or potential energy, then it is always possible to add these terms to U and
H , see (4.39).
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Heat exchange

So far, we have dealt generally with mass and energy balances. In this chapter, we show how

to calculate the heat transfer (Q) that enters into the energy balances. This involves the very

important unit operation of heat exchange.

5.1 Introduction

Figure 5.1: Flow sheet symbols for heat exchanger

In industrial processes, the heat transfer between streams is usually carried out in
a heat exchanger where heat is transferred from the hot side (stream) to the cold
side (stream) through the wall of the heat exchanger.

Some examples of heat exchange:

• heat, evaporate or melt a stream
• cool, condense or freeze a stream
• recover energy by matching energy excess in a hot stream with energy demand and

a cold stream

Figure 5.2 shows the commonly used shell and tube countercurrent flow heat
exchanger. Heat exchangers are also known from everyday life:

• Radiator in a car or a house where heat is transferred from hot water to air
(liquid/gas heat exchanger).

• Cooling ribs in a refrigerator where heat is transferred from the hot refrigerant to
the surrounding air (liquid/gas heat exchanger).

• Heat exchanger in building (cold climate) where heat is transferred from the hot
outgoing to the cold incoming air (gas/gas heat exchanger).
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Figure 5.2: Shell and tube heat exchanger with countercurrent flow

Humans mainly use evaporation (sweating) for cooling (see page 36), but this is not
a pure heat exchange process because there is also an exchange of mass.

In heat exchangers, a large contact area is desired to get good heat transfer. This
applies in particular to gas/gas heat exchangers because the heat transfer coefficient
to gas is usually small.

There are two main principles for contacting streams in a heat exchanger: cocurrent
flow or countercurrent flow. Generally countercurrent flow is the most effective.
A practical example of countercurrent flow is the foot of a duck, see Figure 5.3.
In addition to heat transfer, the countercurrent flow principle is also used for mass

Figure 5.3: The countercurrent flow principle: When the duck is in cold water, the blood at
the end of the foot is cold, but on its way back to the bird’s body, the cold blood is heated
by the countercurrent flow of hot blood.

transfer applications, for example, in distillation, absorption, extraction and membrane
processes (see Example 2.4 and the following exercises). An example of a membrane
process is the transfer of oxygen to the blood in the lungs.

The principle for co- and countercurrent heat exchange is shown in Figure 5.4
(the same principle applies to mass transfer, but with temperature replaced by
concentration). In a countercurrent flow heat exchanger, the temperatures for the
streams approach each other at the exit. There is a good utilization of the whole heat
exchanger, in particular if the heat capacity flow rates, (mcp)c and (mcp)h [J/s K], are
about the same for both streams, such that the temperature profiles are similar. Note
that the exit temperature of the cold stream may be higher than the exit temperature
of the hot stream, which of course is impossible with cocurrent flow.

Despite the fact that countercurrent flow is the most effective, it is quite common,
due to economic and mechanical reasons, to use heat exchangers with a mix of counter
and cocurrent flow, as for the one shell pass and two tube passes configuration
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Figure 5.4: (a) Countercurrent flow and (b) cocurrent flow heat exchanger

discussed later; see Figure 5.7.
Sign of Q in this chapter (a remark on notation). Normally, Q is defined as

the heat supplied to the system. However, in a heat exchanger, the system may be
both the hot side and the cold side. Therefore, to avoid confusion, in this chapter, Q
([J/s=W]) is defined as the positive amount of heat transferred from the hot (h) to
the cold (c) side. This means that the supplied heat on the cold side is Q, and the
supplied heat on the hot side is −Q. Also note that in this chapter we omit the dot
notation for rates, that is, we use Q and m in the meaning of Q̇ and ṁ.

5.2 Calculation (design) of heat exchangers

Consider Figure 5.5 where a hot stream mh [kg/s] is cooled from Th,in to Th,out, by
heat exchange with a cold stream mc [kg/s], which is heated from Tc,in to Tc,out.

out

out

Figure 5.5: Schematic diagram of heat exchanger
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Heat transfer

In the case of constant temperatures on the hot and cold sides, the heat transfer from
the hot to the cold side is given by

Q = UA∆T (5.1)

where

• ∆T = Th − Tc – temperature difference between hot and cold sides.
• A [m2] – area of the heat transfer surface.
• U [W/m2, K] – overall heat transfer coefficient.

Figure 5.6: Heat loss through window

Example 5.1 Heat loss through window. Indoor air with a constant temperature of 23oC
exchanges heat through a window with outdoor air with constant temperature -2oC. The heat
transfer coefficient is U = 3 W/m2K and the area A of the “heat exchanger” (window) is 4
m2. Calculate the heat transferred Q (the heat loss).

Solution. Since the temperature on both sides is constant, the heat transfer can be
calculated from (5.1). We find

Q = UA(Th − Tc) = 3W/m2K · 4m2 · 25K = 300W

In the general case, the temperature difference ∆T = Th−Tc varies with the position
through the heat exchanger, see Figure 5.4, and we need to replace ∆T in (5.1) with
the mean temperature difference ∆T . If the temperature difference at one end of the
heat exchanger is ∆T1 and at the other ∆T2, then our first guess is to set ∆T equal to
the arithmetic mean, (∆T1 + ∆T2)/2. However, the situation is not quite as favorable
in reality because the temperatures “flatten out” in the region where ∆T is small.
For ideal countercurrent flow (and also for ideal cocurrent flow) with constant heat
capacities, the correct mean value is the logarithmic mean temperature difference
defined by (for derivation see page 394):

∆Tlm =
∆T1 − ∆T2

ln(∆T1/∆T2)
(5.2)
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This is always lower than the arithmetic mean. The temperatures differences ∆T1 and
∆T2 between the hot and cold streams at the two ends (entrance and exit) (1 and 2)
of the heat exchanger are given by:

• Countercurrent flow, see Figure 5.4(a),

∆T1 = Th,in − Tc,out, ∆T2 = Th,out − Tc,in (5.3)

• Cocurrent flow, see Figure 5.4(b),

∆T1 = Th,in − Tc,in, ∆T2 = Th,out − Tc,out (5.4)

In order to adjust ∆Tlm for deviation from ideal countercurrent flow (or ideal
cocurrent flow), we introduce the factor F ≤ 1, and we then generally have for cases
with constant heat capacities

Q = UA∆TlmF (5.5)

For ideal countercurrent and ideal cocurrent flow, F = 1. For the common “mixed”
countercurrent flow case with a heat exchanger with a “U-turn” on the tube side (one
shell pass and two tube passes), you can use Figure 5.7 to find F as a function of
the “efficiency” P and heat capacity flow ratio Z.

Energy balances

The heat transfer is calculated using (5.5). In order to find all temperatures, we need,
in addition, the energy balances for the hot and cold sides. Assuming steady state and
no heat loss to the surroundings, the energy balance (4.13) for the cold side is

(Hout − Hin)c = Q

mc (hc,out − hc,in) = Q (5.6)

where hc [J/kg] is specific enthalpy on cold side and Q > 0 is the heat supplied (from
the hot side).

1. For cases where we have, on the cold side, evaporation at constant temperature Tc

(for example, boiling of water at 100 oC), we get hc,out − hc,in = ∆vaph(Tc) [J/kg]
= heat of vaporization for cold fluid.

2. For cases where we have a fluid with constant heat capacity cp,c [J/kg K], we get
hc,out − hc,in = cp,c(Tc,out −Tc,in) and the energy balance for the cold side becomes

Q = mccp,c(Tc,out − Tc,in) (5.7)

The energy balance for the hot side (hot) is correspondingly

(Hout − Hin)h = −Q

mh (hh,out − hh,in) = −Q (5.8)
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s - shell side; t - tube side

Figure 5.7: Correction factor F for countercurrent heat exchanger with “U-turn” on the
tube side (one shell pass and two tube passes). F = 1 for ideal countercurrent flow.

1. For cases with, on the hot side, condensation at constant temperature Th (for
example, condensation of water vapor at 120 oC and 2 bar), we have hh,out−hh,in =
−∆vaph(Th) [J/kg] = the condensation heat for the fluid on hot side.

2. For cases where we have a fluid with constant heat capacity cp,h [J/kg K] on the
hot side, we get

Q = mhcp,h(Th,in − Th,out) (5.9)

In summary, the necessary equations for a heat exchanger with no heat loss and
constant heat capacities are given by (5.2), (5.5), (5.7) and (5.9). These equations are
well suited for design where the objective is to find A. However, for the “simulation”
case where A is given, it is recommended to use the rearranged equations in Section
5.3.

Example 5.2 Area of countercurrent flow heat exchanger (see Figure 5.5). A hot
stream with mass flow mh = 1 kg/s, heat capacity cp,h = 4 kJ/kg K and temperature
Th,in = 360 K is to be cooled to Th,out = 330 K by heat exchange with a cold stream with mass
flow mc = 2 kg/s, heat capacity cp,c = 3 kJ/kg K and temperature Tc,in = 320 K. The overall
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heat transfer coefficient U is 500 W/m2. Calculate the area of the heat exchanger when ideal
countercurrent flow is assumed.

Solution. First, we need to use the energy balances to find Q and the outlet temperature
on the cold side. The energy balance (5.9) on the hot side gives

Q = mhcp,h(Th,in − Th,out) = 1kg/s · 4kJ/kg K · (360K − 330K) = 120kW

The energy balance (5.7) on the cold side gives

Q = mccp,c(Tc,out − Tc,in) ⇒ Tc,out − Tc,in =
Q

mccp,c
=

120

2 · 3 = 20 K

that is, Tc,out = 340 K. The temperature differences between hot and cold sides at the two
ends of the heat exchanger are then according to (5.3) (countercurrent flow):

∆T1 = Th,in − Tc,out = 360K − 340K = 20K

∆T2 = Th,out − Tc,in = 330K − 320K = 10K

and the logarithmic mean temperature difference is

∆Tlm =
∆T1 − ∆T2

ln(∆T1/∆T2)
= 14.4K

(which we note, as expected, is slightly lower than the arithmetic mean value of 15K). From
(5.5), the required area of the heat exchanger, assuming ideal countercurrent flow (F = 1),
is:

A =
Q

U∆Tlm
=

120 · 103W

500(W/m2 K) · 14.4K
= 16.6m2

Heat exchangers: Some comments and typical numbers

1. The overall heat transfer coefficient U for industrial heat exchangers is typically
in the range from 5 W/m2 K and up to 4000 W/m2 K; see also Table 5.1. The
lowest values are for gas/gas heat exchangers at low pressure.

2. In English literature one often finds U given in Btu/(hr)(sqft)(oF) and to convert to
W/m2 K, you need to multiply by 5.6784. For example, the design book by Seider
et al. (Process design principles, Wiley, 1999) states that typical U -values are 200
Btu/hr ft2 F for reboilers, and 90 Btu/hr ft2 F for air coolers, which in SI units is
1136 W/m2 K and 511 W/m2, respectively.

3. To compare, it is possible to have U less than 1 W/m2 K for a high-quality double
or triple glass window with only natural convection (little wind).

4. For heat loss from the human body, U can typically vary from 2 W/m2 K (well
dressed and gentle breeze) to 20 W/m2 K (swimming in water); see page 35 for
details.

5. The area of industrial heat exchangers is typically from 1 m2 to 3000 m2 (they are
usually divided into several smaller units if they become too large). However, spiral
wound heat exchangers, of the kind used in LNG processes, can have areas up to
50000 m2. Typical heat transfer rates (Q) in industrial heat exchangers vary from
10 kW to 100000 kW = 100 MW.

6. The expression for ∆Tlm in (5.2) on page 394 is derived with the assumption of
constant heat capacities for the streams. The expression also applies if there is
constant temperature on one of the sides, such as during boiling and condensation
(which is equivalent to an infinite heat capacity).
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Table 5.1: Typical overall heat transfer coefficients for heat exchangers in the gas industry.
Source: SI Engineering Data Book, Gas Processors Suppliers Association, Tulsa, USA, 1980

Use U [W/m2 K]

water air (1 bar) 110-140
water gas (1.7 bar) 200-225
water gas (3 bar) 225-285
water gas (6 bar) 340-400
water gas (8 bar) 450-570
water oil 740-850
water condensating propane 710-765
water condensating naphtha 400-450
water water 1000-1140
oil oil 450-570
propane (liq) propane (liq) 625-740
gas (1 bar) gas (1 bar) 5-40
gas (1.7 bar) gas (4.4 bar) 280-400
gas (8 bar) gas (8 bar) 340-450
gas (8 bar) propane (liq) 340-450
boiling liquid oil 510-680
boiling liquid condensating water vapor 800-900

7. For 1/1.4 < ∆T1/∆T2 < 1.4 (that is, for cases where the temperature difference
between the two sides is fairly constant), the error is less than 1% if the logarithmic
temperature difference ∆Tlm is replaced by the arithmetic mean

∆Tm =
∆T1 + ∆T2

2

The arithmetic mean is better than ∆Tm for numerical calculations. For example,
∆Tm has the disadvantage that it becomes 0/0 for ∆T1 = ∆T2, although the correct
value in this case clearly is ∆Tm = ∆T1 = ∆T2.

8. We can interpret 1/U as the overall “resistance” to the heat transfer. The overall
resistance can be calculated by adding the “resistances” on the cold side (1/hc),
the hot side (1/hh) and through the wall (d/k), that is,

1

U
=

1

hc
+

1

hh
+

d

k
[m2 K/W] (5.10)

where hc [W/m2 K] is the heat transfer coefficient on cold side, hh on hot side, k
[W/m K] is thermal conductivity and d [m] is the wall thickness. The values for
hc and hh can be found from published correlations. (Note. Do not confuse this h
with specific enthalpy.) Note that h has to do with the heat transfer between a flow
and a wall, while U is for heat transfer from one flow to another flow. h is called
the heat transfer coefficient and U the overall heat transfer coefficient.

9. The most common kind of heat exchanger in the process industry is the shell and
tube heat exchanger, see Figure 5.2. The heat transfer is usually best on the inside
of the tubes, and we therefore prefer to have the gas on the tube side and the



HEAT EXCHANGE 137

liquid on the shell side (“the outside of the tubes”) in a gas/liquid heat exchanger.
Another issue to consider is that the heat loss to the surroundings is reduced by
having the cold stream on the shell side.

10. The temperature difference ∆T = Th − Tc varies along the heat exchanger, for
example as shown in Figure 5.4 for countercurrent flow and cocurrent flow. If ∆T is
small, a large heat exchanger area is required. A common rule of thumb for design,
in order to avoid large heat exchangers, is to require ∆T > ∆Tmin throughout the
exchanger, with ∆Tmin = 10 K being a typical value.

Example 5.3 Cocurrent flow. Repeat Example 5.2 for the case with cocurrent flow. What
is the area of the heat exchanger?

The answer is that this is impossible with a cocurrent flow heat exchanger. The energy
balance calculations are the same as with cocurrent flow, and we find that the required
temperature difference at the outlet end is ∆T2 = Th,out − Tc,out = 330K − 340K = −10K,
which is negative and thereby impossible. Another way of showing that this is impossible
is to assume infinite area. Then the exit streams will have the same temperature, that is,
Th,out = Tc,out = T , and the energy balance becomes

Q = mccp,c(T − Tc,in) = mhcp,h(Th,in − T )

which gives

T =
mhcp,hTh,in + mccp,cTc,in

mhcp,h = mccp,c
=

4 · 360 + 6 · 320
4 + 6

= 336 K

while we wanted to cool to Th,out = 330 K. In comparison, if we for this example use a
countercurrent flow heat exchanger with infinite area, then we achieve Th,out = Tc,in = 320K.

Example 5.4 Heat exchanger with two tube pass. Repeat Example 5.2 for the case
with a “U-turn” on the tube side (two tube pass) as shown in Figure 5.7, and with the hot
stream on the tube side. What is the area of the heat exchanger?

Here, we have a mix of co- and countercurrent flows, so in the light of the previous example
with cocurrent flow, we expect that the common “U turn” heat exchanger is not well suited in
this case. To use the diagram in Figure 5.7, we need the “efficiency” P and the mCp ratio Z
(note that we have the hot stream on the tube side, that is, we have h = t (tube) and c = s
(shell)):

P =
Tt,out − Tt,in

Ts,in − Tt,in
=

330 − 360

320 − 360
= 0.75; Z =

mtcp,t

mscp,s
=

1 · 4
2 · 3 = 0.67

These values of P and Z are outside the diagram, but by extrapolating we can guess that F
is lower than 0.2. That is, we need a heat exchanger that has an area at least 5 times larger
than for ideal countercurrent flow. We can therefore conclude that a countercurrent flow heat
exchanger should be used for this specific application.

Example 5.5 Area of heat exchanger for cooling synthesis gas. Figure 5.8 shows
a countercurrent flow heat exchanger where 8500 kmol/h (100000 kg/h) of hot synthesis gas
with temperature 870o C is cooled to 360o C by evaporation of water on the other side at
constant temperature 308o C (the pressure on the water side is 99 bar, that is, we generate
what is often called high pressure steam). The overall heat transfer coefficient is 300 W/m2

K. The mean heat capacity on the gas side is Cp = 36 J/mol K and the heat of vaporization
of water at 99 bar is 1350 kJ/kg. Find the required area for the exchanger and calculate the
amount of steam produced [t/h].
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Steam

Water

Figure 5.8: Heat exchanger for cooling down synthesis gas

Solution. The temperature differences at the two heat exchanger ends are

∆T1 = 870 − 308 = 562 K; ∆T2 = 360 − 308 = 52 K

which gives the logarithmic mean temperature difference

∆Tlm =
∆T1 − ∆T2

ln(∆T1/∆T2)
= 214 K

(this is significantly less than the arithmetic mean of 307 K because the temperature on the
hot side “flattens” towards the exit of the heat exchanger). The energy balance (5.9) on the
hot side gives

Q = nhCp,h(Th,in − Th,out) = (8500/3.6) · 36 · (870 − 360) = 43.4 · 106J/s
| {z }

MW

(here 3.6 is the conversion factor from kmol/h to mol/s) and the area of the heat exchanger
becomes

A =
Q

U∆Tlm
=

43.4 · 106

300 · 214 = 676 m2

The energy balance for the water side where we have evaporation is

Hout − Hin = m · ∆vapH = Q ⇒ m =
Q

∆vapH
=

43.4 · 106

1350 · 103
= 32.1 kg/s

that is, the amount of high pressure steam is m = 32.1 kg/s = 115.7 t/h. Note that in this case
with constant temperature on one side there is no difference between co- and countercurrent
flow, at least not from a thermodynamic point of view.

Next, some exercises.

Exercise 5.1 ∗ A gas stream of 700 mol/s and Cp = 40 J/mol K is cooled from 400 oC to
210 oC in a countercurrent heat exchanger by heating liquid water from 100 oC to 350 oC.

(a) Formulate the total energy balance [J/s] and calculate the amount of water, when the
specific heat capacity for water is 4.18 kJ/kg K.
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(b) Calculate UA for the heat exchanger assuming ideal countercurrent flow.
(c) The water flow increases such that the exit temperature of the gas is reduced from 210

oC to 180 oC. Calculate the exit temperature for water and flow of water (you can assume
that the inlet temperatures are unchanged, the gas flow is unchanged and UA is constant).

Exercise 5.2 ∗ Comparison of cocurrent flow and countercurrent flows. A hot liquid
stream with temperature 37.5 oC is cooled to 20 oC in a heat exchanger where the heat
transferred is 73.3 kW. Cooling water with specific heat capacity 4.18 kJ/kg K is used and
its temperature goes from 12oC (in) to 17.5oC (out). The overall heat transfer coefficient
is U = 200W/m2K. Calculate (a) the amount of cooling water, and the area of the heat
exchanger for the cases with (b) countercurrent flow, (c) cocurrent flow and (d) two tube pass
with the hot stream on the tube side.

5.3 Simulation of heat exchangers

In the above examples the temperature were given and we calculated the area of the
heat exchangers – this is called design. But during operation, the equipment (heat
exchanger) is given and we want to calculate what happens (find the exit temperature)
– this is called simulation. The same equations can be used – the difference is which
quantity is unknown. Let us consider an example.

Example 5.6 Calculation of the exit temperature for a given heat exchanger
(simulation). A cold stream (5 kg/s, cp = 1.5 kJ/kg K, 20 oC) is to be heat exchanged
with a hot stream (3 kg/s, cp = 1.2 kJ/kg K, 70 oC) in a countercurrent flow heat exchanger
with U=150 W/m2 K and A = 90 m2. Problem: Calculate the exit temperatures and heat
transferred.

Solution. Constant heat capacities are assumed. As shown above, a countercurrent flow
heat exchanger is described by the following equations (which are easy to remember!)

mccp,c(Tc,out − Tc,in) = Q (5.11)

mhcp,h(Th,out − Th,in) = −Q (5.12)

Q = UA∆Tlm (5.13)

∆Tlm =
∆T1 − ∆T2

ln(∆T1/∆T2)
(5.14)

where ∆T1 and ∆T2 are the temperature differences between the hot and cold sides at the two
ends of the heat exchanger. The following data are given:

mc = 5kg/s; cp,c = 1500J/kg K; tc,in = 20oC

mh = 3kg/s; cp,h = 1200J/kg K; th,in = 70oC

This gives four equations with four unknowns (Q, Tc,out, Th,out, ∆Tlm), so it should be possible
to find a solution. However, the equations are difficult to solve analytically. It is possible to
reformulate the equations such that they are more suited for simulation (see Section 5.3), but
let us first illustrate how (5.11)-(5.14) can be solved by iteration (“trial and error”):

1. Guess a value of ∆Tlm.
2. Calculate Q from (5.13).
3. Calculate Tc,out from (5.11).
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4. Calculate Th,out from (5.12).
5. Calculate ∆Tlm from (5.14) and compare with the guess.
6. If the solution is not converged, go to step 1 and make a new guess (note that the “direct

substitution” method, where we go to step 2 with the new ∆Tlm, does not work in this
case).

The following MATLAB program can be used:

% Data:
mh=3; cph=1200; thi=70;
mc=5; cpc=1500; tci=20;
U = 150; A=90;
% 1, Guess logarithmic mean temp
dtlm0 = 5;
% 2. Amount of transferred heat
Q = U*A*dtlm0
% 3,4 . From the energy balances on cold and hot side
tcu = tci + Q/(mc*cpc)
thu = thi - Q/(mh*cph)
% 5. Calculate the logarithmic mean temperature difference (countercurrent
% flow)
dt1 = thi - tcu
dt2 = thu - tci
dtlm = (dt1 - dt2)/ log(dt1/dt2)

We start by guessing ∆Tlm= 5 K. This gives a new calculated value of 35.9 K. Some more
values:

Guessed ∆Tlm Calculated ∆Tlm

5 35.9
10 20.8
15 unphysical
12 13.5

12.5 11.21
12.2 12.61
12.3 12.17

We consider this to be good enough, that is, ∆Tlm = 12.3 K. We find that

Q = 166.1 kW ; th,out = 23.9oC; tc,out = 42.1oC

Transformed equations for simulation (ǫ-NTU method)

In the above simulation example, we solved the heat exchanger equations (5.11)–
(5.14) by iteration, but this is not necessary. Using some algebra, we can derive the
following equivalent simple expressions which are suitable for simulation of a given
heat exchanger:1

Th,out = (1 − ǫh)Th,in + ǫhTc,in (5.15)

Tc,out = ǫcTh,in + (1 − ǫc)Tc,in (5.16)

where for ideal countercurrent flow the “efficiencies” ǫh and ǫc can be calculated from
the following formulas (which you are not likely to be able to remember, as opposed

1 For more about the ǫ-NTU method and applying it to other heat exchangers, see for example: A.
F. Mills, Heat and Mass Transfer, Irwin (1995).
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to (5.11)–(5.14)!):

Ntu =
UA

mccp,c
(5.17)

C =
mccp,c

mhcp,h
(5.18)

ǫc =
1 − exp (−Ntu(C − 1))

C − exp (−Ntu(C − 1))
(5.19)

ǫh = ǫc · C (5.20)

For ideal cocurrent flow, (5.19) is replaced with

ǫc =
1 − exp (−Ntu(C + 1))

C + 1
(5.21)

These equations are easy to program, for example in MATLAB or in a spreadsheet.
All of the above variables are dimensionless. Ntu is the number of heat transfer
units (NTUs) and C is the ratio of the heat flow capacities for hot and cold sides.
A larger value for Ntu gives ǫc and ǫh closer to 1.

Note from (5.15)–(5.16) that it is very simple to find the exit temperature when we
have first determined the efficiencies ǫh and ǫc. The efficiencies are always between 0
and 1, which is reasonable since the exit temperatures must necessarily be bounded
by the inlet temperatures.

Example 5.7 Simulation of heat exchanger. Let us continue Example 5.6 (page 139).
First, calculate the number of heat transfer units Ntu, the heat capacity ratio C and the
efficiencies

Ntu =
UA

mccp,c
=

150 · 90
5 · 1500 = 1.8

C =
mccp,c

mhcp,h
=

5 · 1500
3 · 1200 = 2.083

ǫc =
1 − exp (−Ntu(C − 1))

C − exp (−Ntu(C − 1))
=

1 − 0.142

2.083 − 0.142
= 0.442

ǫh = ǫcC = 0.442 · 2.083 = 0.920

Equations (5.15)–(5.16) then give the exit temperatures (here, we use lower case letter for
temperature since they are in oC),

th,out = 0.080th,in + 0.920tc,in = 0.080 · 70o + 0.920 · 20o = 23.98oC

tc,out = 0.442th,in + 0.558tc,in = 0.442 · 70o + 0.558 · 20o = 42.09oC

which is the same as we found in Example 5.6 by solving equations (5.11)–(5.14) by iteration.

Comments on the ǫ-NTU method:

1. If there is no heat exchange (that is, UA = 0 ⇒ Ntu = 0), then both efficiencies
ǫc and ǫh are 0, and as expected we have that Th,out = Th,in and Tc,out = Tc,in. For
an infinitely large heat exchanger (that is, UA → ∞), Ntu goes to infinity and one



142 CHEMICAL AND ENERGY PROCESS ENGINEERING

of the two efficiencies goes to 1, that is, the temperatures will approach each other at
one end of the heat exchanger (both efficiencies go to 1 at the same time only if the
streams have identical heat capacity flow rates mcp such that C = 1).

2. From (5.15)–(5.16), we note that there is a “linear” relationship between the inlet
and outlet temperatures. This implies that a given (e.g., 1 degree) increase in an inlet
temperature will always result in the same increase in the exit temperatures (which
is less than 1 degree and given by the efficiencies).

3. For the special case of C = 1, we have parallel temperature profiles on the two
sides and the formula for ǫc in (5.19) cannot be used. One approach is to change the
value of C slightly, for example to C = 0.9999, but alternatively one can for C = 1
use ǫc = Ntu/(Ntu + 1). The special case with condensing vapor on hot side can be
approximated by using a very large mhcp,h, and the special case with boiling liquid
on cold side can be approximated by setting a very large mccp,c.

4. It follows from Q = mhcp,h(Th,in − Th,out) that the amount of heat transferred is

Q = ǫhmhcp,h (Th,in − Tc,in) = ǫcmccp,c (Th,in − Tc,in) (5.22)

5. We have chosen to introduce two efficiencies (ǫh and ǫc), but it is common to use
a single efficiency ǫ , max{ǫh, ǫc) which is the largest of the two. We then have that

Q = ǫCmin(Th,in − Tc,in) (5.23)

where Cmin , min{mccp,c, mhcp,h} and we have that the efficiency ǫ → 1 for an
infinitely large heat exchanger.

Exercise 5.3 In a cocurrent flow heat exchanger, the inlet temperatures are 90 oC (hot side)
and 25 oC (cold side). At the exit, the temperatures are 55 oC (hot side) and 53.5 oC (cold
side). (a) What are the exit temperatures if you “switch” and instead use countercurrent
flow (with the same heat exchanger)? (b) How much more heat is transferred (in %)?
(Hint: It might be worthwhile to choose a basis, for example Q = 100[W], for the case with
countercurrent flow, and start by using the “design formulas” to calculate UA and the heat
capacity flow rates (mCp) on hot and cold side.
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Compression and expansion

To increase the pressure of a stream (compression), we normally need to supply work. If

we reduce the pressure of a stream (expansion), we can potentially extract work. Here, we

consider the calculation of this “shaft work” Ws for a steady-state continuous process.

6.1 Introduction

Compressor

Expander/Turbine

Pump

Figure 6.1: Steady-state energy balance for process with shaft work

The energy balance for a steady-state process where a stream is taken from state 1
(in) to state 2 (out) can, as shown in (4.13), be written

H2 − H1 = Q + Ws (6.1)

where we have neglected changes in kinetic and potential energy, and have neglected
electrochemical work. In order to compress a gas or pump a liquid (increase the
pressure from p1 to p2 > p1), we need to supply mechanical shaft work (Ws > 0).
On the other hand, we can, by expanding a stream to a lower pressure (p2 < p1) in a
turbine, remove mechanical shaft work (Ws < 0).

We want to derive simple expressions for calculating Ws. This is done by first
obtaining the ideal (reversible) work W rev

s that would have been obtained in a
reversible (frictionless; lossless) machine, and then introducing an efficiency η to find
the actual work. The efficiency is typically around 75%.
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Comment: In order to calculate the efficiency and obtain a relationship between
pressure rise and rotation speed for a given compressor, we would need a quite detailed
description of the insides of these machines. This is outside the scope of this book,
which deals with mainly mass and energy balances, and for us it is enough to use
thermodynamic considerations.

6.2 Compression (increase of pressure)

A compressor is a machine (unit) that increases pressure of a gas stream by supplying
mechanical work (Ws > 0). The flow sheet symbol for a compressor is two lines where
the distance becomes narrower. This illustrates that the fluid takes less space when it
is compressed, see Figure 6.2(a). Two simple examples of a compressor are a bicycle
pump and a kitchen fan.

Note! Extract

work here

Figure 6.2: (a) Compressor (b) Turbine

If the reversible compression work for an ideal compressor is W rev
s , then the actual

compression work is

Ws =
W rev

s

η
(6.2)

where η ≤ 1 is the (thermodynamic) efficiency of the compressor. In an actual
compressor, part of the work, Ws − W rev

s (which is a positive number), is lost as
friction heat.

Equation (6.2) also applies to a pump which is a unit that increases the pressure
of a liquid. The work is usually much smaller here because a liquid has a much smaller
volume than a gas.

6.3 Expansion in turbine

A turbine is a unit that removes mechanical work (Ws < 0) by expanding a fluid from
a high to a low pressure. Note that we use the same term, turbine, for both gas and
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liquid. The flow sheet symbol for a turbine expands outwards to show that the gas
takes more space when expanded, see Figure 6.2(b).

In the ideal reversible case, a turbine is the opposite of a compressor. That is, by
reversing the gas stream, it is possible to remove the same amount of mechanical work
that has to be supplied during compression. Therefore, we use the same formulas for
calculating the reversible work W rev

s in the two cases.
However, in practice, we have friction here too, and if the ideal expansion work

is W rev
s , then the actual work that can be extracted is given by

Ws = η · W rev
s (6.3)

where η ≤ 1 is the efficiency of the turbine. (Note that we here multiply by η, whereas
we divide by η for a compressor or pump). In an actual turbine, part of the theoretical
work, Ws − W rev

s (which is a positive number since W rev
s is more negative), is lost as

friction heat.

6.4 Reversible shaft work

Here, we derive the ideal (reversible) shaft work W rev
s for pressure changes for a

continuous process (open system). The shaft work is supplied or removed using a
cyclic machine, such as a piston compressor or a rotating compressor.

Consider a fluid (gas or liquid) with pressure p1 that is compressed or expanded to
a pressure p2 in a steady state open process. The ideal (reversible) shaft work that
must be supplied is (see derivation below)

W rev
s =

∫ p2

p1

V dp [J/s; J; J/mol; J/kg] (6.4)

where V [m3/s; m3; m3/mol; m3/kg] is the volume of the fluid that is compressed or
expanded. In general, the volume V will change through the machine as a function
of the actual T and p. This dependency is particularly important for gases; for an
ideal we use pV c = const where c is the polytrope exponent (c = 1 for isothermal
process and c = γ = Cp/CV for adiabatic process) – see details below. For liquids we
can usually assume that we have an incompressible fluid where V is constant, that is,
independent of both T and p.

Comment: The shaft work W rev
s in (6.4) is for a pressure change. It must not

be confused with the work W∆V for a system volume change, which for a reversible
process is W rev

∆V = −
∫

pdV (see A.27), where V represents the volume of the system
(machine) and not the volume of the stream. For a steady state process, the volume
of the system is constant, that is, W∆V = 0.

Derivation of (6.4)

To derive (6.4), consider an idealized process where n mol of a fluid with pressure p1 is compressed to
pressure p2 using an ideal reversible piston compressor (“ideal bicycle pump”), see Figure 6.3. Note
that the piston compressor (the system) returns to its original state after each cycle, so the system
itself has no volume changes since the time period we consider is a whole cycle. Even though this
derivation is for compression, we may reverse the process so the same expression holds for expansion.
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p
TT

Fill

Compress

Empty

Figure 6.3: Reversible shaft work: (a) Flow sheet compressor. (b) Cycle for piston compressor
with three subprocesses

The cycle that we are considering consists of the following three reversible steps (subprocesses):

1. The cylinder (e.g., bicycle pump) is filled at constant pressure p1 (the process is adiabatic and the
volume increases from 0 to V1, where V1 is the volume of the fluid in state 1).

2. The gas is compressed from p1 to p2 by pushing the piston such that the volume decreases from
V1 to V2 (this process can be adiabatic or possibly involve cooling during the compression; this is
not specified here – it will follow indirectly from the relationship between p and V used later).

3. The gas in the cylinder (bicycle pump) is emptied at constant pressure p2 (the process is adiabatic
and the volume decreases from V2 to 0). (The cycle is now completed and we are back to start.)

Each subprocess is reversible, so that the outer (surrounding) pressure applied by the piston
equals the system’s pressure (pex = p). The supplied work from the piston in the compressor in each
subprocess is then given by (A.27) (see also Figure A.7, page 346):

W = −
Z

pdV [J ]

where p is the system’s pressure (inside the cylinder). The supplied shaft work in each of the three
steps is then:

1. Filling of the cylinder (work is performed)

W1 = −
Z V1

0
p1dV = −p1V1

2. Compression (work is supplied)

W2 = −
Z V2

V1

pdV =

Z V1

V2

pdV

(Note that V1 > V2 during compression.)
3. Emptying (work is supplied)

W3 = −
Z 0

V2

p2dV = p2V2

W1 and W3 are the flow works for pushing the stream in and out, whereas W2 is the “actual”
compression work.

The total supplied shaft work (which is a “piston work” in our idealized process) is the sum of
these three works

W rev
s = W1 + W2 + W3 = −p1V1 +

Z V1

V2

pdV + p2V2 =

Z p2

p1

V dp (6.5)

The last equality follows from considering the areas in Figure 6.4(a). Alternatively, we can integrate

by parts, which gives
R 2
1 d(pV ) = p2V2 − p1V1 =

R 2
1 pdV +

R 2
1 V dp. 2
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(shaded)

Figure 6.4: Derivation of reversible shaft work: (a) Work for each subprocess. (b) Work for
the whole cycle

Comments on (6.4)

• Although the derivation is given for a piston compressor, W rev
s in (6.4) also gives the shaft

work for reversible pressure change for other types of equipment, for instance a radial
compressor.

• The derivation also applies to expansion (reverse the derivation).
• The derivation of W rev

s gives the shaft work for a steady state continuous process (open
system) where the inflow is in state 1 and the outflow is in state 2. For a change from state
1 to state 2 in a closed system, the work for the change in volume is given by W2 in process
step 2.

• The compression can occur adiabatically (Q = 0) or possibly we can have cooling (Q < 0)
or heating (Q > 0) – this follows indirectly from the relationship between p and V used
when calculating W rev

s in (6.4); see more details below.
• The energy balance for the process is H2 = H1+Ws +Q. Note that the “internal” (useless)

flow work for pushing the stream in and out of the machine (the compressor) is included
in the enthalpies H1 and H2.

• If you know some thermodynamics, then (6.4) can alternatively be derived by considering
the change of entropy for a reversible process: Start with the energy balance (6.1) for
a continuous process without accumulation. This can be written in differential form as
dH = dQ + dWs. For a reversible process, we have that dQrev = TdS which gives
dW rev

s = dH − TdS. Here, enthalpy is a state function, and from (B.68) we have
dH = TdS + V dp, which inserted gives dW rev

s = V dp.
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6.5 Reversible shaft work for ideal gas

From (6.4), the ideal work for pressure change in 1 mole of fluid is

W rev
s =

∫ p2

p1

V dp [J/mol] (6.6)

Here, V is the molar volume [m3/mol]. In order to calculate W rev
s , we must integrate

V dp, that is, we need to know the relation between V and p during the compression.
Expression (6.6) applies to any fluid (including real gas), but we here consider an ideal
gas where pV = RT and consider three cases for how the compression or expansion
occurs:

Isothermal: pV =constant

Adiabatic (isentropic): pV γ=constant, where γ = Cp/CV .

Polytropic: pV c=constant, where c is the polytropic coefficient, 1 ≤ c ≤ γ, obtained
by cooling for compression or heating for expansion.

isothermal adiabatic

Figure 6.5: (a) Isothermal and (b) adiabatic compression. (For ideal gas (a) H2 = H1 and
thereby Q = −Ws)

6.5.1 Isothermal process

In this case, we have T1 = T2 = T0. For compression this is obtained by cooling
and for expansion by heating, see Figure 6.5(a). For n mol of ideal gas with constant
temperature, we have that

pV = nRT0 = constant

which gives
∫

V dp = nRT0

∫ dp
p = nRT0 ln p and we have from (6.6) that

W rev
s /n = RT0 ln

(
p2

p1

)

[J/mol] (6.7)
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Furthermore, for an ideal gas, the enthalpy is only a function of the temperature, that
is, H1 = H2 and the energy balance (6.1) gives that Q = −Ws, that is, the heat Q is
equal to performed work (−Ws).

6.5.2 Adiabatic process (isentropic)

We consider an adiabatic reversible state change of an ideal gas and assume constant
heat capacity. For this process, pV γ= constant or equivalently, see (A.40),

T2

T1
=

(
p2

p1

) γ−1
γ

(6.8)

where γ = Cp/CV . Alternatively, the exponent can be written

γ − 1

γ
=

Cp,m − CV,m

Cp,m
=

R

Cp,m

where Cp,m [J/K mol] is the molar heat capacity. To find the shaft work, calculate T2

from (6.8) and insert this into the energy balance. Since the heat capacity Cp [J/K
kg; J/K mol] is assumed constant, the energy balance (6.1) gives

W rev
s = H2 − H1 = mCp(T2 − T1) [J ; J/s] (6.9)

Depending on the units for Cp, the mass m can be on mass basis [kg; kg/s] or on mole
basis [mol, mol/s] (in the latter case, the symbol n is often used instead of m). Using
(6.8), we then have the adiabatic reversible work for an ideal gas with constant heat
capacity

W rev
s = mCpT1

[(
p2

p1

) γ−1
γ

− 1

]

[J ; J/s] (6.10)

Exercise 6.1 ∗ Alternative derivation. Integrate W rev
s =

R p2

p1
V dp in (6.6) using pV γ =

p1V
γ
1 = constant, and show that you get (6.10).

6.5.3 Polytropic process

There is also a third case, namely a polytropic process where there is some cooling
(compression) or some heating (expansion) but not enough to keep the temperature
constant. The polytropic process is calculated using (6.10), but with the polytrope
exponent c instead of γ. We have that 1 ≤ c ≤ γ where c = 1 applies to an isothermal
process, and c = γ applies to an adiabatic process.

6.6 Actual work and examples

To find the actual work Ws for a compressor, pump or turbine, use the following
procedure
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1. Calculate the reversible work W rev
s (sometimes denoted W ′

s). The reversible outlet
temperature is also often denoted with ′, for instance, T ′

2.
2. Calculate the actual work from the efficiency η:

Compressor : Ws = W rev
s /η

Turbine : Ws = W rev
s · η

3. Calculate the actual outlet temperature T2 using the energy balance

Ws = mCp(T2 − T1)

We are often a bit sloppy with the sign for Ws, but note that Ws represents supplied
work and should be negative for a turbine.

Example 6.1 Compression of ideal gas (important example). n = 1700 mol/s of an
ideal gas with γ = Cp/CV = 1.38 at p1 = 20 bar and 50 oC is compressed to p2 = 100 bar.
Calculate the ideal (reversible) compression work for (see figures 6.6- 6.9):

1. One-step adiabatic compression from 20 to 100 bar.
2. Two-step adiabatic compression with intermediate pressure 45 bar without intermediate

cooling. Here the compression first occurs from 20 bar to 45 bar and then from 45 bar to
100 bar.

3. Two-step adiabatic compression with intermediate pressure 45 bar and intermediate cooling
down to 50 oC. Here the compression first occurs from 20 bar to 45 bar, then the gas is
cooled to 50 oC, before it is compressed from 45 bar to 100 bar.

4. Isothermal compression at 50 oC.
5. Finally, find for case 1 the actual exit temperature when the adiabatic efficiency is η = 0.72.

Solution. It is given that γ = Cp/CV = 1.38. From this, it follows that γ−1
γ

= 0.275 and
Cp = R γ

γ−1
= 30.2 J/mol K.

Figure 6.6: Adiabatic compression

1. One-step adiabatic compression from 20 to 100 bar. The “ideal” temperature T2

after a reversible compression is from (6.8),

T2

T1
=

„
p2

p1

« γ−1
γ

=

„
100

20

«0.275

= 1.558 (6.11)

that is, T2 = 323 · 1.558 = 503.1 K (230 oC). The ideal (reversible) compression work is
found from the energy balance (6.1)

W rev
s = H2 − H1 = nCp(T2 − T1) =

1700 mol/s · 30.2 J/K mol(503 K − 323 K) = 9.25 · 106 J/s = 9.25 MW
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Stage Stage

Figure 6.7: Two-step adiabatic compression without intermediate cooling

2. Two-step adiabatic compression with intermediate pressure 45 bar without
intermediate cooling. Here, the gas is first compressed from p1 = 20 bar to p3 = 45 bar
and then from p3 = 45 bar to p2 = 100 bar. The answer is of course the same as in case
1, since for the first step

T3

T1
=

„
p3

p1

« γ−1
γ

and for the second step

T2

T3
=

„
p2

p3

« γ−1
γ

which, when multiplied, gives the same final temperature as in (6.11), and from the energy
balance the work must be the same.

Stage Stage

Cooling

Figure 6.8: Two-step adiabatic compression without intermediate cooling

3. Two-step adiabatic compression with intermediate pressure p3 = 45 bar and
intermediate cooling to t3c = 50oC. The ideal temperature after the first step is

T3

T1
=

„
p3

p1

« γ−1
γ

=

„
45

20

«0.275

= 1.2498

which gives T3 = 1.2498 · 323.15 = 403.9K (that is, 130.7 oC). The energy balance gives

W rev
s1 = nCp(T3 − T1) = 1700 · 30.2 · 80.7 = 4.14 MW

The gas is then cooled from T3 = 403.9K to T3c = 323 K (50oC). The temperature after
the second compression step is then

T2

T3c
=

„
p2

p3

« γ−1
γ

=

„
100

45

«0.275

= 1.2456
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which gives T2 = 402.5 K (129.4 oC) and the energy balance gives

W rev
s2 = nCp(T2 − T3c) = 1700mol/s · 30.2J/K mol · 79.4K = 4.07MW

The total work with intermediate cooling is 4.14 MW + 4.07 MW = 8.21 MW which is
11% lower than the 9.25 MW for one-step adiabatic compression.

Cooling

Figure 6.9: Isothermal compression

4. Isothermal compression at 50 oC. The isothermal compression work is from (6.7)

W rev
s = nRT1 ln

„
p2

p1

«

= 1700 · 8.31 · 323 · ln 5 = 7.34 MW

which is 21% lower than for the one-step adiabatic compression. Note that isothermal
compression at 50 oC is equivalent to the limit of adiabatic compression with an infinite
number of steps, each with intermediate cooling to 50 oC.

5. Finally, let us find the actual exit temperature for one-step adiabatic compression.
The efficiency is η = 0.72, that is, the actual compression work is

Ws =
W rev

s

η
=

9.25

0.72
= 12.85MW

The actual exit temperature T2 is then from the energy balance Ws = nCp(T2 − T1),

T2 = 323 +
12.85 · 106

1700 · 30.2
= 323 + 250.2 = 573.2 K

that is, t2 = 300oC, while we found t′2 = 230oC for a reversible compression.

In summary, we have for this example (see also Figure 6.10):
Adiabatic compression with 1 step: W rev = 9.25 MW.
Adiabatic compression with 2 steps: W rev = 9.25 MW.
Adiabatic compression with 2 steps with intermediate cooling: W rev = 8.21 MW.
Isothermal compression (same as infinite steps with imtermediate cooling): W rev = 7.34

MW.

We see from the above example that it is optimal to cool as much as possible
during compression in order to reduce the compression work. This is also clear from
the general formula W rev

s =
∫

V dp in (6.8), because cooling reduces the volume V .
The most favorable is isothermal compression at a low temperature, but this requires
continuous cooling, which is difficult in practice. Multi-step adiabatic compression with
intermediate cooling between each step is therefore used in practice. The compression
work savings by use of intermediate cooling is graphically illustrated in Figure 6.10
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Energy savings

compared to 1-stage

adiabatic compression
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Figure 6.10: Energy gain for two-step adiabatic compression with intermediate cooling

(remember that W rev
s =

∫
V dp). From the figure, we see again that with sufficiently

many steps, adiabatic compression with intermediate cooling gives the same work as
isothermal compression.

It can be shown that, for a given number of steps with intermediate cooling, it is
optimal to use roughly the same compression ratio in each step. The compression ratio
p2/p1 is typically about 2 per step.

Correspondingly, for a turbine, one should heat as much as possible in order
to extract more work. In practice, expansion is performed in multiple steps with
intermediate heating.

Exercise 6.2 ∗ 50 mol/s of an ideal gas with heat capacity Cp = 30 J/mol K is isothermally
compressed (400 K) from 3 bar to 30 bar. The efficiency of the compressor is 0.7. Calculate
the required cooling duty.

Exercise 6.3 A 6000 kmol/h gas stream with temperature 50 oC is compressed from 19 to
99 bar in two steps. The first step compresses the gas stream adiabatically to 45 bar. The gas
is then cooled to 70 oC before being adiabatically compressed to 99 bar. Calculate the ideal
(reversible) compression work in the two steps.

Data: Assume ideal gas with constant heat capacity Cp = 30.5 J/mol,K.

Exercise 6.4 ∗ Compressor. In order to produce vacuum and suck off the vapor in
Exercise 4.6 (see page 112), a compressor that takes the gas from pressure p3 to 1 atm is
needed.

Data: The vapor pressure of water at 20 oC is p3 = 2.337 kPa, and the compressor has
an efficiency of 0.6 (for both adiabatic and isothermal compression). The heat capacity of the
gas is 33.6 J/mol K and ideal gas can be assumed. Note that 1 atm is equal to 101.33 kPa
and that the amount of compressed gas is 0.0297 kg/s which corresponds to 1.65 mol/s.

Calculate the compression work for both (a) adiabatic and (b) isothermal compression.
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6.7 Pump work

Figure 6.11: Pump

“Compression” (i.e., increase of pressure) of a liquid is usually called pumping. We
often use mass basis for liquids and by introducing V = m/ρ and wrev

s = W rev
s /m,

(6.4) can be written as

wrev
s =

∫ p2

p1

1

ρ
dp [J/kg] (6.12)

where ρ [kg/m3] is the density and we use a lower case letter (ws) to explicitly show
that it is in mass basis. The density ρ [kg/m3] of most liquids can be assumed constant,
that is, independent of changes in pressure and temperature. From (6.12) the ideal
(reversible) pump work assuming constant ρ (incompressible fluid) is

wrev
s =

p2 − p1

ρ
[J/kg] (6.13)

This work is per kg of pumped fluid. We can find the pump power [J/s] by multiplying
with the mass flow ṁ [kg/s]:

Ẇ rev
s =

p2 − p1

ρ
ṁ = (p2 − p1)V̇ [J/s] (6.14)

where V̇ [m3/s] = ṁ/ρ is the volumetric flow, which is constant throughout the process
for an incompressible fluid. The actual pump work is

Ws = W rev
s /η [J, J/s] (6.15)

where η is the efficiency of the pump.

Remark. Note that W rev
s in (6.14) gives the required work for increasing the pressure of the

liquid. If the pump is also used to lift the liquid to a higher level (i.e., increase its potential
energy) and/or to increase the velocity of the liquid (i.e., increase its kinetic energy), then
also these terms, which we neglected in the energy balance, must also be included. (This is
discussed in Chapter 9 on mechanical energy balance.

It may also be interesting to determine the temperature rise T2 − T1 for pumping,
although it is usually small. If we assume adiabatic process (Q = 0) and constant heat
capacity, then the energy balance (6.1) gives

ṁcp(T2 − T1) = Ws [J/s] (6.16)
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Note that we can also run the pump in reverse such that we get a turbine where we
extract work. Water turbines are used to produce electric power in hydroelectric power
plants.

Example 6.2 Pumping. 1.5 kg/s water is pumped from 2 bar to 80 bar in a pump with
65% efficiency. Calculate the work and the temperature rise.

Solution. The density of water is 1000 kg/m3 so the volumetric flow is V̇ = 0.0015 m3/s.
The pump work is then

Ẇs =
V̇ (p2 − p1)

η
=

0.0015 · (80 · 105 − 2 · 105)

0.65
= 18000 J/s = 18 kW

The specific heat capacity for water is cp = 4180 [J/kg,K], the mass flow is ṁ = 1.5 kg/s,
and we find that the temperature rise is

T2 − T1 =
Ẇs

ṁcp
=

18000

1.5 · 4180 = 2.87 K

The use of (6.14) to calculate the heart’s pump work is discussed in Exercise 1.27
on page 34.

6.8 Compression and expansion of real gases

The formulas given above are for ideal gases and for incompressible fluids (liquids).
For real fluids, the reversible shaft work can in principle be calculated from (6.4),

W rev
s =

∫ p2

p1

V dp

Example 6.3 Isothermal expansion of real gas. We want to use (6.4) to calculate the
reversible turbine work that may be obtained when n = 6 mol/s of gas expands isothermally
at 30oC from 15 bar to 1 bar. The gas is assumed to follow the van der Waals equation
of state, p = nRT/V − an2/V 2, where a = 0.68 Pa m6 mol−2.

Solution. The reversible work is W rev
s =

R p2

p1
V dp. It is easier to integrate over

volume than over pressure, so we differentiate the equation of state to get dp =
ˆ
−nRT/V 2 + 2an2/V 3

˜
dV . We then get with T constant, W rev

s =
R p2

p1
V dp =

R V2

V1

ˆ
−nRT/V + 2an2/V 2

˜
dV = −nRT lnV2/V1 − 2an2(1/V2 − 1/V1). The initial and final

volumes are found from the equation of state which is a quadratic equation in V :

p(V/n)2 − RT (V/n) + a = 0

For the two values of p, we find the value of V for the gas phase is V1/n = 1.34 ·10−3 m3/mol
and V2/n = 24.92 · 10−3 m3/mol, or V1 = 8.05 · 10−3 m3/s and V2 = 149.5 · 10−3 m3/s. The
work is then (SI units):

W rev
s = −6 · 8.31 · 303.15 ln(149.5/8.05) − 2 · 0.68 · 62

„
1

149.5e − 3
− 1

8.05e − 3

«

=

= −44160J/s + 5754J/s = −38406J/s

In comparison, the work for an isothermal expansion of an ideal gas between the same
pressures is, from (6.7), W rev

s = nRT ln p2/p1 = 6 · 8.31 · 303.15 ln(1/15) = −40932 J/s.
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In practice, the work for a real gas is rarely calculated in this way by integrating
(6.4). Rather, from the exact relation dW rev

s = V dp = dH −TdS (see B.68), it follows
that it is possible to find the work W rev

s by first obtaining the changes in enthalpy (H)
and entropy (S); see Section 7.2.4 page 169. (The concept of entropy is discussed in
Chapter 7 and Appendix B, and if you are not familiar with entropy, it is recommended
that you wait with reading the rest of this chapter.)

We consider two important cases: (1) Reversible isothermal process, and (2)
Reversible adiabatic process.

Expansion in pH-diagram
after isotherm
after isentrop (rev. adiabatic process)

two-phase

isotherm

two-phase

isotherm

after isentrop (rev. adiabatic process)
after isotherm

Same expansion in HS-diagram

iso
th

e
rm

Figure 6.12: Use of thermodynamic diagram to calculate reversible expansion work for real
gas: (a) pH diagram. (b) HS diagram.

6.8.1 Reversible isothermal compression/expansion of real
gas

We consider a steady-state process from state 1 (“inlet stream”) to state 2 (“outlet
stream”). The energy balance (6.1) gives

H2 − H1 = Q + Ws [J ]

For a reversible isothermal process at constant temperature, T1 = T2 = T0,
the entropy change, according to (7.4), is ∆S = S2 − S1 = Qrev/T0, that is,
Qrev = T0(S2 − S1), which inserted in the energy balance gives

Real gas : W rev
s = (H2 − H1) − T0(S2 − S1) (6.17)

Both the enthalpy Hi [J] and the entropy Si [J/K] are state variables. For a real gas
multicomponent mixture, we normally use an equation of state (page 342), together
with data for ideal gas heat capacity, to compute the enthalpy and entropy changes.
For pure components, it is practical and insightful to use thermodynamic diagrams
(page 115), as shown in Figure 6.12. From a given value for p1 and T1 = T0, we read
off the values for H1 and S1. We then follow a line for constant temperature T0 until
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we arrive at p2, where we can read off H2 and S2 for the outlet stream (denoted 2’ in
the figure).

Example 6.4 Isothermal reversible compression of methane (ideal and real gas).
1700 mol/s methane gas is compressed isothermally at 50oC (T0 = 323K) from p1 = 20 bar
(state 1) to p2 = 100 bar (state 2). Calculate the reversible compression work for (a) ideal
gas, (b) real gas (use the pH-diagram for methane, on page 418).

Solution. (a) For an ideal gas, we have from (6.7)

W rev
s = nRT0 ln(p2/p1) = −1700 · 8.31 · 323 · ln(100/20) J/s = 7.34 MW

Comment: (6.7) also follows from (6.17) since we, for an ideal gas with constant temperature,
from (7.11) have that

H2 − H1 = 0; S2 − S1 = −nR ln(p2/p1)

(b) For a real gas, we read at 50 oC from the pH-diagram for methane (points 1 and 2’ in
Figure 6.12a):

h2 − h1 = 600 − 663 = −63kJ/kg, s2 − s1 = 9.2 − 10.2 = −1.0kJ/kg K

The mass flow is m = 1700 mol/s ·16 · 10−3 kg/mol = 27.2 kg/s, and from (6.17) we find

W rev
s = m(h2 − h1) − mT1(s2 − s1) = 27.2(−63 + 323 · 1.0)kJ/s = 7.07MW

which is 4% lower than the value for ideal gas.

6.8.2 Reversible adiabatic (isentropic)
compression/expansion of real gas

For a reversible adiabatic process, we have Qrev = 0 and since the entropy change
is dS = dQrev/T (see (7.3) on page 163), it follows that dS = 0, i.e., the entropy is
constant (“isentropic process”) and S1 = S2. The shaft work is then from the energy
balance

Real gas : W rev
s = (H2 − H1)S (6.18)

For a real gas multicomponent mixture, we normally use an equation of state
(page 342), together with data for ideal gas heat capacity, to compute the enthalpy
change at constant entropy. For a pure component, it is practical and insightful to
use thermodynamic diagrams as shown in Figure 6.12: From a given value for p1 and
T1 = T0, we read off H1. We then follow a line for constant entropy until we arrive at
p2, where we can read H2 (and T2) for the outlet stream (denoted 2” in Figure 6.12).

Example 6.5 Adiabatic reversible compression of methane (ideal gas and real
gas). We want to find the work for reversible adiabatic (isentropic) compression of 1700
mol/s methane from 50 oC (T1 = 323K) and p1 = 20 bar (state 1) to p2 = 100 bar for (a)
ideal gas and (b) real gas. In addition, find the actual work and the outlet temperature T2

when the compressor has an efficiency of 85%.
For the ideal gas case, CP,m = 35.3 J/mol K is assumed constant. This is a continuation

of Example 6.4 where we considered isothermal compression.
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Solution. (a) For an ideal gas with constant heat capacity, we have from (6.8) for an
isentropic process

T ′
2 = T1

„
p2

p1

« R
Cp,m

= 323

„
100

20

«0.235

= 471.8K

and (6.9) gives

W rev
s = (H ′

2 − H1)S = nCp,m(T ′
2 − T1) = 1700 · 35.3 · (471.8 − 323)J/s = 8.92MW

As expected, this is higher than for isothermal compression (7.34 MW) since cooling is
favorable for compression. The actual work is Ws = W rev

s /η = 8.92 MW / 0.85 = 10.49
MW. From the energy balance, we then have that T2 − T1 = 10.49e6/(1700 · 35.3) = 174.8 K,
i.e., the actual exit temperature is T2 = 497.8 K (224.8oC).

(b) For a real gas, we read from the pH-diagram for methane (points 1 and 2” in
Figure 6.12a):

(h′
2 − h1)s = 967 − 663 = 304kJ/kg

The mass flow is m = 27.2 kg/s and from (6.18) we have that

W rev
s = m(h′

2 − h1)s = 27.2 · 304 kJ/s = 8.27 MW

which is 7% lower than the value for ideal gas. The reversible temperature obtained from the
diagram is T ′

2 = 179oC (452 K). Now consider the actual work and temperature. The actual
work is

Ws = W rev
s /η = 8.27MW/0.85 = 9.73MW

The actual specific enthalpy change is (h2−h1) = (h′
2−h1)/η = 304/0.85 = 358 kJ/kg, which

gives h2 = 1021 kJ/kg. The pressure of the outlet stream is p2 = 100 bar, and we can, from
the pH diagram for methane, read off the actual temperature T2 = 470 K (197oC). This is
28 K lower than the value 498 K found for ideal gas.

Exercise 6.5 ∗ Adiabatic expansion of steam in turbine. 15 t/h of intermediate pressure
steam at 30 bar and 450 oC (state 1) is expanded in a (adiabatic) condensing turbine (that is,
with cooling at the exit of the turbine, where the vapor is condensed). With maximum cooling
at the exit, we are able to reach 0.04 bar (which is the vapor pressure for water at 30 oC).
(a) Calculate the work extracted in the turbine, Ws = H2 − H1, when it is given that the
outstream at 0.04 bar (state 2) contains 5% liquid. (b) What is the (adiabatic) efficiency of
the turbine (use the expansion from 1 to 2” in Figure 6.12b in order to calculate the reversible
work)? Data: HS diagram for water.

Exercise 6.6 Compression of methane. 1700 mol/s methane is compressed isothermally
at 50oC from 20 bar to 100 bar. Find the reversible compression work for (a) ideal gas and
(b) real gas (use pH-diagram for ammonia).

Exercise 6.7 Expansion of steam in turbine. 15 t/h medium pressure steam at 30 bar
and 450oC is expanded adiabatically in a condensing turbine (that is, there is cooling at
the turbine outlet where the steam is condensed). With maximum cooling, the outlet turbine
pressure is 0.04 bar (which is the saturation pressure for water at 30oC). Find the work that is
extracted from the turbine when the outlet stream from the turbine contains 5% liquid væske.
What is the turbine efficiency? Data: HS-diagram for steam.
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Exercise 6.8 Refrigerator (cooling cycle). A home refrigerator uses C2H2F4 (R134a)
as the refrigerant (cooling medium). A cycle consists of the following four steps (see a similar
cycle in Figure 8.7 on page 207):

(a) Adiabatic compression: Saturated vapor at -10oC and 2 bar (state 1) is compressed to
10 bar (state 2 which is gas).

(b) Cooling ribs at the back of the refrigerator: Cooling/condensing at constant pressure
down to a final temperature of 30oC (state 3 which is liquid).

(c) Valve: Expansion down to 2 bar (state 4 which contains about 20% gas).
(d) Take heat from the inside of the refrigerator: Evaporation at constant pressure (from

state 4 to state 1).
Data: pH-diagram for R134a (available at the book’s home page). Assume that the

compressor has a thermodynamic efficiency of 70%.

• Draw a flowsheet.
• Find the enthalpy change in each step (a, b, c, d) for each kg of refrigerant R134a that

cycles. What is the temperature in state 2?
• What is the cooling duty (QC) when the power consumption in the compressor is W = 300

W, and what is the mass flow of refrigerant?
• Find the coefficient of performance COPC = QC/W .
• What is the theoretically maximum COPC if the room temperature is 22oC and the

temperature inside the refrigerator is 5oC. Why is this not 100%?

Exercise 6.9 Compression of ammonia. 100 mol/s ammonia gas at 1 bar and 303 K
(stream 1) is used to produce 100 mol/s ammonia gas at 10 bar and 303 K (stream 2).
Calculate the reversible compression work for the following four processes assuming ideal gas
and Cp(g) = 37.4 J/mol K:

(a) Adiabatic compression with subsequent cooling to 303 K.
(b) Two-step adiabatic compression with pressure rise pout/pin = 101/2 in each step and

intermediate cooling to 303 K.
(c) 12-step adiabatic compression with pressure rise pout/pin = 101/12 in each step and

intermediate cooling to 303 K.
(d) Isothermal compression (at 303 K).
(e) Real gas: Use the pressure-enthalpy diagram for ammonia to calculate the reversible

work for (i) two-step adiabatic compression and (ii) isothermal compression.
(f) Suggest an alternative process where cooling (condensation), pumping and heating

(evaporation) is used instead of compression and cooling. What is the ideal pump work when
the liquid density of ammonia is about 0.8 kg/l? What drawback does this process have?





7

Entropy and equilibrium

We need the state function entropy in order to proceed. Roughly speaking, entropy is a

measure of the degree of disorder and the second law of thermodynamics states that the

total entropy increases for all natural processes, and it reaches its maximum when we have

equilibrium. With this as a starting point, we give in this chapter, among other things, the

theoretical basis for use of equilibrium constants. Most of the basic material on entropy is

collected in Appendix B, which should be read before you start this chapter.

7.1 The laws of thermodynamics

The second law of thermodynamics and the concept of entropy is discussed in
more detail in Appendix B. In this chapter, we concentrate on process engineering
applications, but let us start with a summary of the four laws of thermodynamics.

Zeroth law of thermodynamics Two systems, both in equilibrium with a third
system, must also be in equilibrium with each other.

Example 7.1 If we have a system with ice, liquid water and gas (all H2O), where
ice and liquid water are in equilibrium (the temperature must then be 0 oC), and in
addition the water in the gas phase is in equilibrium with the liquid water (as given by
the vapor pressure of liquid water), then the water in the gas phase (vapor pressure) is
also in equilibrium with the ice (as given by the vapor pressure of ice).

First law of thermodynamics This law is about the conservation of energy: For a
closed system, the change in the system’s (internal) energy U is the sum of heat
Q and work W , that is,

∆U = Q + W (7.1)

The first law of thermodynamics is a special case of the general energy balance,
which has already been discussed in great detail in Chapter 4, see (4.1) and
(4.10).

Second law of thermodynamics This law is about the inevitable decline in the
“quality” of energy (from “high-quality” energy (exergy) that can be converted
to useful work to “low-quality” thermal energy). There are many ways of stating
the second law, but the following statement seems fairly obvious:
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• Heat cannot spontaneously flow from a material at lower temperature to a
material at higher temperature

Example. Consider a home refrigerator. It would be fantastic if we could make
a “self-cooling” refrigerator where we somehow could make heat flow from a
low temperature at 0oC (inside the refrigerator) to a high temperature at 25oC
(in the room). Unfortunately, this is impossible according to the second law of
thermodynamics. To make it happen in practice, we need to supply some work
(see Figure 8.6 on page 205).

From the above fairly obvious statements, it is possible, by introducing the state
function entropy S as a measure for the “degree of disorder,” to derive the
following alternative statement of the second law of thermodynamics:

• For every real process, the total entropy of the system (S) and surroundings
(Ssur) must always increase, that is,

∆Stotal = ∆S + ∆Ssur ≥ 0 (7.2)

The total entropy change is zero only for the (imaginary) case of a reversible
process. The second law of thermodynamics only applies to macroscopic
processes, that is, when we consider the average behavior of a large number
of particles (molecules).

If you think that the statement (7.2) of the second law, and the whole concept of
entropy, is a bit fuzzy, then take a look at Appendix B. If this still does not help,
then you may consult a book on classical thermodynamics that shows in detail
how you can go from one of the more obvious statements (e.g., “heat cannot
flow from low to high temperature”) to the entropy version of the second law. I
very much like the treatment on pages 26–38 in the excellent book of Denbigh.1

Alternatively, you may dig into the subject of statistical thermodynamics, which
provides another way of deriving the second law, and also provides a means to
compute the entropy by calculating the probability of the system’s state, based
on a detailed description of the individual molecules.

Some other consequences of the second law are:

• A perpetual motion machine (perpetuum mobile) is impossible.
• The maximum obtainable “efficiency” for a process where heat is converted

(partially) to work is 1 − TC/TH (the Carnot factor), where TH is the
temperature of the heat source and TC is the temperature of the coolant.
This result is derived in Chapter 8 that deals with “work from heat.”

Example. We have available an amount of heat QH = 5 GJ at 100 oC, and we
have cooling water at 5 oC. From this, it is possible to extract a maximum work
of

|W | = QH(1 − TC

TH
) = 5(1 − 278

373
) = 5 · 0.255 = 1.27 GJ

Since energy is a conserved quantity (1st law), the remaining heat must be
removed by cooling, |QC | = |QH | − |W | = 5 − 1.273 = 3.73 GJ.

1 K. Denbigh, The principles of chemical equilibrium, Cambridge Press, 4th Ed, 1981.



ENTROPY AND EQUILIBRIUM 163

Third law of thermodynamics At T = 0 K, all processes cease and the system
entropy reaches a minimum. For a perfect crystal at O K, there is only one way
to arrange the atoms so that the entropy (“degree of disorder”) in this state can
be set to zero.

The third law implies that it is meaningful to assign an absolute value for the
entropy of each component (where S = 0 for the component as a perfect crystal
at 0 K). Nevertheless, since we in this book are only interested in entropy
changes, we normally do not use this; instead we (somewhat arbitrarily) set
S = 0 for the elements in their standard state at 298.15 K and 1 bar.

7.2 Calculation of entropy

The entropy of a system can, as mentioned above, be theoretically calculated from
statistical mechanics by considering the probability of the system’s state on the
microscopic level. From this, it is clear that the entropy is a state function.

How can we compute changes in the system’s entropy by considering changes at
the macroscopic level? Well, since we know that entropy is a state function, let us
consider a reversible process. How can the entropy (“degree of disorder”) change for
such a system? It can not be caused by internal processes, since these are assumed
to be reversible. Entropy changes must therefore be caused by interactions with the
surroundings, which for a closed system involves transfer of work W and heat Q. Now,
work is by definition “organized energy transfer” so this does not change the disorder
(entropy). Thus, the only remaining source of change in disorder is the heat transfer
Q, which is “disorganized” energy transfer and thus involves a transfer of disorder
(entropy). Thus, we have for a reversible process that the only way to increase the
system’s entropy is by supplying heat Q. However, by how much does the entropy
increase (quantitatively)? Intuitively, the increase in disorder (entropy) for a given Q
is larger when the system temperature T is low. This intuition is correct, and it turns
out that the entropy increase is given by Q/T . In summary, the change in a system’s
entropy can be computed as follows:

The system’s entropy S is a state function. For a small change in the
system state, the entropy change is

dS = dQrev/T (7.3)

where dQrev is the heat supplied to the system in an (imaginary) reversible
process, and T is the system’s temperature. For a large change between two
states,

∆S =

∫
dQrev

T
(7.4)

For a system with constant temperature, ∆S = ∆Qrev/T .

By applying (7.4) to idealized reversible processes, we can find how the system’s
entropy depends on temperature, pressure and composition, S(T, p, ni). This is shown
in the next section. However, let us first show how to calculate the entropy of the
surroundings.
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7.2.1 Entropy of the surroundings

The surroundings is also a system, so (7.4) gives ∆Ssur =
∫

dQrev
sur/Tsur. When

calculating the entropy change of the surroundings, we assume that all internal
changes in the surroundings are reversible. This is to avoid that irreversibilities in the
surroundings can somehow compensate for “impossible” irreversible processes inside
the system (see also page 373). We then have dQrev

sur = dQsur = −dQ (because the heat
supplied to the surroundings is minus the heat supplied to the system) and derive

∆Ssur =

∫ −dQ

Tsur
(7.5)

where Tsur is the temperature of the surroundings and dQ is the (actual) heat supplied
to the system from the surroundings (note that it says dQ and not dQrev). If the
temperature Tsur of the surroundings is constant, then

∆Ssur =
−Q

Tsur
(7.6)

The second law of thermodynamics (7.2) can now be written in the following useful
form:

∆Stotal = ∆S +

∫ −dQ

Tsur
≥ 0 (7.7)

Here, ∆S is a state function (independent of the process), whereas Q (dQ) depends
on the actual (real) process. Note that we can have several kinds of surroundings, for
example a cold reservoir with constant temperature Tsur = TC and a hot reservoir
with temperature Tsur = TH , and we may then need to add terms in (7.5) and (7.7).

For a completely reversible process we have ∆Stotal = 0, which assumes that both
the heat transfer and the processes within the system are reversible. We sometimes
assume that only the heat transfer to the surroundings is reversible; this corresponds
to assuming Tsur = T where T is the system’s temperature.

The next section shows how to calculate ∆S for the system.

7.2.2 Calculation of system entropy

Entropy is a state function, and the entropy can therefore be calculated from (7.4) by
considering idealized reversible processes. This is shown in more detail in Appendix B.4
(page 377); here we summarize these findings.

Entropy change for phase transition (given pressure). From (B.11)

∆trsS =
∆trsH

Ttrs
(7.8)

where ∆trsH [J] is the enthalpy change for the phase transition, and Ttrs is the
temperature (which is indirectly determined by given pressure).

Example 7.2 For water at 1 atm, we have Ttrs = Tb = 373.15 K (100 oC) for the phase
transition between liquid and gas (evaporation), and we find ∆vapS = ∆vapH/Tb = (40.68·103

J/mol)/(373.15 K) = 109.0 J/mol K. We note that the entropy increases for the phase
transitions that require supply of heat.
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Entropy’s dependency on temperature (given pressure). For a system (gas,
liquid, solid) without phase transition, (B.12) gives

S(T, p0) − S(T0, p0) =

∫ T0

T

Cp(T )
dT

T
[J/K] (7.9)

where Cp [J/K] is the system’s heat capacity. We note that entropy increases with
temperature. If for simplicity we assume that Cp is independent of temperature, we
get

S(T, p) − S(T0, p) = Cp ln
T

T0
[J(K] (7.10)

Example 7.3 Consider a gas with constant heat capacity Cp=30 J/mol K. The entropy
increase when the gas is heated from T1 = 300 to T2 = 400 K is ∆S = Cp ln T2

T1
= 30 ln 400

300
=

8.63 J/mol K.

Entropy’s dependency on pressure (given temperature). For liquids and
solids, the pressure dependency is usually negligible. However, for gases it is important,
and for ideal gas (B.14)) gives:

S(T0, p) − S(T0, p0) = −nR ln
p

p0
[J/K] (7.11)

Example 7.4 The molar entropy decrease for an isothermal compression of an ideal gas
from 2 bar to 4 bar is: ∆S = −R ln p2

p1
= −R ln 4

2
= −5.76 J/mol K.

Non-ideal conditions. For a real fluid, the entropy change can be found from
thermodynamic state diagrams (this is most practical for pure components) or
calculated from an equation of state.

Entropy’s dependency on composition (given pressure and temperature).
For an ideal mixture, the entropy of the mixture, relative to that of the pure
components (in the same phase and same T and p), is from (B.27),

S(T0, p0) −
∑

i

niS
∗
m,i(T0, p0)

︸ ︷︷ ︸

∆mixS

= −R
∑

i

ni lnxi = −nR
∑

i

xi lnxi [J/K] (7.12)

Here S∗
m,i [J/mol K] is the entropy of pure component i at the same pressure and

temperature, ni is the number of moles of component i in the mixture, n =
∑

i ni is
the total number of moles and xi = ni/n is the molar fraction. Since lnxi is negative,
we note (as expected) that the entropy increases when we mix the pure components.

Example 7.5 We mix 0.2 mol O2 and 0.8 mol N2 (pure components) in order to
produce 1 mol mixture. If ideal gas (and thereby ideal mixture) is assumed, the entropy of
mixing is at constant pressure and temperature is ∆mixS = −R (0.2 ln 0.2 + 0.8 ln 0.8) =
−R (0.2 · (−1.61) + 0.8(−0.2231)) = −R(−0.3219 − 0.1785) = 0.5004R = 4.16 J/K mol.
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Mixing is obviously an irreversible process, so the entropy will always increase during
mixing. If we, for example, mix two streams (1 and 2) to produce a product (mix),
then from (7.12) the entropy change for ideal mixing of two streams is

∆S = Smix − S2 − S1 = R

[

−
∑

i

ni,mix lnxi,mix +
∑

i

ni,2 lnxi,2 +
∑

i

ni,1 lnxi,1

]

(7.13)
Since ni,mix = ni,1 + ni,2 (mass balance for each component i), this can be written as

∆S = Smix − S2 − S1 = R

[
∑

i

ni,1 ln(xi,1/xi,mix) +
∑

i

ni,2 ln(xi,2/xi,mix)

]

[J/K]

(7.14)
where mix indicates the mixture (product) and 1 and 2 the different streams (which
we naturally can have several). ∆S calculated from (7.14) is always positive – this is
not quite obvious just by looking at the equation, but it must be this way since mixing
is an irreversible process; see also Examples 7.7 and 7.8.

Summary: Entropy of ideal gas mixture. By adding the contributions (7.9),
(7.11) and (7.12), we find that, for an ideal gas mixture, the entropy is

S(T, p) =
∑

i

niS
∗
m,i(T0, p0)

︸ ︷︷ ︸

S∗(T0,p0)

+

∫ T0

T

Cp(T )
dT

T
− nR ln

p

p0
− nR

∑

i

xi lnxi [J/K]

(7.15)
where S∗(T0, p0) is the entropy of the pure components at T0 and p0, and

Cp[J/K] = niCp,m(i)

is the mixture’s heat capacity. (7.15) can be used to calculate the entropy of an ideal
gas stream with given T , p and composition (ni).

On the other hand, note that the enthalpy of an ideal gas mixture is independent
of pressure and composition:

H(T, p) =
∑

i

niH
∗
m,i(T0, p0)

︸ ︷︷ ︸

H∗(T0,p0)

+

∫ T0

T

Cp(T )T [J ] (7.16)

The formulas (7.15) and (7.16) also apply to ideal liquid mixtures, except that the
contribution from pressure on the entropy can be neglected (that is, we do not include
the term −nR ln p/p0).

Value of S∗(T0, p0). According to the third law of thermodynamics, the entropy S
is equal to 0 for a perfect crystal at T = 0 K (“perfect order”), and this state is often
chosen as the reference. Alternatively, the elements at T0 = 298.15 K and p0 = 1 bar
are chosen as reference. This is practical, because this reference state is usually chosen
for enthalpy, and we have

S∗(T0, p0) =
∑

i

ni∆fS
⊖
m(i, 298)
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H∗(T0, p0) =
∑

i

ni∆fH
⊖
m(i, 298)

Note that the choice of reference state does not matter for the final answer because we
are only interested in entropy and enthalpy changes (see also Example A.21, page 366).

Non-ideal conditions. For real fluid mixtures, we can replace lnxi in the
expression above by ln ai where ai is the activity. However, this is really just the
definition of activity and does not bring us much further. For practical calculations,
the entropy (and the activity) for real mixtures can be calculated, for example,
from an equation of state with the use of thermodynamic relationships (which are
straightforward, but are not covered in this book). These calculations are relatively
involved and generally require the use of a computer.

7.2.3 Examples: Entropy change in irreversible process

We calculate the entropy change for some real (irreversible) processes and find, as
expected, that the total entropy change is positive.

Example 7.6 Entropy change in heat exchanger. Calculate the entropy change for the
heat exchanger in Example 5.6 (page 139). Here,

mc = 5kg/s; cp,c = 1500J/kg K; Tc,in = 293K; Tc,out = 315K

mh = 3kg/s; cp,h = 1200J/kg K; Th,in = 343K; Th,out = 297K

Note that we use absolute temperature [K] because this is always required in thermodynamic
calculations.

Solution. We assume that the heat loss for the heat exchanger to the surroundings is zero
such that ∆Ssur = 0. From (B.13), the entropy changes for the cold and hot sides of the
process are

∆Sc = mccp,c ln
Tc,ut

Tc,inn
= 5 · 1500 ln

315

293
W/K = 543.0 W/K

∆Sh = mhcp,h ln
Th,ut

Th,inn
= 3 · 1200 ln

297

343
W/K = −518.4 W/K

Heat exchange is an irreversible process so, as expected from the second law of
thermodynamics, the total entropy change is positive:

∆Stotal = ∆S + ∆Ssur = ∆Sc + ∆Sh + 0 = 543.0 J/K − 518.4 W/K = 24.6 W/K

Note that, as expected from the energy balance (4.13) with Q = 0 and Ws = 0, we have that

∆H = ∆Hc + ∆Hh = mccp,c(Tc,out − Tc,in) + mhcp,h(Th,out − Th,in) =

5 · 1500(315 − 293)J + 3 · 1200(297 − 343)W = 165kW − 165kW = 0

We note, as expected, that the energy is constant (first law of thermodynamics),
whereas the total entropy increases (second law).

Example 7.7 Entropy change for mixing two streams. We mix 1 mol methane (stream
1) and 9.52 mol air (stream 2) to produce a product (stream “mix”) that has a stoichiometric
composition for combustion. The air is assumed to contain 21% O2 and 79% N2 and the
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combustion reaction is CH4 +2O2 = CO2 +2H2O. The amount and composition of the three
streams are then

Stream j nj xCH4 xO2 xN2

1 1.0 1.0 0 0
2 9.52 0 0.21 0.79

mix 10.52 0.095 0.19 0.715

If we assume constant temperature and pressure and assume ideal mixture, the entropy change
is from (7.13) given by

∆S = 8.31 · [−10.52(0.095 ln 0.095 + 0.19 ln 0.19 + 0.715 ln 0.715)

+ 9.52(0.21 ln 0.21 + 0.79 ln 0.79) + 1.0 ln 1] = 68.10 − 40.66 − 0 = 27.44 J/K

Alternatively from (7.14):

∆S = 8.31 · [1.0 ln(1.0/0.095) + 2.0 ln(0.21/0.19) + 7.52 ln(0.79/0.715)] = 27.44J/K

Example 7.8 Entropy change for mixing exhaust gas with infinite amount of air.
After the combustion in the previous example, we have 10.52 mol of exhaust gas (flue gas)
with (mole fractions)

xCO2 = 0.095, xH2O = 0.19, xN2 = 0.715

The corresponding amounts are:

nCO2 = 1.0 mol, nH2O = 2.0 mol, nN2 = 7.52 mol

At the exit of the chimney, this exhaust gas is mixed with an infinite amount of air (the
surroundings) with composition:

xCO2 = 0.0004, xH2O = 0.01, xN2 = 0.78, xO2 = 0.21

(note that we have included the contents of CO2 and H2O in the air – otherwise the entropy
change would be infinite). The entropy change for the mixing exhaust gas with air is obtained
from (7.14) by adding the entropy change for the three components in the stream

∆S = −R (1.0 ln(0.0004/0.095) + 2.0 ln(0.01/0.19) + 7.52 ln(0.78/0.715)) = 89.0J/K

Note that there is no entropy change for the air because with an infinitely large amount, the
composition of the air is constant.

Example 7.9 Distillation. In a distillation column (see page 22) the opposite process of
mixing takes place. The “mixed” feed stream is separated into a “light” and a “heavy” product.
The entropy (“degree of disorder”) for the products is less than that for the feed,

∆S < 0

so this is apparently a process that violates the second law of thermodynamics (??!). However,
in order to accomplish the separation, we need to supply heat |QH | in the reboiler and
remove heat |QC | in the condenser (we use absolute signs to show that these heats are
positive quantities in the indicated “direction”). The two heats are roughly the same, that
is, |QH | ≈ |QC |, but the heat supply is at a higher temperature (at the boiling for the heavy
product) than the heat removal (which is at the boiling point for the light product), that is,
TH > TC . Thus, there is a net entropy increase in the surroundings,

∆Ssur =

Z −dQ

Tsur
=

−|QH |
TH

+
|QC |
TC

≈ |QH |
„

− 1

TH
+

1

TC

«

> 0 (7.17)
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We can calculate ∆S for the system using the formulas for mixing presented above. We will
then find that the second law of thermodynamics is indeed satisfied,

∆Stotal = ∆S + ∆Ssur > 0

For example, consider a distillation column separating a mixture of 40 mol-% methanol and
60 mol-% water into (almost) pure components; see also Example 8.20. The entropy change
for the separation of 1 mol feed into the pure components is the negative of the entropy of
mixing in (7.12),

∆S = R
X

xi lnxi = R(0.4 ln 0.4 + 0.6 ln 0.6) = −0.67R = −5.57J/mol K

The boiling points for the pure components are 373 K (water) and 338 K (methanol), and
in Example 8.20 (page 224) it is given that the heat supply is QH = 31.8 kJ/mol (for 1 mol
liquid feed). Assuming that the heat transfer to the surroundings is reversible, we can set
TH = 373K and TC = 338 K and derive from (7.17)

∆Ssur = |QH |
„

− 1

TH
+

1

TC

«

= 31.8E3

„

− 1

373
+

1

338

«

= 8.82 J/mol K

Thus, we have

∆Stotal = ∆S + ∆Ssur = −5.57 J/mol K + 8.82 J/mol K = 3.25 J/K mol

which as expected is positive. The source for the irreversibility is the mixing of streams with
different composition and temperature inside the distillation column. Distillation is discussed
in more detail on page 224.

Exercise 7.1 Compression and expansion of ideal gas. 50 mol/s of an ideal gas at
300K and 1 bar (stream 1) is compressed to 10 bar (stream 2). The compression occurs
adiabatically and the thermodynamic efficiency is 80%. Stream 2 is expanded in a valve down
to 1 bar (stream 3) and is then cooled to 300 K (stream 4). Constant heat capacity Cp = 30
J/mol K is assumed.

(This is seemingly an idiotic process, but maybe something occurs with stream 2, for
example a chemical reaction, which we are not interested in here).

(a) Make a table that shows temperature, pressure, enthalpy [J/mol] and entropy [J/mol
K] for the four streams. Choose 298.15 K and 1 bar as the reference state.

(b) Calculate the supplied heat and work [J] in the process.
(c) Calculate the total entropy increase [J/mol K] in each of the three process steps

(compression, pressure relief, cooling), that is, calculate the entropy change in the process
plus the surroundings (the surroundings are assumed to be at 1 bar and 280K).

7.2.4 Work Ws for reversible compression and expansion

With the state function entropy, we are now in position to derive expressions for the
reversible shaft work for compression and expansion of real fluids. The energy balance
(1st law) for a steady-state process gives Ws = ∆H − Q. For a reversible process we
get from (7.3) that Qrev =

∫
TdS (2nd law), and the reversible shaft work is

W rev
s = ∆H −

∫

TdS
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For an isothermal process we then get

W rev
s = ∆H − T∆S (T constant) (7.18)

For an adiabatic process we have Qrev = 0 and the entropy is constant (∆S = 0)
and we get

W rev
s = ∆H (S constant) (7.19)

These expressions are very important for practical calculations, and we already used
them in Section 6.8 (page 155). Now that you have learned about entropy, you should
go back and revisit this material.

7.2.5 Work and entropy change for adiabatic process

Let us look at a steady-state adiabatic process in more detail. For an adiabatic process,
we have that Q = 0. But this doesn’t necessarily mean that the entropy change is 0;
this is only the case if the process is, in addition, reversible. We illustrate this by
considering an adiabatic pressure relief (expansion) from a pressure p1 (state 1) to a
lower pressure p2 (state 2) for two alternative processes (see Figure 7.1):

(a) Reversible adiabatic expansion in a turbine

(b) Irreversible adiabatic expansion in a valve

We show that the first process is isentropic and the second is isenthalpic. This section
is mostly repetition, but make sure that you know and understand it! First, a reminder
about the energy balance (4.13) for a steady-state adiabatic process,

Ws = ∆H = H2 − H1 (adiabatic process) (7.20)

where Ws is supplied shaft work, and we have assumed that the inflow is in state 1
and the outflow is in state 2.

(a) Reversible adiabatic expansion. We consider an expansion from pressure p1

(state 1) to pressure p2 (state 2). The process is adiabatic and reversible, that is,
Qrev = 0, and it follows from the definition of entropy in (7.4) that the entropy
change is 0, that is,

∆S = S2 − S1 =

∫
dQrev

T
= 0 (real and ideal gas)

This means that the process is isentropic, and this can be used to find the
temperature change and thereby the enthalpy change.

For an ideal gas with constant heat capacity, the relationship between
temperature and pressure for an isentropic process is given by (6.8),

T2

T1
=

(
p2

p1

)R/Cp

(ideal gas)

which with p2 < p1 gives T2 < T1 (the temperature drops). During a reversible
adiabatic expansion both the temperature and pressure drop, and the changes
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Negative! (extract work)

Figure 7.1: Adiabatic expansion: (a) Reversible in turbine (isentropic). (b) Irreversible in
valve (isenthalpic).

are such that the entropy increase for the pressure drop is equal to (but with
opposite sign) the entropy reduction for the temperature drop. For an ideal gas
with constant heat capacity, it further holds that H2 −H1 = mCp(T2 − T1) and
it follows that

Ws = ∆H = Cp(T2 − T1) (ideal gas)

which with T2 < T1 gives a negative number (work is extracted).

(b) Adiabatic pressure relief over valve (sometimes called a Joule-Thompson
valve, if the objective is to lower the temperature for a real gas). In this case,
no shaft work is extracted, so Ws = 0, and it follows from the energy balance
(7.20) that

Ws = ∆H = H2 − H1 = 0 (real and ideal gas)

We have, in other words, that the enthalpy is constant – such a process is called
isenthalpic. This can be used to determine the temperature change and the
entropy change.

For an ideal gas, the enthalpy is only a function of the temperature and we
therefore have that

T2 = T1 (ideal gas)

that is, the temperature before and after the valve is the same. (For a real gas, the
enthalpy also depends on pressure, and we end up with a temperature change;
see Example 7.11 below).

But this process is not reversible (have you ever seen a gas that flows by itself
from a low to a high pressure?), so for the valve the entropy increases. For
example, for an ideal gas, the entropy change is from (7.11)

∆S = S(p2) − S(p1) = −R ln
p2

p1
[J/mol K] (ideal gas)

which is positive since p1 > p2.
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Example 7.10 Isentropic and isenthalpic pressure change for ideal gas. Consider
a continuous steady-state process where an ideal gas at 400 K and 10 bar is expanded to a
pressure of 2 bar in an adiabatic process. Assume that the heat capacity is constant Cp = 35
[J/mol K] (which is the value of ammonia at 298 K). Calculate the change in entropy and
enthalpy (per mol) for the following cases:

(a) The gas is expanded in a turbine without loss (isentropic process).
(b) The pressure relief occurs over a valve (isenthalpic process).
Solution. For the “inlet” state, we have p1=10 bar and T1 = 400K, and for the “outlet”

state, p2 = 2 bar and the temperature T2 is to be found (it differs for processes (a) and (b)).
(a) Turbine: For a reversible adiabatic process, the entropy is constant, ∆S = 0, and from

(6.8) we have

T2 = T1

„
p2

p1

«R/Cp

= 400

„
2

10

«8.31/35

= 273 K

The enthalpy change which is extracted as work is then

Ws = ∆H = Cp(T2 − T1) = 35 · (273 − 400) = −4445 J/mol

(remember the convention of Ws being supplied work, that is, a negative value for Ws means
that a work is extracted).

(b) Valve: For a pressure relief over a valve, no work is extracted (Ws = 0) and it follows
from the energy balance that the enthalpy is constant, ∆H = 0. Furthermore, for an ideal gas,
enthalpy is only a function of temperature, therefore we find that the temperature is constant

T2 = T1 = 400 K

The entropy change is from (B.14) given by

∆S = −R ln
p2

p1
= −8.31 ln

2

10
= 13.38 [J/molK]

that is, the entropy increases as expected.

The above calculations are for ideal gas, and in order to perform calculations for
real gases, it is practical to use thermodynamic diagrams that express all of the state
variables as functions of two independent variables, for example as a function of p and
H or H and S. Using such diagrams, we can also handle cases where liquid is formed.

Example 7.11 Isentropic and isenthalpic pressure change for real gas. Let us repeat
the calculations from Example 7.10, but instead of assuming ideal gas we use the pressure-
enthalpy diagram for ammonia on page 419. Before the expansion, the temperature is
T1 = 400K = 127 oC and the pressure is p1 = 10 bar (point 1). After the expansion to
p2 = 2 bar, we can read off the values for the two cases (points 2a and 2b) as shown in
Figure 7.2:

(a) Isentropic expansion in turbine.
We follow the line for constant entropy down to pressure p2 = 2 bar and read off t2 = 5oC

(278 K) and H2 − H1 = 1398 − 1643 = −245 kJ/kg. This gives, with a molar mass of 17
g/mol, Ws = ∆H = −4165 J/mol. The extracted (performed) work is 6% lower than for ideal
gas, where we found Ws = −4445 J/mol. This is because, for real gas, we have to use some
of the energy to pull the molecules apart.

(b) Isenthalpic expansion in valve. We follow the line for constant enthalpy down to
pressure p2 = 2 bar and read off t2 = 119o C (392 K) and S2 −S1 = 6.87−6.11 = 0.76 kJ/kg
K. This gives, with a molar mass 17 g/mol, ∆S = 12.92 J/mol K. We find that we get some
cooling during the expansion (from 127 oC to 119 oC). This is one of the reasons why the
entropy increase (∆S = 12.92 J/mol K) is smaller than for ideal gas (∆S = 13.38 J/mol K).
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Figure 7.2: pH diagram for ammonia: (a) Isentropic and (b) Isenthalpic expansion

Exercise 7.2 Consider a continuous steady-state process where the pressure is reduced from
3 bar to 2 bar using a valve.

(a) Explain why the enthalpy is constant (which assumptions must be made?).
(b) Is the enthalpy constant if the velocity changes (before and after the valve) ?
(c) Is the process reversible? Is the entropy constant?

7.3 Equilibrium

For any real process, the second law of thermodynamics states that the total entropy
must always increase, see (7.2). It then follows that, if we leave a system to itself,
it will end up in an equilibrium state where the total entropy (“degree of disorder”)
has reached its maximum. This can be used to derive equilibrium conditions as shown
in detail in Appendix B.6 (page 383), but before we get to these, let us mention Le
Chatelier’s principle.

7.3.1 Le Chatelier’s principle

Le Chatelier’s principle is a useful tool for understanding how systems in equilibrium
respond to changes. The principle was stated in 1885 and says:

If a system in equilibrium is subject to a change (a “disturbance”), the
equilibrium will shift in a direction that tends to counteract the initial
change.

For example, if we increase the temperature of a system in equilibrium, the
equilibrium will shift such that heat is absorbed and the temperature is lowered.
Similarly, if we increase the pressure of a system in equilibrium, the equilibrium will
shift such that the pressure is lowered.
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Le Chatelier’s principle applies if we consider the dominant effect for a system in
equilibrium; if several counteracting effects occur at the same time, then the principle
may not to hold for the individual effects. Some examples of predictions that follow
from Le Chatelier’s principle are:

• For an exothermic reaction (where heat is generated), a higher reaction temperature
shifts the equilibrium towards the reactants. This is because, according to Le
Chatelier’s principle, heat is “absorbed” by the reaction to counteract the increase
in temperature.

• For an endothermic reaction, a higher reaction temperature shifts the equilibrium
to the products.

• For a gas phase chemical reaction: When the pressure is increased, the equilibrium
shifts to the side with the fewest number of moles. This is because, according to
Le Chatelier, this counteracts the increase in pressure. For example, the reaction
N2 + 3H2 = 2NH3 is shifted toward the ammonia product when the pressure is
increased.

Le Chatelier’s principle can be justified by imagining the opposite: If, for example, a
disturbance leads to an increased temperature, and the system responds by increasing
the temperature even more, then this leads to a cascade of temperature increases that
results in instability.

7.3.2 Chemical equilibrium

Le Chatelier’s principle is useful for giving qualitative predictions of how the
equilibrium is shifted, but it gives no quantitative information. Quantitative
predictions about the equilibrium condition can, as mentioned, be derived by
maximizing the total entropy. In Appendix B (see page 384) we prove the following:

For systems at a given pressure p and temperature T , maximizing
the total entropy (of the system and surroundings) is equivalent to
minimizing the system’s Gibbs energy G , H − TS.

Thus, at equilibrium, the Gibbs energy G (which is a state variable!) reaches a
minimum where it no longer changes. In partuculat, if we have an equilibrium between
two states (e.g., two phases or two sides of a chemical reaction), then the Gibbs energy
for these two states must be the same, and we have (see (B.31)):

∆G = 0 (equilibrium at given T and p)

Applied to a chemical reaction at a given T and p, this gives the equilibrium condition
∆rG = 0. Here ∆rG is the difference in Gibbs energy between the products and
reactants. It is often practical for chemical reactions to introduce the equilibrium
constant K, defined by

lnK , −∆rG
⊖(T )

RT
(7.21)

where ∆rG
⊖(T ) is standard change in Gibbs energy for the reaction at T and p⊖ = 1

bar. Let us consider the general reaction

0 = νAA + νBB + νCC + νDD
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where we assume that A and B are reactants (that is, νA and νB are negative) and C
and D are products. For example, for the reaction

CO2 + 3H2 = CH3OH + H2O

we have that νA = −1, νB = −3, νC = 1 and νD = 1. By introducing the entropy and
its dependency on composition, the equilibrium condition ∆rG = 0 can be written as
(see Appendix B.6, page 386):

K = Q ,
∏

i

aνi

i =
aνC

C aνD

D

a−νA

A a−νB

B

(given T, p) (7.22)

where ai is the activity relative to the component’s standard state that was used when
calculating the equilibrium constant K. A very common standard state is ideal gas at
p⊖ = 1 bar.

Comment on ideal gas assumption. The equilibrium condition in the form (7.22) is often
called the law of mass action, which was expressed empirically by Norwegian chemists Guldberg
and Waage in 1864 based on arguments about reaction rates (see page 258), that is, independent of
the thermodynamics. They expressed the law as follows:

At a specific temperature, the rate of a chemical reaction is proportional to the product
of the concentration of the reacting substances. During the reaction, the rate decreases
because the concentration of the reacting substances decreases. The rate of the reverse
reaction, on the other hand, increases, and eventually it reaches an equilibrium where
both rates are the same size. There is now a chemical equilibrium.

Ideal gas and pressure dependency

For an ideal gas, the activity is ai = pi/p⊖ where p⊖ = 1 bar, and the equilibrium
condition (7.22) becomes

K =

(
pC

p⊖

)νC
(

pD

p⊖

)νD

(
pA

p⊖

)−νA
(

pB

p⊖

)−νB
(7.23)

By introducing the mole fraction xi = pi/p, this can be written as

xνC

C xνD

D

x−νA

A x−νB

B

= K ·
(

p⊖

p

)∆rν

︸ ︷︷ ︸

=Kx(T,p)

(7.24)

where ∆rν =
∑

i νi = νC + νD − |νA| − |νB | is the mole number change during the
reaction. From (7.24), we see that

• Kx increases (the reaction is shifted to the product) when the pressure p increases
for a reaction with negative mole number change (for example, for the reaction
N2 + 3H2 = 2NH3 where ∆rν = −2).

• Kx decreases (the reaction is shifted to the reactant) when pressure p increases for a
reaction with positive mole number change (for example, the reaction CH4+H2O =
CO + 3H2 where ∆rν = 2).

This is consistent with what we can derive from Le Chatelier’s principle, but (7.24)
expresses it quantitatively.
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The temperature dependency of the equilibrium constant

The equilibrium constant K(T ) is a function of temperature, and according to van’t
Hoff’s exact equation (B.53), the following applies

d lnK

dT
=

∆rH
⊖(T )

RT 2
(7.25)

From van’t Hoff’s equation, we see that

• K increases (the reaction is shifted to the product) when T increases for an
endothermic reaction with ∆rH

⊖ > 0.
• K decreases (the reaction is shifted to the reactant) when T increases for an

exothermic reaction with ∆rH
⊖ < 0.

This is well known and also follows from Le Chatelier’s principle.

Example 7.12 Equilibrium for ammonia synthesis. Consider the reaction

N2 + 3H2 = 2NH3

We assume ideal gas, constant heat capacity and use the following data:

i C⊖
p (i, 298) ∆fH

⊖(i, 298) ∆fG
⊖(i, 298)

[J/K, mol] [kJ/mol] [kJ/mol]
H2(g) 28.82 0 0
N2(g) 29.13 0 0

NH3(g) 35.06 −46.11 −16.41

(a) Calculate the standard enthalpy, entropy, Gibbs energy and the equilibrium constant
for the reaction at 298 K, 400K, 500K, 600K, 700K and 800K. (Hint: With the assumption
of constant heat capacity, you can use (B.56) and (B.57)).

(b) Calculate the equilibrium composition for a stoichiometric mixture at 700 K and
pressures of 100 bar, 200 bar and 300 bar.

(c) In part (a), we assumed constant heat capacity when calculating the equilibrium
constant. Compare the value of the equilibrium constant at 700 K with what you find with the
three other alternative assumptions (1, 2 and 4) given in Appendix B.6.2 (page 388).

Solution. (a) The standard enthalpy of reaction at 298 K is

∆rH
⊖(298) =

X

i

νi∆fH
⊖(i, 298) = 2 · (−46.11) − 1 · 0 − 3 · 0 = −92.22 kJ/mol

Similarly, the standard Gibbs reaction energy at 298 K is

∆rG
⊖(298) =

X

i

νi∆fG
⊖(i, 298) = 2 · (−16.41) − 1 · 0 − 3 · 0 = −32.82 kJ/mol

From this, we can calculate standard entropy of reaction at 298 K

∆rS
⊖(298) =

∆rH
⊖(298) − ∆rG

⊖(298)

298.15 [K]
=

−92.22 · 103 − (−32.82) · 103

298.15
= −199.3 J/molK

The change in standard heat capacity for the reaction at 298 K is

∆rC
⊖
p =

X

i

νiC
⊖
p (i, 298) = 2 · 35.06 − 3 · 28.82 − 1 · 29.13 = −45.47 J/mol K
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With the assumption of constant heat capacity Cp, ∆rH
⊖(T ) can be calculated from (B.56)

and ∆rS
⊖(T ) from (B.57), and we find for the reaction N2 + 3H2 = 2NH3:

T ∆rH
⊖(T ) ∆rS

⊖(T ) ∆rG
⊖(T ) K(T )

[K] [J/mol] [J/molK] [J/mol] [−]
298 −92220 −199.3 −32820 5.62 · 105

400 −96858 −212.7 −11772 34.52
500 −101400 −222.9 10025 0.0896
600 −105950 −231.2 32738 0.0014
700 −110500 −238.2 56213 6.36 · 10−5

800 −115050 −244.2 80339 5.65 · 10−6

(b) For the ammonia reaction, νN2 = −1, νH2 = −3 and νNH3 = 2, and from (7.23) we
have at chemical equilibrium for an ideal gas

K =

“
pNH3

p⊖

”2

“
pN2

p⊖

”“
pH2

p⊖

”3

where p⊖ = 1 bar, and the partial pressure is defined by

pi = yi p =
ni

ntot
p

Assume that we start with 1 mol N2 and 3 mol H2 (basis) and that the extent of reaction is
ξ [mol]. Then, the material balance gives that

nN2 = 1 − ξ; nH2 = 3 − 3ξ; nNH3 = 2ξ

ntot = nN2 + nH2 + nNH3 = 4 − 2ξ

Combining the above equations and data gives one equation with one unknown (ξ). We may
solve the equation numerically by iterating on ξ, as shown in the MATLAB code below. At
equilibrium, we then find at 700 K for the three pressures:

p[bar] ξ[mol] xN2 xH2 xNH3

100 0.299 0.206 0.618 0.176
200 0.429 0.182 0.545 0.273
300 0.507 0.165 0.496 0.339

We find, as expected, that the reaction to ammonia is favored by high pressure. The reaction
is exothermic so the equilibrium conversion to ammonia is favored by low temperature, but
industrial reactors nevertheless operate at high temperature to make the reaction go sufficiently
fast (that is, such that we approach the equilibrium state).

We used MATLAB for the calculations:

In general:
The MATLAB command fsolve(’file’,x0) solves by iteration the equation f(x)=0 and returns x.
Here the file.m contains an algorithm for calculating z=f(x) (what we desire is z=0).

For our case: We write

> x = fsolve(’nh3eq’,0.1)

where x0=0.1 is the starting value for the extent of reaction.
MATLAB will then solve to find the extent of reaction x = 0.4295 (with our numbers).
We have in advance saved the following file nh3eq.m:
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% This is file: nh3eq.m
% Calculates the value of the function z=f(x), where
% x - extent of reaction
% z = Q-K - deviation from equilibrium
function z=f(x)
p=200; % the pressure is here 200 bar (can be changed)
nn2=1-x;
nh2=3-3*x;
nnh3=2*x;
ntot=nn2+nh2+nnh3;
pn2=p*nn2/ntot;
ph2=p*nh2/ntot;
pnh3=p*nnh3/ntot;
Q = (pnh3^2 / (pn2 * ph2^3));
K=6.36e-5; % K is here at T= 700 K (can be changed)
z=Q-K;

Comment. In this example, we assumed ideal gas, which may seem unreasonable at such high

pressures. However, the temperature is also high, so the deviation from ideal gas is not as large as

one may expect. For more exact calculations, it is recommended to replace the partial pressure pi by

the fugacity fi = φipi. The fugacity coefficient φi can be calculated from an equation of state such

as the SRK equation.

(c) Starting from K1 = 5.62 · 105 at T1 = 298.15 K, we calculate the equilibrium constant at
T2 = 700 K using the four alternative methods given in Appendix B.6.2, page 388. Note that
the exact method gives K(700) = 8.25 · 10−5 (see method 4 below).

1. The very rough assumption of a constant equilibrium constant equal to 5.62 · 105 (298.15
K) is completely unacceptable in this case, because the heat of reaction is far from zero. It
gives a value for K at 700 K which is almost a factor 1010 too high.

2. With the assumption of constant ∆rH
⊖ (and constant ∆rS

⊖), the integrated van’t Hoff’s
equation gives (B.55):

ln K(700) = ln(5.62 · 105) − −92220

8.31

„
1

700
− 1

298

«

= 13.24 − 21.35 = −8.12

that is, K(700) = e−8.12 = 2.99 · 10−4 (which is a factor 3.6 too high).
3. As shown in subtask (b), the assumption of constant ∆rC

⊖
p , independent of temperature,

gives K(700) = 6.36 · 10−5 (which is a factor 1.3 too low).
4. Exact calculations using temperature-dependent Cp-data and (B.58) and (B.59) give

K(700) = 8.25 · 10−5 (see MATLAB code below).

In conclusion, the results computed assuming constant Cp are probably OK (within 30% for
K) for most engineering calculations, but data for Cp(T ) should be used for more accurate
calculations.

% MATLAB code for exact calculation of K(T) for reaction N2 + 3 H2 = 2 NH3
hf298_h2 = 0; gf298_h2 = 0; sf298_h2 = 0;
hf298_n2 = 0; gf298_n2 = 0; sf298_n2 = 0;

hf298_nh3 = -46110; gf298_nh3 = -16410; sf298_nh3 = (hf298_nh3-gf298_nh3)/298.15;
% Cp-data from Reid, Prausnitz & Pauling, 1987: cp(T) = cpa + cpb*T + cpc*T^2 + cpd*T^3

cpa_h2 = 2.714e1; cpb_h2 = 9.274e-3; cpc_h2 = -1.381e-5; cpd_h2 = 7.645e-9;
cpa_n2 = 3.115e1; cpb_n2 =-1.357e-2; cpc_n2 = 2.680e-5; cpd_n2 =-1.168e-8;
cpa_nh3= 2.731e1; cpb_nh3= 2.383e-2; cpc_nh3= 1.707e-5; cpd_nh3=-1.185e-8;

% Integrate to find H(T) and S(T) for each component
T=700; T0=298.15;

hfT_h2 = hf298_h2 + cpa_h2*(T-T0) + cpb_h2*(T^2-T0^2)/2 + cpc_h2*(T^3-T0^3)/3 + cpd_h2*(T^4-T0^4)/4;
hfT_n2 = hf298_n2 + cpa_n2*(T-T0) + cpb_n2*(T^2-T0^2)/2 + cpc_n2*(T^3-T0^3)/3 + cpd_n2*(T^4-T0^4)/4;

hfT_nh3= hf298_nh3+ cpa_nh3*(T-T0)+ cpb_nh3*(T^2-T0^2)/2+ cpc_nh3*(T^3-T0^3)/3+ cpd_nh3*(T^4-T0^4)/4;
sfT_h2 = sf298_h2 + cpa_h2*log(T/T0) + cpb_h2*(T-T0) + cpc_h2*(T^2-T0^2)/2 + cpd_h2*(T^3-T0^3)/3;
sfT_n2 = sf298_n2 + cpa_n2*log(T/T0) + cpb_n2*(T-T0) + cpc_n2*(T^2-T0^2)/2 + cpd_n2*(T^3-T0^3)/3;

sfT_nh3= sf298_nh3+ cpa_nh3*log(T/T0)+ cpb_nh3*(T-T0)+ cpc_nh3*(T^2-T0^2)/2+ cpd_nh3*(T^3-T0^3)/3;
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% H, S, G and K for reaction N2 + 3 H2 = 2 NH3
dhrT = 2*hfT_nh3 - hfT_n2 - 3*hfT_h2
dsrT = 2*sfT_nh3 - sfT_n2 - 3*sfT_h2

dgrT = dhrT - T*dsrT
K = exp(-dgrT/(8.3145*T))

Exercise 7.3 ∗ NOx equilibrium. A gas mixture at 940 oC and 2.5 bar consists of 5% O2,
11% NO, 16% H2O and the rest N2. The formation of NO2 is neglected, and you need to
check whether this is reasonable by calculating the ratio (maximum) between NO2 and NO
that one would get if the reaction

NO + 0.5O2 = NO2

was in equilibrium at 940 oC. Data. Assume constant heat capacity and use data for ideal
gas from page 416.

Exercise 7.4 Consider the gas phase reaction

4NH3 + 5O2 = 4NO + 6H2O

(a) Calculate standard enthalpy, entropy, Gibbs energy and the equilibrium constant for the
reaction at 298 K and 1200 K.
(b) Calculate the equilibrium composition at 1200 K and 8 bar when the feed consists of 10
mol-% ammonia, 18 mol-% oxygen and 72 mol-% nitrogen.
(c) What is the feed temperature if the reactor operates adiabatically?

Data. Assume constant heat capacity and use data for ideal gas from page 416.

7.4 Introduction to vapor/liquid equilibrium

Phase equilibrium, and in particular vapor/liquid-equilibrium (VLE), is important
for many process engineering applications. The thermodynamic basis for phase
equilibrium is the same as for chemical equilibrium, namely that the Gibbs energy
G is minimized at a given T and p (see page 174).

7.4.1 General VLE condition for mixtures

Vapor/liquid-equilibrium (VLE) for mixtures is a large subject, and we will here
state the general equilibrium condition, and then give some applications. The fact
that the Gibbs energy G is minimized at a given temperature T and pressure p
implies that a necessary equilibrium condition is that G must remain constant for
any small perturbation, or mathematically (dG)T,p = 0 (see page 385). Consider a
small perturbation to the equilibrium state where a small amount dni of component
i evaporates from the liquid phase (l) to the vapor/gas phase (g). The necessary
equilibrium condition at a given T and p then gives

dG = (Ḡg,i − Ḡl,i)dni = 0 (7.26)

where Ḡi [J/mol i] is the partial Gibbs energy, also known as the chemical potential,
µi , Ḡi. Since (7.26) must hold for any value of dni, we derive the equilibrium
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Figure 7.3: Vapor/liquid equilibrium (VLE)

condition Ḡg,i = Ḡl,i. That is, the VLE-condition is that the chemical potential for
any component i is the same in both phases,

µg,i = µl,i (7.27)

7.4.2 Vapor pressure of pure component

Let us first consider VLE for a pure component. The component vapor pressure psat(T )
is the equilibrium (or saturation) pressure for the pure liquid at temperature T . As
the temperature increases, the molecules in the liquid phase move faster and it becomes
more likely that they achieve enough energy to escape into the vapor phase, so the
vapor pressure increases with temperature. For example, the vapor pressure for water
is 0.0061 bar at 0 oC, 0.03169 bar at 25 oC, 1.013 bar at 100 oC, 15.54 bar at 200 oC
and pc = 220.9 bar at Tc = 374.1oC (critical point).

As the temperature and resulting vapor pressure increases, the molecules come closer
together in the gas phase, and eventually we reach the critical point (at temperature
Tc and pressure pc), where there is no difference between the liquid and gas phases. For
a pure component, the critical temperature Tc is the highest temperature where a
gas can condense to a liquid, and the vapor pressure is therefore only defined up to Tc.
The corresponding critical pressure pc is typically around 50 bar, but it can vary a
lot, e.g., from 2.3 bar (helium) to 1500 bar (mercury).

For a pure component, the exact Clapeyron equation provides a relationship
between vapor pressure and temperature,

dpsat

dT
=

∆vapS

∆vapV
=

∆vapH

T∆vapV
(7.28)

Here ∆vapH = Hg − Hl [J/mole] is the heat of vaporization at temperature T and
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∆vapV = Vg − Vl [m3/mol] is the difference in molar volume between the phases. An
equivalent expression applies for the vapor pressure over a pure solid.

Derivation of (7.28): From (7.27) the necessary equilibrium condition is Gg = Gl. Assume that

there is a small change in T which results in a small change in p. From (B.66), the resulting changes in

Gibbs energy are dGl = Vldp−SldT and dGg = Vgdp−SgdT . Since the system is still in equilibrium

after the change, we must have dGl = dGg which gives (Vg − Vl)dp − (Sg − Sl)dT . The Clapeyron

equation follows by noting that ∆vapS = ∆vapH/T , see (7.8).

In most cases, we have Vg ≫ Vl, and for ideal gas we have Vg = p/RT and from
(7.28) we then derive, by using 1

pdp = d ln p, the approximate Clausius-Clapeyron
equation,

d ln psat(T )

dT
=

∆vapH(T )

RT 2
(7.29)

which applies for a pure component at low pressure, typically less than 10 bar. If the
heat of vaporization ∆vapH is constant (independent of T ; which indeed is somewhat
unrealistic since it decreases with temperature and is 0 in the critical point), we derive
from (7.29) the integrated Clausius-Clapeyron equation,

psat(T ) = psat(T0) exp

[

−∆vapH

R

(
1

T
− 1

T0

)]

(7.30)

which is sometimes used to compute the vapor pressure at temperature T given
psat(T0) at temperature T0. However, (7.30) is not sufficiently accurate for practical
calculations, so instead empirical relationships are used. A popular one is the Antoine
equation, 2

ln psat(T ) = A − B

T + C
(7.31)

Note that (7.30) is in the form (7.31) with A = ln psat(T0) + ∆vapH/RT0, B =
∆vapH/R and C = 0. Antoine parameters for some selected components are given in
Table 7.2 (page 190).

Example 7.13 For water, we find in an older reference book the following Antoine constants:
A = 18.3036, B = 3816.44 and C = −46.13. This is with pressure in [mm Hg] and temperature
in [K] (note that these Antoine parameters are different from those given in Table 7.2). The
vapor pressure at 100 oC is then

psat(373.15 K) = e
18.3036− 3816.44

(373.15−46.13) = 759.94 mmHg =
759.94

750.1
bar = 1.013 bar

which agrees with the fact that the boiling temperature for water is 100 oC at 1 atm = 1.01325
bar.

Engineering rule for vapor pressure of water. The following simple formula,
which is easy to remember, gives surprisingly good estimates of the vapor pressure for
water for temperatures from 1000C (the normal boiling point) and up to 374oC (the
critical point):

psat
H2O[bar] =

(
t[oC]

100

)4

(7.32)

2 Numerical values for the three Antoine constants A, B and C are found in many reference books
(for example, B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The properties of gases and liquids, 5th

Edition, McGraw-Hill, 2001.
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This formula is very handy for engineers dealing with steam at various pressure levels.
For example, from the formula we estimate psat ≈ 1 bar at 100oC (the correct value is
1 atm = 1.013 bar) and psat ≈ 24 = 16 bar at 200oC (the correct value is 15.53 bar).

Exercise 7.5 ∗ Test the validity of the simple formula (7.32), by comparing it with the
following experimental vapor pressure data for water:

t[oC] 0 25 50 75 100 120 150 200 250 300 374.14(tc)
p[bar] 0.00611 0.03169 0.1235 0.3858 1.013 1.985 4.758 15.53 39.73 85.81 220.9(pc)

Also test the validity of the two alternative sets of Antoine constants for water (given in
Example 7.13 and Table 7.2).

Exercise 7.6 ∗ Effect of barometric pressure on boiling point. Assume that the
barometric (air) pressure may vary between 960 mbar (low pressure) and 1050 mbar (high
pressure). What is the corresponding variation in boiling point for water?

Comment. Note the similarity between Clausius-Clapeyron’s equation (7.29) for the temperature
dependency of vapor pressure,

d ln psat(T )

dT
=

∆vapH(T )

RT 2

and van’t Hoff’s equation (7.25) for the temperature dependency of the chemical equilibrium constant
K,

d ln K

dT
=

∆rH⊖(T )

RT 2

This is of course not a coincidence, because we can view evaporation as a special case of an endothermic

“chemical reaction.”

7.4.3 VLE for ideal mixtures: Raoult’s law

Here, we consider vapor/liquid equilibrium of mixtures; see Figure 7.3 (page 180). Let

xi - mole fraction of component i in the liquid phase
yi - mole fraction of component i in the vapor phase

The simplest case is an ideal liquid mixture and ideal gas where Raoult’s law states
that for any component i, the partial pressure pi = yip equals the vapor pressure of
the pure component i multiplied by its mole fraction xi in the liquid phase, that is,

Raoult′s law : yip = xip
sat
i (T ) (7.33)

A simple molecular interpretation of Raoult’s law is that in an ideal liquid mixture
the fraction of i-molecules at the surface is xi, so the partial pressure pi = yip is
reduced from psat

i (T ) (pure component) to xip
sat
i (T ) (ideal mixture).

Thermodynamic derivation of Raoult’s law. A thermodynamic derivation is useful because

it may later be generalized to the non-ideal case. We start from the general VLE condition µg,i = µl,i

in (7.27), which says that the chemical potential (= partial Gibbs energy) for each component is the

same in both phases at the given p and T . Now, Gibbs energy is a state function, and we can also

imagine another route for taking component i from the liquid to the vapor phase, consisting of four

steps (all at temperature T ): (1) Take component i out of the liquid mixture. From (B.41) the change

in chemical potential for this “unmixing” is ∆µi,1 = −RT ln ai where the activity is ai = γixi.

For an ideal liquid mixture the activity coefficient is 1, γi = 1. (2) Take the pure component as
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liquid from pressure p to the saturation pressure psat
i (T ). Since the liquid volume is small this gives a

very small change in chemical potential, known as the Poynting factor, which we here neglect, i.e.,

∆µi,2 ≈ 0. (3) Evaporate the pure component at T and psat
i (T ). Since we have equilibrium (∆G = 0)

there is no change in the chemical potential, ∆µi,3 = 0. (4) In the gas phase, go from pure component

at pressure psat
i (T ) to a mixture at p where the partial pressure is pi. From (B.40), the change in

chemical potential for an ideal gas is ∆µi,4 = RT ln(pi/psat
i (T )). Now, since the initial and final

states are in equilibrium, the sum of the change in chemical potential for these four steps should be

zero and we derive −RT lnxi + RT ln(pi/psat
i (T )) = 0 and Raoult’s law follows.

7.4.4 Relative volatility

The relative volatility α is a very useful quantity. For example, it is used for short-cut
calculations for distillation columns.3 For a mixture, the relative volatility α between
the two components L (the “light” component) and H (the “heavy” component) is
defined as

α ,
yL/xL

yH/xH
(7.34)

For an ideal mixture where Raoult’s law (7.33) applies, we then have

α =
yL/xL

yH/xH
=

psat
L (T )

psat
H (T )

(7.35)

that is, α equals the ratio between the pure component’s vapor pressures. Furthermore,
we see from (7.30) that if the heat of vaporization for the two components are similar,
then α does not change much with the temperature.

The approximation of constant relative volatility (independent of composition
and temperature) is often used in practical calculations, and is based on the following
assumptions

• Ideal liquid mixture such that Raoult’s law applies (α is then independent of
composition)

• The components have similar heat of vaporization (α is then independent of
temperature)

These assumptions generally hold well for separation of “similar” components.
However, the assumption of constant α is poor for many non-ideal mixtures. For
example, for a mixture that forms an azeotrope, like water and ethanol, we have
α = 1 at the azeotropic point, with α > 1 on one side and α < 1 on the other side of
the azeotrope (that is, even the order of “heavy” (H) and “light” (L) depends on the
liquid composition).

Relative volatility from boiling point data. For ideal mixtures that follow
Raoult’s law, the following approximate relationship between the relative volatility α
and the boiling point difference TbH − TbL for the components applies:

α ≈ exp

[
∆vapH

RTb
· TbH − TbL

Tb

]

(7.36)

3 For more on distillation see, for example, I.J. Halvorsen, S. Skogestad: “Distillation Theory,”
Encyclopedia of Separation Science, D. Wilson (Editor-in-chief), Academic Press, 2000 (available
at S. Skogestad’s homepage).
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Here Tb =
√

TbH · TbL is the geometric mean boiling point, and ∆vapH is the average
heat of vaporization for the two components at the average boiling point Tb. From

Trouton’s rule (see page 378), a typical value is
∆vapH

RTb
≈ 85J/mol K

8.31J/mol K = 10.2.
Derivation of (7.36). We assume that Raoult’s law holds such that (7.35) holds. If we assume
that the heat of vaporization is independent of temperature, then the integrated Clausius-Clapeyron
equation (7.30) gives for component L if we choose T = TbH and T0 = TbL:

psat
L (TbH) = psat

L (TbL) exp

»

−∆vapHL

R

„
1

TbH
− 1

TbL

«–

In practice, ∆vapHL depends on temperature, so an average value for the temperature interval from
TbL to TbH should be used. At the normal boiling points, psat

L (TbL) = psat
H (TbH) = 1 atm, and the

relative volatility at T = TbH becomes

α =
psat

L (TbH )

psat
H (TbH )

= exp

»

−∆vapHL

R

„
1

TbH
− 1

TbL

«–

A similar expression for α at T = TbL is derived by considering component H, and combining the

two yields (7.36). 2

Example 7.14 Let us use (7.36) to calculate an approximate value for relative volatility for
the mixture methanol (L) - ethanol (H). We obtain the following data for the pure components

Methanol : TbL = 337.8K; ∆vapHL(TbL) = 35.2 kJ/mol

Ethanol : TbH = 351.5K; ∆vapHB(TbH) = 40.7 kJ/mol

The geometric mean boiling point is Tb = 344.6 K, the average heat of vaporization is
∆vapH = (∆vapHL(TbL + ∆vapHB(TbH)/2 = 37.9 kJ/mol and we get ∆vapH/RTb = 13.25
(which is higher than the value of 10.2 according to Trouton’s rule). The boiling point
difference is 13.7 K, and assuming ideal mixture, (7.36) gives α ≈ exp 12.90·13.7

344.6
= 1.69.

The experimental value is about 1.73.

We emphasize that the simplified formula (7.36) is primarily intended to provide
insight, and one should normally obtain experimental data for the vapor/liquid
equilibrium or use a more exact model.4

7.4.5 Boiling point elevation and freezing point depression

Consider a mixture consisting mainly of a volatile component (the solvent A) with
some dissolved non-volatile component (the solute B). For example, this could be a
mixture of water (A) and sugar (B). Such a solution has a higher boiling point than
the pure component (e.g., water), and we want to find the boiling point elevation
∆Tb. For a dilute ideal mixture (solution) with mole fraction xB of the non-volatile
component, we derive that the boiling point elevation is

∆Tb = Tb − T ∗
b =

RT ∗2

b xB

∆vapH
(7.37)

where T ∗
b is the boiling point of the pure component A, and Tb is the boiling point of

the mixture. If the solution is not dilute then xB should be replaced by ln 1
1−xB

.

4 A comprehensive reference work for experimental vapor/liquid equilibrium data for mixtures is: J.
Gmehling and U. Onken, Vapor-liquid equilibrium data collection, Dechema Chemistry Data Series
(1977– ).
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Proof of (7.37). For an ideal mixture (solution), Raoult’s law (7.33) gives that the partial pressure
of the solvent (A) is pA = (1 − xB)psat

A (T ) where pA is equal to the total pressure p since the other
component is non-volatile. At the boiling point of the mixture, the total pressure is p0 = 1 atm and
we get p0 = (1− xB)psat

A (Tb). Here, from the integrated Clausius-Clapeyron equation (7.30) we have

for the solvent psat
A (Tb) = psat

A (T ∗
b ) exp

h

−∆vapH

R

“
1

Tb
− 1

T∗
b

”i

. Here, psat
A (T ∗

b ) = p0 = 1 atm (since

the vapor pressure of a pure component is 1 atm at the normal boiling point), and by combining and
taking the log on both sides we derive

ln
1

1 − xB
=

∆vapH

R

Tb − T ∗
b

T ∗
b Tb

(7.37) follows by assuming a dilute solution (xB → 0) where ln 1
1−xB

≈ xB and T ∗
b ≈ Tb. An

alternative derivation is to start from the general equilibrium condition µg,A = µl,A in (7.27). Here

µl,A = µ∗
l,a + RT lnxA for an ideal mixture and µg,A = µ∗

g,A because B is non-volatile. Using

µ∗
g,A −µ∗

l,a = ∆vapG, etc. leads to the desired results; for details see a physical chemistry textbook.

The reason for the boiling point elevation is that the dissolved components (B) make
it more favorable from an entropy point of view for the solvent to remain the liquid
phase. The same argument (that the solvent likes to remain in the liquid phase) also
applies for freezing, and it can be proved that for a dilute ideal mixture the freezing
(melting) point depression is

∆Tm = T ∗
m − Tm =

RT ∗2

m xB

∆fusH
(7.38)

where T ∗
m is the melting (freezing) point of the pure component, Tm the melting point

of the mixture and ∆fusH is the heat of melting.
In both (7.37) and (7.38), xB is the sum of the mole fractions of all dissolved

components (non-volatile or non-freezing). If a component dissociates (e.g., into ions),
then this must be taken into account (see the sea water example below).

Remark. Note that both the boiling point elevation (7.37) and the freezing point
depression (7.38) depend only on the concentration (mole fraction xB) of the dissolved
component (solute), and not on what component we have. Another such property is
the osmotic pressure over an ideal membrane (see page 382). These three properties
are referred to as colligative solution properties. They can, for example, be used
to determine the molar mass (M) of a molecule (see Exercise 7.7).

Example 7.15 Boiling point elevation and freezing point depression of seawater.
We first need to find the mole fraction xB of dissolved components. We assume that the
salinity of seawater is 3.3%, that is, 1 l seawater contains 33 g/l of salt (NaCl). Since the
molar mass of NaCl is 58.4 g/mol, we have that 33 g/l corresponds to (33 g/l) / (58.4 g/mol)
= 0.565 mol/l of NaCl. However, when dissolved in water, NaCl splits in two ions, Na+ and
Cl−. Now, 1 l of water is 55.5 mol (= (1000 g) / (18 g/mol)). Thus, 1 l of seawater consists of
approximately 0.565 mol/l Na+, 0.565 mol/l Cl− and 55.5 mol water, and the corresponding
mole fractions are approximately 0.01 (Na+), 0.01 (Cl−) and 0.98 (H2O). The total mole
fraction of dissolved components in seawater is then xB = xNa + xCl = 0.01 + 0.01 = 0.02.

Water has a boiling point of T ∗
b = 373.15 K (100 oC) and the heat of vaporization at the

boiling point is ∆vapH = 40.66 kJ/mol. Thus, from (7.37) the boiling point elevation is

∆Tb = Tb − T ∗
b =

8.31 · 373.152 · 0.02

40666
K = 0.57K

so the boiling point of seawater is about 100.57 oC.
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Water has a freezing (melting) point of T ∗
m = 273.15 K (0 oC) and the heat of fusion

(melting) at the freezing point is ∆fusH = 6.01 kJ/mol. Thus, from (7.38) the freezing point
depression is

∆Tm = T ∗
m − Tm =

8.31 · 273.152 · 0.02

6010
K = 2.06K

so the freezing point of seawater is about −2.06oC.

Exercise 7.7 Adding 7 g of an unknown solute to 100 g water gives a boiling point elevation
of 0.34 oC. Estimate the molar mass of the unknown solute, and the corresponding freezing
point depression.

7.4.6 VLE for dilute mixtures: Henry’s law

Raoult’s law cannot be used for “supercritical” components (“gases”), where T is above
the critical temperature Tc for the component. This is because psat(T ) is only defined
for T ≤ Tc. However, also supercritical components have a solubility in liquids. For
example CO2 can be dissolved in water at 50oC even though the critical temperature
for CO2 is 31oC. “Fortunately,” the concentration in the liquid phase of supercritical
(and other “light”) components is usually low. For sufficiently dilute mixtures (low
concentrations), there is a generally linear relationship between a component’s gas
phase fugacity (“thermodynamic partial pressure”) and its liquid concentration, even
for nob-ideal mixtures. This gives Henry’s law, which also applies to supercritical
components,

Henry′s law : fV
i = Hi(T ) · xi (xi → 0) (7.39)

Here, Henry’s constant Hi [bar] is a function of temperature only (at least at pressure
below 50 bar; at very high pressures we need to include the “Poynting factor” for the
pressure’s influence on the liquid phase). If the pressure p is sufficiently low, we can
assume ideal gas phase where fV

i = pi = yip (the partial pressure), and Henry’s law
(7.39) becomes

yi =
Hi

p
xi (xi → 0, low p) (7.40)

Henry’s law on the form (7.40) is valid for dilute solutions (xi < 0.03, typically) and low
pressures (p < 20 bar, typically). For an ideal mixture (liquid phase), Henry’s constant
Hi equals the component’s vapor pressure (compare (7.33) and (7.40)), and Henry’s
constant is therefore expected to increase with temperature. Thus, the solubility is
expected to be lower at high temperature. However, there are exceptions to this rule,
as seen below for the solubility of H2 andN2 in ammonia.

Water. Henry’s constant for the solubility of some gases in water at 0oC and 25oC
is given in Table 7.1. Note from the critical data on page 416 that most of these
gases are supercritical at these temperatures. Thus, they cannot form a pure liquid
phase, but they can dissolve in liquid water. In all cases, Henry’s constant increases
with temperature. For example, for the solubility of CO2 in water, Henry’s constant
increases from 740 bar at 0oC, to 1670 bar at 25oC and to 3520 bar at 60 oC.

Ammonia. The following values for Henry’s constant for the solubility of H2 and
N2 in ammonia were obtained using the SRK equation of state with interaction
parameters kij = 0.226 between ammonia and nitrogen and kij = 0 between ammonia
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Table 7.1: Henry’s constant for the solubility of some gases in water

component Hi [bar] Hi [bar]
i (0oC) (25oC)

H2 58200 71400
N2 53600 84400
CO 35700 60000
O2 25800 44800

CH4 22700 41500
C2H4 5570 11700
CO2 740 1670
Cl2 − 635
H2S 270 545

and hydrogen:
Component Hi [bar] Hi [bar]

i (−25oC) (25oC)
H2 48000 15200
N2 26000 8900

We note that Hi for both components decrease by a factor of about 3 as the
temperature is increased from −25oC to 25oC. We then have the unexpected result
that the solubility of these gases in ammonia is higher at high temperature.

Example 7.16 The partial pressure of CO2 over a water solution at 25 oC is 3 bar. Task:
(a) Calculate the concentration of CO2 in the solution [mol/l]. (b) Find the volume of CO2(g)
at 1 atm and 25 oC that is dissolved in 1 l solution.

Solution. (a) We assume ideal gas and dilute solution. From Henry’s law, we have that
pi = Hixi, where Hi = 1670 bar (Table 7.1) and pi = 3 bar. This gives xi = 3/1670 = 0.0018
[mol CO2/ mol] (which confirms that we have a dilute solution). In 1 l of solution the amount
of water is (1 kg)/ (18·10−3 kg/mol) = 55.5 mol. That is, the concentration of CO2 is
ci = xi · 55.5 mol/l = 0.10 mol/l.

(b) The molar volume of an ideal gas at 1 atm and 25 oC is Vm = RT/p = 8.31 ·
298.15/1.01325 · 105 = 0.02445 m3/mol = 24.45 l/mol. In 1 l solution, there is 0.10 mol
CO2, and the corresponding volume of this as gas at 1 atm is then 2.45 l.

7.4.7 VLE for real (non-ideal) mixtures

In this section, we summarize the equations used for calculation of vapor/liquid
equilibrium for non-ideal mixtures. It is intended to give an overview, and you need to
consult other books for practical calculations. Three fundamentally different methods
are

1. Based on K values
2. Based on activity coefficients (for non-ideal mixtures of sub-critical components at

moderate pressures)
3. Based on the same equation of state for both phases (for moderately non-ideal

mixtures at all pressures)
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1. K-value

The K-value is defined for each component as the ratio

Ki =
yi

xi
(7.41)

where xi is the mole fraction in the liquid phase and yi is the mole fraction in the gas
phase at equilibrium. Generally, the “K value” is a function of temperature T , pressure
p and composition (xi and yi). For ideal liquid mixtures and ideal gas, we have from
(7.33) that Ki = psat

i (T )/p, that is, the K value is independent of composition. For
dilute mixtures, even non-ideal, we have from Henry’s law (7.40) that Ki = Hi(T ).
More generally, the K-value can be calculated from one of the two methods given
below.

2. Activity coefficient

This method provides a generalization of Raoult’s law to non-ideal mixtures and
to real gases. From the general VLE-condition µg,i = µl,i we derive for mixtures of
subcritical components: (the proof follows the derivation given for Raoult’s law on
page 182)

φV
i · yi · p

︸ ︷︷ ︸

fV
i

= γi · xi · φsat
i · psat

i (T ) · exp

[

1

RT

∫ p

psat
i

V̄ L
i dp

]

︸ ︷︷ ︸

fL
i

(7.42)

where fV
i is the fugacity in the vapor phase and fL

i is the fugacity in the liquid phase.
The fugacity coefficients φV

i (T, p, yi) and φsat
i (T ) are 1 for ideal gases, and for real

gases their value are usually computed from an equation of state for the gas phase,
e.g., SRK. The activity coefficients γi depend mainly on the liquid composition
(xi) and are usually computed from empirical equations, such as the Wilson, NRTL,
UNIQUAC and UNIFAC equations, based on experimental interaction data for all
binary combinations. The exception is the UNIFAC equation which only requires
interaction data for the groups in the molecule. The last exponential term is the
so-called Poynting factor for the pressure’s influence on the liquid phase (see the
derivation for Raoult’s law on page 182). It is close to 1, except at high pressures
above about 50 bar.

At moderate pressures (typically, less than 10 bar) we can assume ideal gas, φV
i = 1

and φsat
i = 1, and from (7.42) we derive a commonly used relation:

Nonideal mixture at moderate pressures : yip = γixip
sat
i (7.43)

For low concentrations of supercritical components we can use Henry’s law, yip =
Hixi. For an ideal liquid mixture we have γi = 1 and we rederive from (7.43) Raoult’s
law: yip = xip

sat
i .

3. Same equation of state for both phases

For mixtures that do deviate too much from the ideal (for example, for hydrocarbon
mixtures), we can use the same reference state (ideal gas) and the same equation
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of state for both phases (for example, the SRK equation), and the VLE-condition
µg,i = µl,i gives

φV
i yi = φL

i xi (7.44)

where the fugacity coefficients φV
i and φL

i are determined from the equation of state.
The K value is then Ki = φL

i /φV
i . Note that (7.44) can also be used for supercritical

components.

7.5 Flash calculations

p, T

F

V

L

z

x

y

i

i

i

Figure 7.4: Flash tank

Flash calculations are used for processes with vapor/liquid-equilibrium (VLE). A
typical process that requires flash calculations, is when a feed stream (F ) is separated
into a vapor (V ) and liquid (L) product; see Figure 7.4.

In principle, flash calculations are straightforward and involve combining the VLE-
equations with the component mass balances, and in some cases the energy balance.
Some flash calculations are (with a comment on their typical numerical solution or
usage):

1. Bubble point at given T (easy)
2. Bubble point at given p (need to iterate on T )
3. Dew point at given T (easy)
4. Dew point at given p (need to iterate on T )
5. Flash at given p and T (relatively easy)
6. Flash at given p and H (“standard” flash, e.g., for a flash tank after a valve)
7. Flash at given p and S (e.g., for condensing turbine)
8. Flash at given U and V (e.g., for dynamic simulation of an adiabatic flash drum)

The last three flashes are a bit more complicated as they require the use of the energy
balance and relationships for computing H , S, etc. The use of flash calculations is best
illustrated by some examples. Here, we assume that the VLE is given on K-value form,
that is,

yi = Kixi
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Table 7.2: Data for flash examples and exercises: Antoine parameters for psat(T ), normal
boiling temperature (Tb) and heat of vaporization ∆vapH(Tb) for selected components. Data:
Poling, Prausnitz and O’Connell, The properties of gases and liquids, 5th Ed., McGraw-Hill (2001).

% log10(psat[bar])=A-B/(T[K]+C) Tb[K] dvapHb [J/mol]
A1=3.97786; B1=1064.840; C1=-41.136; Tb1=309.22; dvapHb1=25790; % pentane C5H12
A2=4.00139; B2=1170.875; C2=-48.833; Tb2=341.88; dvapHb2=28850; % hexane C6H14
A3=3.93002; B3=1182.774; C3=-52.532; Tb3=353.93; dvapHb3=29970; % cyclohex C6H12
A4=5.20277; B4=1580.080; C4=-33.650; Tb4=337.69; dvapHb4=35210; % methanol CH3OH
A5=5.11564; B5=1687.537; C5=-42.98; Tb5=373.15; dvapHb5=40660; % water H2O
A6=4.48540; B6= 926.132; C6=-32.98; Tb6=239.82; dvapHb6=23350; % ammonia NH3
A7=3.92828; B7= 803.997; C7=-26.11; Tb7=231.02; dvapHb7=19040; % propane C3H8
A8=4.05075; B8=1356.360; C8=-63.515; Tb8=398.82; dvapHb8=34410; % octane C8H18
A9=4.12285; B9=1639.270; C9=-91.310; Tb9=489.48; dvapHb9=43400; % dodecane C12H26
A10=3.98523; B10=1184.24; C10=-55.578; Tb10=353.24; dvapHb11=30720; % benzene C6H6
A11=4.05043; B11=1327.62; C11=-55.525; Tb11=383.79; dvapHb11=33180; % toluene C7H8

where yi is the vapor phase mole fraction and xi the liquid phase mole fraction for
component i. In general, the “K-value” Ki depends on temperature T , pressure p and
composition (both xi and yi). We mostly assume ideal mixtures, and use Raoult’s law.
In this case Ki depends on T and p only:

Raoult′s law : Ki = psat
i (T )/p

In the examples, we compute the vapor pressure psat(T ) using the Antoine parameters
given in Table 7.2.

7.5.1 Bubble point calculations

Let us first consider bubble point calculations, In this case the liquid-phase
composition xi is given (it corresponds to the case where V is very small (V ? 0)
and xi = zi in Figure 7.4). The bubble point of a liquid is the point where the liquid
just starts to evaporate (boil), that is, when the first vapor bubble is formed. If the
temperature is given, then we must lower the pressure until the first bubble is formed.
If the pressure is given, then we must increase the temperature until the first bubble
is formed. In both cases, this corresponds to adjusting T or p until the computed sum
of vapor fractions is just 1, Σyi = 1 or

ΣiKixi = 1 (7.45)

where xi is given. For the ideal case where Raoult’s law holds this gives

Σi xip
sat
i (T )

︸ ︷︷ ︸

pi

= p (7.46)

Example 7.17 Bubble point at given temperature T . A liquid mixture contains 50%
pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,

x1 = 0.5; x2 = 0.3; x3 = 0.2
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At T = 400 K, the pressure is gradually decreased. What is the bubble pressure and
composition of the first vapor that is formed? Assume ideal liquid mixture and ideal gas
(Raoult’s law).

Solution. The task is to find a p that satisfies (7.46). Since T is given, this is trivial; we
can simply calculate p from (7.46). We start by computing the vapor pressures for the three
components at T = 400K. Using the Antoine data in Table 7.2, we get:

psat
1 (400K) = 10.248 bar

psat
2 (400K) = 4.647 bar

psat
3 (400K) = 3.358 bar

At the bubble point, the liquid phase composition is given, so the partial pressure of each
component is

p1 = x1p
sat
1 = 5.124 bar

p2 = x2p
sat
2 = 1.394 bar

p3 = x3p
sat
3 = 0.672 bar

Thus, from (7.46) the bubble pressure is

p = p1 + p2 + p3 = 7.189 bar

Finally, the vapor composition (composition of the first vapor bubble) is

y1 =
p1

p
= 0.713; y2 =

p2

p
= 0.194; y3 =

p3

p
= 0.093

For calculation details see the MATLAB code:

T=400; x1=0.5; x2=0.3; x3=0.2
psat1=10^(A1-B1/(T+C1)), psat2=10^(A2-B2/(T+C2)), psat3=10^(A3-B3/(T+C3))
p1=x1*psat1, p2=x2*psat2, p3=x3*psat3, p=p1+p2+p3
y1=p1/p, y2=p2/p, y3=p3/p

Example 7.18 Bubble point at given pressure p. Consider the same liquid mixture
with 50% pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%). A p = 5
bar, the temperature is gradually increased. What is the bubble temperature and composition
of the first vapor that is formed?

Solution. In this case, p and xi are given, and (7.46) provides an implicit equation for T
which needs to be solved numerically, for example, by iteration. A straightforward approach
is to use the method from the previous example, and iterate on T until the bubble pressure is
5 bar (for example, using the MATLAB code below). We find T = 382.64 K, and

y1 =
p1

p
= 0.724; y2 =

p2

p
= 0.187; y3 =

p3

p
= 0.089

% MATLAB:
x1=0.5; x2=0.3; x3=0.2; p=5;
T=fzero(@(T) p-x1*10^(A1-B1/(T+C1))-x2*10^(A2-B2/(T+C2))-x3*10^(A3-B3/(T+C3)) , 400)

7.5.2 Dew point calculations

Let us next consider dew point calculations. In this case the vapor-phase composition
yi is given (it corresponds to the case where L is very small (L ? 0) and yi = zi in
Figure 7.4). The dew point of a vapor (gas) is the point where the vapor just begins
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to condense, that is, when the first liquid drop is formed. If the temperature is given,
then we must increase the pressure until the first liquid is formed. If the pressure is
given, then we must decrease the temperature until the first liquid is formed. In both
cases, this corresponds to adjusting T or p until Σxi = 1 or

Σiyi/Ki = 1 (7.47)

where yi is given. For an ideal mixture where Raoult’s law holds this gives

Σi
yi

psat
i (T )

=
1

p
(7.48)

Example 7.19 Dew point at given temperature T . A vapor mixture contains 50%
pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,

y1 = 0.5; y2 = 0.3; y3 = 0.2

At T = 400 K, the pressure is gradually increased. What is the dew point pressure and
the composition of the first liquid that is formed? Assume ideal liquid mixture and ideal gas
(Raoult’s law).

Solution. The task is to find the value of p that satisfies (7.48). Since T is given, this is
trivial; we can simply calculate 1/p from (7.48). With the data from Example 7.17 we get:

1

p
=

0.5

10.248
+

0.3

4.647
=

0.2

3.358
= 0.1729bar−1

and we find p = 5.78 bar. The liquid phase composition is xi = yip/psat
i (T ) and we find

x1 =
0.5 · 5.78

10.248
= 0.282, x2 =

0.3 · 5.78

4.647
= 0.373, x3 =

0.2 · 5.78

3.749
= 0.345

% MATLAB:
T=400; y1=0.5; y2=0.3; y3=0.2
psat1=10^(A1-B1/(T+C1)), psat2=10^(A2-B2/(T+C2)), psat3=10^(A3-B3/(T+C3))
p=1/(y1/psat1 + y2/psat2 + y3/psat3)
x1=y1*p/psat1, x2=y2*p/psat2, x3=y3*p/psat3

Example 7.20 Dew point at given pressure p. Consider the same vapor mixture with
50% pentane (1), 30% hexane (2) and 20% cyclohexane (3). At p = 5 bar, the temperature is
gradually decreased. What is the dew point temperature and the composition of the first liquid
that is formed?

Solution. In this case, p and yi are given, and (7.48) provides an implicit equation for
T which needs to be solved numerically (e.g., using the MATLAB code below). We find
T = 393.30 K, and from xi = yip/psat

i (T ) we find

x1 = 0.278; x2 = 0.375; x3 = 0.347

% MATLAB:
y1=0.5; y2=0.3; y3=0.2; p=5;
T=fzero(@(T) 1/p-y1/10^(A1-B1/(T+C1))-y2/10^(A2-B2/(T+C2))-y3/10^(A3-B3/(T+C3)) , 400)

Example 7.21 Dew point with non-condensable components. Calculate the
temperature and composition of a liquid in equilibrium with a gas mixture containing 10%
pentane (1), 10% hexane and 80% nitrogen (3) at 3 bar. Nitrogen is far above its critical
point and may be considered non-condensable.
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Solution. To find the dew-point we use Σixi = 1. However, nitrogen is assumed non-
condensable so x3 = 0. Thus, this component should not be included in (7.48), which becomes

y1

psat
1 (T )

+
y2

psat
2 (T )

=
1

p

Solving this implicit equation in T numerically (e.g., using the MATLAB code below) gives
T = 314.82K and from xi = yip/psat

i (T ) the liquid composition is

x1 = 0.245; x2 = 0.755; x3 = 0

7.5.3 Flash with liquid and vapor products

Next, consider a flash where a feed F (with composition zi) is split into a vapor
product V (with composition yi) and a liquid product (with composition xi); see
Figure 7.4 on page 189. For each of the Nc components, we can write a material
balance

Fzi = Lxi + V yi (7.49)

In addition, the vapor and liquid is assumed to be in equilibrium,

yi = Kixi

The K-values Ki = Ki(T, P, xi, yi) are computed from the VLE model. In addition,
we have the two relationships Σixi = 1 and Σiyi = 1. With a given feed (F, zi), we
then have 3Nc +2 equations in 3Nc +4 unknowns (xi, yi, Ki, L, V, T, p). Thus, we need
two additional specifications, and with these the equation set should be solvable.

pT -flash

The simplest flash is usually to specify p and T (pT -flash), because Ki depends
mainly on p and T . Let us show one common approach for solving the resulting
equations, which has good numerical properties. Substituting yi = Kixi into the
mass balance (7.49) gives Fzi = Lxi + V Kixi, and solving with respect to xi gives
xi = (Fzi/(L + V Ki). Here, introduce L = F − L (total mass balance) to derive

xi =
zi

1 + V
F (Ki − 1)

Here, we cannot directly calculate xi because the vapor split V/F is not known. To
find V/F we may use the relationship Σixi = 1 or alternatively Σiyi = ΣiKixi = 1.
However, it has been found that the combination Σi(yi−xi) = 0 results in an equation
with good numerical properties; this is the so-called Rachford-Rice flash equation5

Σi
zi(Ki − 1)

1 + V
F (Ki − 1)

= 0 (7.50)

which is a monotonic function in V/F and is thus easy to solve numerically. A physical
solution must satisfy 0 ≤ V/F ≤ 1. If we assume that Raoult’s holds, then Ki depends

5 Rachford, H.H. and Rice, J.D.: “Procedure for Use of Electrical Digital Computers in Calculating
Flash Vaporization Hydrocarbon Equilibrium,” Journal of Petroleum Technology, Sec. 1, p. 19,
Oct. 1952.
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on p and T only: Ki = psat
i (T )/p. Then, with T and p specified, we know Ki and the

Rachford-Rice equation (7.50) can be solved for V/F . For non-ideal cases, Ki depends
also on xi and yi, so one approach is add an outer iteration loop on Ki.

Example 7.22 pT -flash. A feed F is split into a vapor product V and a liquid product L
in a flash tank (see Figure 7.4 on page 189). The feed is 50% pentane, 30% hexane and 20%
cyclohexane (all in mol-%). In the tank, T = 390K and p = 5 bar. For example, we may have
a heat exchanger that keeps constant temperature and a valve on the vapor product stream
that keeps constant pressure. We want to find the product split and product compositions.
Assume ideal liquid mixture and ideal gas (Raoult’s law).

Comment. This is a quite close-boiling mixture and we have already found that at 5 bar the
bubble point temperature is 382.64 K (Example 7.18) and the dew point temperature is 393.30
K (Example 7.20). The temperature in the flash tank must be between these temperatures for
a two-phase solution to exist (which it does in our case since T = 390 K).

Solution. The feed mixture of pentane (1), hexane (2) and cyclohexane (3) is

z1 = 0.5; z2 = 0.3; z3 = 0.2

We have Ki = psat
i (T )/p and at T = 390K and p= 5 bar, we find with the Antoine parameters

in Table 7.2:
K1 = 1.685, K2 = 0.742, K3 = 0.532

Now, zi and Ki are known, and the Rachford-Rice equation (7.50) is solved numerically to
find the vapor split V/F = 0.6915. The resulting liquid and vapor compositions are (for details
see the MATLAB code below):

x1 = 0.3393, x2 = 0.3651, x3 = 0.2956

y1 = 0.5717, y2 = 0.2709, y3 = 0.1574

% MATLAB:
z1=0.5; z2=0.3; z3=0.2; p=5; T=390;
psat1=10^(A1-B1/(T+C1)); psat2=10^(A2-B2/(T+C2)); psat3=10^(A3-B3/(T+C3));
K1=psat1/p; K2=psat2/p; K3=psat3/p; k1=1/(K1-1); k2=1/(K2-1); k3=1/(K3-1);
% Solve Rachford-Rice equation numerically to find a=V/F:
a=fzero(@(a) z1/(k1+a) + z2/(k2+a) + z3/(k3+a) , 0.5)
x1=z1/(1+a*(K1-1)), x2=z2/(1+a*(K2-1)), x3=z3/(1+a*(K3-1))
y1=K1*x1, y2=K2*x2, y3=K3*x3

Example 7.23 Condenser and flash drum for ammonia synthesis. The exit gas from
an ammonia reactor is at 250 bar and contains 61.5% H2, 20.5% N2 and 18% NH3. The gas
is cooled to 25oC (partly condensed), and is then separated in a flash drum into a recycled
vapor stream V and a liquid product L containing most of the ammonia. We want to calculate
the product compositions (L and V ) from the flash drum.

Data. In spite of the high pressure, we assume for simplicity ideal gas. Use vapor pressure
data for ammonia from Table 7.2 and Henry’s law coefficients for N2 and H2 from page 187.
For ammonia, we assume ideal liquid mixture, i.e., γNH3 = 1 (which is reasonable since the
liquid phase is almost pure ammonia).

Solution. The feed mixture of H2 (1), N2 (2) and NH3 (3) is

z1 = 0.615, z2 = 0.205, z3 = 0.18

For ammonia, we have at T = 298.15 K and p = 250 bar (Raoult’s law):

K3 =
psat
3 (T )

p
=

9.83 bar

250 bar
= 0.0393
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For H2 and N2, we have from the given data for Henry’s coefficient at 25oC (298.15 K):

K1 =
H1(T )

p
=

15200 bar

250 bar
= 60.8

K2 =
H2(T )

p
=

8900 bar

250 bar
= 35.6

Now, zi and Ki are known, and the Rachford-Rice equation (7.50) is solved numerically to
find the vapor split V/F = 0.8500. The resulting liquid and vapor compositions of the products
are

x1 = 0.0119, x2 = 0.0067, x3 = 0.9814

y1 = 0.7214, y2 = 0.2400, y3 = 0.0386

This agrees well with flow sheet data from a commercial ammonia plant.

Other flashes

For other flashes, like the pH-flash (which is relevant for an adiabatic flash tank), one
must include also the energy balance. For example, for an adiabatic flash tank, the
steady-state energy balance gives that the enthalpy H is constant. That is, Hin = Hout,
and we get

FhF
︸︷︷︸

H

= V hV + LhL (7.51)

where hV and hL [kJ/mol; kJ/kg] depend primarily on T , but in general also on xi, yi

and p. One solution approach is to use the pT -flash described above, and iterate on T
in an outer loop until the requirement on H is satisfied. Another approach is to solve
the equations simultaneously, as shown for the dynamic adiabatic flash of methanol
and ethanol in Example 11.18 (page 317).

7.5.4 Flash exercises

Exercise 7.8 ∗ Bubble and dew point at given temperature. A hydrocarbon mixture
contains 10% propane, 80% hexane and 10% dodecane. (a) Find the bubble point pressure at
300 K. (b) Find the dew point pressure at 300 K.

Exercise 7.9 ∗ Bubble and dew point at given pressure. A hydrocarbon mixture
contains 10 mol-% propane, 80% hexane and 10% dodecane. (a) Find the bubble point
temperature at 1 bar. (b) Find the dew point temperature at 1 bar.

Exercise 7.10 Bubble point at given pressure. A liquid mixture contains 4 mol-%
hexane and the rest is octane. What is the composition of the first vapor formed if the total
pressure is 1 atm?

Exercise 7.11 ∗ Flash at given p and T . A feed to a flash tank is 100 mol/s and contains
10% propane, 80% hexane and 10% dodecane. Find the amount of vapor product and the
compositions when T = 350K and p = 2bar.

Exercise 7.12 Flash calculation for binary mixture. Calculate the amount of liquid
that will remain at equilibrium when a mixture of 7 kg hexane and 3 kg toluene is vaporized
at 95oC and 1.5 bar.

Data: Molecular weights are 86.17 and 92.13.
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Exercise 7.13 ∗ Bubble and dew point calculations. (a) A gas mixture of 15 mol-%
benzene, 5 mol-% toluene and the rest nitrogen is compressed isothermally at 100oC until
condensation occurs. What will be the composition of the initial condensate?

(b) Calculate the temperature and composition of a vapor in equilibrium with a liquid that
is 25 mol-% benzene and 75 mol-% toluene at 1 atm. Is this a bubble point or a dew point?

(c) Calculate the temperature and composition of a liquid in equilibrium with a gas
mixture containing 15 mol-% benzene, 25 mol-% toluene and the rest nitrogen (which may be
considered non-condensable) at 1 atm. Is this a bubble point or a dew point?

Exercise 7.14 Condenser for exhaust gas. The exhaust gas from a natural gas power
plant is at 1 bar and contains 76% N2 (1), 12% O2 (2), 4% CO2 (3) and 8% H2O (4). The
gas is cooled to 25oC (partly condensed), and is then separated in a flash drum into a gas
product V and a liquid product L containing most of the water. Find the compositions of the
product streams. Are we able to remove any significant amount of CO2 in the water?

Data: Use pure component vapor pressure data for water and Henry’s law coefficients for
the gas components (see page 187).
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Work from heat

Can we convert heat into work? The answer is “yes,” but with clear limitations which can
be derived from the second law of thermodynamics. More precisely, if we have available heat
at temperature TH and cold at a lower temperature TC , then the maximum fraction of heat
that can be converted into work using a heat engine is 1 − TC/TH (the Carnot factor). The
reverse processes of obtaining cold from heat (refrigeration) and obtaining heat from cold (heat
pump), which require work, are also limited by the Carnot factor. In practice, the efficiency
is lower because of irreversibility that results in “lost work” or exergy (availability) losses. A
thermodynamic (exergy) analysis can help to identify the main losses in the process. It can
also be used to evaluate the overall efficiency of a technology.

8.1 Thermodynamics

This chapter is based on thermodynamics (see Appendices A and B). Thermodynamics
is an extremely important and useful tool for engineers, but it has it limitations:

Thermodynamics can tell us whether a given process is theoretically
possible, but in can not tell us how or if the process can be realized in
practice.

The start of thermodynamics as a science was the industrial use of steam engines in
England from around 1710 and onwards. The steam engine was able to convert heat
(generated by combustion of coal) into useful work by utilizing pressure differences.
For a long time, one did not know how much work one could theoretically obtain from
1 kg coal, and how the process should be operated to maximize the efficiency. In this
chapter, we want to give the answer to these questions.

The main difficulty was a very limited understanding of heat and energy and the
relation between the two. To illustrate this, it was only in 1759 that Joseph Black
found that there is a difference between temperature and heat. And it took almost
another 100 years, with the formulation of the first law of thermodynamics, before it
was finally established that if there is no change in the system’s state then the net
supplied heat equals the performed work. The first and second laws of thermodynamics
were formulated by Carnot in 1850. This shows that thermodynamics is not an easy
topic, but it is very important and sets clear limitations for our lives.
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8.2 Heat engine and the first law

Figure 8.1: Cyclic process

The function of a heat engine is to convert heat into work. Examples of heat engines
are steam engines, gas turbines, and gasoline and diesel engines (see Section 8.3 on
page 203). A heat engine operates cyclically, that is, the engine (system) continuously
passes through a cyclic process where it, after a completed cycle, returns to its
original state, see Figure 8.1. If we consider the system over a complete cycle, then

∆U = 0, ∆V = 0 , ∆S = 0 etc.

A cyclic process does not exchange mass with the surroundings, so it is a closed system,
and from Chapter 4 the energy balance (first law of thermodynamics) is ∆U = Q+W .
If we consider changes over a complete cycle, then ∆U = 0 and we derive

(−W ) = Q (8.1)

Note that with our sign convention for work, (−W ) is performed work by the system
(the cyclic process) on the surroundings. Since ∆V = 0 for a cyclic process, there is
no work term related to changes in the system’s volume, so all the work W is shaft
work, that is, W = Ws.

1 From (8.1), it seems that for any cyclic process, the supplied
heat Q > 0 can be extracted as useful work ((−W ) > 0). This sounds too good to be
true, and unfortunately things are not quite as simple. The important point is that
Q = QH +QC is the net supplied heat, and we will show that in order to convert high-
temperature heat QH to work W , the second law of thermodynamics requires that
some heat QC must be removed by cooling at a lower temperature, see Figure 8.2.
From the first law of thermodynamics the performed work is (−W ) = QH + QC ,
or equivalently with absolute values (so that there is no doubt about the signs), see
Figure 8.2,

|W | = |QH | − |QC | (8.2)

The net heat supplied to the cyclic process, |QH | − |QC |, is always less than the
supplied heat |QH | (we use absolute value to be sure there is no doubt about this). In
the next section, we will show that the maximum performed work by the cycle equals
|QH | multiplied by the Carnot factor.
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  Hot reservoir

(e.g. , hot stream)

  Cold reservoir

(e.g., surroundings)

Cyclic process

   or machine

(the system)
0

Figure 8.2: Heat engine that converts heat QH to work W

8.3 Heat engine and the second law

Let us consider the following problem:

A given amount of heat QH is available at temperature TH (H for hot)
and we have access to cooling at temperature TC (C for cold). How much
of the heat can we convert to work, i.e., what is the maximum value of
|W |/|QH |?

The problem is illustrated in Figure 8.2, where we use the absolute value so that
there is no doubt about the signs for the various variables. We assume that we
have a hot reservoir2 (heating) at temperature TH and a cold reservoir (cooling)
at temperature TC . We assume that the machine (the system) passes though a cyclic
process. Let us start by calculating the entropy changes in the system (the machine)
and in the two reservoirs for a reversible process (perfect machine). Since the machine
is cyclic, the change in entropy in the system is zero, that is,

∆S = 0

The change in entropy in the cold and hot reservoirs (the surroundings) is, from (7.5),
given by

∆SH = −|QH |
TH

and ∆SC =
|QC |
TC

where TH and TC are the temperatures of the two reservoirs. We assume that the
cyclic machine operates reversibly. This implies, among other things, that the heat

1 In all of this chapter, we use W in the meaning “shaft work” Ws.
2 A reservoir is a body with an infinite heat capacity or a fluid that is condensed/boiled such that

the temperature is constant.
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transfer is reversible so that the temperature of the system (machine) is TH when
heat is supplied to the system, and is TC when heat is removed from the system. From
the second law of thermodynamics (page 372), the total entropy change of the system
and surroundings is zero for a reversible process:

∆Stotal = ∆SH + ∆SC + ∆S = 0

This gives for an ideal (reversible) machine:

∆Stotal = −|QH |
TH

+
|QC |
TC

= 0 ⇒
( |QC |
|QH |

)

rev

=
TC

TH
(8.3)

Equation (8.3) says that for an ideal engine, the fraction of heat supplied at TH that
must be removed as cooling at TC is the ratio between the two absolute temperatures.
Furthermore, from the first law of thermodynamics (8.2),

|W | = |QH | − |QC |

and (8.3) gives for an ideal (reversible) cycle

( |W |
|QH |

)

rev

=
TH − TC

TH
= 1 − TC

TH
(8.4)

which is always between 0 (for TH = TC) and 1 (for TH ≫ TL). This is also known as
the Carnot factor or Carnot “efficiency,”3

ηCarnot = 1 − TC

TH
(8.5)

To maximize the theoretical fraction of heat |QH | that can be converted to work |W |,
we want TH to be as high as possible and than Tc as low as possible, corresponding
to a Carnot factor close to 1. These results, which originate from the study of steam
engines, are extremely fundamental and form the historical basis for thermodynamics
as a subject.

Alternatively, if we have available a lot of heat and the cooling capacity QC is
limited, then the following ratio is of interest,

( |W |
|QC |

)

rev

=
TH − TC

TC
=

TH

TC
− 1 (8.6)

which is always between 0 (for TH = TC) and infinity (for TH ≫ TC). Again, we find
that we can extract more work when there is a large temperature difference between
the hot and cold reservoirs.

Note. It is emphasized that one must always use the absolute temperature T [K]
when calculating the Carnot factor.

3 I am not very happy about the commonly used term “Carnot efficiency,” because an efficiency
should – in my opinion – be 1 for an ideal (reversible) process. I therefore recommend using the
term “Carnot factor;” more about this on page 211.
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Example 8.1 Arctic versus tropical cooling water. We have available a heat reservoir
at 400 oC and a cold “tropical” reservoir (cooling) at 25 oC. How much heat can be extracted
as work? What is the answer if we instead have “arctic” cooling at 5 oC?

In the case with cooling at 25 oC (tropical conditions), the Carnot factor is

η =
|W rev|
|QH | = 1 − TC

TH
= 1 − 298

673
= 0.557

that is, 55.7% of the heat can in theory be removed as work. For the case with cooling at 5
oC (arctic conditions), the Carnot factor is

η =
|W rev|
|QH | = 1 − TC

TH
= 1 − 278

673
= 0.587

that is, 58.7% of the heat can in theory be removed as work. We can in other words extract
about 3% more of the heat as work by using cold “arctic” cooling water instead of using cooling
water at 25 oC.

The cold cooling water is a potential advantage in locating a thermal power plant in a cold climate.

However, in practice the difference is not quite as large as in the above example. This is because, in

warmer climates, colder cooling water (below 25 oC) can be obtained by using a cooling tower (where

some water evaporates such that the water is cooled and the air is saturated). The dimensions of these

cooling towers are often enormous (diameter and height up to 100 m) and they usually dominate the

appearance of a nuclear or coal power plant. If someone sees one of these cooling towers with all the

“smoke” coming out, they may think there is a serious pollution problem, but it is just water vapor.

Example 8.2 Log-mean Carnot factor. The Carnot factor 1 − TC
TH

applies to the case
where TC and TH are constant. Let us consider two common cases, where either TC or TH

vary linearly with the amount of heat Q transferred. In this case, the correct Carnot factor
involves the logarithmic mean temperature difference.

(a) TH varies linearly with Q, TC constant. This is the case if we have a hot stream
with constant heat capacity which is cooled from TH1 to TH2 and we have available
cooling at constant temperature TC. For a small supplied amount of heat dQH =

CpdTH , it follows from (8.4) that the maximum work is dW =
“

1 − TC
TH

”

dQH =
“

1 − TC
TH

”

CpdTH . With constant heat capacity Cp, the maximum work that can be

removed in the temperature interval from TH1 to TH2 is |W | = Cp

R TH2

TH1

“

1 − TC
T

”

dT =

Cp (TH2 − TH1 − TC lnTH2/TH1). The heat supplied then is QH =
R TH2

TH1
CpdT =

Cp(TH2 − TH1) and we find that the mean Carnot factor is

ηCarnot =
|W rev|
QH

= 1 − TC

TH,lm
, where TH,lm =

TH2 − TH1

ln(TH2/TH1)
(8.7)

is the logarithmic mean temperature on the hot side.

(b) TC varies linearly with transferred amount of heat, TH constant. This is the
case if we have a cold stream with constant heat capacity which is heated from TC1

to TC2. A similar derivation gives that the mean Carnot factor is η = 1 − TC,lm/TH ,
where TC,lm = (TC2 − TC1)/ ln(TC2/TC1) is the logarithmic mean temperature on the
cold side.
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IDEA!
Sea water

Work

Cold

sea water

Cooling

Machine

Figure 8.3: A summer idea

Example 8.3 A summer idea. It is in the middle of the Norwegian “summer” and the
temperature in the sea is 20 oC. You have available drinking water (maximum m = 2 kg/s)
at 5 bar and 10 oC. You are not paying anything for the water and you come up with the
ingenious idea (in your opinion) of using heat from the sea (your hot reservoir) to produce
work by using the drinking water for cooling. What is the maximum work you can extract?
Solution. The amount of drinking water is the limiting resource here. Let us assume that the
drinking water (cooling water) is heated by the seawater from 10 oC to 18 oC (this requires a
rather large heat exchanger), that is, QC = mCp∆T = 2·4180·8 = 66880 J/s = 66.9 kW. This
looks quite promising, but how much work can actually be removed? In our case, TC varies
between 283 and 291 K, and since Cp is constant, the Carnot factor can, from Example 8.2,
be found using the logarithmic mean temperature TC,lm = (291 − 283)/ ln(291/283) = 286.98
K. The mean Carnot factor is then 1 − 286.98/293 = 0.0205 (which is not very promising),
and the work that can be removed is from (8.6)

|W rev| =

„
TH

TC,lm
− 1

«

|QC | =

„
293

286.98
− 1

«

66880 W = 1403 W

that is, only 1.4 kW. Perhaps, we should instead try to use the pressure, i.e., we utilize the
pressure difference ∆p = 5−1 = 4 bar in a water turbine. From (6.14), the maximum work is
m
ρ

∆p = 2 kg/s

1000 kg/m3 ·4 ·105 N/m2 = 800 J/s, that is, 0.8 kW (which is even less). Conclusion:

This is not worth it so we abandon the project and take a swim instead.

From this example we see that heat engines are not very effective when the
temperature difference is small. It illustrates the fact that a given amount of heat
is generally more valuable at high temperature than at low temperature.

Exercise 8.1 ∗ (a) An inventor claims to have produced a machine that takes heat at 200
oC and removes 50% of it as work. Is this possible? (Hint: Calculate the theoretical cooling
temperature).

(b) Is a reversible process in equilibrium? What is the entropy change for a reversible
process?

Exercise 8.2 500 mol/s of a product (P) is produced in a strongly exothermic reaction with
∆rH

⊖ = −200 kJ/mol P. Two alternative processes have been developed:
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1. A gas-phase reaction at 400 oC.
2. A liquid-phase reaction at 100 oC.

Which alternative would you prefer if it is desirable to utilize the heat to produce work in a
heat engine? (Quantify your answer by calculating the maximum work that can be removed if
we have cooling available at 15 oC).

Alternative heat engines

There are many heat engine processes that can be used to convert heat to work.

• One is the theoretical Carnot cycle, which is studied in the Appendix on page 373 using
an ideal gas as the working fluid. This cycle is not used in practice.

• For practical purposes it is better to use a cycle that involves condensation and evaporation,
for example, the Rankine cycle, which is discussed for a natural gas combustion power
plant on page 227 using water (steam) as the working fluid. (The reverse of the Rankine
cycle is the Rankine refrigeration cycle which is commonly used in refrigeration
processes; see page 206 and Figure 8.7.)

• In an internal combustion engine, there is no working fluid. The most common is the
Otto cycle used in ordinary gasoline engines. The combustion is initiated by a spark and
is almost instantaneous, so we can assume that the heat is supplied at constant volume.
For the Otto cycle, we find that the thermodynamic efficiency ν = |W |/|QH | is limited by
the compression ratio, which should be as large as possible. However, pre-ignition of the
air-gasoline mixture limits the compression ratio in most engines to about 10 or less.

• Another internal combustion engine is the Diesel cycle. Here, there is no spark so the
combustion (heat supply) is slower and the system expands (the piston moves) during
combustion. The result is that the Diesel cycle actually has a lower efficiency for a given
compression ratio than the Otto cycle. However, the Diesel engine is more efficient in
practice, because it can operate at much higher compression ratios, up to about 20. A
good discussion of this and other cycles is given in thermodynamics textbooks, e.g., in the
book by Smith and van Ness (see page vii).

• In the combustion gas turbine (Brayton cycle), the air and fuel are compressed before
combustion and the product is expanded in a gas turbine to produce work. In an ideal
Brayton cycle, the compression is isentropic, the combustion is at constant pressure and
the expansion is isentropic back to the starting pressure. The efficiency is limited primarily
by the combustion temperature, which should be as high as possible. A detailed example
of a gas turbine in a natural gas power plant is given on page 226.

• In a combined cycle power plant, there is a Brayton cycle (combustion gas turbine)
followed by a Rankine cycle that uses steam turbines to extract additional work. Combined
cycle power plants are usually powered by natural gas, although other fuels, such as oil
and coal, may also be used.

8.4 Reverse heat engine: Refrigeration and heat

pump

Heat engines produce work. The reverse happens in refrigerators and heat pumps
which produce:

• Cold from work (refrigeration)
• Heat from cold + work (heat pump)
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    machine

(heat pump)

Figure 8.4: Heat pump that takes heat from low temperature (Tc) to high temperature (TH)

In both cases they key is to use work to transfer (“pump”) heat from low to high
temperature (against the “natural” direction); see Figure 8.4, This is the opposite of
a heat engine, and the expressions for an ideal (reversible) process are therefore the
same as in (8.3) – (8.6), but the flows for heat and work go in the opposite direction.

From (8.6), we have, for an ideal refrigerator or heat pump, that

( |W |
|QC |

)

rev

=
TH

TC
− 1 (8.8)

where everything now flows in the direction given in Figure 8.4. This is the minimum
work that must be supplied in order to “pump” heat |QC | from low temperature TC

to high temperature TH . We want the supplied work |W | to be as small as possible, so
for refrigerators and heat pumps it is favorable to have a small temperature difference
between TH and TC , which is the opposite of what we found for a heat engine.

From a thermodynamic point of view, a refrigerator and a heat pump are the
same, but different terms are used depending on whether the primary objective is
to remove heat QC at a low temperature TC (cooling process) or supply heat QH at
high temperature TH (heating process; heat pump system). The (energy) efficiency of
such systems are often reported in terms of the coefficient of performance (COP).
The COP for a cooling (refrigeration) process and a heating (heat pump) process are,
respectively,

COPH =
|QH |
|W | ≤ 1

1 − TC

TH

(8.9)

COPC =
|QC |
|W | ≤ 1

TH

TC
− 1

(8.10)

The maximum values for a reversible process are given on the right and follow from
(8.8). Notice that COPH = COPC + 1, and, in general, COPH is always larger than
1, whereas COPC is usually larger than 1. Also notice that COPH is the inverse of
the Carnot factor.
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Example 8.4 Heat pump. From a theoretical point of view, heat pumps are ideal for

heat

pump

Figure 8.5: Ideal (reversible) heat pump for home heating

heating buildings where the energy source is electric energy. This is because electric energy can
be converted almost 100% into mechanical work W using an electric motor. Let us consider a
specific case where we have available a cold reservoir (for example, our garden) at temperature
tC = 0 oC and want to “pump” heat from the cold reservoir to the room temperature tH = 22
oC (we use lower-case t’s because we are not using absolute temperature). From (8.4), we
have for the most favorable (reversible) conditions that the coefficient of performance is

COPH =
|QH |
|W |rev ≤ 1

1 − TC
TH

=
1

1 − 273
295

= 13.4

This means that, if we supply 1 of kWh work (electric energy) for the heat pump, then we can
in theory extract QH = 13.4 kWh as heat in the room. This looks very favorable, but before
you rush and buy a heat pump, you should be aware the actual COP may only be about 30%
of this. Also, if you consider using your garden as a cold reservoir, then you will need to bury
a lot of piping if you want to avoid permafrost in your garden.

Example 8.5 Refrigerator. A common refrigeration process is a home refrigerator that

Inside of

refrigerator

0°C
(cooling

fins at the

rear)

Air

Refrigerator

Air
(heat

loss)

       Heat pump
(refrigeration cycle)

Q   = Q   =C H

Figure 8.6: Ideal (reversible) home refrigerator

takes heat from a low temperature (inside the refrigerator) and transfers it to a higher
temperature (room temperature). Consider a refrigerator with inside temperatures 0 oC and



206 CHEMICAL AND ENERGY PROCESS ENGINEERING

room temperature 20 oC. The heat loss (actually, “cold loss”) from this quite large refrigerator
is 250 W. What is the minimum power required?

Solution. Our “system” is the heat pump (refrigeration cycle), for which QC = 250 W,
TC=273 K (0oC) and TH = 293 K (20oC). In the ideal case, we then have from (8.6) that
the work required for the refrigerator is |W rev| = |QC |(TH/Tc − 1) = 250(293/273 − 1) =
250·0.073 = 18.3W , corresponding to a coefficient of performance COPC = |QC |/|W | = 13.7.
This is very favorable, but the actual work will be much larger. This is because, in practice, the
heat transfer is not reversible (i.e., in practice the refrigerator operates over a much wider
temperature interval) and there are friction losses in the compressor; see Example 8.6 for
details.

Most refrigeration (cooling) processes use the vapor-compression cycle (Rankine
refrigeration cycle) as discussed in the next example.

Example 8.6 Refrigerator with ammonia as refrigerant. An old household
refrigerator has a refrigeration cycle that operates with ammonia as the working fluid
(refrigerant). The vapor-compression cycle (Rankine refrigeration cycle) consists of the
following four subprocesses (see Figure 8.7 for a flow sheet and corresponding pressure
enthalpy diagram):

Subprocess a. Compressor: Saturated ammonia vapor at -10 oC/3 bar (state 1) is
compressed to 16 bar (state 2, which is gas).

Subprocess b. Condenser (heat exchanger or cooling at the outside back of the refrigerator):
The superheated ammonia gas is cooled, condensed at a constant temperature of 40oC
and finally subcooled to 30oC (stream 3).

Subprocess c. Choke valve: Expansion of ammonia liquid down to 3 bar (state 4, which
contains about 15% gas)

Subprocess d. Evaporator (heat exchanger that takes heat from the inside of the
refrigerator): Evaporation of the remaining liquid ammonia at constant pressure of
3 bar (from state 4 to state 1)

Data: pH-diagram for ammonia. Assume the compressor has an efficiency of 70%.
Problem:

(i) Calculate the enthalpy changes for each step (a,b,c,d) per kg ammonia that goes around
in the cycle.

(ii) What is the cooling effect (QC) and the mass flow of ammonia, when the power
consumption (work) in the compressor is W = 80 W ? 4

(iii) What is the coefficient of performance COPC = QC/W?

(iv) What is the theoretical highest COP if the room temperature is 22 oC (TH = 295K) and
the temperature in the refrigerator is 5 oC (TC = 278K)?

Solution. Enthalpies are found using the pH-diagram for ammonia on page 419 (see also
Figure 8.7):
State 1: Saturated vapor at 3 bar/−10oC: h1 = 1350 kJ/kg
State 2’: Follow the line for constant entropy from point 1 and to 16 bar: h′

2 = 1590 kJ/kg
(temperature t′2 = 115oC)
State 2: Efficiency is 70%, that is, h2 = h1 +(h′

2 − h1)/0.70 = 1350 +240/0.7 = 1693 kJ/kg
(temperature t2 = 150oC)
State 3: Liquid at 30 oC and 16 bar: h3 = 240 kJ/kg

4 I am sorry for the possible confusion, but note that W is the symbol for work, whereas W is the
unit of Watt (1 W = 1 J/s).
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23

4 1

   QC

    QH

Ws

         Condenser

Evaporator

CompressorChoke valve

Figure 8.7: Refrigeration (cooling) using vapor-compression cycle with ammonia as the
refrigerant

State 4: Follow line for constant enthalpy down to saturated conditions at 3 bar: h4 = h3 =
240 kJ/kg

Note that the temperature during condensation (at 16 bar between states 2 and 3) is 40 oC,
while the temperature during the evaporation (at 3 bar between states 4 and 1) is −10oC.

(i) Enthalpy change in each subprocess:

Subprocess a: w = ∆ha = 1693 − 1350 = 343 kJ/kg (power usage in compressor)

Subprocess b: ∆hb = 240 − 1693 = −1453 kJ/kg (heat transferred to the room)

Subprocess c: ∆hc = 0 (valve)

Subprocess d: qC = ∆hd = 1350 − 240 = 1110 kJ/kg (heat that is removed from the
refrigerator)

(ii) Actual COPC = QC/W = qc/w = 1110/343 = 3.23

(iii) With W = 80 W:

• Cooling duty: QC = 3.23 · 80 W = 258 W.
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• Mass flow of ammonia: m = 80 J/s

343·103 J/kg
= 0.233 · 10−3 kg/s = 0.84 kg/h

(iv) Theoretically best COP for an ideal refrigerator that operates between 5 oC and 22 oC
is

COPmax =
QC

W rev
=

1
TH
TC

− 1
=

TC

TH − TC
=

278K

17K
= 16.4

The reasons for the deviation between the actual COP of 3.23 and the theoretical COP
of 16.4 are the following sources of irreversibility:

Subprocess a: Efficiency of 70% in the compressor.

Subprocess b: Temperature difference between hot side (where temperature varies
from 150 oC to 30 oC) and cold side (22 oC).

Subprocess c: Valve is irreversible. Could instead use turbine to extract work.

Subprocess d: Temperature difference between hot side (5 oC) and cold side (−10oC).

A more detailed thermodynamic analysis of the lost work for this ammonia
refrigeration cycle is given in Example 8.10 (page 217). For a refrigeration cycle that
uses C2H2F4 (R134a) as the refrigerant, see Exercise 6.8 (page 159).

Exercise 8.3 Car AC with CO2 as working fluid. A car air condition unit (refrigeration
cycle) uses CO2 as the refrigerant. The cycle operates above the critical point and consists of
the following four steps (see a similar subcritical cycle in Figure 8.7 on page 207):

(a) Adiabatic compression: Superheated vapor at 12oC and 35 bar (state 1) is compressed
to 100 bar (state 2 which is supercritical). The compressor efficiency is 75%. (b) Cooling
(QH) with outside air down to 40oC (state 3, still supercritical). (c) Valve: Expansion back
to 35 bar (state 4 at 0oC which is about 50% liquid). (d) Evaporation/superheating by taking
heat (QC) from the inside of the car (back to state 1).

Data: pH-diagram for CO2 (available at the book’s home page).
Problem. What is the cooling duty (QC) when the power consumption in the compressor

is W = 2 kW, and what is the mass flow of refrigerant? Find the coefficient of performance
COPC = QC/W . What is the theoretically maximum COP if the outside air is at 35oC and
the inside of the car is at 18oC?

Commercial refrigerants

The working fluid for a cooling cycle is called the refrigerant. There are many
commercially available refrigerants, which are denoted with R + a mystical number.

• Ammonia (also known as refrigerant R717) is, in principle, well suited for use in
refrigerators. The heat of vaporization on a mass basis is large (1365 kJ/kg at its normal
boiling point of −33oC) and this is favorable because the mass flow is then small.
Nonetheless, ammonia is no longer used in home refrigerators because it is poisonous and
flammable. In large industrial cooling plants, for example, for cooling of fish and meat,
ammonia is still used.

• For many years, (hydro)chlorofluorocarbons ((H)CFCs; freons), were the most widely
used refrigerants. Examples are CCl2F2 (R12) with a boiling point of −30oC and CHClF2

(R22) with a boiling point of −41oC. These components were considered ideal because they
are non-poisonous and inflammable, and were generally considered to be inert. However, in
the 1908’s it became clear that the CFCs contributed strongly to the ozone layer depletion,
and they were phased out worldwide in the 1990’s.
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• They were replaced by similar chlorine-free components which have no effect on the
ozone layer. Currently, the most common refrigerant in air condition (AC) systems is
tetrafluoroethane (CH2FCF3, R134a). with a heat of vaporization of 217 kJ/kg at
its normal boiling point of −26oC. However, more recently it has become clear that it is
a greenhouse gas, with a global warming potential (GWP) of about 1300 relative to CO2,
and the European Union has decided to ban R134a in AC systems in all new cars as from
2011.

• A possible replacement is carbon dioxide (CO2, R744), which, however, has no liquid
state below 5 bar / −78oC where it forms “dry ice”. Thus, a CO2-cycle must operate at
high pressures, up to about 100 bar (see Exercise 8.3). Furthermore, CO2 is supercritical
at normal temperatures (Tc = 304K), so the “condensation” in subprocess (b) is actually
supercritical. The use of CO2 will require a complete redesign of the air conditioning
systems, and the refrigerant producers are working on developing an alternative non-
flammable refrigerant with an acceptable GWP.

• In home refrigerators, the most common refrigerant at present is isobutane (R600a),
which has a heat of vaporization of 367 kJ/kg at its normal boiling point of −11.6oC.
It has zero ozone depletion potential (ODP) and a negligible global warming potential

(GWP), but it must be used with some care because of its flammability. However, the
quantities are very small – the amount of butane in a domestic refrigerator equals the
content of two cigarette lighters.

8.5 Efficiency

Efficiencies are useful for analyzing and comparing processes. There are however many
different “efficiencies” and the use of them is often confusing.

8.5.1 Thermodynamic efficiencies

It seems reasonable that the efficiency should express the ratio between real and ideal,
and should be 1 for an ideal process. This is the basis for the following general definition
of the thermodynamic efficiency:

• For a process that operates between two given states, the thermodynamic efficiency
η expresses the (actual) amount of “useful energy” relative to the theoretical
obtainable (in a reversible process), and is always a number less than 1.

Here, “useful energy” (or “interesting energy”) can typically be work or heat. The
thermodynamic efficiency is also called the “second-law efficiency.”

With the above general definition, it is usually quite simple to derive expressions
for the efficiency for specific cases. We distinguish between processes where we remove
or supply energy and have:

1. Thermodynamic efficiency for a process where we take out “useful energy:”

η =
actual useful energy out

ideal (maximum) useful energy out
(8.11)

We always have η ≤ 1. For the case where “useful energy out”=“work out” (for
example, a turbine), we have that η = (−Ws)/(−W rev

s ) = Ws/W rev
s (note that
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(−W rev
s ) is positive in this case). In Example 8.7, we consider a case (heater)

where “useful energy out” = “heat out.”
2. Thermodynamic efficiency for a process where we put in “useful energy:”

η =
ideal (minimal) useful energy in

actual useful energy in
(8.12)

Note that the ratio is here reversed because we focus on what we put in (rather than
on what we take out). Again, we always have η ≤ 1. For the case where “useful
energy in”=“work in” (for example, a compressor), we have that η = W rev

s /Ws

(note that Ws is positive in this case). In Example 8.20 (page 224), we consider a
case (distillation) where “useful energy in” = “heat in.”

For some complex processes, where we both put in and take out useful energy, it
may be difficult to define a single efficiency.

In order to find the ideal process, we also have to define the surroundings. The value
of the thermodynamic efficiency therefore depends on the surroundings of the process.
Often our “natural” surroundings at constant temperature T0 are chosen.

Comment ,. The everyday equivalent to the second law of thermodynamics is that there is “no
free lunch.” The everyday equivalents to the thermodynamic efficiencies in (8.11) and (8.12) are
(for the case where we focus on what we take out (get))

η =
What you get (actual)

What you pay for (theoretical)

and (for the case where we focus on what we put in)

η =
What you should have paid (theoretical)

What you paid (actual)

8.5.2 Energy “efficiencies”

There are, as suggested above, many other concepts that are called “efficiencies,” but
which are not thermodynamic efficiencies.

For a process where we want to remove useful energy, the “energy efficiency”
ηenergy is used to indicate the fraction of “(useful) energy in” that is converted into
“(useful) energy out”:

ηenergy =
(useful) energy out

(useful) energy in
(8.13)

Note that we divide by “energy in” instead of “maximum energy out,” so this is not a
thermodynamic efficiency, according to the above definitions, but rather a “conversion”
between two energy forms.

An example is a heat engine (thermal power plant), where “useful energy out” is
work |W | and “useful energy in” is supplied heat QH , and we can define the energy
efficiency ηenergy = |W |/|QH | (thus particular energy efficiency is often called the
thermal efficiency). For heat engines, the maximum (reversible) “thermal efficiency”
equals the “Carnot efficiency” (= 1 − Tc/TH), and is therefore always less than 1.

Another example is a refrigerator where “useful energy out” is cooling |QC | and
“useful energy in” is work |W |. The energy “efficiency” then equals the “coefficient
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of performance (COP)”, that is ηenergy = COPC = |QC |/|W |. Note that the ideal
(reversible) COP is larger than 1.

From this we see that the “energy efficiency” is not bounded to be between 0 and 1;
in some cases it can never become 1 (even for a reversible process) and in other cases
it may always be larger than 1.

• Relationship between thermodynamic efficiency and “energy efficiency.”
The thermodynamic efficiency η is the ratio between actual energy efficiency and
maximum energy efficiency for a reversible process. For example, for a heat engine,
we have that the thermodynamic efficiency is

η =
thermal “efficiency”

Carnot “efficiency”

• Carnot “efficiency.” It also follows from the above definitions of thermodynamic
efficiency, see (8.11) and (8.12), that the Carnot “efficiency,” defined as

ηCarnot =
ideal (maximum) work out

heat in
= 1 − Tc

TH
(8.14)

should not be called an “efficiency,” but rather a “maximum conversion” from heat
to work. Note that an ideal heat engine with “thermal energy efficiency = Carnot
efficiency” ( which is less than 1) has a thermodynamic efficiency η = 1.0!

Example 8.6 (page 206) continued. Refrigerator thermodynamic efficiency. For
the refrigerator in Example 8.6, we found COPC = QC/W = 3.23. The maximum theoretical
(reversible) COPC is, in comparison, (QC/W )rev = TC/(TH −TC) = 278K/17K = 16.4. The
thermodynamic efficiency is then

η =
(QC/W )

(QC/W )rev
=

3.23

16.4
= 0.197

Example 8.7 Electric heater. Let us consider an electric heater which uses electric energy
W , that is, “useful energy in” = W (we use the symbol W to clearly show that electric energy
can be converted 100% into work). The heater supplies heat Q to the room, that is, “useful
energy out” = Q. Since all the supplied electric energy W is converted to heat, we have from
the energy balance that Q = W . The electric heater therefore seems to have 100% efficiency,
but this is only correct if we consider the energy efficiency

ηenergy =
useful energy out

energy in
=

Q

W
=

W

W
= 1

The thermodynamic efficiency defined by (8.11) is much lower, because we could have used
the electricity much more effectively by using it to run a heat pump. Assume that the room
temperature is TH = 293K (20 oC) while the outdoor temperature is TC = 278K (5 oC). The
“maximum useful energy out,” which we theoretically could obtain by “pumping” heat from
TC to TH , is from (8.4) QH = W/(1 − TC

TH
) = W/(1 − 278

293
) = W/0.051 and we have that the

thermodynamic efficiency is only 5.1%:

η =
useful energy out

ideal (maximum) useful energy out
=

W

W/0.051
= 0.051

Note that if we instead used the electricity to power a heat pump, then the energy efficiency
(COP) would typically be around 4; see Example 8.4 (page 205).
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8.6 Ideal work and exergy

So far, the results in this chapter, including the Carnot factor for the maximum work
that can be extracted from heat, have been for closed systems (e.g., a cyclic process)
where only heat and work are exchanged with the surroundings. Can we extend our
results to open systems? Yes, for a steady-state continuous process the answer is
given by (8.19) below! With this result, we can find the maximum work that can be
extracted from a process that operates between two given states. For example, we may
want to find the maximum work that can be extracted from a process where chemical
reactions take place, or the maximum work that can be extracted in a process where
we mix two streams, or the maximum work that can be extracted from a stream at
high pressure and temperature?

The result can be used to perform an exergy (or availability) analysis, or
equivalently, an analysis of lost work. This kind of analysis is important for evaluating
the efficiency and sustainability of a process, and is commonly used, for example, in
industrial ecology.

8.6.1 Ideal work for open system

Consider a continuous steady-state process that takes a given stream from state 1 to
state 2. The enthalpy and entropy changes are ∆H = H2−H1 and ∆S = S2−S1. Both
of these changes are uniquely given by the initial and final states, and are consequently
independent of the specific process. Furthermore, from the first law of thermodynamics
(energy balance), we have for a steady-state continuous process, see (4.13),

∆H = Ws + Q

where Ws is work and Q is heat supplied from the surroundings to the system. (Note
that we here have omitted terms related to kinetic and potential energy, and also
electrochemical work.) However, work and heat are not state functions, and we want
to find the “ideal” work for a reversible process, that is, the minimum work that we
must supply, or equivalently, the maximum work that the system can perform. From
the second law of thermodynamics, we have that the total entropy of the system and
surroundings always increases, see (7.2):

∆Stotal = ∆S + ∆Ssur ≥ 0 (8.15)

For an ideal (reversible) process, ∆Stotal = 0, and together with the first law, this
can be used to find the ideal work. However, an unsettled point remains, what
are the surroundings? Here we consider our “natural” (“dead”) surroundings. The
temperature T0 of the surroundings varies around the world, but unless anything else is
said, we choose T0 = 298.15 K (25 oC). With the assumption that the surroundings
have constant temperature T0, the entropy change in the surroundings is given
by, see (7.6),

∆Ssur = ∆S0 =
−Q

T0
(8.16)

where Q is supplied heat from the surroundings to the process. Inserted in the second
law (8.15), we get

Q ≤ T0∆S (8.17)
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which, inserted in the first law (energy balance) for a steady-state continuous process,
∆H = Q + Ws, gives

Ws ≥ ∆H − T0∆S (8.18)

In other words, we have for a steady-state continuous process that Ws ≥ W id
s ,

where the ideal (reversible) work with surroundings at constant temperature T0 is

W id
s , ∆H − T0∆S [J/s; J] (8.19)

• The expression also holds for a batch process operating between given states (feed
and product).

• W id
s is the “minimum work that must be supplied to the process,” and equivalently

(−W id
s ) is the “maximum work that can be extracted from the process.”

• Enthalpy and entropy are state functions, so the values of ∆H and ∆S can be easily
calculated from given stream data for the process that we are analyzing. Note that
these values will not depend on the choice of surroundings.

8.6.2 Exergy

To make use of the important result in (8.19), it is convenient to define a new state
function, called exergy (availability),

B , E + pV − T0S (8.20)

where E is the system’s total energy. In this chapter, we consider cases where only
the internal energy contributes to the energy. That is, we neglect contributions kinetic
and potential energy (but these contributions may easily be added, if desired). Then
E = U , and the exergy is

B = H − T0S (8.21)

This is close to the definition of Gibbs energy, G = H − TS, but the ambient
temperature T0 is used instead of the system’s temperature T . For a steady-state
continuous process, we then have from (8.19) that

∆B = W id
s = ∆H − T0∆S (8.22)

That is, for a process operating between given states, the change in the system’s exergy
equals the maximum work we can theoretically extract with surroundings at constant
temperature T0. By using a common reference for all components (e.g., the elements),
we can also calculate the exergy change for processes with chemical reactions.

8.6.3 Ideal work for chemical reactions

To extract the maximum amount of work, the process needs to be close to reversible.
Unfortunately, this is usually difficult for potentially favorable chemical reactions with
a large negative ∆G (and thus a large negative ∆B, meaning that we can theoretically
extract a lot of work). To operate the reaction reversibly, we need to somehow “hold
the reaction back”. This is possible if we use a fuel cell (open system) or battery
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(which is the batch version of fuel cell), where we use the opposing potential of the
external electrical circuit to hold the reaction back.

In theory, fuel cells and batteries can obtain 100% thermodynamic efficiency for
conversion of the chemical (Gibbs) energy in fuels to work (see page 226). Thus,
they are not limited by the Carnot factor which applies if we first transform the
chemical energy (heat of reaction) to heat (QH = ∆H) and then extract work from
the heat. Nevertheless, fuel cells have losses, e.g., due to internal resistance, so the
actual efficiency is usually less than 70%.

8.6.4 Lost work

An exergy analysis is used to compare the process’ change in exergy ∆B (which is a
state function) with the actual net) supplied work Ws (which depends on the given
process), and we have that the lost work (=the exergy loss) is

Lost work = Actual work − Ideal work = Actual work − Exergy change
or

Wlost = Ws − W id
s = Ws − ∆B = Ws − ∆H + T0∆S (8.23)

Let us provide some insight into this expression. By introducing Ws = ∆H − Q (first
law for steady-state process), −Q = T0∆S0 (entropy change for the surroundings) and
W id

s = ∆H − T0∆S, the lost work is

Wlost = Ws − W id
s = T0(∆S + ∆S0) = T0∆Stotal ≥ 0 (8.24)

Thus, as expected, the lost work is always positive and it is caused by irreversibilities
which make ∆Stotal > 0. Or, in other words, any irreversibility in a process carries
with it a price in terms of lost work.

Example 8.8 In a heat exchanger, the heat Q = 500 kW is transferred from the hot side
(stream 1, which is condensing steam at constant temperature 140oC) to the cold side (stream
2, which is evaporating water at constant temperature 110oC). From the steady-state energy
balance, the enthalpy changes for the streams are

∆H1 = −Q = −500kW ; ∆H2 = Q = 500kW

and since ∆trsS = ∆trsH/Ttrs (7.8) for a phase transition at constant temperature, the
entropy changes for the streams are

∆S1 =
∆H1

T1
=

−500

273.15 + 140
= −1.210kW/K; ∆S2 =

∆H2

T2
=

500

273.15 + 110
= 1.305kW/K

The exergy changes for the streams are then

∆B1 = ∆H1 − T0∆S1 = −500 − 298.15 · (−1.210) = −139.2kW

∆B2 = ∆H2 − T0∆S2 = 500 − 298.15 · 1.305 = 110.9kW

For the heat exchanger (overall process) we then have

∆H = ∆H1 + ∆H2 = 0

∆S = ∆S1 + ∆S2 = −1.210 + 1.305 = 0.095kW/K

∆B = ∆H − T0∆S = ∆B1 + ∆B2 = −139.2 + 110.9 = −28.3kW

and the lost work is Wlost = −∆B = 28.3 kW. The reason for the lost work is irreversibility
caused by the temperature difference of 30oC between the hot and cold sides of the heat
exchanger.
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8.6.5 Equivalent work for process with heat transfer at
temperatures different from T0

This subsection is important for practical analysis, in particular of
subprocesses! We have assumed that the surroundings are at constant temperature
T0, where we usually select T0 = 298.15 K. How do we evaluate the ideal work (or
exergy or lost work) for a process or subprocess that exchanges heat Qi with “non-
standard surroundings” (e.g., with a utility, a reservoir, another process or another
part of the same process) with a temperature Ti 6= T0? For the process we are
analyzing, it is reasonable to assume that the heat integration between the “non-
standard surroundings” (at Ti) and the standard surroundings (at T0) is ideal. This
corresponds to assuming that the heat supply Qi at temperature Ti corresponds to a
supplied ideal “equivalent work” as given by the Carnot factor (8.4),

W ′
s,i = Qi

(

1 − T0

Ti

)

(8.25)

(because this is the ideal work needed to generate the heat Qi at temperature Ti, by
taking heat from the surroundings at temperature T0).

Thus, in the above expressions (8.23)-(8.24), we should replace Ws by Ws,tot, where

Ws,tot = Ws +
∑

i

W ′
s,i (8.26)

For example, the expression for the lost work becomes

Wlost = Ws +
∑

i

W ′
s,i

︸ ︷︷ ︸

Ws,tot

−W id
s (8.27)

Here the ideal work (= change in exergy), W id
s = ∆B = ∆H − T0∆S, is as before

determined by the inlet and outlet streams of the process (system) we are considering.

8.6.6 Exergy efficiency

For a process where we extract work (W id
s < 0, Ws < 0), the exergy efficiency is

defined as

ηexergy =
Ws

W id
s

=
1

1 + Wlost

|Ws|

(8.28)

Similarly, for a process where we have to supply work (W id
s > 0, Ws > 0), we define

ηexergy =
W id

s

Ws
= 1 − Wlost

|Ws|
(8.29)

Note that Ws should be interpreted as Ws,tot in (8.26) for cases where the
process exchanges heat with non-standard surroundings (with a temperature different
from T0). In almost all cases, the exergy efficiency equals the previously defined
thermodynamic efficiencies, see (8.11) and (8.12), and any possible differences are
of no practical importance.
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Example 8.9 (a) A system receives 500 kW of energy by heat exchange with a hot utility
stream (non-standard surroundings no. 1), which in this case is condensing low pressure (3.8
bar) steam at 140oC. For the hot utility, we then have T1 = 140 + 273.15 = 413.15K and
Q1 = 500 kW, and we want to find the corresponding equivalent work supplied to the system.

Solution. The Carnot factor is
“

1 − T0
T1

”

=
`
1 − 298.15

413.15

´
= 0.278 and the equivalent work

is

W ′
s,1 = Q1

„

1 − T0

T1

«

= 500 · 0.278 = 139.2kW

(b) Assume now that the system is an evaporating liquid at constant temperature T2 = 383.15K
(110oC). We want to find the lost work.

Solution. From Example 8.8, the exergy change for the system (stream 2) is ∆B2 =
∆H2−T0∆S2 = 500−298.15 ·1.305 = 110.9 kW, and the lost work is Wlost = Ws,tot−∆B =
139.2 − 110.9 = 28.3 kW, which is the same as we found in Example 8.8.

(c) Finally, we want to find the exergy efficiency of the heat exchanger in terms utilizing
the hot utility. We have Ws,tot = W ′

s,1 = 139.2 kW > 0, and from (8.29) we get ηexergy =
1 − Wlost/|Ws,tot| = 1 − 28.3

139.2
= 0.797.

8.6.7 Summary of exergy analysis

To perform an exergy analysis of a process we need the following information:

1. Enthalpy and entropy of all streams to find W id
s = ∆B = ∆H − T0∆S.

2. Actual work Ws for compressors, expanders, turbines, etc.
3. Heat transfer Qi to “non-standard” surroundings (or other processes) that are at

a temperature Ti 6= T0. This is used to find the equivalent work, W ′
s,i, in (8.25).

The lost work is then from (8.27)

Wlost = Ws + W ′
s − ∆B (8.30)

Comments on exergy analysis

1. When comparing the overall efficiency of alternative processes, the processes’ inlet and
outlet streams are often the same, such that ∆B = W id

s is fixed. The effectiveness of
the processes can then be compared by evaluating the work Ws,tot = Ws + W ′

s for the
alternative processes.

2. From (8.22) and (8.24), we see that exergy, ideal work, lost work and entropy production
are directly linked to each other. One therefore uses the term “exergy analysis” as a generic
term which also includes analysis of ideal work, lost work and entropy loss (irreversibility).

3. The term exergy was introduced by the German scientist Rant in 1956, and it is the same
as the terms

• Availability
• Available energy

Furthermore, the change in exergy is the same as

• Ideal work
• Maximum extractable (obtainable) work
• Available work

and the exergy loss (= actual work − exergy change) is the same as the lost work.
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4. Since the energy is constant (first law), it makes, strictly speaking, no sense to talk about
an “energy problem” or “energy shortage.” On the other hand, it makes sense to say we
have a “exergy problem” because there is too little “useful” energy, such as electric power
or oil.

5. An exergy analysis is independent of prices, and is in particular of energy prices. In a way,
it can be said that the exergy says something about what the energy price “ought to be”
in an “ideal” world, where we try to conserve resources. The price p for different energy
forms should reflect the exergy content, that is, the price of a specific energy source should
be pE = kB/E, where k [$/J] is the price of 1 J of “pure” exergy (e.g., electricity), and
B/E is the exergy fraction in the energy source.

6. An exergy analysis can yield interesting information, but can also be misleading because it
does not say anything about the possibility or cost of reducing the exergy loss. Typically,
one finds that the exergy loss is large in the reactor, where an irreversible chemical reaction
takes place (with a large negative value of ∆H − T0∆S), but this loss is usually difficult
to avoid.

7. Usually, we consider exergy changes, ∆B = ∆H−T0∆S, and this is sufficient for analyzing
individual processes. What about the “absolute” exergy B of a system or a stream – does
it have any meaning? The answer is “yes,” provided one uses our “natural” surroundings
as the “reference state.” This corresponds to choosing T0 = 298 K and p0 = 1 bar (like we
have already done), and for the components, we choose their “natural state” as reference.
For example, air is used as reference for N2, O2 and Ar; pure water as pure liquid is used
as reference for water, etc. Note that this is not the same as the “usual” reference state,
which is the elements. The exergy is then zero for the natural surroundings (B0 = 0), and
the “absolute” exergy B of a stream is then the maximum work that one can extract from
the stream with the natural surroundings as the final state.
However, the absolute exergy is often of limited practical interest, because it is generally
unrealistic to extract all of the “potential” (available) work in a process stream.

8.6.8 Further examples and uses of exergy analysis

Example 8.10 Thermodynamic analysis of refrigerator. This is a continuation of
Example 8.6 (see page 206 and Figure 8.7), and the data for the streams and subprocesses are
summarized in Table 8.1. The enthaply and entropy data are obtained from the pH-diagram
for ammonia on page 419.

The values for the exergy B and ideal work W id
s = ∆B are based on the standard

surroundings at T0 = 298.15 K. However, since the process actually operates between
surroundings at TC (refrigerator at 5oC) and TH (air at 22oC), an equivalent work W ′

s (8.25)
for the cooling and heating subprocesses must be added to Ws,

Subprocess b : W ′
s,H = QH

„

1 − T0

TH

«

= −1453

„

1 − 298.15

295.15

«

= 14.8kJ/kg

Subprocess d : W ′
s,C = QC

„

1 − T0

TC

«

= 1110

„

1 − 298.15

278.15

«

= −79.8kJ/kg

where from energy balances we have QH = H3 − H2 and QC = H1 − H4.
We note that the largest lost work is in the condenser (subprocess b) because of the large

temperature difference between the hot vapor and the surrounding temperature. This seems
difficult to avoid because the surroundings have a constant temperature at 22oC (TH), whereas
the hot gas exiting the compressor is at 150oC (stream 2). However, if we introduce cooling
during the compression (subprocess a) then the temperature of the hot exit gas will be lower
than 150oC and the losses in the condenser (subprocess b) can be considerably reduced. This
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Table 8.1: Stream and subprocess data for ammonia refrigeration cycle

Stream Phase t p H S B = H − T0S
(state) oC bar kJ/kg kJ/kg K kJ/ kg

1 g −10 3 1350 5.76 −367.3
2 g 150 16 1693 5.98 −89.9
3 l 30 16 240 1.47 −198.3
4 l/g −10 3 240 1.53 −216.2

Ideal work Equiv. work Actual work Lost work
Subprocess ∆B = W id

s W ′
s Ws Ws + W ′

s − ∆B
kJ/kg kJ/kg kJ/kg kJ/kg

a: Compressor (1 → 2) 277.4 0 343 65.6
b: Condenser (2 → 3) −108.4 14.8 0 123.2
c: Choke valve (3 → 4) −17.9 0 0 17.9
d: Evaporator (4 → 1) −151.1 −79.8 0 71.3

Sum 0 −65 343 278

is a typical example where we apparently have large losses in one subprocess (b), but where
these can be reduced by changing another subprocess (a). From this it is clear that one cannot
expect to achieve the full improvements in efficiency by analyzing subprocesses individually.

Phase change and subambient temperatures. The exergy change for the
evaporation or condensation of a pure component is given by

∆B = ∆vapH − T0∆vap where from (7.8) : ∆vapS =
∆vapH

Tb

Here ∆vapH is the enthalpy change for the process and Tb is the boiling point at
the given pressure (i.e., T = Tb). Thus, the exergy change for phase transition (here
boiling) is

∆B = ∆vapH(Tb) ·
(

1 − T0

Tb

)

(8.31)

Remark 1 As expected, the exergy change (= the work that can be extracted) is given by
the heat of vaporization (or condensation) ∆vapH multiplied by the Carnot factor

`
1 − T0

T

´
.

Remark 2 Note that the exergy ∆B changes sign compared to ∆vapH as the process
temperature T = Tb passes the surrounding’s temperature T0. Thus, a condensing vapor
(∆H < 0) can perform work (relative to T0) when T > T0, but not when T < T0 (rather,
it requires work to provide cooling at subambient temperatures). The reverse applies to
evaporation. For example, we found in the previous example (see Table 8.1) a negative
exergy change of −151.1 kJ/kg in the evaporator (which means that work can theoretically
be extracted) because the temperature is −10oC, which is well below T0 = 298.15 K (=25oC).

Remark 3 Because of the Carnot factor, it is better to condense at high temperatures.
However, there is also a competing effect because ∆vapH(Tb) is smaller at high temperatures,
and eventually becomes zero at the critical point.
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Example 8.11 Maximum (ideal) work from combustion of methane. What is the
maximum amount of (electrical) work that we can extract by combustion of methane? We
assume that we have available a mixture of methane and air (which contains oxygen) that
burns according to the following chemical reaction

CH4(g) + 2O2(g) = CO2(g) + 2H2O(g)

Note that the water product (H2O) is here assumed to be in gas form, corresponding to the
lower heating value (lower heat of combustion). With surroundings at constant temperature
T0, the ideal work is W id

s = ∆H−T0∆S, where ∆H and ∆S are the changes in enthalpy and
entropy for the reaction. Note that if we assume that the feed and product are ideal gases
at T0 = 298K and 1 bar, then ∆H − T0∆S is the standard Gibbs energy for the reaction at
T0 = 298 K, that is, we have

W id
s = ∆rG

⊖(298) (8.32)

For combustion of methane, we get

∆rG
⊖(298) = GCO2(g) + 2GH2O(g) − GCH4(g) − 2GO2(g)

= −394.36 + 2 · (−228.57) + (−50.72) − 2 · 0 = −800.78 kJ/mol

where we have used data for the standard Gibbs energy of formation from page 416. Thus,

W id
s = ∆rG

⊖(298) = −800.78
kJ

mol
= −49.92

MJ

kg methane

Conclusion: The maximum work that can be extracted by combustion of methane (e.g., in
a fuel cel) is 49.92 MJ/kg methane. This is the “lower” value with the water product in gas
form, and we will use this value later for evaluating the efficiency of a natural gas power
plant.

Comments on ideal work (exergy) for combustion of fossil fuels:

1. Gibbs energy versus enthalpy of reaction. As derived in (8.32), one should use the
Gibbs energy when computing the maximum work for chemical reactions. However, if you
read literature on power plants, you will find that they use the heat of reaction (combustion)
(∆rH

⊖) rather than the Gibbs energy (∆rG
⊖). Fortunately, the error is of no practical

significance for combustion of fossil fuels. For example, for combustion of methane, the
Gibbs energy of reaction, ∆rG

⊖ = −800.78 kJ/mol = −49.92 MJ/kg, is approximately
equal to the heat of reaction, ∆rH

⊖ = −802.34 kJ/mol = −50.02 MJ/kg (these are the
“lower” values with H2O (g) as the product). The reason for this small difference is that
the entropy change for combustion of methane is ∆rS

⊖(298) = −5.23 J/mol K, which is
a small value.

2. Combustion of coal: For the combustion of carbon (graphite), C(s) + O2(g) = CO2(g)
(which is the same as the formation reaction for CO2), we have ∆rG

⊖ = −393.51 kJ/mol
which again is close to ∆rH

⊖ = −394.36 kJ/mol. Thus, for combustion of fossil fuels in
general, the (lower) ideal work is approximately equal to the (lower) heat of combustion.

3. Additional work can theoretically be extracted by condensing the water in the product(flue
gas), but only about 2%. This follows since maximum “higher” work (with water as a liquid
product) is W id

s = ∆rG
⊖(298) = −50.99 kJ/kg methane, which is only about 2% higher

than the “lower” value of −49.92 kJ/kg methane.
4. In theory (yes, this is really theoretical) some additional work can be extracted in the step

where we mixing the flue gas (CO2 and H2O) with air (see Exercise 7.8 page 168).

Example 8.12 Minimum work for LNG cooling process. We want to calculate the
minimum work to produce 1 kg liquefied natural gas (LNG) when it is assumed that the
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surroundings are at (a) T0 = 273 K (arctic) and (b) T0 = 298 K (tropics); the feed is
methane gas at 10oC / 1 bar and the product is methane liquid at −164oC/1 bar.

Solution. The ideal work equals the change in exergy

W id
s = ∆B = ∆H − T0∆S

From the pH-diagram for methane, the change in enthalpy and entropy when going from
10oC/1 bar to -164oC/1 bar is

∆H = −280kJ/kg − 570kJ/kg = −850 kJ/kg

∆S = 5.2kJ/kgK − 11.4kJ/kgK = −6.2 kJ/kgK

The ideal (minimum) work for producing liquefied natural gas (LNG) is then
(a) T0 = 273K: W id

s = ∆H − T0∆S = −850 + 273 · 6.2 = 843 kJ/kg
(b) T0 = 298K: W id

s = ∆H − T0∆S = −850 + 298 · 6.2 = 998 kJ/kg
(this is a positive number, which means that we must supply work).

Mixing is an irreversible process, and with surroundings at temperature T0, the
lost work is generally given by (8.23),

Wlost = Ws − W id
s = Ws − ∆H + T0∆S

where the ∆ represents the change from the inlet to the outlet stream. The energy
balance for a steady-state process is ∆H = Q + Ws, and since a mixing process is
adiabatic (Q = 0) and has no work (Ws = 0), the energy balance gives ∆H = 0. The
lost work in a steady-state mixing process is then

Wlost = T0∆S (8.33)

Example 8.13 Ideal mixing of pure components. From (7.12), the mixing entropy when
mixing pure components at constant temperature and pressure is

∆S = ∆mixS = −R
X

i

ni lnxi [J/K] (8.34)

As an example assume that we mix 0.4 mol/s of component A with 0.6 mol/s of component
B. Assuming an ideal mixture, the mixing entropy is

∆mixS = −R
X

i

ni ln xi = −8.31(0.4 ln 0.4 + 0.6 ln 0.6) J/K s = 5.6J/K s

The lost work in an adiabatic steady-state mixing process is then

Wlost = T0∆S = 298.15 · 5.6J/s = 1.67kJ/s

Example 8.14 Lost work by mixing in natural gas power plant. In a natural gas
power plant, two mixing processes take place, and we want to find the associated lost work.
This is a continuation of Example 8.11, where we found that the maximum work that can be
extracted by combustion of methane is −800.78 kJ/mol methane. We consider the following
two mixing processes

1. Mixing of methane and air (to produce the feed) (∆S1 > 0)
2. Mixing of combustion product with air (at the exit of the process) (∆S2 > 0)
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Solution. For the first mixing process, from Example 7.7 (page 167) the entropy change is
∆S1 = 27.44 J/K mol methane, and the lost work is Wlost,1 = T0∆S1 = 298 · 27.44 = 8.18
kJ/mol methane. Similarly, for the second mixing process from Example 7.8 (page 168) the lost
work is Wlost,2 = T0∆S2 = 298 · 89.0 = 26.51 kJ/mol methane. The total lost work by mixing
is 34.7 kJ/mol. This is 4.3% of the total available work of 800.78 kJ/mol. Unfortunately,
it is difficult to eliminate these losses. However, in the next example, we consider a mixing
process where it may be possible to extract the work.

Example 8.15 Salt power plant. It is theoretically possible to extract work during mixing,
and this can be utilized in a salt power plant where we mix water (from a river) and seawater.
Let us calculate the theoretical work that can be extracted by mixing 1 l of pure water (55.5
mol = 1000 g/18 g/mol) with 1 l of seawater (in theory, the maximum work is obtained
by using an infinite amount of seawater, but using about equal amounts is more realistic in
practice). The surroundings are assumed to have constant temperature T0 = 298K. Assume
that the salinity of seawater is 3.3%, that is 1 l seawater contains 33 g/l of salt (NaCl). How
much can theoretically be extracted if we mix 1 l of pure water with 1 l of saltwater?

Solution. Since the molar mass of NaCl is 58.4 kg/kmol, 33 g/l corresponds to 33
kg/m3/58.4 kg/kmol = 0.565 kmol/m3 = 0.565 mol/l of NaCl. However, when dissolved in
water, NaCl splits in two ions, Na+ and Cl−. Thus, 1 l of seawater consists of approximately
0.565 mol/l Na+, 0.565 mol/l Cl−, and 55.5 mol water. The corresponding mole fractions
are 0.01 (Na+), 0.01 (Cl−) and 0.98 (H2O). After mixing with 55.5 mol (1 l) of pure water,
the mole fractions in the product (“brackish water”) are approximately 0.005 (Na+), 0.005
(Cl−) and 0.99 (H2O). From (7.14), the entropy change for this mixing 1 l of pure water
(55.5 mol H2O) with 1 l of seawater (55.5 mol H2O + 0.565 mol Na + 0.565 mol Cl) is

∆S = R [55.5 ln(1.0/0.99) + 55.5 ln(0.98/0.99) + 2 · 0.565 ln(0.01/0.005)]

= R [0.5578 − 0.5635 + 2 · 0.3916] = 0.7776[mol]R = 6.46J/K

That is, the entropy change is 6.46 J/K kg pure water. The first two terms almost cancel,
so we note that, in practice, it is only the entropy change of salts (Na, Cl) that matter. The
theoretical mixing work per kg pure water is

W id
s = −T0∆S = −298.15 · 3.18 J/kg water = −1926J/kg water

(which is negative since we theoretically can perform work). With a water flow of 1000 kg/s
(1 m3/s), we can then theoretically extract 1.93 MW of work. For example, the Mississippi
river has an average flow of 20 000 m3/s and it is then theoretically possible to produce about
39 GW work (electric power) by mixing it with a similar amount of seawater. This is about
10% of the current US electricity production.

Note that the energy of 1926 J/kg water corresponds to an osmotic pressure (see page 382)
of about 19 bar (W = V ∆p = (m/ρ)∆p, that is, ∆p = Wρ/m = 1926J · 1000kg/m3/1kg =
19.26 ·105N/m2 = 19.26 bar). A salt power plant utilizes the osmotic pressure of about 19 bar
that is set up across a membrane with pure water on the one side and brackish water (product)
on the other side. Due to the concentration difference, pure water moves naturally through the
membrane from low pressure (1 bar) to high pressure (about 19 bar). This “pressure energy”
can then be extracted as work in a water turbine. The seawater must be pumped up to 19 bar,
but the energy for this can also be obtained by “exchanging” pressure with a similar amount
of brackish water. In practice, efficiencies of up to 50% can be obtained in such a salt power
plant, but this requires large membrane areas.

Separation is the opposite of mixing, and if we have surroundings at constant
temperature T0, then we must supply a minimum work W id

s = ∆H − T0∆S to
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separate a mixture. In the examples below, we assume that the process is such that
∆H = Hout − Hin = 0, that is, we concentrate on the contribution from the entropy
change.

Example 8.16 Minimum work for separation of ideal mixture into pure
components. For an ideal mixture with the inlet and outlet streams at the same temperature
and pressure and no phase change, the entropy for separating the mixture into its pure
components is given by (7.12), but with the opposite sign, that is

∆S = −∆mixS = R
X

i

ni lnxi [J/K]

Furthermore, ∆H = 0 (no phase change!) and we get

W id
s = −T0∆mixS; ∆mixS = R

X

ni ln xi (8.35)

Here xi is mole fraction of component i in the feed mixture. For example, the minimum work
for separating 1 mol of a mixture of 40 mol-% A and 60 mol-% B into the pure components
is W id

s = −T0∆S = −RT0

P
xi ln xi = −8.31 · 298.15 · (0.4 ln 0.4 + 0.6 ln 0.6) J/mol = 1.67

kJ/mol, which is a positive number since work must be supplied for the separation.

Example 8.17 Minimum work for CO2 removal (postcombustion separation). We
want to find the minimum work for removing CO2 from the exhaust gas (flue gas) from a
natural gas power plant. The temperature is assumed to be 298.15 K. From Example 8.21
(page 230) the following exhaust gas is obtained by combustion of 1 kg (62.5 mol) methane:

1177 mol N2, 169 mol O2, 62.5 mol CO2, 125 mol H2O, Total : 1533.5 mol

Solution. We assume ideal gas. Then from (8.35) the minimum work for extracting pure
CO2 from this stream is at T0 = 298 K:

W id
s = −T0∆S = −T0R

„

62.5 ln
62.5

1533.5
+ 1471 ln

1471

1533.5

«

= 0.64 MJ/kg methane

This is a positive number, which means that work must be supplied. This ideal separation work
is 1.2% of the ideal work of 50 MJ/kg obtainable by combustion of methane (see Example 8.11,
page 219). In addition, we need to compress the CO2 so that it can be stored or injected into
the ground. If we assume that we must compress the CO2 from 1 bar to 300 bar, then the
associated minimum work for reversible isothermal compression of ideal gas at T0 = 298K is

W id
s = nRT0ln(p2/p1) = RT062.5 ln(300/1) = 0.88 MJ/kg methane

This is another 1.8% of the ideal work of 50 MJ/kg. In total, we loose in the ideal case 1.52
MJ/kg (3.0%) of the original ideal work.

Exercise 8.4 ∗ In the above example, the exhaust gas was separated into two gas products
(pure CO2 and the remaining exhaust gas).

(a) Find the ideal work for separating the exhaust gas into four pure gas components
(CO2, N2, O2, H2O) (you should find that the work is about 5 times larger in this case).

(b) Find the ideal work for separating the exhaust gas into two gas products (pure CO2 and
a N2/O2-mixture) plus pure liquid water.
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Exercise 8.5 Minimum work for separation of air (precombustion separation).
An alternative approach is to use pure oxygen instead of air for combustion of methane. The
exhaust gas then contains only H2O and CO2 (and no N2), which are easy to separate. Find
the minimum separation work for producing from air the necessary amount of pure O2 needed
for combustion of 1 kg methane (you will find that the work is slightly larger than the 0.66
MW/kg needed for the post-combustion separation, but on the other hand, separation of air
is probably an easier process to realize in practice).

Example 8.18 Minimum work and energy for thermal separation process
(reversible distillation). The most common example of a thermal separation process is
distillation. In a distillation column (see page 22) the feed stream (F ) is separated into a
“light” distillate product (D) and a “heavy” bottom product (B) by supplying heat in the
bottom (QH) and removing heat (QC) by cooling in the top. Distillation is the most common
method for separating liquid mixtures, and it is often claimed to have low efficiency. However,
as shown in the following examples, this is not really true provided the distillation unit is
properly heat-integrated.

In this example, we derive general expressions for the minimum work and minimum energy
(heat) for separation by (reversible) distillation. Actually, the process needs not be distillation,
as the expressions apply to any thermal separation process where the “separation work” is
supplied indirectly by supplying heat (QH) at high temperature (TH) and removing heat (QC)
at low temperature (TC) .

Let us first find the minimum separation work, which with surroundings at temperature T0

is given by, see (8.19),
W id

s = ∆H − T0∆S

Here ∆H = HD + HB −HF and ∆S = SD + SB −SF are computed from the stream data. If
both the feed (F ) and the products (D, B) are liquids at their boiling points, then it is a good
assumption to set ∆H ≈ 0. We then have

W id
s ≈ −T0∆S (8.36)

The main contribution is then from entropy change, which is negative for a separation process
(∆S < 0) which means that W id

s is positive, that is, work must be supplied to facilitate the
separation.

However, no work is supplied to a distillation column, i.e., Ws = 0, yet a separation
takes place. How is this possible? The answer is that the supply of energy (heat) at a high
temperature provides an indirect supply of work, because the energy could have been used to
produce work, for example, in an ideal heat engine. Specifically, as shown in (8.25), the work
that is indirectly supplied to the column when supplying the heat QH > 0 at (high) temperature
TH is

W ′
s,H = QH

„

1 − T0

TH

«

(8.37)

Correspondingly, the work that is indirectly performed by the column by removing heat QC < 0
at (low) temperature TC is

W ′
s,C = QC

„

1 − T0

TC

«

(8.38)

The energy balance for distillation columns gives ∆H = Ws + QH + QC, where Ws = 0 and
we have already assumed that ∆H = 0. The energy balance then gives QC = −QH , that is,
the heat QC removed in the condenser is the same as the heat QH supplied in the reboiler.
The net work that is indirectly supplied to the process due to supply of heat (QH and QC) is
then

Ws,tot = W ′
s,C + W ′

s,H = QHT0

„
1

TC
− 1

TH

«

(8.39)
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This expression can now be used to find the minimum energy (heat) Qmin
H that must be supplied

to a distillation process, assuming that the separation process itself is reversible. We start by
noting that from (8.27) and (8.36), the lost work for the process is

Wlost = Ws,tot − W id
s = Ws,tot + T0∆S

The minimum heat Qmin
H is obtained when Wlost = 0. This gives Qmin

H T0

“
1

TC
− 1

TH

”

+T0∆S =

0, and we have that the minimum supplied heat for an ideal (reversible) distillation process
operating between temperatures TH and TC is

Qmin
H =

−TC∆S

1 − TC
TH

(8.40)

(note that T0 drops out). Since the distillation process is reversible, the heat transfer is
also reversible with no temperature difference between the system (the column) and the
surroundings. Thus, we have that TC is the temperature in the condenser (= boiling
temperature of the “light” distillate product), and TH is the temperature in the reboiler (=
boiling temperature of the “heavy” bottom product).

Comment: It is interesting to note that with TC = T0, Qmin
H is the minimum separation

work W id
s (= −T0∆S) divided by the Carnot factor 1 − TC/TH .

Example 8.19 Minimum energy for separating methanol-water by thermal
separation process (reversible distillation). Here, we apply the equations derived in
the previous example to a specific case. We want to find the minimum energy (heat) needed
to separate 1 mol of ideal mixture of 40 mol-% methanol and 60 mol-% water into the
pure components using distillation. For the separation, we have available energy (heat) at
TH = 373K and cooling at TC = 338 K, which are the boiling points for the two pure
components at 1 bar.

Solution. For an ideal mixture we have from (8.35) that

∆S = R
X

xi ln xi = R (0.4 ln 0.4 + 0.6 ln 0.6) = −0.67R = 5.57 J/mol K

The Carnot factor is 1 − TC
TH

= 1 − 338
373

= 0.094 and from (8.40) the minimum heat for

reversible distillation is Qmin
H = 338 · 5.57/0.094 J/mol = 20.0 kJ/mol.

Example 8.20 Efficiencies of real distillation process. Finally, let us consider a real
distillation process that separates a feed mixture of 40 mol-% methanol and 60 mol-%
water into (almost) pure components. From Example 8.19, the minimum energy (heat) is
Qmin

H = 20.0 kJ/mol for a reversible process that uses heat at TH = 373 K and cooling at
TC = 338 K as the “separation agent” to separate the mixture. For a conventional distillation
column (see page 22), which is the most common case of a thermal separation process, the
heat required for 1 mol of a liquid feed using an infinite number of separation stages is5

Qmin.dist
H = ∆vapH

„

xL +
1

α − 1

«

[J/mol]

where xL is the mole fraction of light component in the feed, ∆vapH is the average heat of
vaporization and α is the relative volatility between the components. For our methanol-water

5 In practice, one may get close to this value with a finite number of distillation stages. For more on
distillation see, for example, I.J. Halvorsen, S. Skogestad: “Distillation Theory,” Encyclopedia of
Separation Science, D. Wilson (Editor-in-chief), Academic Press, 2000 (available at S. Skogestad’s
homepage).
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mixture, we have xL = 0.4, ∆vapH = 40 kJ/mol and α = 3.8 (estimated from (7.36)). This
gives Qmin.dist

H = 30.3 kJ/mol. In a real column, with a finite number of stages, one should
expect about 5-10% higher energy consumption, so let us in the following use for our real
distillation process,

QH = 1.05Qmin.dist
H = 31.8 kJ/mol

By defining “useful energy in” as “heat supply” QH , the thermodynamic efficiency
(8.12) for distillation of this feed mixture is then

η =
ideal (minimum) heat supply

actual heat supply distillation
=

Qmin
H

QH
=

20 kJ/mol

31.8 kJ/mol
= 0.63

Thus, distillation as a separating process has a good thermodynamic efficiency (63% in this
case). On the other hand, the “energy efficiency” (8.13) for the distillation process obtained
by defining “useful energy out” as “separation work” is only 5.2%:

ηenergy =
separation work

heat supply distillation
=

W id
s

QH
=

1.66 kJ/mol

31.8 kJ/mol
= 0.052

Here, we have used that the ideal separation work for our feed mixture is W id
s = −T0∆S =

−T0R(0.4 ln 0.4 + 0.6 ln 0.6) = 1.66 kJ/mol. The low energy efficiency of 5.2% seems to
indicate that distillation is a poor separation process, but this is misleading. Indeed, distillation
uses a lot of heat (QH is large) and would be inefficient if we made no use of the heat removed
by cooling (QC). However, if the distillation column is ideally heat integrated, for example
using a heat pump between the reboiler (QH) and condenser (QC), then the thermodynamic
efficiency of a conventional distillation process is 63% for this specific mixture.

Comment. We derive, as expected, the same thermodynamic efficiency of 63% if we
instead of heat supply consider work, and set the “actual work” as the “total equivalent work”
(Ws,tot):

η =
minimum work

actual work
=

W id
s

Ws,tot
=

−T0∆S

QHT0

“
1

TC
− 1

TH

” =
1.66 kJ/mol

2.63 kJ/mol
= 0.63

The lost work Wlost = Ws,tot − W id
s = 2.63 kJ/mol - 1.66 kJ/mol = 0.97 kJ/mol is due

to irreversibilities inside the distillation column caused by mixing of streams with different
composition and temperature.

8.7 Gas power plant

Here, you will learn to design a natural gas power plant “by hand,” which also gives
a very good review of subjects from this and previous chapters.

The purpose of a power plant is to extract work (produce electricity), that is, we
have that “useful energy out” = “(net) work out,” and the thermodynamic efficiency
is

η =
(net) work out

ideal (maximum) work out
=

|Ws|
|Wid

s |
We found in Example 8.11 (page 219) that, with surroundings at T0 = 298K, the
maximum work that can be extracted by combustion is |W id

s | = |∆rG
⊖(298)|.6 In

6 The efficiency of a thermal power plant is usually based on ∆rH⊖(298) (heat of combustion)
rather on ∆rG⊖(298), but this does not matter much because we happen to have ∆rG⊖(298) ≈
∆rH⊖(298) for combustion; see comment on page 219. For our natural gas power plant, we use
∆rG⊖(298) ≈ ∆rH⊖(298) ≈ −50 MJ/kg, which is the value for methane.
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theory, this work can be obtained in a reversible fuel cell that directly extracts
electricity. However, at present there exists no combustion fuel cell for fossil fuels.

Figure 8.8: Schematic diagram of a natural gas power plant

In practice, one uses a thermal power plant where the chemical energy (∆rG) is first
converted to heat at high temperature and pressure, and then work is extracted using
turbines. A schematic diagram of “combined cycle” natural gas power plant is shown
in Figure 8.8. It consists of:

• The combustion gas turbine part (inside dashed box in Figure 8.8). Most of the
work (electricity) is extracted by expanding the combustion gas, at high temperature
and high pressure, in a gas turbine.

• The steam turbine part. Figure 8.8 is called a combined cycle power plant,
because following the combustion gas turbine, there is a steam turbine part
(Rankine cycle) where additional work is extracted by using the hot exhaust
gas (combustion product from gas turbine) to generate high pressure steam which
is expanded in a steam turbine to produce additional work.

In such a combined cycle natural gas power plant, it is possible to obtain a total
thermodynamic efficiency η of more than 60%.

8.7.1 The combustion gas turbine process

A gas turbine (section) consists of (see also Figure 8.9)

• A compressor, where air is compressed
• A combustion chamber, where air and fuel are mixed and burned
• A turbine, where the combustion gas is expanded and work is extracted
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Natural gas

Compressor

Combustion Turbine

Air

Figure 8.9: Flow sheet for the gas turbine section in Example 8.21.

This is very similar to an airplane jet engine, but instead of moving the plane,
electricity is produced. Here are some typical numbers for a current natural gas power
plant:

• Fuel (for example, methane) and air are compressed to 10-30 bar and react (burn)
in a combustion chamber at temperatures up to about 1500 oC. A high temperature
is desired for the turbine but material problems provide a practical limit of about
1500 oC. Thus, to limit the temperature rise, the amount of air is about 2.5 to 3
times the stoichiometric value.

• Work is removed from the combustion gas by expanding it to atmospheric pressure
in a turbine. About half of the work in the turbine is used to run the compressor,
while the remaining is used to run a generator that produces electricity.

• The exhaust gas from the turbine is typically at about 450-650 oC, and the work
that is removed in a single turbine is typically from 10 MW to 330 MW.

• The efficiency |W |/|W id
s | for the gas turbine process itself is about 35-42%.

• The largest pollution problem, besides CO2, is emissions of NOx, which are about
15-25 ppm with current combustion technology. Sulfur, i.e., emissions of SO2, is
a problem for the combustion of coal, but not in the combustion of natural gas
because it does not normally contain sulfur or can be removed.

8.7.2 The steam turbine process

In the second part of a combined cycle power plant, the steam turbine section, the
remaining heat in the combustion gas is used to produce additional work. This is done
by installing heat exchangers in the exhaust gas duct to generate high pressure steam,
which subsequently is expanded in one or more steam turbines using a Rankine cycle.
Some typical numbers for the steam turbine process are (see also Figure 8.10):

• The exhaust gas from the gas turbine at about 645 oC is cooled to about 90-95
oC before leaving the plant through the chimney. A lower chimney temperature
would be desirable, but it may result in condensation of water which may result in
corrosion.
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e ee

liquid

(cooling water)

liquid

steam boiler

Figure 8.10: Flow sheet for a steam turbine process. The heat “+Q” in five places is supplied
by cooling the combustion gas (stream 6 in Figure 8.9). The numbers are typical for a power
plant with current technology.

• The exhaust gas (hot side) is cooled in countercurrent heat exchangers by heating
water and generating steam (cold side). Most of the heat is removed in the steam
boiler, where water evaporates to saturated steam at about 321 oC and 115 bar.

• It is optimal to have many pressure levels for steam, for example, three levels: high
pressure (HP) steam at 110-115 bar, medium pressure (MP) steam at 25-30 bar and
low pressure steam (LP) at 4-5 bar. The high pressure steam and medium pressure
steam are superheated to about 550 oC (more superheating is favorable) before work
is extracted in the turbines. The low pressure steam goes directly from the exit of
the medium pressure turbine to the low-pressure turbine (with no superheating)
and is at about 293 oC.

• From a thermodynamic point of view, it is desirable to adjust the pressure levels
and amount of steam such that the temperature difference between the hot and cold
side is small throughout the heat exchangers in the exhaust gas duct, but this is
difficult to accomplish since the maximum pressure is about 115 bar. This means
that the evaporation must take place at temperatures of 321 oC or lower.

• For large plants (> 100 MW), the thermodynamic efficiency of the steam turbines
is about 88% for the high and medium pressure turbines, and about 91% for the
low pressure turbine. For smaller plants (about 10 MW), the efficiencies are about
5%-points lower.

• The outlet pressure of the low-pressure turbine is typically 0.03–0.07 bar. A low
pressure is desired in order to extract the maximum amount of work in the turbine,
but it is limited by the temperature of the cooling water. There is a condenser
after the low-pressure turbine, where the steam (vapor) is condensed, and the low
pressure then equals the vapor pressure of water at the condensing temperature.
For example, the vapor pressure of water at 24 oC is about 0.03 bar, and at 40 oC
is about 0.07 bar. Note that the heat of condensation in the steam is “lost” because
it is available at a low temperature (24 – 40oC) – it is then useless for producing
work and can hardly be used even as a heating source.

• The steam (vapor) that leaves the low-pressure turbine usually contains some water
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(droplets), and another limitation is that the water (liquid) content must not exceed
13-16% to avoid damage to the turbine.

A modern natural gas power plant is a complex plant, but it is still relatively
“simple” compared to a large-scale chemical process. An ammonia plant or a methanol
plant has, for example, in addition to the main process, a steam turbine process for
utilizing the heat in the exhaust gas used to heat the steam reformer.

In the examples below, simple hand calculations, based on the assumption of ideal
gas and constant heat capacity, are used to establish mass and energy balances for
a natural gas power plant. These calculations are reasonably accurate, but more
importantly, provide excellent insight. For more detailed calculations, thermodynamic
diagrams or computer programs should be used – in particular, this applies to the
steam turbine process, where the pressures are relatively high and the temperatures
low, so that non-ideality is expected.

Example 8.21 Gas power plant: The gas turbine section (see Figure 8.9). Assume
that

• Natural gas (stream 1) is available as methane at 20 bar and 10 oC
• Air (stream 2) is available at 1 bar and 10 oC

The air is compressed to 20 bar (stream 3) in a compressor with (isentropic) efficiency 80%
and mixed with natural gas. This stream (stream 4) is burned in a combustion chamber. The
combustion gas at maximum 1500 oC (stream 5) is expanded to 1 bar (stream 6) in a turbine
with (isentropic) efficiency 85%. Furthermore, assume that

• The lower heat of combustion (298 K, 1 bar, H2O(g) product) for methane is −802 kJ/mol
or −50.0 MJ/kg , see (4.34), and for combustion of methane, you can assume that the
maximum theoretical work is W id

s = 50 MJ/kg (see Example 8.11, page 219).
• Assume ideal gas and constant heat capacities Cp: 30 J/mol K (N2, O2), 36 J/mol K

(H2O), 36 J/mol K (CH4), 37 J/mol K (CO2).
• Assume that the air is 21% O2 and 79% N2.

Task: (a) What ratio of air and natural gas gives a combustion temperature of 1500 oC?
Calculate the composition of the combustion gas.

(b) What is the temperature after the expansion in the turbine (stream 6)?
(c) How much net work is produced (turbine minus compressor) [J/kg methane] and what

is the efficiency W/W id
s ?

Solution. Basis: 1 mol air and x mol natural gas (CH4).
(a) Compression of air from 1 to 20 bar. Ideal isentropic compression: T ′

3/T2 =
(20/1)8.31/30 = 2.29, that is, T ′

3 = 2.29 · 283 K = 649 K, and W ′
a = Cp(T

′
3 − T2) =

30 · (649 − 283) = 10980 J. Actual: Wa = W ′
a/0.8 = 13725 J, i.e., T3 = T2 + Wa/Cp =

283 + 13725/30 = 740.5 K.
Combustion occurs according to the reaction

CH4 + 2O2 = CO2 + 2H2O(g)

Conversion is assumed complete with respect to methane, that is, the extent of reaction is x
[mol]. From the energy balance, we have that Hout − Hin = 0, where Hin = H1 + H3, and
Hout = H5, where T5 = 1773 K (1500 oC). We obtain Hout−Hin by considering the following
subprocesses (“method 2”):

1. Heat methane from T1 = 283K to T5 = 1773K: ∆1H = x36(1773 − 283) = 53640x [J].
2. Heat air from T2 = 740.5K to T5 = 1773K: ∆2H = 30(1773 − 740.5) = 30975 J.
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3. React at T4 = 1773K. Since Cp is assumed constant we have ∆rC
⊖
p = 37 + 2 · 36 −

36 − 2 · 30 = 13 J/molK, and from (B.56), the heat of reaction at temperature T5 is
∆rH

⊖(T5) = ∆rH
⊖(298) + ∆rC

⊖
p · (T5 − 298) = −802000 + 13 · (1773 − 298) = −783000

J/mol. We then have: ∆3H = −783000x [J].

We set the sum to 0 and get 53640x+30975−783000x = 0, which gives x = 30975/729360 =
0.0425 mol methane. To burn this, 2 · 0.0425 = 0.0849 mol O2 is consumed, while the air (1
mol) contains 0.21 mol O2. Thus, the ratio between the actual and stoichiometric amount of
air is 0.21/0.0849 = 2.47. The total amount in stream 5 is 1.0425 mol, and the fraction of
nitrogen is 0.79 · 1 mol/1.0425 mol = 0.7578 and similarly for the other components. The
composition of the combustion gas (stream 5) is then:

75.78%N2 , 12.00%O2 , 4.07%CO2 , 8.15%H2O

(b) Expansion in turbine from 20 bar to 1 bar. The mean heat capacity in stream
5 is Cp =

P

i xiCpi = 30.7 J/ mol K. Ideally, we then have for isentropic expansion:

T ′
6/T5 = (1/20)8.31/30.7 = 0.444, that is, T ′

6 = 0.444 · 1773 = 788K. The corresponding
ideal work is W ′

b = |1.0425 · 30.7(788 − 1773)| = 31525 J/ mol air and the actual work
performed is Wb = 0.85W ′

b = 26796 J/ mol air. The actual exit temperature of the turbine is
T6 = 1773 − 26796/(1.0425 · 30.7) = 936 K (663 oC).

(c) Net work. The work generated in the turbine (26796 J/mol air) is about twice the
work that must be supplied for compressing the air (13725 J/mol air). The net performed
work is: Wgasturbine = Wb − Wa = 26796 − 13735 = 13061 J/mol air. On a methane basis,
Wgasturbine = 13061/0.0425 = 307500 J/ mol methane, that is, with a methane molar mass
of 16 g/mol, the net performed shaft work is

Wgasturbine = 19200 kJ/kg methane

and we find that the thermodynamic efficiency in the gas turbine process by itself is
Wgas turbine/W id

s = 19200/50000 = 0.384 (38.4%).

Example 8.22 Steam turbine process. Consider a relatively simple (older) steam turbine
process, as shown in Figure 8.11, where

• Superheated high-pressure (HP) steam at 100 bar and 529 oC is produced by exchanging
heat with the combustion gas (stream 6 in Figure 8.5).

• This high-pressure steam (stream 1) expands adiabatically to get 28.5 bar medium-pressure
(MP) steam (stream 2) in a high-pressure turbine with 77% (isentropic) efficiency

• The MP-steam is further expanded (without intermediate superheating) to 0.096 bar (stream
3) in a low-pressure turbine with 82% (isentropic) efficiency.

Note there is no medium-pressure turbine and low-pressure steam in this process. In both
turbines, work is extracted.

Data: At 45 oC, the vapor pressure of the water is 0.096 bar. Assume that the heat of
vaporization for water is 2400 kJ/kg at 45 oC. In order to simplify the calculation, it is
assumed that the steam (gas-phase water) is an ideal gas with constant heat capacity 2 kJ/kg
= 36 J/mol.

(a) Assume that the hot combustion gas, which comes from the combustion of methane in
the gas turbine in Example 8.21, is cooled from 663 oC to 160 oC. How much high-pressure
steam is produced [kg steam/kg methane]?

Choose 1 kg steam as basis in the following calculations:
(b) How much work is produced in the high-pressure turbine?
(c) What is the temperature of the medium-pressure steam?
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Exhaust (combustion) gas
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Figure 8.11: Flow sheet for the steam turbine process in Example 8.22.

(d) How much work is produced in the low-pressure turbine?
(e) If your calculations are correct, you will find that the temperature of outlet steam from

the LP turbine (stream 3) is lower than the saturation temperature of 45 oC. This implies
that some of the steam condenses to form liquid (water). How much water is generated (note
that the moisture content should not exceed about 10%)?

(f) How much work is removed in the two steam turbines [J/kg vapor]? Find also the pump
work for taking the liquid from 0.096 bar to 100 bar (the pump is not shown in the flow sheet).

(g) Calculate the energy efficiency (8.13) for the steam turbine process alone and compare
it with the theoretical energy efficiency (the Carnot factor) when the “heat reservoir” is the
combustion gas (where the temperature changes from 663 oC to 160 oC), and it is assumed
that cooling is available at 10 oC (“cold reservoir”).

Now look at the entire combined cycle gas power plant:
(h) Calculate the total produced work [J/ kg methane], including the net work produced in

the gas turbine (Example 8.21). What is the total thermodynamic efficiency?
(i) Finally, plot the cooling curve for the combustion gas and the heating curve for the

steam (vapor) in a figure with enthalpy on the x-axis and temperature on the y-axis. This
plot shows the temperature profile if we used a single heat exchanger. From the plot, find
the smallest temperature difference (the “pinch point”) in the heat exchanger. (If the curves
cross each other (crossover), then we have negative temperature difference and the process is
infeasible).

Solution. (a) Amount of steam. The amount of steam is given by the energy balances.
We choose 1 kg (= 1/(16·10−3) = 62.5 mol) methane feed as basis. We found in Example 8.21
that 0.0425 mol methane and 1 mol air give 1.0425 mol combustion gas. By scaling we then
have that

• 1 kg methane gives 62.5
0.0425

· 1.0425 mol = 1533 mol combustion gas.

The heat capacity of the combustion gas is Cp = 30.7 J/mol K. The heat released, when 1533
mol of combustion gas is cooled from 663 oC to 160 oC, is

Qsteam turbine = nCp(TH1 − TH2) = 1533 mol · 30.7J/mol K · (663 − 160) K = 23672 kJ
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This amount of heat is used to take water (liquid) at 45 oC (stream 4) to superheated vapor
at 529 oC (stream 1). This can be divided into two subprocesses (this may not be what occurs
in practice, but because enthalpy is a state variable the result is the same):

1. Evaporate water at 45 oC: ∆vapH = 2400 kJ/kg.
2. Heat steam from 45 oC to 529 oC: Cp(T1 − T4) = 2 kJ/kg K · (529 − 45)K = 968 kJ/kg.

The total heat required for producing vapor for the steam turbines is then

Qsteam turbine = msteam · (2400 + 968)
| {z }

3368 kJ/kg steam

and the amount of steam becomes

msteam =
Qsteam turbine

3368
=

23672 kJ/kg methane

3368 kJ/kg steam
= 7.03

kg steam

kg methane

(b) HP turbine. We choose 1 kg steam as basis in the following. Ideal (reversible) adiabatic
expansion of HP steam in the high pressure turbine:

T ′
2

T1
=

„
p2

p1

«R/Cp

=

„
28.5

100

«8.31/36

= 0.748

that is, T ′
2 = 802 · 0.748 = 600 K. Ideal work: W ′

HP = |Cp(T ′
2 − T1)| = |2 · (600 − 802)| = 404

kJ/kg. Actual work: WHP = W ′
HP · 0.77 = 311.1 kJ/kg.

(c) MP steam. Actual temperature of medium-pressure steam: WHP = |Cp(T2−T1)| gives
T2 = 646.5 K (373 oC)

(d) LP turbine. Ideal (reversible) adiabatic expansion of MP steam in low-pressure
turbine:

T ′
3

T2
=

„
p3

p2

«R/Cp

=

„
0.096

28.5

«8.31/36

= 0.268

that is, T ′
3 = 646.5 · 0.268 = 173.2 K. Ideal work: W ′

LP = Cp(T2 − T ′
3) = 2 · (646.5− 173.2) =

946.6 kJ/kg. Actual work: WLP = W ′
LP · 0.82 = 776.2 kJ/kg.

(e) Condensing steam (stream 3) from LP turbine. The “actual” temperature of the
gas in stream 3 is: T3 = T2 −WLP /Cp = 646.5 − 776.2/2 = 258.4 K (-15 oC). However, this
is lower than the condensation (saturation) temperature at 0.0996 bar which is 45 oC, so in
practice stream 3 is a mixture of gas (saturated steam) and liquid at 45 oC. From an energy
balance, the liquid fraction in stream 3 is

Cp∆T

∆vapH
=

2 · 60 kJ/kg steam

2400 kJ/kg condensed
= 0.050 kg condensed/kg steam

that is, there is about 5% water (l) (more exact calculations with steam tables or a steam
enthalpy diagram (see page 420) give that the water (liquid) content is about 10%).

(f) Work from steam turbines. The work produced in the two steam turbines is

Wsteam turbines = WHP + WLP = (311.1 + 776.2)
kJ

kg steam
= 1087

kJ

kg steam

From (6.14), the pump work for 1 kg of water is

W rev
pump =

p2 − p1

ρ
=

(100 − 0.096) · 105 N/m2

1000 kg/m3
≈ 10

kJ

kg steam

This is less than 1% of the work from the steam turbines and can therefore be neglected.
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(g) Energy efficiency for the steam turbine process alone. The heat supplied is, as
found in subtask (a), QH = Qsteam turbine = 3368 kJ/kg steam. The energy efficiency (8.13)
in the steam turbine process alone is then

Wsteam turbines

Qsteam turbine
=

1087

3368
= 0.323 (32.3%)

Note that even with 100% efficiency in the steam turbines, the “energy efficiency” would
only be (404 + 877.6)/3368 = 0.38. This is mainly because most of the condensation heat
(which is removed in the cooling water) cannot be removed as work. Let us compare the
energy efficiency of 32.3% with the theoretical (maximum) value that is given by the Carnot
“efficiency” (factor). We assume that the heat capacity of the combustion gas is constant,
and we then get from (8.7) in Example 8.2 that we need to use the logarithmic mean value
for TH when calculating the Carnot factor. We have TH1 = 936K (663 oC), TH2 = 433 K
(160 oC) and TC = 283 K (10 oC). We get

T4 = TH,log = (936 − 433)/ ln(936/433) = 652.5 K

and the Carnot factor is

1 − TC

TH
= 1 − 283K

652.5K
= 0.56 (56.6%)

Compared to this maximum achievable value, the thermodynamic efficiency in the steam
turbine process is then 0.323/0.566 = 0.57 (57%). Still, this quite far from 100%, which
shows, as expected, that there is potential for improvement in the steam turbine section.

(h) Total work and thermodynamic efficiency for the entire process (gas turbine
plus steam turbines). We choose here again 1 kg methane feed as basis. From subtask (a),
the amount of steam is 7.03 kg steam/kg methane, so this corresponds to

Wsteam turbines = 1087
kJ

kg steam
· 7.03

kg steam

kg methane
= 7640

kJ

kg methane

In comparison, we found in Example 8.21 that the net work in the gas turbine is Wgas turbine =
19200 kJ/ kg methane. The total work from the gas turbine and steam turbines is then, for
this specific example process,

Wtot = Wgas turbine + Wsteam turbines = 26840
kJ

kg methane

that is, total thermodynamic efficiency for the process is

Wtot

W id
s

=
26840

50000
= 0.537 (53.7%)

With an improved steam turbine process, where we remove more energy by cooling the
combustion gas further (we cannot get it much lower than 45 oC in our process because of
“temperature crossover”; see below), and utilize the energy better by having hotter HP steam,
by superheating the MP steam and by condensing at lower temperature (see Figure 8.10), the
total efficiency can be increased (try yourself !).

(i) Check of temperature crossover. We choose 1 kg methane feed as basis. As shown
in Figure 8.12, the cooling curve for the combustion gas is a straight line with negative slope
equal to the inverse of the heat capacity, that is

Cp,h = mhcp,h = 1533 mol · 30.7
J

mol K
= 47063 J/K

The heating curve consists of three parts:
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Figure 8.12: Heating and cooling curves for the steam turbine process in Example 8.22.

1. Straight line for heating of the liquid with positive slope (Cp,c(l) = mccp(l) = 7.03 kg ·
4180 J/kg K = 29385 J/K).

2. Straight flat line: Evaporation at 100 bar and 311 oC.
3. Straight line for superheating the steam with positive slope (Cp,c(g) = mccp(g) = 7.03 ·

2000 = 14060 J/K).

The smallest temperature difference between the hot and cold sides (the “pinch”) is where
the “cold” liquid reaches 311 oC. The corresponding gas temperature is 160 + 29385 · (311 −
45)/47063 = 326.1 oC, that is, the temperature difference is 15.1 oC. This is quite small but
still acceptable.

The numbers calculated in the above examples are a bit difficult to compare because
we have used a different basis in each subtask. Therefore, we summarize everything
for a basis feed of 1 kg methane in Table 8.2.

8.7.3 Remarks: Gas power plant

Remark 1 Corrected efficiency for case study. Above, we assumed that methane (feed)
is provided at 20 bar, but for a thermodynamic analysis it is more correct to assume a standard
pressure 1 bar. The reversible work for an isothermal compression of 1 kg methane from 1
bar to 20 bar at 10 oC is W ′

s = nRT0 ln(p2/p1) = 62.5 · 8.31 · 283 · ln 20 = 0.44 MJ. The
thermodynamic efficiency, when this work is subtracted, is reduced from 53.7% to 52.8%:

η =
26.84 − 0.44

50.00
= 0.528 (52.8%)

Remark 2 Improved process. From Table 8.2, the thermodynamic efficiency of the
process in Examples 8.21 and 8.22 is 53.7%. A similar example, also based on ideal gas and
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Table 8.2: Summary of results for natural gas power plant (Examples 8.21 and 8.22)

Natural gas feed (methane) 1.00 kg = 62.5 mol
Air feed 41.68 kg = 1471.7 mol

Pressure gas turbine 20 bar
Inlet temp. gas turbine 1500 oC
Outlet temp. gas turbine 663 oC
Outlet temp. combustion gas 160 oC
Outlet temp. LP steam turbine 45 oC

Air compression (η =80%) −20.20 MJ
Gas turbine (η =85%) 39.40 MJ
Net gas turbine 19.20 MJ

HP steam turbine (η =77%) 2.19 MJ
LP steam turbine (η =82%) 5.53 MJ
Sum steam turbines 7.64 MJ

Net work produced 26.84 MJ

Efficiency: 26.84/50.00 = 0.537

neglecting pressure drops and heat losses, but with better efficiencies for the turbines (90%)
and a more complicated steam turbine process with three pressure levels and cooling to 24
oC, is given as an extra exercise at the book’s homepage. Here, a thermodynamic efficiency
for the process of about 62% is achieved. This can be further improved by increasing the
combustion pressure (inlet pressure to the gas turbine) – computations with the turbine
pressure increased from 20 bar to 30 bar using the flowsheet simulator Hysys (where ideal
gas is not assumed) gave an overall thermodynamic efficiency of more than 64%.

Remark 3 Heat from natural gas. If the objective is to use natural gas as a heat source,
for example, in a home by simply burning the gas, then a high combustion temperature is
not required and the pressure is usually 1 bar. In such cases, an energy efficiency up to 100%
can be achieved, but the thermodynamic efficiency is much lower – typically about 10% (see
Example 8.7 page 211). The reason for this is that one could theoretically (i) convert the
chemical energy into electric energy (for example, in a gas power plant), and could then (ii)
use the electricity to run a heat pump that “pumps” heat from the outdoor air into the house;
see the next remark for details.

Remark 4 Be careful about energy efficiencies. You have probably understood by
now that I (the author) am sceptical when it comes to the use of energy “efficiencies”. The
reason is that almost any energy “efficiency” can be achieved by allowing for heat pumps.
For example, take our simple gas power plant where we achieved an thermodynamic (exergy)
efficiency of above 50% for production of electricity. If we wanted to maximize the energy
“efficiency” of this plant, we could use this work (electricity) to

1. Cold location (e.g., Norway): Run the compressor in a heat pump system to produce heat
2. Hot location (e.g. Florida): Run the compressor in a cooling cycle to produce cold
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In either case, we could achieve an overall energy efficiency from feed to energy product of
well above 100%. For example, assume that thermodynamic efficiency of the power plant
is 50% and that the coefficient of performance is 5 (COP=5) for either the (1) heat pump
system or (2) the cooling cycle (both of which are realizable in practice). The overall energy
efficiency from feedstock (natural gas) to energy product is then 0.5 · 5 = 2.5 (250%)!

8.8 Summary

Heat engine. It is possible to extract work from high-temperature (TH) heat, but
the second law of thermodynamics says that this can only happen if some of the heat
is “lost” by cooling at a lower temperature (TC). The maximum fraction of the heat
supplied (QH) that can be extracted as work is given by the Carnot factor

( |W |
|QH |

)rev

= 1 − TC

TH

To maximize the work, the temperature difference TH − TC should be as large as
possible. The thermodynamic efficiency η, for a heat (thermal power) engine, is the
ratio between the actual value of W/QH and the Carnot factor.

Heat pump/refrigerator. It is possible to transfer heat from low (TC) to high
(TH) temperature, but the second law of thermodynamics says that this can only
happen if we supply work. For a heat pump, the maximum ratio of heat to work (the
coefficient of performance) is

COPC
rev =

( |QH |
|W |

)rev

=
TH

TH − TC

which is the inverse of the Carnot factor. For a refrigerator, the focus is on the cooling,
and it is more interesting to look at the maximum cooling,

COPH
rev =

( |QC |
|W |

)rev

=
TC

TH − TC

For both a heat pump and a refrigerator, it is favorable that the temperature difference
TH − TC is as small as possible.

Exergy and lost work. More generally, the ideal work for a reversible continuous
process with surroundings at constant temperature T0 is

W id
s = ∆H − T0∆S

We can introduce the state function, exergy, defined as

B = H − T0S

and we then have W id
s = ∆B for a process that operates between two states (in and

out). The lost work can be found by comparing W id
s with the actual work, and we

have
Wlost = Ws − W id

s = Ws − ∆B = T0∆Stotal
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Mechanical energy balance

The mechanical energy balance (Bernoulli’s equation) is used to compute pressure changes for

flow systems. Here, we derive Bernoulli’s equation from macroscopical energy considerations,

but it can alternatively, as shown in fluid mechanics, be derived from Newton’s second law1.

9.1 The “regular” energy balance

We consider a process with one inflow and one outflow, see Figure 9.1. The energy
balance for a steady state continuous process between states 1 (inflow) and 2 (outflow)
can, as shown in (4.39), be written as

H2 + mα2
v2
2

2
+ mgz2 = H1 + mα1

v2
1

2
+ mgz1 + Q + Ws [J ; J/s] (9.1)

where we have included terms for kinetic and potential energy.

Figure 9.1: Steady-state energy balance for flow process from point 1 to point 2

The velocities v1 and v2 are mean velocities defined by

vi [m/s] =
V̇i

Ai
=

ṁi

ρiAi
(9.2)

1 Most of the figures and empirical data in this chapter are taken from A. Lydersen, Kjemiteknikk,
Tapir, 1972.
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where V̇i [m3/s] is the volumetric flow and Ai [m2] is the cross section area (for
example, the cross section of a pipe). The factor α in (9.1) corrects for the velocity
not being the same over the entire cross section, that is, it corrects for the mean of

kinetic energy not necessarily being equal to m v2

2 , where v is the mean velocity defined
in (9.2). For turbulent flow (the most common), the velocity profile is almost flat and
α ≈ 1, while for laminar flow in pipe α = 2, see Figure 9.2.

Laminar pipe flow Turbulent pipe flow

(average profile)

Figure 9.2: Velocity profiles for pipe flow

9.2 Mechanical energy

By “mechanical energy,” we mean the energy terms related to motion and position as
described by Newton’s laws of physics. Mechanical energy can in theory be directly
converted to work, and one can reversibly go between the different mechanical energy
forms. In the “regular” energy balance, we have previously found that changes in
mechanical energy, such as kinetic energy and potential energy, are usually small
compared to changes in internal (thermal) energy. On the other hand, in the
mechanical energy balance, we exclude internal energy and focus on the mechanical
energy terms and the conversion between them. The executive summary of this chapter
is: Mechanical energy is preserved if we have a reversible process without friction.

Comment: One might wonder when one is supposed to use the “regular” energy
balance (9.1) with kinetic and potential energy included, and when one should use the
mechanical energy balance (9.5) (which we will derive, and which also has kinetic and
potential energy included). The answer is usually:

• The “regular” energy balance is used when one is interested in temperature changes.
• The mechanical energy balance is used when one is interested in pressure and/or

velocity changes.

9.3 Reversible shaft work and friction

The mechanical energy balance can be derived from Newton’s second law. However, we
choose a different approach: First, we derive an expression for the reversible shaft work,
then introduce the concept of friction, combine this with the “regular” energy balance
and end up with the mechanical energy balance. Let us first derive the expression for
the reversible shaft work and its relation to friction.

itya steady state continuous process, where the inflow has enthalpy H1, temperature
T1, pressure p1, velocity v1 and height z1, while the outflow has enthalpy H2,
temperature T2, pressure p2, velocity v2 and height z2; see Figure 9.1. What is the
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maximum shaft work that can be extracted? Or equivalently: What is the minimum
shaft work Ws that must be supplied? In order to find this, we need to consider a
reversible process (without friction loss). We have already in (6.4) derived that, if we
neglect kinetic and potential energy, the maximum useful shaft work is

W rev
s =

∫ p2

p1

V dp = m

∫ p2

p1

dp

ρ
[J ]

where we have introduced the density ρ = m/V [kg/m3]. But, in addition, also kinetic
and potential energy can be converted into shaft work (and vice versa), that is, we
have the following generalization

W rev
s = m

∫ p2

p1

dp

ρ
+ m

(

α2
v2
2

2
− α1

v2
1

2

)

+ mg(z2 − z1) [J ] (9.3)

where v is the mean velocity defined in (9.2).
The actual supplied work is larger than that given in (9.3). We write

Ws = W rev
s + Φ [J ] (9.4)

where Φ > 0 is the friction loss or the lost work. The friction loss Φ expresses how
much mechanical energy is converted into (useless) thermal energy (friction heat).
Φ is positive (Φ > 0) for all real processes. Despite persistent attempts during the
last centuries, no one has been able to create a self-sustaining machine (perpetuum
mobile) with Φ ≤ 0 and this is, of course, impossible according to the second law of
thermodynamics. For an (idealized) reversible process, we have Φ = 0.

9.4 The mechanical energy balance

Inserting (9.3) into (9.4) gives the “mechanical energy balance” for a steady state
continuous flow process operating between states 1 and 2:

mα2
v2
2

2
+ mgz2 + m

∫ p2

p1

dp

ρ
+ Φ = mα1

v2
1

2
+ mgz1 + Ws [J ; J/s] (9.5)

The “mechanical energy” includes kinetic energy (m v2

2 ), potential energy (mgz) and

“potential pressure energy” (m
∫

dp
ρ ) in the flow system (stream). Note that mechanical

energy is not a conserved quantity and the friction term Φ expresses the inevitable
loss of mechanical energy that we have in any real process.

On mass basis, the mechanical energy balance (9.5) can be written

α2
v2
2

2
+ gz2 +

∫ p2

p1

dp

ρ
+

∆pf

ρ
= α1

v2
1

2
+ gz1 +

Ws

m
[J/kg] (9.6)

where we used the common convention of writing the friction term Φ/m as

Φ

m
=

∆pf

ρ
[J/kg]
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where ∆pf [N/m2] is known as the friction pressure drop. The work Ws is usually
given in [J/s] and m is then in [kg/s].

Note that the velocities v1 and v2 must also satisfy the steady-state mass balance
m1 = m2 [kg/s] (see also (4.40)), that is,

m1 = ρ1v1A1 = ρ2v2A2 = m2 [kg/s] (9.7)

where Ai [m2] is the cross section area, for example of a pipe. This special form of the
mass balance is called the continuity equation. For an incompressible fluid (most
liquids), ρ is constant and the continuity equation is

v1A1 = v2A2 [m3/s] (9.8)

and we see that the velocity is uniquely determined by the cross section area.

9.4.1 The Bernoulli equation for incompressible flow

For an incompressible fluid (most liquids), ρ is constant, and also for gases with
a small pressure drop, ρ can be assumed approximately constant. In this case, the
potential pressure energy term becomes

∫ p2

p1

dp

ρ
=

p1 − p2

ρ

and the mechanical energy balance (9.6) can be written in the following form, which
is known as the generalized Bernoulli equation:

p2

ρ
+ gz2 + α2

v2
2

2
+

∆pf

ρ
=

p1

ρ
+ gz1 + α1

v2
1

2
+

Ws

m
[J/kg] (9.9)

Equivalently, (9.9) can be written in pressure form

p2 + ρgz2 + ρα2
v2
2

2
︸ ︷︷ ︸

out

+ ∆pf
︸︷︷︸

friction loss

= p1 + ρgz1 + ρα1
v2
1

2
︸ ︷︷ ︸

in

+ ∆plift
︸ ︷︷ ︸

supplied

[
J

m3
=

N

m2
] (9.10)

or equivalently

∆(p + ρgz + ρα
v2

2
) = ∆plift − ∆pf [N/m2] (9.11)

where the “pressure head” ∆plift = Wsρ/m is the pressure increase from supplied
mechanical work (using a pump, blower or compressor). Here, (p+ρgz) is often called
the “static pressure” (because it does not depend on the moving flow) and ραv2/2 the
“dynamic pressure” (because of the moving flow). According to Bernoulli’s equation,
the change in the “total pressure” (static plus dynamic) is then the pressure head
minus the friction pressure drop.

If we further (1) neglect friction (∆pf = 0), (2) assume that α = 1 (that is, no
averaging of velocity is required) and (3) assume no mechanical work (Ws = 0), then
the “original” Bernoulli equation follows from (9.10):

p + ρgz + ρ
v2

2
= constant [N/m2] (9.12)
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In words, the “total pressure” (“static” plus “dynamic”) is constant for frictionless flow
without mechanical work. This equation can alternatively be derived from Newton’s
second law (see fluid mechanics) and was presented by Daniel Bernoulli in 1738, more
than one hundred years before the first law of thermodynamics (energy balance). An
important implication of (9.10) and (9.12) is that the pressure goes down when the
velocity increases, for example in a restriction. A simple experiment that illustrates
this effect is to hold two sheets of paper such that they are aligned next to each
other. When we blow air between them from the top, the sheets will be move together
because of the lower pressure that is created by the flow (velocity) between the sheets,
see Figure 9.3(a).

WING

Lift

Figure 9.3: Practical consequences of lower pressure caused by a velocity increase: (a) Two
sheets are drawn together when you blow between them. (b) An airplane lifts.

Another practical example is the “lift” that is generated by an airplane’s wings.
Here, the wings are designed such that the air must travel further to pass over the
wing than under the wing. Thus, the velocity over the wing is larger, and according to
Bernoulli’s equation (9.12), the pressure is lower, that is, the pressure difference over
the wing results in a force that lifts the plane (see Figure 9.3(b)).

Example 9.1 Pressure drop in restriction. Water flows in a pipe with velocity 2 m/s.
The pipe is restricted (temporarily) by a choke, where the cross section area is 25%. Calculate
how much lower the pressure is in the restriction when the friction loss is neglected.

Area: A

Area: 0.25 A

(if frictionless)

Figure 9.4: Pressure drop in restriction
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We assume turbulent flow such that α = 1. Furthermore, changes in potential energy can
be neglected and the Bernoulli equation (9.12) gives for frictionless flow

p1 + ρ
v2
1

2
= p2 + ρ

v2
2

2
(9.13)

From the mass balance (9.8), we have that

v2 = v1
A1

A2
= 2 m/s · 1

0.25
= 8 m/s

and from (9.13), we get

p2 − p1 = ρ

„
v2
1

2
− v2

2

2

«

= 1000

„
22

2
− 82

2

«

= −30000 N/m2 = −0.30 bar

Comments Bernoulli.
1. The assumption α = 1, used when deriving (9.12), applies to turbulent flow in a

pipe. But the assumption α = 1 also applies to other flow regimes if one follows an
imaginary “streamline” (drop a microscopic particle and follow its movement), since
the velocity along a streamline is a “point variable” and averaging is not needed. This
was Bernoulli’s original approach.

2. In chokes and orifices for measurement purposes, the pressure drop ∆p in the
restriction is used as an indirect measurement of the velocity, and we have for
incompressible flow (see Example 9.1):

v1 =

√

2

(
A2

1

A2
2

− 1

)
√

∆p

ρ
[m/s]

The volumetric flow rate is then V1 = v1A1 [m3/s], and the mass flow rate is
m = ρV1 = ρv1A1 [kg/s].

3. Bernoulli’s equation, (9.10) and (9.12), is derived for incompressible flow (constant
density ρ). For small density changes (including gases), the following approximate
extension of the Bernoulli equation is often used:

p2 + ρ2gz2 + ρ2α2
v2
2

2
︸ ︷︷ ︸

out

+ ∆pf
︸︷︷︸

friction loss

= p1 + ρ1gz1 + ρ1α1
v2
1

2
︸ ︷︷ ︸

in

+ ∆plift
︸ ︷︷ ︸

supplied

[
N

m2
] (9.14)

The difference from (9.10) is that ρ1 and ρ2 may be different.
4. Bernoulli’s equation (9.10) can be written in “head form” by dividing both sides

by ρg.

∆(
p

ρg
+

v2

2g
+ z) =

Ws

mg
− ∆pf

ρg
(9.15)

The “pressure head” is p/(ρg), the “velocity head” is v2/2g, the “pumping head” is
∆plift/(ρg) = Ws/(mg) and the friction head is ∆pf/(ρg).

9.4.2 The friction term for flow in pipes

To use the mechanical energy balance, we must know the friction term Φ = m∆pf/ρ
[J; J/s]. For a compressor or pump, this is rather simple; here, Φ = Ws −W rev

s can be
calculated from the efficiency of the equipment.
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v

Figure 9.5: The friction pressure drop for pipe flow is ∆pf = 4f L
D

ρ v2

2
[N/m2]

For other equipment and pipe fittings, the friction term is usually found by using
(more or less) empirical expressions for the friction pressure drop ∆pf . For example,
for flow in horizontal, straight pipes with diameter D [m], the friction pressure drop
over the pipe length L [m] (see Figure 9.5) is:

∆pf = 4f
L

D
ρ
v2

2
[N/m2] (9.16)

where the friction factor f is given in Figure 9.6 as a function of the non-dimensional
Reynolds number

Re =
ρvD

µ
(9.17)

where µ [kg/m s] is the viscosity of the fluid. The viscosity of water is about 10−3

kg/m s (= 1 cP) and for gases at 1 bar about 10−5 kg/m s (= 0.01 cP). A typical
value for the friction factor in turbulent flow is f = 0.005.

Note that there are different curves in Figure 9.6 depending on whether we have
laminar (“smooth”) or turbulent (“chaotic”) flow. The flow pattern changes from
laminar to turbulent flow when the Re number exceeds approximately 2300 (laminar
flow may be possible at higher Re numbers, but if we hit the pipe with, for example,
a hammer, it will switch to turbulent, and the pressure drop will rise). For laminar
flow in pipes, we have that f = 16/Re (this is shown theoretically in fluid mechanics)
and the friction pressure drop is proportional to the velocity,

Laminar flow in pipes : ∆pf ∼ v

For turbulent flow, at high Re numbers, the friction factor f is independent of the Re
number (see Figure 9.6), and the friction pressure drop is proportional to the square
of the velocity,

Turbulent flow in pipes (high Re number) : ∆pf ∼ v2

In most practical cases, we have high Reynolds numbers and turbulent flow. For
turbulent flow, the friction factor f is also a function of the roughness of the pipe
surface, ǫ, and as expected, the friction increases when the surface is more rough; see
Figure 9.6.

Equation (9.16) gives the friction pressure drop in horizontal, straight pipes. In
addition, there is friction pressure drop in fittings (for example, bends and restrictions)
and valves. We may represent these with (9.16) using an equivalent pipe length, or
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Smooth pipe

Figure 9.6: Friction factor f for flow in pipes as a function of Reynolds number in laminar
and turbulent flow regions. In the turbulent region (Re> about 2300), the error limit is about
±10%. The roughness ǫ typically varies from 1 mm for cement pipes to 0.045 mm for regular steel
pipes and to 0.0015 mm for smooth surface-treated pipes.

alternatively the “number of lost velocity heights” n, that is, as the factor n in the
equation

∆pf = nρ
v2

2
[N/m2] (9.18)

Some typical values for n are given in Table 9.1. We see that n is about 0.5 to 1.5 for
a bend or for a large change in cross section area. For valves, n of course depends on
the valve design and opening.

Example 9.2 A typical valve equation for liquid flow is given in (1.8),

q = Cdf(z)A
p

∆p/ρ

where q [m3/s] is the volumetric flowrate and Cd [dimensionless] is the valve constant
(relative capacity coefficient). The velocity is v = q/A [m/s], so for a fully open valve
(f(z) = 1), (1.8) may be rearranged to give

∆p = (2C2
d) · ρv2/2

and by comparing with (9.18) it follows that n = 2C2
d or

Cd =
p

n/2
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For example, from Table 9.1 we see that a typical value for a fully open valve is n = 2, which
corresponds to Cd = 1 (in US engineering units, this corresponds to C′

d = 20, which according
to Liptak2 is a typical value for control valves).

A crude rule of thumb is that the total friction pressure drop is about 0.1 bar
for each “major” equipment, for example, a reactor or a heat exchanger. It is possible
to reduce the pressure drop, but this requires larger equipment volumes to lower the
velocity, and in addition lower velocity means less effective heat and mass transfer.
Reducing the pressure drop is particularly important at low pressures, that is, at 1
bar or lower, where the friction pressure drop ∆pf/p is relatively larger compared to
the total pressure.

Example 9.3 Pressure drop in heat exchanger. 120 m3/h of seawater is used as a
coolant in a heat exchanger (see Figure 5.2 page 130). The seawater flows on the tube side
through 62 parallel tubes, each 6m long with an internal diameter of 18 mm. The density of
the seawater is 1030 kg/m3 and the viscosity is 1.13 cP = 0.00113 kg/m s. At the inlet of
the tubes (inside the heat exchanger), there is a pressure drop corresponding to 0.5 velocity
heights (n = 0.5) and at the exit there is a pressure drop corresponding to n = 1. For a
steel tube, the surface roughness is ǫ = 0.045 mm. Calculate the pressure drop for the heat
exchanger on the pipe side.

Solution. The mean velocity in the heat exchanger tubes is

v =
120

3600 · 62 · π
4
· 0.0182

= 2.11 m/s

The sum of the pressure drops at the inlet and exit to each tube is

∆pf = (0.5 + 1)ρ
v2

2
= 1.5 · 1030 · 2.112

2
= 3439 N/m2 = 0.034 bar

The Reynolds number in the pipes is

Re =
ρvD

µ
=

1030 · 2.11 · 0.018

0.00113
= 34600

The relative roughness is ǫ/D = 0.045/18 = 0.0025, and from Figure 9.6, the friction factor
is f = 0.0075. The pressure drop in the pipes is then

∆pf = 4f
L

D
ρ

v2

2
= 4 · 0.0075 · 6

0.018
· 1030 · 2.112

2
= 22928 N/m2 = 0.229 bar

The total (friction) pressure drop through the heat exchanger is then 0.034 + 0.229 = 0.263
bar.

(Note that we have not included the pressure drop at the inlet and exit of the heat exchanger.
This is because the pressure drop is a function of the velocity in the pipes to and from the
heat exchanger, which we do not know.)

2 B.L. Liptak (Editor), Instrument Engineers’ Handbook, Volume II (Process control and
optimization), 4th Edition, CRC (Taylor & Francis), p. 1051 (2006)
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Table 9.1: Friction pressure drop in fittings, valves, etc. given both as equivalent pipe length
divided by the pipe diameter, Le/D, and as the factor n in the equation ∆pf = nρv2/2

ρ

Sudden contraction Sudden enlargement

ee elbo harp elbowStandard

Bend Bend

Large radius Small

 radius

Gate valve Globe valve

Fully

open

Half

Opening

Opening

Plug cockDiaphragm valve

Opening

Check

valve

fully

open

Hinged

Disk

Ball

Water

meter

Wheel

Disk

Piston

Angle

w S
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9.5 Compressible flow in pipe (gases)

For the case of with no shaft work (Ws = 0), the mechanical energy balance (9.6) from
point 1 to 2 in a continuous process is

α2
v2
2

2
+ gz2 +

∫ p2

p1

dp

ρ
+

∆pf

ρ
= α1

v2
1

2
+ gz1 [J/kg] (9.19)

Differentiating (9.19) gives

vdv + gdz +
dp

ρ
+

dpf

ρ
= 0 (9.20)

where we have assumed turbulent flow (α ≈ 1) and used d(v2)/2 = vdv. For pipe flow,
the differential friction pressure drop over a small pipe length dL is from (9.16)

dpf = 4f
dL

D
ρ
v2

2
[N/m2] (9.21)

Because the density ρ is small for gases, the contributions from potential and kinetic
energy can usually be neglected compared to pressure changes3 in the mechanical
energy balance. We then get from (9.20),

dp = −dpf = −4f
dL

D
ρ
v2

2
[N/m2] (9.22)

that is, all the pressure drop is caused by friction. From the continuity equation (mass
balance) (9.7), the term ρv2 can be written

ρv2 =
1

ρ

m2

A2

where for an ideal gas

ρ =
pM

RT

3 The material balance (continuity equation) in differential form is

d(ρvA) = 0

and for constant cross section A, we get vdρ + ρdv = 0, that is, vdv = −v2dρ/ρ. Using the ideal
gas law, we then get for the case with constant temperature that the kinetic contribution is

vdv = −v2 dρ

ρ
= −v2 M

RT

dp

ρ

Let us compare the “kinetic contribution” vdv with the “pressure contribution” dp/ρ for a gas with
molar mass 20 g/mol and temperature 280 K. We have that the contribution from kinetic energy

is less than 1% of the pressure contribution when |v2 M
RT

| < 0.01 or v < 0.1
q

RT
M

=
q

8.31·280
20·10−3 =

0.1 · 341 = 34 m/s. Usually, the gas velocity is much lower than this. More generally, we only need

to include kinetic energy for gases when we start approaching the speed of sound cs =
q

γRT
M

,

where γ = Cp/CV .
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where M [kg/mol] is the molar mass. We then get

dp = −2f
1

D

RT

pM

m2

A2
dL [N/m2] (9.23)

which applies generally for turbulent pipe flow for an ideal gas when we neglect kinetic
and potential energy. To integrate (9.23), we multiply both sides by p, so that the left
side becomes pdp, and if we assume isothermal flow (T constant) and A constant, the
integration from 1 (entrance of the pipe) to 2 (exit) gives

p2
1 − p2

2 = 4f
L

D

RT

M

m2

A2
(9.24)

This applies to isothermal flow of ideal gas in a pipe with constant cross section and
with neglected kinetic and potential energy (this is actually an useful formula even
though we have introduced many simplifications).

Note that the above expressions apply to pipe flow, where it is reasonable to neglect
changes in kinetic energy. The expressions do not apply at high flowrates, above about
50 m/s.

Example 9.4 Gas pipeline. A 1150 km long pipeline at the sea bottom transports 2500
million Nm3 of gas per year.4 The internal diameter of the pipeline is 500 mm (0.5 m) and
the pipe material roughness is ǫ = 0.045 mm. The pressure at the pipeline inlet is 180 bar,
and it is allowed to drop to 100 bar, before it needs to be raised back again to 180 bar in a
compressor booster station.

(a) Show that the contributions from kinetic and potential energy can be neglected (the
height variations are maximum 100m) in the mechanical energy balance.

(b) How many compressor booster stations are needed if the final delivery pressure must be
at least 100 bar?

Data: Assume molar mass 20 g/mol, viscosity 10−5 kg/m s, ideal gas, constant temperature
of 280 K and 8500 hours of operation per year.

Solution. The area of the pipe is A = (π/4)D2 = (π/4)0.52 = 0.1963 m2. The molar flow
rate is

n = ṅ =
2500 · 106 Nm3/y

8500 h/y · 3600 s/h
· 1

22.414 kmol/Nm3
= 3.645 kmol/s

that is, the mass flow is

m = ṁ = ṅM = 3.645 · 103 mol/s · 20 · 10−3 kg/mol = 72.9 kg/s

At the inlet (1), we have

p1 = 180 bar ⇒ ρ1 =
p1M

RT
=

180 · 105 N/m2 · 20 · 10−3 kg/mol

8.31 J/mol K · 280K
= 154.7 kg/m3

v1 =
m

ρ1A
=

72.9 kg/s

154.7kg/m3 · 0.1963m2
= 2.40 m/s

At the “exit” (2), before the booster station, we have

p2 = 100bar ⇒ ρ2 = 86.0 kg/m3; v2 = 4.32 m/s

4 A Normal cubic meter (Nm3) is defined at 1 atm and 0 oC – and 22.414 Nm3 corresponds to 1
kmol, see page 14.
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(a) The change in kinetic energy is

v2
2

2
− v2

1

2
=

4.322

2
− 2.402

2
= 9.0 − 2.9 = 6.1 J/kg

The change in potential energy is at most

gzmax = 10 · 100 = 1000 J/kg

The change in pressure energy is given by
R

dp/ρ, and integrating with constant temperature
and using ρ = PM

RT
(ideal gas) gives

Z 2

1

dp

ρ
=

RT

M

Z 2

1

dp

p
=

RT

M
ln

p2

p1
=

8.31 · 280
20 · 10−3

ln
100

180
= −68383 J/kg

and we see that we can safely neglect the kinetic (contribution less than 0.01%) and potential
energy (contribution at most 1.5%).
(b) We want to find the pipe length L that gives a pressure drop from 180 bar to 100 bar.
Since the temperature is constant, we have from (9.24)

L =
p2
1 − p2

2

4f RT
M

m2

A2

D (9.25)

From the mass balance, m = ρV A, and the Re-number is

Re =
ρvD

µ
=

mD

Aµ

Note that we have the same Re-number throughout the pipe

Re =
72.9 kg/s · 0.5 m

0.1963 m2 · 10−5
kg/(m s) = 1.86 · 107

The flow is turbulent since Re > 2300. We further have ǫ/D = 0.0001, and from Figure 9.6
(244), we obtain

f = 0.003

which gives

L =
(1802 − 1002)1010 · 0.5

4 · 0.003 · 8.31·280
20·10−3

`
72.9

0.1963

´2 = 582 · 103 m

that is, 582 km. With one booster station, we may reach 582 ·2 = 1164 km, which is sufficient
since the total pipeline is 1150 Km.
Comment: One source of error in the above calculations is the assumption of ideal gas. Since
the pressure is high and the temperature is low, non-ideality is expected.

9.6 A remark on friction

The friction Φ expresses the loss in mechanical energy. But what happens with this
friction energy, that is, where does it go?

Consider a steady-state process with inflow (1) and outflow (2). Comparing the
mechanical energy balance (9.5) with the “regular” energy balance in (9.1) and using
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(6.5) together with the definition of enthalpy, we find that the friction loss can be
expressed as

Φ = U2 − U1 − Q +

∫ V2

V1

pdV (9.26)

where V = m/ρ [m3; m3/s] is the volume or volumetric flow of the fluid. For an
incompressible fluid (most liquids), V is constant, that is, dV = 0 and the last term
equals 0, and we arrive at the important conclusion that the friction energy Φ is
either converted into internal energy (U2 − U1) or transferred to the surroundings
as heat (−Q). This is consistent with our intuition that friction is the conversion
of mechanical energy into “thermal energy,” and confirms that the concept “heat of
friction” is reasonable (by the way, if you would like to see a picture of the author in
a frictionless Superman costume then click on the picture on my homepage ,). For
a compressible fluid (gases), we see from (9.26) that friction can also contribute to
increasing the volume (expansion gas), which is a form of “useless” mechanical work.

9.7 Summary

The “regular” energy balance for a steady-state continuous process between the state
1 (inflow) and state 2 (outflow) is

H2 + mα2
v2
2

2
+ mgz2 = H1 + mα1

v2
1

2
+ mgz1 + Q + Ws [J ; J/s]

In the “regular” energy balance, the enthalpy term H = U + pV , which is primarily a
function of temperature, usually dominates. Therefore, the “regular” energy balance
is normally used when one is interested in temperature changes. If one is interested in
pressure changes, the mechanical energy balance is more useful:

mα2
v2
2

2
+ mgz2 + m

∫ p2

p1

dp

ρ
+ Φ = mα1

v2
1

2
+ mgz1 + Ws [J ; J/s]

Mechanical energy is not a conserved quantity and the friction term Φ [J; J/s] expresses
how much mechanical energy is converted into thermal energy (internal energy U and
heat Q). For an incompressible fluid (most liquids), ρ is constant and the mechanical
energy balance can be written in the following form, which is called the generalized
Bernoulli equation:

∆(p + ρgz + ρα
v2

2
)

︸ ︷︷ ︸

out−in

= ∆plift
︸ ︷︷ ︸

supplied

− ∆pf
︸︷︷︸

friction loss

[N/m2]

The friction pressure drop ∆pf can be determined from empirical correlations. If we
further (1) neglect friction (∆pf = 0), (2) assume α = 1 (that is, averaging the velocity
is unnecessary) and (3) assume no mechanical work (∆plift = 0), we get the “original”
Bernoulli equation:

p + ρgz + ρ
v2

2
= constant [N/m2]
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An important implication of this equation is that the pressure drops when the velocity
increases, for example in a restriction.

Figure 9.7: Restriction in a pipe

Exercise 9.1 A gas with temperature T1 = 400K and pressure p1 = 2 bar flows in a pipe
with velocity v1 = 10 m/s. The gas passes through a restriction (2), as shown in Figure 9.7.
It can be assumed that the flow is lossless and adiabatic. The gas is assumed ideal with molar
mass 35 g/mol and constant heat capacity cp = 35 J/K mol. There is no accumulation.

(a) Explain why the entropy is constant.
(b) Formulate the energy balance from 1 to 2 with the kinetic energy included.
(c) The gas velocity in the restriction is v2 = 50 m/s. Use the energy balance to find the

temperature T2.
(d) What is the pressure p2 in the restriction (remember that the entropy is constant)?
(e) Formulate the mass balance from 1 to 2, and express this with density and velocity.

Find the area in the restriction relative to the area before the restriction, A2/A1.
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Chemical reaction engineering

In Chapter 3, we assumed the extent of reaction or the conversion to be given, but except
for the cases where we assumed chemical equilibrium, we didn’t say anything about how
it could be determined. To do this, we need a kinetic expression for the reaction rate and
details about the reactor. This is the field of chemical reaction engineering considered in this
chapter.

10.1 Reaction kinetics

Reaction kinetics involves the study of the rate of chemical reactions. In some cases,
the reactions are very fast and it is reasonable to assume that we achieve equilibrium.
However, in most cases, equilibrium is not reached and to increase the rate of reaction
r, one can increase the temperature or use a catalyst. In this chapter, we use reaction
kinetics for two problems:

1. Design: Calculate how large the reactor must be (necessary residence time) in order
to achieve the desired conversion.

2. Simulation: Calculate the conversion for a given reactor (with given residence time).

In industrial reactors, the residence time may vary from milliseconds to hours.

10.1.1 Reaction rate

The reaction rate rj [mol/m3, s] for the reaction j is defined as

rj =
mol of component formed by reaction j per unit of time and per unit of volume

stoichiometric coefficient for the component in reaction j

(10.1)
Comments to the definition:

• Note that r here is per unit of volume, so it is the “local” rate, and may vary
throughout the reactor.

• Other units for r can be used, for example per mol in the reactor [mol(reacted) /
mol(reactor), s], but this is not used here. For heterogeneous catalytic reactions, r
is often given per mass or unit area of catalyst.

• Since we divide by the stoichiometric coefficient, we get the same value for the rate
rj no matter which component in the reaction we consider.



254 CHEMICAL AND ENERGY PROCESS ENGINEERING

• We can also consider the rate of reaction for an individual component. The rate of
reaction for an arbitrary component A in reaction j is

rA,j = νA,jrj (10.2)

where νA,j is the stoichiometric coefficient for component A in reaction j. For
example, for the reaction A → B, we have (we omit the subscript j since there
is only one reaction)

r = −rA = rB

For example, for the reaction N2+3H2 → 2NH3, we have r = −rN2 =
−rH2

3 =
rNH3

2 .
• The amount of component A generated by chemical reactions can, as shown in

Chapter 3, be written as

GA =
∑

j

νA,jξj = −nA,0XA

where ξj is the extent of reaction for reaction j and XA is the (total) conversion.
The extent of reaction ξj is directly given by the reaction rate rj . If we have a
reactor with volume V and constant composition and temperature throughout the
reactor (so that rj is constant), then

ξj = rjV (10.3)

The amount of component A that is generated in all reactions is then

GA =
∑

j

νA,jξj =
∑

j

νA,jrjV = rAV (10.4)

where
rA =

∑

j

νA,jrj [mol A/m
3
, s] (10.5)

is the overall reaction rate for generation of component A. Note that when using
reaction rates, we do not need to limit ourselves to independent reactions, as
recommended in Chapter 3. For example, component A may be formed by several
alternative reaction mechanisms, and we should sum up the contributions from all
possible reactions; see (10.5).

• Matrix formulation. For many components and reactions, we can collect the

amounts generated into the vector G =





GA

GB
...



, and from (3.21) we have that

G = NT rV
︸︷︷︸

ξ

(10.6)

where N is the stoichiometric matrix (see page 90), r =

[
r1

r2

.

.

.

]

is the vector of

reaction rates for the reactions and V is the reactor volume.
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Figure 10.1: Large volume consisting of many small elements of volume

• In this chapter, we limit ourselves for simplicity to cases with only one reaction.
• When deriving (10.4) and (10.6), we assumed that the composition is the same

throughput reactor. More generally, the reactor can, as shown in Figure 10.1, consist
of many small elements, each with volume ∆V [m3]. In such a small element of
volume, the amount of component A generated

∆GA = rA∆V [molA/s]

where rA is the “local” reaction rate for component A. If the entire reactor consists
of many such small elements, the total amount of component A generated is
GA =

∑

i ∆GAi =
∑

i rAi∆Vi. For differentially small elements of volume dVi,
we can replace the summation by integration and get, for an arbitrary component
A, that the amount generated in the reactor i is

GA =

∫ V

0

rAdV [mol A/s] (10.7)

Here, rA is a function of concentration and temperature and the value will vary
with the location in the reactor. For the case of ideal mixing (continuous stirred
tank reactor, CSTR), the compositions and temperature are uniform such that rA

is constant throughout the reactor

10.1.2 Rate equation

The rate equation gives the dependency of the reaction rate r on temperature and
composition. Here, we assume that this dependency can be separated such that the
reaction rate can be written

r = k(T ) · f(composition) (10.8)

For examle, r = k · cA. Here, k is the reaction rate “constant,” which is not really
a “constant” since it depends on temperature; see below. The specific form of the
function f (concentration) depends on the reaction mechanism; see below.
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10.1.3 Reaction rate constant

The reaction rate constant k is assumed to depend on temperature only, and one
normally uses the semi-empirical Arrhenius equation

k(T ) = A · e−E/RT (10.9)

where A is the frequency factor and E [J/mol] is the activation energy for the reaction.
The numerical value of A is often very large and it is more convenient to rewrite (10.9)
with the rate constant k(T0) at temperature T0 as a basis, k(T0) = A · e−E/RT0 . We
then have

k(T ) = k(T0)e
−E

R

“

1
T − 1

T0

”

(10.10)

Taking the logarithm of (10.9) gives

ln k = lnA − E

R
· 1

T

Thus, with an Arrhenius temperature dependency, ln k as a function of 1/T is a straight
line with slope −E/R. This can be used to determine the activation energy E from
experimental data. The activation energy is a measure of the reaction’s sensitivity to
temperature – the higher the value of E, the more k changes with the temperature.

Exercise 10.1 A common (but rather questionable) “rule of thumb” states that the reaction
rate (and consequently, the value of k) is doubled when the temperature increases by 10K.
What does this presume about the value of the activation energy E when we assume the
temperature is 300K?

10.1.4 Order of reaction and reaction mechanism

The dependency of the reaction rate on composition, f in (10.8), is determined by the
reaction mechanism. For example, for a first-order irreversible reaction

A → B

the reaction rate (with elementary kinetics) is

r = kcA [mol/m
3
, s]

That is, f = cA, where cA [mol/m3] is the concentration of A. In this case, the reaction
rate constant k has unit [1/s]. For a second-order irreversible reaction

2A → B

we have (with elementary kinetics)

r = kc2
A [mol/m3, s]

where the reaction rate constant k has unit [m3/mol A, s].
By “elementary kinetics” we mean that the reaction equation tells what actually

happens, so that all the components given in the reaction need to come together
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(collide) simultaneously for the reaction to occur. The likelihood for a collision is found
by multiplying the concentrations of the components, as given by the stoichiometry.
For example, for the forward reaction A + 2B → C the reaction rate with elementary
kinetics is r = kcAc2

B.
By the term “reaction order,” we mean the power to which the concentration is

raised in the expression for f . Consider, for example, the reaction

A → B

with reaction rate
r = kcα

A

Here, α is the reaction order. With α = 0, we have a zeroth order reaction and
the reaction rate is independent of concentration cA. Correspondingly, a first-order
reaction has α = 1, and a second-order reaction has α = 2. The reaction A + 2B → C
with

r = kcAc2
B

is said to be first-order with respect to A and second-order with respect to B, and the
overall reaction order is 1+2 = 3. Note that the order does not need to be an integer.

For a reversible reaction, we also need to consider the reverse reaction. For
example, for the reaction

2A ⇋ B

the reaction rate can be given by

r = k1c
2
A − k2cB

For gas phase reactions, partial pressure rather than concentration is usually used.
For example, for the gas phase reaction A + B → C, we may write

r = kpApB

where pi [bar] is the partial pressure of component i and k here has unit [mol A/m3,
s bar2].

More generally, instead of concentration or partial pressure, the activity a of the
components is used in the reaction rate, that is, we write r = k(T ) · f(ai).

For cases with elementary reaction kinetics the stoichiometric coefficients
appear directly as exponents in the rate expressions. For example, for the gas phase
reaction

aA + bB ⇌ cC + dD

with elementary reaction kinetics we have

r = k1p
a
Apb

B − k2p
c
Cpd

D

However, in general, the reaction mechanisms are not so simple. For example, for a
heterogeneous catalytic reaction, the rate is often proportional to the fraction θ of
active surface sites occupied (Langmuir kinetics). Here, θ cannot exceed 1 and the
resulting reaction rates are in the form (for example, for the reaction A + B → P )

r = kθAθB = k
bApA · bBpB

(1 + bApA + bBpB + bCpC)2
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In addition, other factors may be important and affect the resulting reaction rate
expression, for example, “resistance” related to diffusion of the components. The
reaction rate and the reaction order are normally determined empirically, based on
experimental data (see also page 267).

Example 10.1 Kinetics for ammonia synthesis. Consider the gas phase reaction for
formation of ammonia over iron catalyst,

N2 + 3H2 ⇌ 2NH3

If we assume elementary kinetics, we would get r = k1pN2p
3
H2

− k2p
2
NH3

, but experimentally
it has been found that the kinetics are better described using the Temkin-Pyzhev equation,

r = k1
pN2p

1.5
H2

pNH3

− k2
pNH3

p1.5
H2

(10.11)

10.1.5 Consistency between kinetics and thermodynamics

If a reaction runs for a sufficiently long time (for example, if we leave a batch system
to itself, or use a sufficiently large reactor for a continuous process), then we will
reach the state of chemical equilibrium where the net reaction rate is zero, r = 0. For
example, consider the reaction

aA + bB ⇌ cC + dD (10.12)

and assume that the reaction rate depends only on the components that appear in the
reaction,

r = k1f1(aA, aB, aC , aD) − k2f2(aA, aB, aC , aD) (10.13)

(where a is the activity, and k1 and k2 are reaction rate constants). At equilibrium,
we have r = 0 and we derive

k1

k2
=

f2(aA, aB, aC , aD)

f1(aA, aB, aC , aD)
(10.14)

However, chemical equilibrium is also ruled by thermodynamics, and from (B.46)
(page 386) we must at equilibrium have that

K =
ac

C · ad
D

aa
A · ab

B

(10.15)

where K is the thermodynamic equilibrium constant, which depends on temperature
only. In order to have consistency between (10.14) and (10.15), we must have

k1

k2
= K (10.16)

and also
f2(aA, aB, aC , aD)

f1(aA, aB, aC , aD)
=

ac
C · ad

D

aa
A · ab

B

(10.17)
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This line of thinking led Guldberg and Waage in 1864 to propose the law of mass
actions. They postulated (10.17) by assuming elementary reactions, and then from
(10.14) derived the thermodynamic equilibrium condition (10.15).

Example 10.1 continued. For the reaction for formation of ammonia, (10.11), we have
at equilibrium:

r = 0 ⇒ k1

k2
=

f2

f1
=

pNH3/p1.5
H2

pN2p1.5
H2

/pNH3

=
p2

NH3

pN2p3
H2

For ideal gas, we have that ai = pi/p⊖ (where p⊖=1 bar) and we see the reaction rate (10.11)

for ammonia satisfies (10.17).

It is also necessary to have consistency between the activation energy and the heat
of reaction ∆rH

⊖(T ). If we assume Arrhenius temperature dependency

k1 = A1e
−E1/RT ; k2 = A2e

−E2/RT

then k1/k2 = K in (10.15) dictates the following relationship

E1 − E2 = ∆rH
⊖(T ) (10.18)

Proof: k1/k2 = K gives lnk1 − ln k2 = ln K. Differentiating with respect to temperature gives

d lnk1/dT −d lnk2/dT = d ln K/dT . Here, d ln k1/dT = E1/RT 2, d ln k2/dT = E2/RT 2 (Arrhenius),

and from thermodynamics, see (B.53), d ln K/dT = ∆rH⊖/RT 2, and we derive E1 − E2 = ∆rH⊖.

Example 10.2 For an exothermic reaction with ∆rH
⊖ = −80 kJ/mol and E1 = 40 kJ/mol,

we need, for the reverse reaction, to have that E2 = 40 kJ/mol −(−80) kJ/mol = 120 kJ/mol.

Remark 1 The derived relationships (10.16)–(10.18) between thermodynamics and kinetics
only apply if we assume that the kinetics can be expressed using the components that are
included in the reaction. In particular, this applies to elementary reactions. However, for more
complex reactions schemes, for example, an equilibrium reaction A ⇌ B that takes place over
several steps, A ⇌ Q ⇌ B, the intermediate component Q is included in the kinetics, but
not in the thermodynamic relationship for A ⇌ B. Thus, the derived relationships (10.16)-
(10.18) apply to individual reactions, but not to the overall reaction (unless one is able to
eliminate Q from the kinetics – which is normally not possible).

Remark 2 Since the equilibrium constant K is always finite, there are strictly speaking no
“irreversible” reactions (without a reverse reaction, that is, with k2 = 0), but in practice
many reactions are shifted to the left or they are slow such that we never achieve equilibrium
and there is then little purpose in including the reverse reaction.

10.1.6 Catalysis

A catalyst is a component that is not included in the overall reaction’s stoichiometry
(and is therefore not consumed in the reaction), but which nevertheless increases the
reaction rate r. This usually occurs because the catalyst lowers the activation energy
E of the reaction.

A well-known example from everyday life is the catalyst used to “clean” the exhaust
gas of a car. This catalyst contains both platinum and rhodium. Platinum is the
active component for the oxidation CO + 0.5O2 → CO2, while rhodium is the active
component for the reduction 2NO → N2 + O2.

Most industrially important reactions take place using catalysts:
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• Ammonia: The synthesis step where ammonia is formed from nitrogen and hydrogen
uses an iron catalyst.

• Methanol: The synthesis step where methanol is formed from CO and hydrogen uses
a catalyst where the most important active component is copper.

• Formaldehyde: The reaction where formaldehyde is formed from methanol and
oxygen may use a silver catalyst (silver net).

• Nitric acid: The reaction where ammonia reacts with oxygen and forms NO uses a
platinum catalyst (platinum net).

In all of the above reactions, including the car catalyst, the reactants and products
are in gas phase, while the catalyst is in solid phase. The reaction takes place on
“active” sites on the catalyst’s surface. This is called heterogeneous catalysis
because the catalyst and the reactant/product are in different phases. This is often
very practical because there is then no problem with separating the catalyst from the
product. There are also many industrial examples of homogeneous catalysis, where
the catalyst is in the same phase (gas or liquid) as the reactant. Examples are acids or
bases that catalyze many liquid-phase reactions. In biological reactions, enzymes act
as catalysts. These are large molecules with molar mass over 6000 g/mol that usually
have a three-dimensional structure, which favor certain molecules and hinder others.

Some reactions are autocatalytic. This occurs when the forward reaction rate
depends on one of the products. For example, we may for the overall reaction A → B,
have a reaction rate r = kcAcB. The reason for this may be that the “actual” reaction
is A + B → 2B. An important example of autocatalysis is the biochemical reaction
for growth of cells, where B is the cell mass. For an autocatalytic reaction, one needs
some product to initiate the reaction, and autocatalytic reactions “strange” behavior,
for example, the reaction rate increases with conversion, whereas the opposite is the
case for normal reactions.

10.2 Reactor calculations and reactor design

Here, we formulate the component mass balance for several reactor types: (1) batch
reactor, (2) continuous stirred tank reactor (CSTR) and (3) continuous plug flow
reactor. The resulting equations can be used for analyzing what takes place in a given
reactor (simulation), or for calculating the necessary reactor volume (design). We
assume isothermal conditions in this chapter, which means we do not need the energy
balance.

It is important to emphasize that there is actually nothing new in the section –
we just formulate the mass balances and introduce the reaction rate r. Let us first
consider a simple example that generalizes the reactor types (1) and (2) mentioned
above.

Example 10.3 Consider the reaction A → 2B and assume the reaction rate is r = kcA

[mol/m3, s]. From the stoichiometry, rA = (−1)r and rB = 2r, see (10.2), and from the
general dynamic balance equation (2.8), the component mass balances for a reactor with
volume V and perfect mixing become

dnA

dt
= ṅA,in − ṅA,out + (−1)rV [mol A/s]
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dnB

dt
= ṅB,in − ṅB,out + 2rV [mol B/s]

Let us now concentrate on component A. We consider two special cases:

1. Closed reactor (batch reactor; “beaker”). Here

ṅA,in = 0; ṅA,out = 0

and the mass balance is
dnA

dt
= rAV (10.19)

2. Steady-state continuous stirred tank reactor (CSTR). Here

dnA

dt
= 0

and if we introduce the standard notation ṅA = ṅA,out and ṅA0 = ṅA,in, the mass balance
is

ṅA = ṅA0 + rAV (10.20)

Introducing the conversion XA. Below, we consider the simplified case with only
one reaction, and it is sufficient to formulate the balance for reactant A. For practical
calculations, it is useful to introduce the conversion XA of component A. From (3.9),
we then have for a batch reactor and a continuous steady-state reactor (but not for
the general case in Example 10.3):

nA = nA0(1 − XA) (10.21)

where nA0 and nA [mol A or mol A/s] are the amounts of A in the reactor feed and
product, respectively (in the continuous case, we sometimes use dots for nA to show
more clearly that it is a rate [mol A/s]). For calculations, we also need to express rA

as a function of XA, and next are some examples that show how this can be done.

Example 10.4 Consider a reaction A → P with reaction rate r = −rA = kcA that takes
place in a reactor with constant volume V . Task: Determine the function rA(XA).

Solution. Introducing cA = nA/V in (10.21) we get cA = cA0(1 − XA), and we derive

−rA = kcA0(1 − XA) (10.22)

Here, we have assumed that the volume V is constant, but more generally, one uses V (XA).

Example 10.5 Consider a reaction A+B → P with reaction rate r = −rA = kcAcB. Task:
Determine the function rA(XA).

Solution. Assuming constant volume, we have from (10.21) that cA = cA0(1 − XA), and
from the stoichiometry cB = cB0 − cA0XA, that is, we find

−rA = kcA0cB0

„

1 − (1 +
cA0

cB0
)XA +

cA0

cB0
X2

A

«
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Figure 10.2: Continuous stirred tank reactor (CSTR)

10.2.1 Ideal continuously stirred tank reactor (CSTR)

Let us consider a continuously stirred tank reactor (CSTR) with perfect (ideal) mixing
(see Figure 10.2). Note that the term “ideal continuously stirred tank” means that
the stirring is perfect (ideal mixing); it does not have anything to do with the
thermodynamic assumption of “ideal mixture.” The CSTR reactor is well known
in industry and is an important idealized reactor type. We assume steady-state
conditions, that is, there is no accumulation in the system. The mass balance then is
“Out = In + Generated,” which for component A becomes

ṅA = ṅA0 + rAV [mol A/s] (10.23)

This simple mass balance is called the “design equation” for a CSTR. The equation
can be solved with respect to the volume,

V =
ṅA0 − ṅA

−rA
(10.24)

We can alternatively introduce the conversion from (10.21) and get

V = ṅA0
XA

(−rA)
[m3] (10.25)

Note that we have assumed perfect mixing. This means that the concentration is the
same throughout the reactor and that the concentration in the outlet stream, cA, is
the same as the concentration in the reactor.

10.2.2 Batch reactor

Let us here consider a batch reactor with no inflow or outflow (closed system) (see
Figure 10.3). A well known example is a reaction in a beaker. The component mass
balance for a closed system is, also see (2.8),

d

dt
Inventory = (Net) formed in reactions

︸ ︷︷ ︸

Per unit of time

[mol A/s] (10.26)
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Figure 10.3: Batch reactor (reaction in a beaker)

For component A, the inventory is nA [mol A], and if we assume perfect mixing, then
the amount generated in the reaction is GA = rAV [mol A /s]. We get

dnA

dt
= rAV [mol A/s] (10.27)

This simple mass balance is called design equation for a batch reactor in differential
form, and no assumption of constant volume is made. We can introduce the conversion
XA, using nA = nA0(1 − XA), and since nA0 is constant, the mass balance (10.27)
then gives nA0d(XA)/dt = −rAV . Separation of variables gives

dt = nA0 ·
dXA

−rA · V
and integrating from the time t = 0, where XA = 0, to time t, gives the reaction time
for a batch reactor

t = nA0

∫ XA(t)

0

dXA

−rA · V [s] (10.28)

This is the design equation for a batch reactor in integrated form.
By introducing the concentration cA = nA/V [mol A/m3], we can write component

balance (10.27) in the form d(cAV )/dt = rAV . Assuming constant volume, we get
for a batch reactor

dcA

dt
= rA [mol A/s m

3
] (10.29)

The use of (10.29) to compute the concentration cA as a function of time for various
reaction orders is shown in Chapter 10.2.5 (page 267).

Remark. Warning (and a kick to chemistry teachers). In most chemistry and physical
chemistry textbooks, (10.29) is used to define the reaction rate rA, but this is completely
wrong – see (10.1) for the correct definition. As derived above, (10.29) is the component
balance for a batch reactor with constant volume (which indeed is the type of reactors
chemists mostly work with), and it is only in this case that rA = dcA/dt. For other reactor
types, completely different expressions apply; for example, for a steady state continuous
stirred tank reactor, we have dcA/dt = 0, and if we used (10.29) as the definition of the
reaction rate, this would give rA = 0 (which of course is wrong), whereas the correct answer
from (10.23) is rA = (nA − nA0)/V .
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10.2.3 Plug flow reactor (PFR)

V

Figure 10.4: Plug flow reactor consisting of many small volume elements

Consider a reactor shaped in the form of a long pipe and assume that the mass
moves as a plug (without backmixing) through the reactor (see Figure 10.4). This is
called a tubular reactor and the idealized case without backmixing is called a plug
flow reactor (PFR).

We can imagine that the reactor is divided into a large (infinite) number of small
volumes dV . Within each of these small volumes we can assume perfect mixing (as for
a CSTR), and the component mass balance over a small volume is (see Figure 10.4
and note that x is reactor length, and not conversion X)

Mol A in : ṅA

Mol A out : ṅA + dṅA

Mol A generated : rA · dV

The mass balance “Out = In + Generated” then gives

dṅA = rAdV [mol A/s] (10.30)

which is called the design equation in differential form for a PFR. Introducing the
conversion from (10.21), ṅA = ṅA0(1 − XA), gives upon differentiation dṅA =
−ṅA0dXA, and (10.30) becomes −ṅA0dXA = rAdV . Separating variables gives

dV = ṅA0dXA/(−rA)

Integration from the inlet, where V = 0 and XA = 0, to the exit with volume V , gives

(note that V =
∫ V

0
dV ):

V = ṅA0

∫ XA

0

dXA

−rA
(10.31)

which is called the design equation for a PFR in integral form.

10.2.4 Comparison of reactor types

Here, we use the mass balance equations derived above to calculate the required reactor
volume to obtain a given conversion. We start with an example where we compare the
two idealized continuous reactor types, CSTR and PFR.
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Example 10.6 Calculation of reactor volume for CSTR and PFR. Consider a first-
order reaction A → B with reaction rate r = −rA = kcA. We assume that the reaction
temperature is constant (isothermal), and at this temperature the reaction rate constant is
k = 0.036s−1. The volumetric feed flow rate is V̇0 l/s and has concentration cA0 = 5.5 mol/l.
The desired conversion in the reactor is XA = 0.8. Calculate the required volume for (a) a
CSTR and (b) a plug flow reactor (PFR).

Solution. For this first-order reaction, we have from (10.22) that

−rA = kcA = kcA0(1 − XA)

Furthermore, the feed flow rate of component A is

ṅA0 = cA0V̇0

(a) Stirred tank reactor. From the “design equation” (10.25) (that is, the component
balance) for a CSTR, we have

V =
ṅA0XA

−rA
=

cA0V̇0XA

kcA0(1 − XA)
=

V̇0

k

XA

(1 − XA)
(10.32)

We note that the feed concentration cA0 drops out for the case with a first-order reaction in
a CSTR. With numbers inserted, we then get

V =
4l/s

0.036 s−1
· 0.8

1 − 0.8
= 444 l

(b) Plug flow reactor. From the integral form “design equation” (10.31) (that is, the
integrated mass balance) for a PFR, we have

V = ṅA0

Z XA

0

dXA

−rA
=

ṅA0

cA0

Z XA

0

dXA

k(1 − XA)
= V̇0

Z XA

0

dXA

k(1 − XA)

This can be integrated analytically using
R

dx/(1 − x) = − ln(1 − x), and we get

V =
V̇0

k
ln

1

1 − XA
(10.33)

We see again that the feed concentration drops out. With numbers inserted, we get

V =
4 l/s

0.036 s−1
· ln 5 = 178 l

which is significantly smaller than for a CSTR.

Plug flow reactor versus CSTR

In the above simple example, the integral for PFR could be solved analytically, but
for other cases it is often simpler and more instructive with a graphical solution where
we plot 1

−rA
as function of XA (Levenspiel plot). From Figure 10.5 we see that a PFR

is better than a CSTR as long as 1
−rA

increases when XA increases, that is, as long
as the reaction rate −rA decreases when the conversion XA increases. This gives the
following rule:
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Conversion Conversion

Figure 10.5: Graphical determination of reactor volume (Levenspiel plot)

For an isothermal reactor with one reaction, a plug flow reactor (PFR)
requires a smaller reactor volume than a continuous stirred tank reactor
(CSTR) if the reaction rate decreases with increasing conversion, that is,
as long as the reaction order is positive.

This is also easy to understand: With a positive reaction order, the reaction goes
faster when the concentration of the reactants is high. It is then unfavorable with a
continuous stirred tank reactor where the feed is mixed directly into the reactor such
that all of the reaction takes place at the “low” exit concentration.

For reactions with negative reaction order, for example, an autocatalytic reaction
(for example, biological cell growth), a CSTR is better than a PFR.

For cases with several reactions, a CSTR reactor can be more favorable than a
PFR even for “normal” reactions with positive reaction order. For example, if the
main reaction is of first order (r1 = k1cA) and we have a second-order undesired side
reaction (r2 = k2c

2
A), then it is favorable for the selectivity to keep cA low (since

r1/r2 = k1k2c
−1
A has negative “order”).

All the discussion in this section is for isothermal reactions. For an adiabatic reactor
with exothermic reaction and a “cold” feed, a CSTR may be better because the
reaction is faster at high temperature. The reaction may have difficulties “getting
started” in a plug flow reactor since the feed is cold, while on the other hand, in a
CSTR the feed is mixed directly into the hot reactor. In practice, this problem is
solved for the plug flow reactor by using the hot product stream from the reactor to
pre-heat the feed (for example, see Figure 4.15, page 121).

Similarity between plug flow reactor and CSTR

From the derivation of the design equations for a plug flow reactor, note that n identical
continuous stirred tank reactors (CSTR) in series, each with volume V/n, will behave
like a PFR reactor with volume V when n → ∞.
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Similarity between batch reactor and plug flow reactor

By introducing ṅA0 = cA0V̇0, where V̇0 [m3/s] is the feed flow to the reactor, into the
integrated design equation (10.31) for the plug flow reactor, we find that the required
residence time in the PFR is

τ0 =
V

V̇0

= cA0

∫ XA

0

dXA

−rA
(10.34)

Compare this with the required batch reaction time t in (10.28), which, with constant
reactor volume V , becomes

t = cA0

∫ XA(t)

0

dXA

−rA
(10.35)

where cA0 = nA0/V is the feed concentration (when the reaction starts). We see that
(10.34) and (10.35) are identical, that is, the required residence time τ0 in a plug
flow reactor is the same as the reaction time t in a batch reactor. Intuitively, this is
reasonable, as a small volume element (plug) that moves through a plug flow reactor,
is like a small batch reactor with the same reaction time.

This can also be seen by comparing the mass balance equations for the batch reactor
in (10.27) and the plug flow reactor in (10.30). They are identical if we introduce, in
the latter, dx = dV/V , where x is the non-dimensional reactor length from 0 to 1:

dnA

dt
= rAV and

dṅA

dx
= rAV [mol A/s]

10.2.5 Finding the reaction order and rate constant

0th order 1st order 2nd order

Time    Time    Time

Figure 10.6: Experimental determination of the reaction rate constant k

Here, we show how to determine the reaction order α and the reaction rate constant k
based on experimental concentration data from an isothermal batch reactor (“reaction
in beaker”). If we only have one reaction (A → product) and assume constant volume,
the mass balance for component A in a batch reactor becomes, see (10.29),

dcA

dt
= rA [mol A/s m3] (10.36)
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Let us assume the reaction rate can be written in the following simple form

−rA = kcα
A (10.37)

where k is constant. We have several cases for the reaction order α:

1. α = 0 (0th order reaction). Then dcA/dt = −k or dcA = −kdt, which, when
integrated from cA0 at time 0 to cA at time t, gives

cA = cA0 − kt (10.38)

That is, for a 0th order reaction, we get a straight line with slope −k if we plot cA

against time (see Figure 10.6).
2. α = 1 (1st order reaction). Then dcA/dt = −kcA or dcA

cA
= −kdt, which, when

integrated from cA0 at time 0 to cA at time t, gives ln cA

cA0
= −kt, or

ln cA = ln cA0 − kt (10.39)

That is, for a 1st order reaction, we get a straight line with slope −k if we plot
ln cA against time (see Figure 10.6).

3. α = 2 (2nd order reaction). Then dcA/dt = −kc2
A or dcA

c2
A

= −kdt, which, when

integrated from cA0 at time 0 to cA at time t, gives

1

cA
=

1

cA0
+ kt (10.40)

That is, for a 2nd order reaction we get a straight line with slope k if we plot 1/cA

against time (see Figure 10.6).
4. More generally, for a reaction order α 6= 1, we have dcA/dt = −kcα

A or dcA/cα
A =

−kdt, which, when integrated from cA0 at time 0 to cA at time t, gives1

c
(1−α)
A = c

(1−α)
A0 + (α − 1)kt (10.41)

That is, for a reaction of order α 6= 1, we get a straight line with slope (α − 1)k if
we plot c1−α

A against time. Thus, by raising cA to different powers and checking if
we get a straight line as a function of t, the order α can be determined, even for
cases where α is not an integer.

The method described above for determining the reaction order is called the
“integral method.” The main assumption is that the reaction rate can be written
in the form −rA = kcα

A in (10.37) where k is constant. In addition to isothermal
reaction conditions, this requires that either (1) only one reactant (component A) is
included in the kinetics, or (2) we have cA0 = cB0 for the reaction A+ B → products,
or (3) the other components that effect the reaction kinetics (and enter into the rate
expression) are available in such large quantities that their concentrations do not vary
with time.

If these conditions are not satisfied, then it is recommended to formulate (guess) a
rate expression (−rA), and to compute (estimate) the parameters in the rate equation

1 Use
R

xndx = 1
n+1

xn+1, i.e., (set n = −α)
R

1
xα dx = −1

α−1
x−α+1.
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using numerical regression. Consider, for example, the reaction A+B → P and assume
that the reaction rate is r = −rA = kcα

Acβ
B. At a given temperature, there are three

unknown parameters: k, α and β. They can be obtained numerically by seeking the
values that give the smallest deviation between measured and calculated values for,
for example, cA(t) and cB(t).

Half time. The half time in a batch reactor is when cA(t1/2) = cA0/2 for the
reactant A. An alternative method for finding the reaction order is to consider
the relationship between the half time and initial concentration cA0. With our rate
expression −rA = kcα

A we derive (α 6= 1):

t1/2 =
c1−α
A0

(
0.51−α − 1

)

k(1 − α)
(10.42)

We note that the half time increases with cA0 for α < 1, and decreases with cA0 for
α > 1. For a first-order reaction (α = 1), we derive

t1/2 = ln 2/k (10.43)

which is independent of cA0. Alternatively, if the reaction order is known, we may use
these expressions for the half time to find the rate constant k.

Exercise 10.2 Derive the formula (10.42) for t1/2.

10.2.6 Choice of reaction conditions

The optimal choice of reaction conditions depends on many factors, including the
reaction kinetics, thermodynamics (heat of reaction and equilibrium conditions),
reactor type, costs for separation and recycle, and so on. We do not consider all
of them here but give some simple guidelines for the optimal choice of temperature
and pressure in the reactor.

Pressure. Let us first consider the pressure in a gas phase reactor (or possibly the
concentration in a liquid phase reactor). High reaction rates (and reduction of reactor
volume) are favored by high pressure. However, if the reaction is close to equilibrium,
then the reverse reaction may be important and it is not obvious that a high pressure is
favorable. According to Le Chatelier’s principle, reversible reactions with mole number
reduction (for example, N2 + 3H2 = 2NH3) are favored by high pressure, while
reversible reactions with mole number increase (for example, CH4+H2O = CO+3H2)
are favored by low pressure.

Temperature and conversion. A high temperature increases the reaction rates,
which results in a reduction in the required reactor volume. However, a high reaction
temperature does not necessarily give a high conversion, because of equilibrium
(thermodynamic) limitations. In fact, according to Le Chatelier’s principle, the
equilibrium conversion for exothermic reactions (for example, N2 +3H2 = 2NH3 with
∆rH

⊖(298) = −92 kJ/mol) is favored by low temperature, whereas it for reversible
endothermic reactions (for example, CH4+H2O = CO+3H2 with ∆rH

⊖(298) = +206
kJ/mol) is favored by high temperature.

Temperature and heat integration. Another issue is heat integration. Normally,
we need to supply heat for an endothermic reaction and remove heat (cool) for
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an exothermic reaction. In general, heat is more valuable at high temperature (as
expressed, for example, by the Carnot factor). Therefore, in order to extract “high-
grade” (high-temperature) heat from an exothermic reaction, the reaction should take
place at high temperature (which by the way is the opposite of what is favored
by the equilibrium). Correspondingly, in order to be able to use “low-grade” (low-
temperature) heat for an endothermic reaction, the reaction should take place at low
temperature (which again is the opposite of what is favored by the equilibrium).

Other factors. However, there are many other factors to consider. The most
important is often side reactions which result in formation for byproducts. The reaction
conditions are often chosen to suppress side reactions, and this can drastically change
the above recommendations. The optimal reaction conditions are determined from
a trade-off between these conflicting factors, and should generally be based on an
economic criterion.

Exercises

Exercise 10.3 ∗ An irreversible liquid-phase reaction A → P with reaction rate (−rA) = kcA

takes place in an isothermal ideal continuous stirred tank reactor (CSTR). The density of the
liquid can be assumed constant. The volumetric feed rate is 0.1 m3/min, cA0 = 10 mol/m3

and the reactor volume is 1m3. The temperature is 50 oC and the reaction rate constant at
this temperature is 0.003 s−1.

(a) What is the conversion in the reactor?
(b) The reaction is instead performed in an isothermal plug flow reactor (PFR) with volume

1 m3. What is the conversion now?

Exercise 10.4 A liquid-phase reaction A → P is performed in an isothermal ideal
continuous stirred tank reactor (CSTR). The reaction rate is (−rA) = kcA. The reaction
rate constant is given at two temperatures: k = 0.015 s−1 (50 oC) and k = 0.024 s−1 (60 oC).
The reaction takes place with surplus solvent such that the density can be assumed constant.
The volumetric feed rate is 72m3/h and cA0 = 10 mol/m3.

(a) Formulate the mass balance for component B.
(b) The reaction is performed at 65 oC. What reactor volume is needed to achieve a

conversion of 94% ?
(c) The reaction is endothermic and the reactor’s heat supply is lost due to an error such

that the temperature drops to 35 oC. What is the conversion now?

Exercise 10.5 ∗ Component A dimerizes in an irreversible liquid-phase reaction 2A → P
with reaction rate rP = kc2

A. The reaction takes place in a continuous stirred tank reactor
(CSTR). The volumetric feed rate is 0.1 m3/s and cA0 = 2 mol/l. The rate constant at 363
K is k = 0.0003 l/mol s. The activation energy is E = 96 kJ/mol.

(a) The reactor operates at 386 K. Find the rate constant at this temperature.
(b) Formulate the mass balance for component A.
(c) Given that the conversion of A is 66%, what is the reactor volume?
(d) Will the conversion increase if you replace the CSTR reactor with a plug flow reactor

(PFR) with the same volume (give your reasons)?

Exercise 10.6 ∗ (a) The irreversible liquid-phase reaction A → P with reaction rate −rA =
kcA takes place in an isothermal batch reactor with constant volume. After five minutes, the
conversion of A is 30%. How long does it take before the conversion is 50%?



CHEMICAL REACTION ENGINEERING 271

Data: T = 323 K, cA0 = 1 mol/l, Vbatch = 100l.
(b) The reaction is instead performed in a plug flow reactor (PFR) with volume 1 m3 and

feed rate 0.1 m3/min. What is the conversion now?

Exercise 10.7 The wastewater from a plant contains a harmful substance G, which is
removed by converting it chemically to the harmless substance H. You have studied the reaction
in an ideal batch reactor at 50 o and have obtained the following data:

time (min) cG [mol/m3]

0 13.53
18 7.73
36 4.40
54 2.47
72 1.39
90 0.77
108 0.44
126 0.25

The reactor volume and density can be assumed constant.

(a) Determine the reaction order and rate constant k at 50 oC, k50.
(b) Given that the activation energy for the reaction is 100 kJ/mol: What is the reaction

rate constant at 33 oC, k33?
(c) Industrially, the reaction is performed in a CSTR at 33 oC. 1 m3/h wastewater

containing 10 mol/m3 of the substance G is treated. The authorities require that the outlet
concentration of G must not exceed 1 mol/m3. How large must the reactor be to meet the
requirement?

(d) The factory is expanded, and the amount of wastewater that must be treated is doubled
(the inlet concentration of G is still 10 mol/m3). The permit from the authorities, however,
does not allow one to increase the total discharge of G (that is, we have to reduce the exit
concentration from 1 to 0.5 mol/m3). Suggest two alternative solutions for obtaining sufficient
treating capacity. Discuss (please include calculations) which solution you would choose.
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Process dynamics

In a dynamic system, the values of the variables change with time, and in this chapter

we quantify the well-known fact that “things take time.” We also consider dynamic

modeling, dynamic responses (analysis), dynamic simulation (numerical calculation) and

process control.

11.1 Introduction

Some reasons for considering a system’s dynamics and obtaining dynamic models are:

1. To describe the time behavior of a batch process.
2. To describe the transient response of a continuous process (e.g., dynamic change

from one steady state to another).
3. To understand the dynamics of the process (analysis), for example, as expressed by

the time constant.
4. To develop a “training simulator” for operator training.
5. For “what occurs if” studies, for example, as a tool in a HAZOP analysis (“what

happens if this valve is closed?”).
6. For optimization and control (control structure, tuning of controllers, model-based

control).

Note that when it comes to dynamics, there is no difference between a model for a
batch process a continuous process.

The dynamic models we consider in this chapter are given in the form of differential
equations,

dy

dt
= f(y, u) (11.1)

where u is the independent variable and y the dependent variable, as seen from a
cause-and-effect relationship. With a dynamic model, it is possible, given the system’s
initial state (y(t0) = y0) and given the value of all of the independent variables (u(t)
for t > t0), to compute (“simulate”) the value of the dependent variables as a function
of time (y(t) for t > t0).

Up to now, we have studied steady-state behavior, where time t was not a variable.
The steady-state model f(y, u) = 0 gives the relationship between the variables u and
y for the special case when dy/dt = 0 (“the system is at rest”).

The basis for a dynamic model can be
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1. Fundamental: From balance equations + physics/chemistry; see the next section
2. Empirical (regression-based): From experimental data (measurements)

Often we use a combination, where the parameters of a fundamental model are
obtained from experimental measurement data.

Comment on notation. The dot notation (Ẋ) is used other places in this book
to indicate rate variables (e.g., ṁ [kg/s] denotes the mass flow rate). However, in
other fields and books, particularly in control engineering, the dot notation indicates
time derivative (that is ṁ ≡ dm/dt). Since we work, in this chapter, with both
time derivatives and rates, we here choose to avoid the dot notation altogether. The
following special symbols are instead used for rates (amount of stream per unit of
time):

• Molar flow rate: F ≡ ṅ [mol/s]
• Mass flow rate: w ≡ ṁ [kg/s]
• Volumetric flow rate: q ≡ V̇ [m3/s]

11.2 Modeling: Dynamic balances

Inventory

Generated OUT
- Lost

Figure 11.1: The balance principle

Here, we show how dynamic models can be derived from the balance equations
for total mass, energy and component mass (mole). This gives, at the same time,
an overview and a review of the material presented in previous chapters. Consider a
system with a well-defined boundary (“control volume”), see Figure 11.1. The starting
point for a fundamental model is the balance equations (see Chapter 2).

Change Inventory
︸ ︷︷ ︸

accumulated in the system

= In − Out
︸ ︷︷ ︸

through the system′s boundary

+ Generated − Loss
︸ ︷︷ ︸

internally in the system

In this chapter, the terms “change,” “in,” “out,” “generated” and “loss” are always
per unit of time. Mathematically, the general balance equation per unit of time is (see
(2.8) on page 42):

dB

dt
= Bin − Bout + Bgenerated − Bloss [

kg

s
,
mol

s
,
J

s
, . . .] (11.2)

Here B is the inventory of the quantity that we are considering (inside the system’s
boundary), dB

dt is the change in the inventory per unit of time, Bin − Bout is net
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supplied through the system’s boundary (with mass flows or through the wall) and
Bgenerated − Bloss is net supplied internally in the system. For conserved quantities
(mass and energy), we have Bgenerated = 0 and Bloss = 0. Component mass (mol) is
not conserved, so we have to include a term for “net generated in chemical reactions,”
which represents the sum of “generated” and “lost.” Similarly, momentum (mechanical
energy) is not conserved and we have to include a friction term.

In principle, the balance equations are easy to formulate, but we need to decide:

1. Which control volume (where do we draw the boundary for the quantity we are
balancing)?

2. Which balance (which quantity are we considering, for example, mass or energy)?

The answer to the last question is typically:

• Interested in mass, volume or pressure: mass balance
• Interested in concentration: component balance
• Interested in temperature: energy balance
• Interested in the interaction between flow and pressure: Mechanical energy balance

(= momentum balance = Bernoulli = Newton’s second law) (in some of the examples
below, we use the static momentum balance where the term for acceleration is
neglected).

11.2.1 Dynamic total mass balance

The total mass balance per unit of time is

dm

dt
= win − wout [kg/s] (11.3)

where m [kg] is the system’s mass (“inventory of mass inside the control volume”),
dm/dt [kg/s] is the change in mass inventory per unit of time and win−wout [kg/s] are
the mass flow rates for for the entering and exiting streams (bulk flow). By introducing
the density, we get

d(ρV )

dt
= ρinqin − ρoutqout [kg/s]

where V [m3] is the system’s volume, qin [m3/s] and qout [m3/s] are the volumetric
flow rates and ρ, ρin and ρout [kg/m3] are the (average) densities.

For liquid-phase systems, it can often be assumed that the density ρ is constant (that
is, ρ = ρin = ρout = constant), and the mass balance becomes a “volume balance”

Constant density :
dV

dt
= qin − qout [m3/s] (11.4)

Quotation marks are here used to show that volume is generally not a conserved
quantity. In practice, it is often the liquid level (or height h [m]) that is of interest.
The relationship between volume and level is V = Ah for a tank with constant cross
section area A [m2], and more generally V =

∫
A(h)dh when A varies with height. We

then get
dV

dt
= A

dh

dt
+ h

∂A

∂h

dh

dt
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where the last term is zero for a constant cross section area A (since ∂A/∂h = 0).
Note that the total number of moles in the system is generally not a conserved

quantity, that is, the total mole balance is

dn

dt
= Fin − Fout + G [mol/s] (11.5)

where G [mol/s] is the net generated number of moles in chemical reactions.

11.2.2 Dynamic component balance

The dynamic component balance can, for an arbitrary component A, be written

dnA

dt
= FA,in − FA,out + GA [mol A/s] (11.6)

(we normally use mole basis, but the component balance can also be written on weight
basis [kg A/s]). Here, nA [mol A] is the inventory (amount) of component A inside
the system’s boundary, FA,in − FA,out [mol A/s] are the molar flow rates of A in the
streams (bulk flow) and GA [mol A/s] is net generated in the chemical reactions. This
can, from (3.7), be calculated from

GA =
∑

j

νA,jξj [mol A/s]

where νA,j is the stoichiometric coefficient for component A in reaction j, and ξj

[mol/s] is the extent of reaction for reaction j. Instead of the extent of reaction, one
can alternatively use the reaction rate, and from (10.7), write

GA =

∫ V

0

∑

j

νA,jrj

︸ ︷︷ ︸

rA

dV [mol A/s] (11.7)

where rj [mol/ m3 s] is the reaction rate for reaction j. Note that we in the dynamic
case usually do not restrict ourselves to independent reactions because this makes
it more difficult to introduce the reaction rate. The reaction rate is a function of
concentration and composition, and generally varies with the position in the reactor
(and therefore the integral in (11.7)).

For example, for a first-order reaction A → B, we can have that

r = k(T )cA [mol A/s m
3
]

Here, we have rA = −r, where the sign is negative because A is consumed in the
reaction and the stoichiometric coefficient is νA = −1. We often assume that the
temperature dependency of the reaction rate constant k follows Arrhenius’ equation

k(T ) = Ae−E/RT

where A is a constant and E [J/mol] is the activation energy. We also introduce

c̄A = nA/V ; cA,in = FA,in/qin; cA,out = FA,out/qout
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where c̄A [mol/m3] is the average concentration of A in the reactor. Similarly, the
average reaction rate is defined r̄A = (

∫
rAdV )/V . Then GA = r̄AV and the

component balance can be written

d(c̄AV )

dt
= cA,inqin − cA,outqout + r̄AV [mol A/s] (11.8)

Here we have used concentration c, but we may alternatively use mole fraction or
weight fraction.

Example 11.1 Ideal continuous stirred tank reactor (CSTR). Here we have perfect
mixing and we do not need to use average values, that is, c̄A = cA and r̄A = rA. Furthermore,
we have that cA,out = cA and the component balance (11.8) is

d(cAV )

dt
= cA,inqin − cAqout + rAV (11.9)

If we, in addition, assume constant density ρ, we can introduce the “volume balance”
(11.4) such that the left side of (11.9) is

d(cAV )

dt
= cA

dV

dt
+ V

dcA

dt
= cA(qin − qout) + V

dcA

dt

The “out term” in (11.9) then drops out and the component balance for a CSTR becomes

V
dcA

dt
= (cA,in − cA)qin + rAV [mol A/s] (11.10)

Note that, with the assumption of constant density, this equation applies even if the reactor
volume V varies.

With a little practice, the balance (11.10) may be set up directly: “The concentration
change in a CSTR is driven by the inflow having a different composition plus the
contribution for chemical reaction.” However, it is generally recommended to start
from equation (11.6).

11.2.3 Dynamic energy balance

The general energy balance (4.10) over a time period ∆t with ∆U = Uf − U0 gives,
as ∆t → 0, the dynamic energy balance:

dU

dt
= Hin − Hout + Q + Ws − pex

dV

dt
[J/s] (11.11)

Here, U [J] is the internal energy for the system (inside the control volume), while
Hin − Hout is the sum of internal energy in the streams plus the flow work that the
streams perform on the system as they are “pushed” in or out of the system. The term
−pex

dV
dt is the work supplied to the system when its volume changes; it is negligible for

most systems. Q [J/s] is supplied heat (through the system’s wall), while Ws [J/s] is
supplied useful mechanical work (usually shaft work, for example, from a compressor,
pump or turbine). Note that there is no term of the kind “heat generated in chemical
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reaction” because the heat of reaction is indirectly included in the internal energy,
and thus in the terms dU/dt, Hin, and Hout.

“Complete” general energy balance. Note that I, as before, have been a bit lazy
when writing the energy balance in the “general” form in (11.11). When necessary,
terms for kinetic and potential energy must be added to U and H , and other work
terms such as electrochemical work Wel must be included. Thus, as stated in the
“energy balance reading rule” on page 4.4:

• Shaft work Ws [J/s] really means Ws + Wel+ other work forms.
• Internal energy U of the system [J] really means E = U + EK + EP + other energy

forms. Here EK is kinetic energy and EP is potential energy of the system.
• Enthalpy H of the in- and outstreams [J/s] really means H + EK + EP + other

energy forms. For a stream, EK = wαv2/2 and EP = wgz, see page 125, where w
[kg/s] is the flow rate.

Energy balance in enthalpy

We usually prefer to work with enthalpy, and introducing U = H − pV in (11.11),
gives

dH

dt
= Hin − Hout + Q + Ws −(pex − p)

dV

dt
+ V

dp

dt
︸ ︷︷ ︸

pressure−volume changes

[J/s] (11.12)

Here, H = mh [J] is the enthalpy of the system (inside the control volume), where m
[kg] is system mass and h [J/kg] is its specific enthalpy.

Comments:

1. The term “pressure-volume changes” in (11.12) and (11.13) is often negligible.

• The term is exactly zero (also for gases) for cases with constant pressure and volume.
• The term is exactly zero (also for gases) for cases where the pressure is constant and

equal to the surrounding’s pressure (p = pex=constant).
• Even with varying pressure, the term is approximately zero for liquids and solids,

because the volume V is relatively small for such systems.

However, the term “pressure-volume changes” can be considerable for gases with varying
pressure, for example, for a gas pipeline.

2. We have dH
dt

= m dh
dt

+h dm
dt

and by introducing the mass balance (11.3), the energy balance
on “mass flow basis” becomes

m
dh

dt
= win(hin − h) − wout(hout − h) + Q + Ws −(pex − p)

dV

dt
+ V

dp

dt
| {z }

pressure−volume changes

[J/s] (11.13)

3. All enthalpies must refer to a common reference state. If we use, for example, the elements
at 298 K and 1 bar as the reference, the enthalpy H (or h) is the sum of (1) chemical
formation energy, (2) “latent” phase transition energy (if the phase differs from the
standard state), (3) thermal energy (“sensitive heat cp”), (4) mixing energy and (5)
pressure-correction energy; see page 364.

4. Enthalpy H(T, p, f, nj) [J/kg] is generally a function of temperature T , pressure p, phase
distribution f (where f is fraction of light phase) and composition (nj). The time derivative
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of the enthalpy in (11.12) can then be written

dH

dt
=

∂H

∂T
|{z}

Cp

dT

dt
+

∂H

∂p

dp

dt
+

∂H

∂f
|{z}

∆trsH

df

dt
+
X

j

∂H

∂nj

dnj

dt
(11.14)

This expression may be useful in some cases, but for numerical calculations it is generally
recommended to work directly with H (or U) as the internal variable (“state”) rather
than T ; see page 316 on solving the resulting differential-algebraic equations (DAE).

11.2.4 Energy balance in temperature

Here, we want to derive a differential equation in temperature, dT/dt = · · ·. This gives
insight and is useful for some calculations. The expressions for dT/dt presented below
depend on the following assumptions:

• The enthalpy’s dependency of pressure is neglected, which is reasonable in most
cases.

• The phase distribution in the system and in each stream does not change, which is
reasonable in most cases.

• The enthalpy’s dependency of composition is neglected, which is reasonable in
many cases, for example, if each stream’s composition is constant (actually, this
assumption is not made for the case with chemical reaction in case III).

This means that the three last terms in (11.14) drop out, and the specific enthalpies
in (11.13) are only a function of temperature, that is,

h(T ) = h(Tref) +

∫ T

Tref

cp(T )dT (11.15)

Here h(Tref) is constant, because the composition and phase distribution is constant.
When we put everything into the energy balance (11.13), the contribution from the
reference-terms (h(Tref), hin(Tref), hout(Tref)) will appear as terms for heat of phase
change (e.g., heat of vaporization) or heat of reaction. Let us next consider three cases.

I. No reaction and no phase transition

For the case with no reaction and no phase transition, the reference-terms drop out
and (11.13) becomes

mcp(T )
dT

dt
= win

Z Tin

T

cp(T )dT − wout

Z Tout

T

cp(T )dT + Q + Ws −(pex − p)
dV

dt
+ V

dp

dt
| {z }

pressure−volume changes

If we, in addition, assume that the heat capacity is constant (independent of
temperature), the energy balance becomes

mcp
dT

dt
= wincp(Tin − T ) − woutcp(Tout − T ) + Q + Ws −(pex − p)

dV

dt
+ V

dp

dt
| {z }

pressure−volume changes

(11.16)

This is further simplified for an ideal stirred tank (CSTR), where we have Tout = T .
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II. With phase transition

Let us consider a somewhat more complex case with phase transition, where we cannot
use (11.16), because the reference terms h(Tref) do not drop out of the energy balance.

Example 11.2 Phase transition: Energy balance for evaporator.

w

w

out

Figure 11.2: Evaporator for water

We consider an evaporator for water as shown in Figure 11.2. We neglect the mass of gas
compared to the mass of liquid in the system (inside the evaporator). The mass balance is

dm

dt
= win − wout [kg/s]

Since we assume only liquid in the tank, we can neglect the terms with “pressure-volume
changes” (even when the pressure varies). We also have no shaft work (Ws = 0). The energy
balance (11.13) then becomes

m
dh

dt
= win(hin − h) − wout(hout − h) + Q [J/s]

The enthalpy h [J/kg] of the liquid in the tank is only a function of temperature (because the
remaining terms in (11.14) can be neglected or are zero). Thus, we have dh/dt = cpLdT/dt,
where we use cpL [J/K kg] with subscript L to indicate that it is a liquid.

The inflow and the mass in the evaporator have the same composition and phase (liquid).
We then have

hin(Tin) − h(T ) =

Z Tin

T

cpL(T )dT [J/kg]

We assume perfect mixing such that T = Tout. Since the outlet stream is in gas phase, we
then get

hout(T ) − h(T ) = ∆vaph(T ) [J/kg]

where ∆vaph(T ) is the heat of vaporization for water at T (which takes into account the change
in reference due to the phase transition). The energy balance (11.13) for the evaporator then
becomes

mcpL(T )
dT

dt
= win

Z Tin

T

cpL(T )dT − wout∆vaph(T ) + Q [J/s] (11.17)

Note that (11.17) also applies when the mass m in the tank varies with time, because the
mass balance dm

dt
= win − wout was used when deriving (11.13).

Comments.
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1. The heat of vaporization is often given at a temperature Tref (for example, at the normal
boiling point at 1 atm). The heat of vaporization at T can then be found by adding the
following subprocesses: (1) Cooling the liquid from T to Tref , (2) evaporation at Tref , and
(3) heating the gas from Tref to T . We then get

∆vaph(T ) = ∆vaph(Tref) +

Z T

Tref

(cpV − cpL)dT

where ∆vaph(Tref) is the heat of vaporization at temperature Tref , and cpV is the heat
capacity of the steam.

2. Temperature and pressure are related by the equilibrium vapor pressure: p = psat(T ) (see
page 180).

With a little practice, it is possible to formulate energy balances of this kind directly:
We imagine “standing in the tank” (the system) and use the temperature and phase
here as the reference. Then we consider what can be the source of changes in the
system’s temperature. In the example with the evaporator, (11.17) can be derived as
follows:

“The temperature change in the tank (left side) is driven by the inflow
having a different temperature than the tank (first term right side), and
by enthalpy being removed by evaporation (second term) and by heat being
supplied (third term).”

The term for the outlet stream drops out since it has the same temperature as the
tank. More generally, it is recommended to start from the basic equations.

Exercise 11.1 Derive the energy balance for a flash tank with inventory n [mol], feed F
[mol/s], vapor product D [mol/s] and liquid product B [mol/s] (make a flow sheet). Show
that it becomes

nCpL
dT

dt
= FCpL(TF − T ) + D · ∆vapH(T )

What are the units for the quantities in the equation? Which assumptions have been made
when deriving this?

III. With chemical reaction

For cases with chemical reaction, it is usually most convenient to use a molar basis. We
return to (11.12) and introduce H(T, p, nj) =

∑

j njH̄m,j(T, p). Here, H̄m,j [J/mol] is
the “partial molar enthalpy” for component j in the mixture. For cases with negligible
heat (enthalpy) of mixing, we have that H̄m,j = Hm,j, where Hm,j is the molar
enthalpy of pure component j in its actual phase. With this as a starting point, let us
derive the general energy balance in terms of temperature (dT/dt) for a continuous
stirred tank reactor (CSTR).

Example 11.3 Energy balance with temperature for CSTR. We consider an ideal
continuous stirred tank reactor (CSTR) where a chemical reaction takes place (Figure 11.3).
Let us, as an example, consider the reaction 2A → B, but the derivation below is general
and applies to any reaction. The reaction rate is r(T, cA) [mol/s m3], and if we take into
consideration the stoichiometry, the component balances are:

dnA

dt
= FA,in − FA,out + νArV

| {z }

GA

[mol A/s]



282 CHEMICAL AND ENERGY PROCESS ENGINEERING

out

out
F

Figure 11.3: Continuous stirred tank reactor (CSTR) with heating

dnB

dt
= FB,in − FB,out + νBrV

| {z }

GB

[mol B/s]

where the stoichiometric coefficients in our example are νA = −2 and νB = 1. We assume
no shaft work and neglect the “pressure-volume contribution.” The energy balance is then

dH

dt
= Hin − Hout + Q [J/s] (11.18)

If we neglect the enthalpy of mixing, the enthalpy can be written

H(T, p, nA, nB) = nAHm,A(T, p) + nBHm,B(T, p) [J]

where Hm,j(T, p) [J/mol] is the molar enthalpy for component j. Here, we choose the elements
in their standard states at 298.15 K and p⊖ = 1 bar as the reference. If we neglect the
pressure’s influence on the enthalpy, we then have

Hm,j(T, p) = H⊖
j (T ) + ∆Htrs [J/mol]

where H⊖
j (T ) = ∆fH

⊖
j (T ) [J/mol] is the standard enthalpy of formation for generating

component i in its standard state at T and 1 bar from the elements at 298 K and 1 bar,
and ∆Htrs is the enthalpy change for the change in reference from the standard state to
actual state (phase). If we assume that there is no phase change, we can then write

H = nAH⊖
A (T ) + nBH⊖

B (T ) [J]

Hin = FA,inH⊖
A (Tin) + FB,inH⊖

B (Tin) [J/s]

Hout = FA,outH
⊖
A (Tout) + FB,outH

⊖
B (Tout) [J/s]

Inserting into the energy balance (11.18) gives

nA

Cp,m,A(T )
z }| {

dH⊖
A (T )

dT

dT

dt
+ nB

Cp,m,B(T )
z }| {

dH⊖
B (T )

dT

dT

dt
+ H⊖

A (T )
dnA

dT
+ H⊖

B (T )
dnB

dT

= FA,inH⊖
A (Tin) + FB,inH⊖

B (Tin) − FA,outH
⊖
A (Tout) − FB,outH

⊖
B (Tout) + Q

We assume perfect mixing such that T = Tout. By inserting the expressions for dnA/dt and
dnB/dt from the mass balance, and rearranging the terms (a bit of a work is needed here...),
we finally derive the energy balance in “temperature form”:

nCp,m
dT

dt
= Fin

Z Tin

T

Cp,m,in(T )dT +
`
−∆rH

⊖(T )
´
rV + Q (11.19)
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(For cases with many reactions, the term
`
−∆rH

⊖(T )
´
rV is replaced by

P

j

`
−∆rH

⊖
j (T )

´
rjV ).

For our reaction 2A → B, we have

∆rH
⊖(T ) =

X

j

νjH
⊖
j = H⊖

B − 2H⊖
A [J/K mol] (11.20)

Furthermore,

n = nA + nB [mol]

Fin = FA,in + FB,in [mol/s]

and the molar heat capacities for the reactor (system) and feed are

Cp,m =
nA

n
Cp,m,A(T ) +

nB

n
Cp,m,B(T ) [J/K mol]

Cp,m,in(T ) =
FA,in

Fin
Cp,m,A(T ) +

FB,in

Fin
Cp,m,B(T ) [J/K mol]

Let us summarize the assumptions that have been made when deriving (11.19):

1. All streams have the same phase.
2. Perfect mixing such that T = Tout.
3. Heat of mixing is neglected.
4. The pressure’s influence on the enthalpy is neglected.

Note that (11.19) applies to the case with varying composition in the reactor and a varying
amount of n (“holdup”) in the reactor. For a more detailed example with dynamic simulation,
see page 311.

With a little experience, it is again possible to directly formulate the energy balance
(11.19) in temperature form for a continuous stirred tank reactor:

“The temperature change in the reactor (left side) is driven by the
difference between the feed and reactor temperatures (first term left side),
by the heat of reaction (second term) and by the supplied heat (third
term).”

Comments.

1. We note that the “heat of reaction” appears as a separate term when we choose to
write the energy balance in the “temperature form” in (11.19).

2. The energy balance in temperature form (11.19) gives interesting insights and is
useful in many situations. However, it is usually simpler for numerical calculations
(dynamic simulation) to stay with the original form (11.11) or (11.12) with U or
H as the state (differential) variables. See page 316 for solving the resulting DAE
equations.

11.2.5 Steady-state balances

The dynamic balances derived above are all in the form dy/dt = f(y, u). We usually
assume that the system is initially “at rest” (steady-state) with dy/dt = 0. The steady-
state (nominal) values for u and y are here indicated by using superscript ∗, and we
have that f(y∗, u∗) = 0.
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11.3 Dynamic analysis and time response

steady state

dynamic

steady state

time

Figure 11.4: Dynamic response in output y to step change in input u

We want to understand what happens when we get an imbalance from the steady-
state, such that the system’s states change with time. For this purpose, let us consider
the following incident (see Figure 11.4):

1. The system is initially “at rest” (steady state).
2. A change in one of the system’s independent variables (”input” u) occurs, for

example, a change in external conditions or a parameter change, such that we get
an imbalance and the system’s dependent variables (states and “outputs” y) change
with time.

3. After a while (actually when t → ∞), the system will eventually approach a new
equilibrium state, where it is again “at rest” (new steady state).

Some examples are

• If we, on a winter’s day, turn on more heat in a room, the temperature will start
rising. The change is largest in the beginning, and “eventually” the temperature
will approach a new steady state value (where again the system is at rest).

• If we push the accelerator (“gas”) pedal of a car, then the car’s speed will increase.
The change is largest in the beginning, and “eventually” the speed will reach a new
steady-state value (where again there is a balance between the forward force from
the engine and the resistance force from the air).

• In a chemical reactor we have a continuous supply of reactant. If we increase
(“disturb”) the concentration of the reactant, the product concentration will also
increase. The change is largest in the beginning, and “eventually” the product
concentration will approach a new steady state value.

In all these cases, we go from one steady state to another, and a steady-state model
is sufficient to calculate the initial and final states. However, we need a dynamic
model to say something about the dynamic response and to quantify what we mean
by “eventually.” By the term response, we mean the time response for the dependent
variable (output) y when we change the independent variable (input) u. In the three
cases mentioned above we have

• Room: u = Q (heating), y = T
• Car: u = w (fuel flow), y = v (speed)
• Reactor: u = cin, y = cout
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Four important responses are (see Figure 11.5):

Step response. This is the response in the dependent variable y to a step change
(persistent change) in the independent variable u. Mathematically, the change
in u is

u(t) =

{
u0 t ≤ t0
u∞ = u0 + ∆u t > t0

}

where ∆u is the magnitude of the step. A step response was considered in the
three cases above.

pulse/impulsestep

impulse

pulse

sinusoidal

time time time time

PRBS

Figure 11.5: Time signals for input u(t)

Impulse response. A pulse is a temporary change of the independent variable u,
and if the duration is very short (negligible) compared to the system’s dynamics,
we have an impulse. The impulse response is the resulting response in y. For a
process engineer, an example of an impulse is to “throw a bucket” of something
into a tank. For a chemist or a medical doctor, an injection with a needle gives
an impulse.

For a flow system, the so-called residence time distribution (RTD) is
actually the concentration impulse response of a non-reacting component.

Frequency response (sinusoidal input). This is the resulting response in y to a
persistent sinusoidal variation in the independent variable u,

u(t) = u0 + ∆u · sin(ωt)

For small changes, we can assume that the system is linear, and the output signal
is also sinusoidal with the same frequency ω:

y(t) = y0 + ∆y · sin(ωt + φ)

The frequency response is characterized by two parameters: The gain ∆y/∆u,
and the phase shift, φ. Both depend on the frequency ω [rad/s], and by varying
the frequency ω, we get information on how the system reacts to quick (ω large)
and slow (ω small) input variations. Frequency analysis is an important tool in
control engineering.

PRBS response. This is the response in y when the independent variable u changes
at “random” times between two given values (PRBS = pseudo-random binary
sequence). This may give a good “dynamic distribution” and is sometimes an
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effective method for obtaining experimental data that can be used for estimating
(=“identify” in control engineering) parameters in an empirical dynamic model
for the relationship between u and y.

The step response is very popular in process engineering because it is simple to
perform, understand and analyze. In the following, we study the step response in
more detail.

11.3.1 Step response and time constant

Figure 11.6: Experimental step response

We consider a system that is initially “at rest,” that is, at steady state with
dy/dt = 0. A step-change then occurs in the independent variable u, which takes
the system away from its initial steady state. We assume that the system is stable
such that it eventually approaches a new steady state. The resulting step response
in y(t) is often characterized by the following three parameters (see Figure 11.6):

(Steady state) Gain k = ∆y(∞)
∆u .

(Effective) Delay θ – the time it takes before y “takes off” in the “right” direction.
Thus, ∆y(θ) ≈ 0.

Time constant τ – additional time it takes to reach 63% of the total change in y
(that is, ∆y(τ + θ) = 0.63∆y(∞)).

Here

• ∆u = u(∞) − u(t0) – magnitude of step change in u
• t0 – time when step change in u occurs (often t0 = 0 is chosen)
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• ∆y(t) = y(t) − y(t0) – the resulting change in y
• y(t0) = y0 – initial (given) steady state
• y(∞) – final (new) steady state

The value of ∆y(∞) = y(∞)− y(t0), and thereby of the steady state gain k, can be
determined from a steady state model, if one is available.

The cause of the delay (time delay) θ may be a transport delay (for example a pipe)
or a delay in a measurement, but in most cases it represents the contribution from
many separate dynamic terms that, altogether, give a response that resembles a delay
(hence the term “effective” delay).

The time constant τ characterizes the system’s dominant “inertia” against changes.
It is defined as the additional time (after the time delay) it takes the variable to reach
63% (more precisely, a fraction 1 − e−1 = 1 − 0.3679 ≈ 0.63, see below) of its total
change. Why do we not let the time constant be the time it takes to reach all (100%)
of its change? Because it generally take an infinitely long time for the system to reach
exactly its final state, so this would not give a meaningful value.

The values of the parameters k, τ and θ are independent of the size of the step
(independent of the value of ∆u), provided the step ∆u is sufficiently small such that
we remain in the “linear region.” On page 301, we show how we can derive a linear
model.

11.3.2 Step response for first-order system

The basis for the definition of τ given above is the simplest case with one linear
differential equation (first-order system). Here, we study this system in more detail.
A first-order system can be written in the following standard form

τ
dy

dt
= −y + ku , y(t0) = y0 (11.21)

where

• u is the independent variable (input)
• y is the dependent variable (output)
• τ is the time constant
• k is the gain

We now assume that

1. The system is “at rest” at time t0 with dy/dt = 0, that is, for t ≤ t0 we have u = u0

and y0 = ku0.
2. The independent variable u changes from u0 to a constant value u = u0 + ∆u at

time t0.

As proven below, the solution (“step response”) can then be written as

y(t) = y0 +
(

1 − e−t/τ
)

k∆u (11.22)

or
∆y(t)
︸ ︷︷ ︸

y(t)−y0)

= ∆y(∞)
︸ ︷︷ ︸

y(∞)−y0

(

1 − e−t/τ
)

(11.23)
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Initial slope crosses final value at (time constant)

of change 

time

Figure 11.7: Step response for first-order system

(you should try to remember this one). k is the steady state gain, and when t → ∞ we
have e−t/τ → 0 and the system approaches a new steady state where ∆y(∞) = k∆u.
Notet that the exponential term 1 − e−t/τ describes how fast the system approaches
its new steady state, and as a function of the non-dimensional time t/τ we have:

t/τ 1 − e−t/τ Value Comment

0 1 − e0 = 0
0.1 1 − e−0.1 = 0.095
0.5 1 − e−0.5 = 0.393
1 1 − e−1 = 0.632 63% of change is reached after time t = τ
2 1 − e−2 = 0.865
3 1 − e−3 = 0.950
4 1 − e−4 = 0.982 98% of change is reached after time t = 4τ
5 1 − e−5 = 0.993
∞ 1 − e−∞ = 1

The time response is plotted in Figure 11.7. We note that at time t = τ (the time
constant), we have reached 63% of the total change, and after four time constants, we
have reached 98% of the change (and we have for all practical purposes arrived at the
new steady state). Note also from Figure 11.7 that the initial slope of the response (at
time t = 0) goes through to the point (τ, y(∞)). This can be shown mathematically
from (11.23):

dy

dt
= (y(∞) − y0)

1

τ
e−t/τ ⇒

(
dy

dt

)

t=0

=
y(∞) − y0

τ
(11.24)

This means that the response y(t) would reach the final value y(∞) at time τ if it
continued unaltered (in a straight line) with its initial slope.

Comments.
1. As seen from the proof below, (11.23) applies also to cases where the system is not

initially at rest. This is not the case for (11.22).
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2. For cases where τ is negative, the system is unstable, and we get that y(t) goes to infinity
when t goes to infinity.

3. From (11.24) and ∆y(∞) = k∆u, we derive that

1

∆u

„
dy

dt

«

t=0

=
k

τ
(11.25)

This means that the initial slope k′ of the “normalized” response ∆y(t)/∆u is equal to the

ratio k/τ , i.e., k′ , k/τ .

Proof: Step response for a first-order system

Consider a first-order system in standard form, (11.21),

τ
dy

dt
= −y + ku; y(0) = y0 (11.26)

where both τ and ku are constant. There are many ways of solving the linear differential equation
(11.26). We can for example use separation of variables and derive

dy

y − ku
= −dt

τ

Integration gives
Z y

y0

dy

y − ku
=

Z t

0
−dt

τ
⇒ ln

y − ku

y0 − ku
= − t

τ

and we get the general solution

y(t) = ku + e−t/τ (y0 − ku)

We subtract y0 from both sides and get

y(t) − y0 =
“

1 − e−t/τ
”

(ku − y0) (11.27)

Since e−t/τ → 0 as t → ∞, we have that y(∞) = ku, and by introducing deviation variables

∆y(t) , y(t) − y(0) (11.28)

we find that (11.27) can be written in the following general form

∆y(t) = ∆y(∞)
“

1 − e−t/τ
”

(11.29)

We have so far not assumed that the system is “at rest” at t = t0, but let us do this now. We then
have at t = t0 that dy/dt = 0, which gives

y0 = ku0

and (11.27) gives for a system that is initially at rest:

∆y(t)
| {z }

y(t)−y0

=
“

1 − e−t/τ
”

k ∆u
|{z}

u−u0

(11.30)

Example 11.4 Concentration response in continuous stirred tank
We consider the concentration response for component A in a continuous stirred tank

without chemical reaction (see Figure 11.8). We assume constant liquid density ρ and constant
volume V . The system is assumed to be at rest at t = 0. We want to find the step response
for t > 0 given the following data

V = 5m3; q = 1m3/h
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residence time

Figure 11.8: Continuous stirred tank without reaction

cA,in =


c0 = 0.9 kmol/m3 t ≤ 0
c∞ = 1.0 kmol/m3 t > 0

ff

Solution. With constant density and constant volume, the mass balance gives that the
volumetric inlet and outlet flow rates are equal, qin = qout = q. We further assume perfect
mixing in the tank such that cA,out = cA. The component balance for A in the tank is then
[mol A/s]

d

dt
(cAV ) = qcA,in − qcA (11.31)

With constant volume V this gives

V

q

dcA

dt
= −cA + cA,in (11.32)

This is in standard form (11.21) with

u = cA,in; y = cA

and

k = 1; τ =
V

q

[m3]

[m3/s]
= [s]

Here, V/q [s] is the residence time for mass in the tank, that is, the time constant in this
case equals the residence time. From (11.22), the solution of (11.32) (the step response) is
given by

cA(t) = c0 +
“

1 − e−t/τ
”

∆cA,in (11.33)

where ∆cA,in = c∞ − c0 = 0.1 kmol/m3. At time t = 0, we then have that cA(0) =
c0 = 0.9 kmol/m3, and concentration rises such that it is, at time t = τ = 5 h (the
residence time), cA = 0.9 +

`
1 − e−1

´
· 0.1 = 0.963 kmol/m3, and at time t = ∞,

cA(∞) = 0.9 + 0.1 = 1 kmol/m3 (as expected).

11.3.3 Additional examples of step responses for first-order
systems

Here, we consider some relatively simple examples with only one differential equation
which give first-order step responses (Figure 11.7).

Example 11.5 Temperature dynamics in continuous stirred tank. Consider the
continuous process in Figure 11.9 where a liquid stream of 1 kg/s (constant) flows through a
mixing tank with constant volume 1.2 m3. The density of the liquid is 1000 kg/m3 (constant)
and the heat capacity is 4 kJ/kg K. Perfect mixing in the tank is assumed.
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residence time

Time

Figure 11.9: Temperature dynamics in continuous stirred tank without reaction

The process is initially operated at steady state such that the inlet temperature Tin is 50oC
and the outlet temperature Tout = T is 50oC (so we assume no heat loss). Suddenly, the
temperature of the inflow is changed to 60 oC (step change). The outlet temperature will also
“eventually” reach 60 oC. The question is: What is the time constant, that is, how long does
it take before the temperature in the tank (and outlet stream) has increased by 0.63·10 = 6.3oC
to 56.3 oC?

Solution. Since the mass in the tank is constant, the mass balance gives wout = win =
w = 1 kg/s. The energy balance (11.12) for the tank is (liquid)

dH

dt
= Hin − Hout [J/s]

With the assumption of constant heat capacity cp, this gives

mcp
dT

dt
= wcp(Tin − T )

or equivalently
m

w

dT

dt
= −T + 1 · Tin

With y = T and u = Tin we see that this is in standard form (11.21) with

τ =
m

w
=

ρV

w
=

1000 · 1.2

1
= 1200 s; k = 1

In other words, it will take τ = 1200 s = 20 min (the residence time m/w) before the outlet
stream’s temperature reaches 56.3 oC (and it will take an infinitely long time before it reaches
60 oC).

Note that the time constant also for this example equals the residence time. This is true for
changes in both concentration and temperature for a continuous stirred tank without reaction
or heating.

Example 11.6 Temperature dynamics in continuous stirred tank with heat
exchange.

Consider the same example as above, where the inlet temperature is changed from 50
oC (initial steady state) to 60 oC, but we have heating (see Figure 11.10) such that the
temperature in the tank is 70 oC (initial steady state). We consider the response and determine
the time constant for the following two cases:

1. An electric heater is used such that the supplied heat Q is independent of the temperature
T in the tank.

2. We have a heat exchanger with condensing stream on the hot side. The supplied heat is
Q = UA(Th − T ) where Th (hot side temperature) is constant at 110 oC.
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changes from 50°C to 60°C

time

constant

Figure 11.10: Continuous stirred tank with heating

Solution. The energy balance (11.12) becomes [J/s]

mcp
dT

dt
= wcp(Tin − T ) + Q

At the initial steady state (dT/dt = 0), we have (before the change in Tin)

Q = −wcp(Tin − T ) = −1 kg/s · 4000 J/kg K · (50 − 70)K = 80000J/s = 80 kW

1. For the case when Q is independent of T , transformation to the standard form (11.21)
gives that the time constant is τ = m/w = 1200 s (residence time), and that the gain from
Tin to T is k = 1, that is, the steady-state temperature rise in the tank is 10 oC, that is,
it will eventually rise to 80 oC.

2. For the case where Q depends on T , the energy balance becomes

mcp
dT

dt
= wcp(Tin − T ) + UA(Th − T ) (11.34)

and transformation to the standard form (11.21) gives

τ =
mcp

wcp + UA
; k =

wcp

wcp + UA

The time constant τ and the gain k are both smaller than in case 1. The reason is that
the heat exchanger counteracts some of the temperature change (“negative feedback”).
For numerical calculations, we need to know the value of UA. We have UA = Q/(Th−T ),
and from the initial steady state data, we find UA = 80 ·103/(110−70) = 2000 W/K. The
time constant and the gain are then

τ =
mcp

wcp + UA
=

1200 · 4000
1 · 4000 + 2000

= 800 s; k =
4000

4000 + 2000
= 0.67

that is, the temperature in the tank only increases by 6.7 oC to 76.7 oC – while in case 1
with an electric heater it increased by 10 oC.

Although k and τ are different, we note that k′ = k/τ = 1/1200 is the same in both cases,
and since from (11.25) limt→0∆T ′(t) = (k/τ ) ·∆Tin, this means that the initial responses are
the same (see also Figure 11.10). This is reasonable also from physical considerations, since
the “counteracting” negative feedback effect from the heat exchanger only comes in after the
tank temperature T starts increasing which leads to a reduction in Q = UA(Th − T ).
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Example 11.7 Dynamics of cooking plate. Let us consider a cooking plate with mass
m = 1 kg and specific heat capacity cp = 0.5 kJ/kg K. The cooking plate is heated by
electric power and the supplied heat is Q1 = 2000 W. The heat loss from the cooking plate is
UA(T − To) where T is the cooking plate’s temperature, To = 290K is the temperature of the
surroundings, A = 0.04m2 and U is the overall heat transfer coefficient. If we leave the plate
unattended, then we find that T → 1000K when t → ∞. What is the time constant for the
cooking plate (defined as the time it takes to obtain 63% of the final temperature change)?

Solution. This is a closed system without mass flows and shaft work, and since the cooking
plate is solid, we can neglect energy related to pressure-volume changes. The energy balance
(11.12) around the cooking plate (the system) gives

dH

dt
= Q

Here, there are two contributions to the supplied heat Q, from electric power and from heat
loss, that is,

Q = Q1 − UA(T − To)

The enthalpy of the cooking plate is a function of temperature, that is, dH/dt = mcpdT/dt.
The energy balance becomes

mcp
dT

dt
= Q1 − UA(T − To) (11.35)

In order to determine the overall heat transfer coefficient U , we use the steady state
temperature T ∗ = 1000K. At steady state, the energy balance is 0 = Q1 − UA(T ∗ − To)
and we find

U =
Q1

A(T ∗ − To)
=

2000

0.04(1000 − 290)
= 70.4 [W/m2 K]

We assume that the overall heat transfer coefficient U is constant during the heating. The
dynamic energy balance (11.35) is then a linear first-order differential equation which can be
written in standard form

τ
dT

dt
= −T + ku (11.36)

where
τ =

mcp

UA
= 177.5 s

and

ku =
1

UA
|{z}

k1

Q1
|{z}

u1

+ 1
|{z}

k2

· T0
|{z}

u2

In other words, we find that it takes time t = τ = 177.5 s (about 3 min) to obtain 63% of the
final change of the cooking plate’s temperature.

Example 11.8 Response of thermocouple sensor in coffee cup. Temperature is
often measured with a thermocouple sensor based on the fact that electric properties are
affected by temperature. We have a thermocouple and a coffee cup and perform the following
experiments:

1. Initially, we hold the thermocouple sensor in the air (such that it measures the air
temperature).

2. We put the thermocouple into the coffee (and keep it there for some time so that the
thermocouple’s temperature is almost the same as the coffee’s temperature).

3. We remove it from the coffee (the temperature will decrease and eventually approach the
temperature of air – actually, it may temporarily be lower than the air temperature because
of the heat required for evaporation of remaining coffee drops).
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Figure 11.11: Thermocouple

TAKE OUT THERMOCOUPLE

PUT IN THERMOCOUPLE

Figure 11.12: Coffee cup experiment

Task 1. What happens? Sketch the expected temperature response.
Solution: The result of an actual experiment performed by the author is shown in

Figure 11.12. We see that the response is similar to a standard first-order response. However,
it is striking that the response is much quicker when we put the sensor into the coffee (time
constant about 0.3 s) than when we remove it (time constant about 7s).

Task 2. Can you explain this? Formulate a dynamic model and find an analytical
expression for the time constant.

Solution: Since we want to find the response in temperature, we need to formulate an
energy balance, and since it is the thermocouple’s temperature, the energy balance should be
around the thermocouple. The general energy balance is given in (11.12). Since there are
no streams, we have that Hin − Hout = 0. There is also no shaft work (Ws = 0), and the
contribution from “pressure-volume changes” can be neglected. The energy balance (11.12)
around the thermocouple is then simply

dH

dt
= Q

Here, dH/dt = mcpdT/dt where m is the mass of the thermocouple and T its temperature.
The supplied heat to the thermocouple from the surroundings is

Q = UA(To − T )

The energy balance then becomes

mcp
dT

dt
= UA(To − T ) (11.37)
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where

• T – temperature of thermocouple [K]
• To – temperature of surroundings (coffee or air) [K]
• m – mass of thermocouple [kg]
• cp(T ) – specific heat capacity of thermocouple [J/kg K]
• A – area of thermocouple [m2]
• U – heat transfer coefficient from surroundings to thermocouple [W/m2 K]

(11.37) can be rewritten as
mcp

UA

dT

dt
= To − T

With y = T and u = To this is in standard form (11.21) with

τ =
mcp

UA
; k = 1 (11.38)

(note that we get the same expression for the time constant as for the cooking plate in
Example 11.7). At steady state, dT/dt = 0, and we have as expected that T = To. Thus,
following a step in the surrounding’s temperature To, the thermocouple’s temperature T
should exponentially (with time constant τ) approach To, and this is indeed confirmed by
the experiment.

Some comments on coffee cup experiment

1. The time constant is independent of the temperatures T and To (this is not immediately
obvious for someone who does not know any process dynamics).

2. The time constant τ is constant if cp and U are constant (this seems to be a reasonable
assumption during each of the two experiments).

3. The time constant was observed to be 7s/0.3s = 23 times larger when the thermocouple was
removed from the coffee. Since τ =

mcp

UA
where mcP /A is constant, this must be (provided

our theory is correct) because U is about 23 times higher when the thermocouple is in the
coffee than when it is in air. This seems reasonable because heat transfer is usually much
better to liquid than to gas.

4. In general, we desire a fast measurement, that is, we want the time constant τ to be small
for the sensor. This is obtained by reducing the thermocouple’s heat capacity mcp [J/K],
and making a design such that UA [W/K] is large. In order to protect the thermocouple,
it is often placed in a pocket, which is not favorable because it increases the mass m and
also reduces U . We can reduce this effect by choosing a pocket material with a small heat
capacity mcp (but at the same time with a good conductivity) and designing the pocket
such that the outer area A is as large as possible.

Final comment on comparison of coffee cup experiment with theory

Being good engineers, we are very eager to compare our experimental results with theoretical
calculations. I used a cylindrical thermocouple, that is,

V

A
=

(π/4)D2L

πDL
=

1

4
D

where D = 1.6 mm, ρ = 2700 kg/m3 and cp = 800 J/kg K (aluminium). We can from (11.38)
calculate the overall heat transfer coefficient U (SI units):

U =
V ρcp

Aτ
=

1

4

Dρcp

τ
=

864

τ
[using SI units]
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Here, I found experimentally τ = 0.3s (coffee, that is, water) and τ = 7s (air), which gives
U = 2880 W/m2 K (water) and U = 123 W/m2 K (air). Immediately, the value 2880 W/m2

K seems very high, because it is similar to values we find in heat exchangers with forced
convection, and here we have natural convection. Let us compare with theoretical values for
natural convection to air and water. For natural convection,1 Nu = 0.5(Gr ·Pr)0.25, where
the non-dimensional groups Nu, Gr and Pr are defined as

Nu =
hD

k
; Pr =

cpµ

k
; Gr =

gβ∆TD3

(µ/ρ)2

Inserting and rearranging gives

h = 0.5

„
k3cpρ2gβ

µ

«0.25

·
„

∆T

D

«0.25

where k is the thermal conductivity, β the thermal expansion coefficient and µ the
viscosity of the fluid. We use the following physical and transport data:

Air : k = 0.027
W

K m
; cp = 1000

J

kg K
; µ = 1.8 · 10−5 kg

m s
; ρ = 1.2

kg

m3
;β =

1

T
= 0.003

1

K

Water : k = 0.7
W

K m
; cp = 4200

J

kg K
;µ = 10−3 kg

m s
; ρ = 1000

kg

m3
;β = 0.001

1

K

We then find for natural convection (SI units)

Air : h = 1.31 ·
„

∆T

D

«0.25

Water : h = 173 ·
„

∆T

D

«0.25

Note from this that with natural convection, the heat transfer coefficient h to water is more
than 100 times higher than to air. If we use D = 10−3 m and ∆T = 10 K (mean temperature
difference between coffee and air; the exact value is not that important since it is raised to
the power 0.25) we get

`
∆T
D

´0.25
= 10 (SI units) and if we assume U ≈ h (that is, we assume

that the heat conduction inside the thermocouple is very fast), we estimate theoretically that
U = 13.1 W/m2K (air) and U = 1730 W/m2K (water). We see that the theoretical U-
value for water (1730 W/m2 K) is quite close to the experimental (2880 W/m2 K), while the
theoretical U-value for air (13.1 W/m2 K) is much lower than the experimental (123 W/m2

K) estimated from the experiment. The reason for this is probably remaining water droplets
on the thermocouple which evaporate and improve the heat transfer for the case when we
remove the thermocouple from the coffee.

Example 11.9 Mass balance for filling a bathtub without plug. Here, we consider
the dynamics for the volume (level) in a bathtub with no plug, see Figure 11.13. The model
can also describe the dynamics of the outflow for a tank or the change in the water level in a
lake following a rainfall. We consider a rectangular bathtub with liquid volume V = Ah where
A [m2] is the base of the tub and h [m] is the liquid height. We assume that the density ρ is
constant.

The control volume (boundary) for the system is the whole bathtub, and the inventory of
mass is m = ρV [kg]. Mass is a conserved quantity, and from (11.3) we get that

dm

dt
= win − wout [kg/s] (11.39)

1 For more details on this, and in general on modeling and balance equations, see: R.B. Bird, W.E.
Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, 1960.
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.

τ

Laminar outflow:

Turbulent outflow:

out

Figure 11.13: Bathtub without plug

and with the assumption of constant density we get the “volume balance”

dV

dt
= qin − qout [m3/s] (11.40)

This equation describes the volume change in a bathtub while it is filled or emptied. With a
plug, we have qout = 0, and the process is a “pure integrator,” that is, there is no natural
feedback that counteracts the increase in V . However, here we consider the case with no plug,
and there is a “natural negative feedback,” because qout is a function of amount of water in
the bathtub, that is, qout increases when the liquid height h increases. We have from the static
momentum balance (= mechanical energy balance):2

1. Laminar flow exit: qout = klh
2. Turbulent flow exit: qout = kt

√
h

The flow pattern is probably turbulent, but for simplicity let us assume laminar flow.
1. Laminar outflow. Inserting V = Ah into the “volume balance” gives

d(Ah)

dt
= A

dh

dt
= qin − klh [m3/s] (11.41)

This is a first-order differential equation in h(t) that can be rearranged into the standard form
(11.21),

τ
dh

dt
= −h + k · qin

Thus, we have τ = A/kl and k = 1/kl and the solution is

h(t) =
1

kl

„

1 − e−
klt

A

«

qin (11.42)

We find that h(t) increases with time, most sharply at first, but then the increased level (h)
results in a larger outflow, and we eventually reach (for t → ∞) at a balance point (steady
state) where q∗out = qin and h no longer increases. The steady-state value, h∗, t = ∞ is from
(11.42)

h∗ = h(∞) =
qin

kl
(11.43)

2 The outlet stream of the bathtub is driven by the pressure difference ρgh over the hole where
the water exits. At steady state this pressure difference equals the friction pressure drop, i.e.,
∆pf = ρgh. From fluid mechanics (see page 243) we have ∆pf ∼ q for laminar flow and ∆pf ∼ q2

for turbulent flow, and it follows that q ∼ h (laminar) and q ∼
√

h (turbulent).
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• We can alternatively derive (11.43) from the steady state mass balance, qin = qout [m3/s].
Here, qout = klh and (11.43) follows.

• The time constant is τ = A/kl. Here, the steady-state flow rate is q∗ = klh
∗(= q∗out = q∗in),

that is, kl = q∗/h∗, and it follows that

τ =
A

kl
=

Ah∗

q∗
=

V ∗

q∗

which equals the residence time of the bathtub. However, so that you won’t think that the
time constant always equals the residence time, please note that for turbulent outflow the
time constant is twice the residence time; this is shown on page 302.

The following example illustrates that the dynamics of gas systems are usually very
fast. This is primarily because of a short residence time, but it is usually further
amplified by small relative pressure differences.

Example 11.10 Gas dynamics. A large gas tank is used to dampen flow rate and pressure
variations. Derive the dynamic equations and determine the time constant for the pressure
dynamics. We assume for simplicity that the inlet and outlet flow rates of the tank are given
by Fin = c1(pin − p) [mol/s] and Fout = c2(p − pout) [mol/s] where the “valve constants” c1

and c2 are assumed to be equal (c1 = c2 = c).

out

out
residence time outin

Figure 11.14: Gas dynamics

Solution. The mass balance is

dn

dt
= Fin − Fout [mol/s]

We assume constant volume V and ideal gas,

n =
pV

RT

The mass balance then gives:

V

RT

dp

dt
= c(pin − p) − c(p − pout)

This equation can be used to compute p as a function of pin, pout and time. Rearranged into
standard form (11.21), we see that the time constant is

τ =
V

2cRT
=

n

2cp
(11.44)

From the steady-state mass balance we get p∗ = (p∗
in + p∗

out)/2, so at steady state

F ∗ = F ∗
in = F ∗

out = c · p∗
in − p∗

out

2

Substituting the resulting value for c into (11.44) gives

τ =
n∗

2cp∗
=

1

4
· n∗

F ∗
· p∗

in − p∗
out

p∗
(11.45)
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that is, the time constant is 1/4 of the residence time, n/F , multiplied by the relative pressure
difference, (pin − pout)/p. For gas systems, both these terms are usually small, which explains
why the pressure dynamics are usually very fast.

For example, with p∗
in = 10.1 bar, p∗ = 10 bar and p∗

out = 9.9 bar we get

τ =
1

4
· n∗

F ∗
· 10.1 − 9.9

10
=

1

4
· 1

50
· n∗

F ∗

that is, the time constant for the pressure dynamics in the tank is only 1/200 of the (already
small) residence time.

Example 11.11 First-order reaction in batch reactor (or in beaker)

Figure 11.15: Reaction in beaker

Consider a beaker where component A reacts according to the first-order irreversible
reaction A → B. Derive the equation that describes the concentrations dynamics when
temperature is assumed constant.

Solution. There are no inlet and outlet streams, so the component balance for the beaker
is

d(cAV )

dt
= rAV [mol A/s] (11.46)

where rA is the reaction rate for “generation” of component A, which for a first-order reaction
is rA = −kcA [mol A/m3, s], where k [s−1] is constant since the temperature is constant. If
we, in addition, neglect changes in the volume, we get

dcA

dt
= −kcA (11.47)

which gives a first-order response cA(t) = cA(0)e−t/τ with time constant τ = 1/k (note that
k here is the reaction rate constant and not the gain). We note that cA → 0 when t → ∞,
that is, the final steady state has complete conversion of A.

Comment. This is a batch process, so the system is not initially at steady state. However,
this is not a requirement, and (11.47) can be solved when we know the initial concentration
cA(0) at the start of the experiment.

Exercise 11.2 ∗ Evaporator. Take another look at the evaporator in Example 11.2
(page 280). What is the time constant for the temperature response?

Exercise 11.3 First-order reaction in CSTR. Consider a continuous stirred tank
reactor (CSTR) where component A decomposes in a first-order irreversible reaction A → B
with reaction rate r = (−rA) = kcAV [mol A/s]. (Note that k here is the reaction rate



300 CHEMICAL AND ENERGY PROCESS ENGINEERING

constant and not the process gain). The feed concentration is cA,F . Derive the equation that
describes the concentration dynamics when temperature is assumed constant. Find the time
constant and gain for the response.

11.3.4 Time response for more complex systems

In the previous section, we considered in detail the step response for systems with
only one differential equation which can be written in “standard” form τdy(t)/dt =
−y(t) + k u(t). This gave rise to a first-order response. Although many systems can
be written (or approximated) by a first-order response, it must be emphasized that
the responses are generally far more complex.

time

Tin ToutTout

Tin

T

Tin

Figure 11.16: Temperature response for stirred tank with bypass

• Even for systems with only one linear differential equation, the response can be
different from that described above, either because the system is non-linear or
because the response has a “direct term,” that is, the equation can be written
in the form

τdx(t)/dt = −x(t) + ku(t); y(t) = c · x(t) + d · u(t)

where the d 6= 0 gives a “direct term” from u to y (see for example Figure 11.16
which shows the response of a stirred tank with bypass).

• If we have two first-order systems in series, for example two stirred tanks, the
total response will be second-order, and if we have n first-order systems in a series,
the total response is nth-order. The response for such higher-order systems will
usually have a “flatter” initial response (see Figure 11.22, page 309), and is often
approximated as an effective time delay.

• We will also have a higher-order response if the model consists of several coupled
differential equations, for example, an adiabatic reactor with coupled material and
energy balance (see Figure 11.24, page 312).

The analytic expression for the time response of higher-order system is usually
rather complicated, and often there is no analytical solution. However, by linearizing
the system, as discussed in the next section (Section 11.4), it is possible to use effective
mathematical tools for analyzing the system, for example, by computing the system’s
“poles” (=eigenvalues = −1/time constant) and “zeros.” The most important tool
for analyzing more complex systems is nevertheless “dynamic simulation,” that is,
numerical solution of the equations. This is discussed in Section 11.5.
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Exercise 11.4 (a) Derive the model for the stirred tank with bypass shown in Figure 11.16
and (b) find an analytical expression for the time response.

11.4 Linearization

Consider a dynamic model
dy

dt
= f(y, u) (11.48)

This model is linear if the function f(y, u) is linear, which means that if we double
the change in u (or in y) then the change in f is doubled. In general our models are
nonlinear, but we are often interested in studying the response of small changes in u,
and we can then use a linearized model. The most important use of linearized models
is in control engineering, where the objective of the control is indeed to keep y close
to its desired value (that is, ∆y is indeed small) such that the assumption of linear
model often holds well.

Let y∗ and u∗ denote the values of y and u at the operating point ∗ (or along the
nominal trajectory y∗(t)) where we linearize the model. This is often a steady-state
point but does not need to be. A first-order Taylor-series expansion (“tangent
approximation”) of the function f(y, u), where we neglect the second-order (with
∆u2, ∆y2, ∆u∆y) and higher-order terms, gives a linearized approximation

f(y, u) ≈ f(y∗, u∗)
︸ ︷︷ ︸

f∗

+

(
∂f

∂u

)∗

∆u +

(
∂f

∂y

)∗

∆y

︸ ︷︷ ︸

∆f

(11.49)

where ∆u = u − u∗ and ∆y = y − y∗ represent the deviations from the nominal
operating point. The approximation is exact for small values of ∆u and ∆y. Further,
we have that

d∆y

dt
=

d(y − y∗)

dt
=

dy

dt
− dy∗

dt
︸︷︷︸

f∗

For the non-linear model (11.48) we have then derived a linearized model in
deviation variables,

d∆y

dt
= ∆f =

(
∂f

∂y

)∗

︸ ︷︷ ︸

a

∆y +

(
∂f

∂u

)∗

︸ ︷︷ ︸

b

∆u (11.50)

where the coefficients a and b denote the local derivatives with respect to y and u,
respectively. Comparing this with the standard form for first-order systems in (11.21),

τ
d∆y

dt
= −∆y + k∆u

we find

τ = −1

a
; k = − b

a
Thus, linearized models can be used to determine the time constant τ .
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Example 11.12 Linearized model for turbulent outflow of tank. This is a
continuation of Example 11.9 (page 296) where we considered laminar outflow of a bathtub.
For case 2 with turbulent outflow, qout = kt

√
h, the “volume balance” (11.41) for filling the

bathtub becomes

A
dh

dt
= qin − kt

√
h = f(h, qin) [m3/s] (11.51)

Here, the function f is non-linear in h. Linearizing f and introducing deviation variables
gives, see (11.50),

A
d∆h

dt
= ∆f = ∆qin − kt

1

2
√

h∗
∆h

Comparison with the standard form with y = ∆h and u = ∆qin gives τ = 2
√

h
∗
A/kt, where

from (11.51), kt = q∗/
√

h∗ and q∗ is the steady state flow. Further rearrangement of the
expression for the time constant gives

τ = 2

√
h
∗
A

kt
= 2

h∗A

q∗
= 2 · V ∗

q∗

That is, the time constant is two times the residence time (while it was equal to the residence
time with laminar outflow). In other words, we can, by comparing the experimental time
constant with the residence time, predict whether the outflow is laminar or turbulent. Also
note that the steady state gain k = ∆h(∞)/∆qin = 2h∗/q∗ for turbulent flow is twice that of
laminar flow.

Comment. Note that the initial response for h(t) (expressed by the slope k′ = k/τ) is
the same for both cases, k′ = k/τ = 1/A. This is reasonable since the outlet flow (where
the difference between turbulent and laminar flow lies) is only affected after the level starts
changing.

or

Turbulent
    or laminar?

Figure 11.17: Student anxious to check the outflow from a sink

Exercise 11.5 Experiment at home. You should check whether the outflow from your
sink is laminar or turbulent by comparing the time constant τ of the dynamic response in
sink level with the residence (holdup) time τh = V/q:

1. With the plug out, adjust the inflow such that the level is at a steady state where the sink
is a little more than half full.

2. Reduce the inflow and record the level response (use a ruler and read off the level at regular
intervals). From this experiment estimate the time constant τ (when 63% of the steady-
state change is reached). This assumes that the area A is reasonably constant in the region
between the two steady-state levels.
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3. Temporarily lead the water somewhere else (but keep the same flow), for example, into a
bucket, such that the sink is emptied. Put in the plug and let again the water flow into the
sink. Measure the time it takes to fill the tank to its previous level. This is the residence
time τh = V/q.

4. If τ ≈ τh, the outflow is laminar, and if τ ≈ 2τh, it is turbulent. (Note that it is possible,
but not very likely, that you get a transition from turbulent to laminar flow when q is
reduced).

5. Another way of checking whether the flow is laminar or turbulent is to find the residence
time τh for two different steady state levels (see point 3); if the flow is laminar, then
τh = A/kl is independent (!) of the level h, but if the flow is turbulent, then τh =

√
hA/kt

increases with the square root of the level.

Multivariable and higher-order systems. We have above assumed that we have
a scalar model with one input variable u and one output variable y. It is, however,
easy to generalize the linearization to the multi-dimensional case where the coefficients
(derivatives) A = ∂f/∂y and B = ∂f/∂u become matrices. The model in deviation
variables is then

d∆y

dt
= A∆y + B∆u

∆u: vector of independent variables (inputs or disturbances)

∆y: vector of dependent state variables (often denoted x)

(Note that we, for simplicity, have not introduced separate symbols for vectors, but
we could for clarity have written u and y).

The concept of time constant is less clear in the multivariable case, but we can
instead compute the eigenvalues λi of the matrix A:

• We find that the “time constants” τi = −1/λi(A) appear in the linearized time
response which contains the term e−t/τi . For the scalar case with only one equation
(A = a = scalar), the eigenvalue of A equals a, and we find τ = −1/a.

• The system is (locally) stable if and only if all eigenvalues of A have a negative real
part (i.e., the eigenvalues are in the left-half complex plane).

11.5 Dynamic simulation with examples

By the expression “dynamic simulation,” we mean “numerical solution (integration)
of the system’s differential equations as a function of time.”

We consider a dynamic system described by the differential equations

dy

dt
= f(y, u)

where

1. The initial state y(t0) = y0 is known (we need one for every differential equation).
2. The independent variables u(t) are known for t > t0.
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Using “dynamic simulation,” we compute numerically y(t) for t > t0 by integrating
the above equation,

y(t) = y0 +

∫ t

t0

f(y(t), u(t))dt

(strictly speaking, this should be y(t) = y0+
∫ t

t0
f(y(τ), u(τ))dτ but we are a bit sloppy

to simplify the notation).

Figure 11.18: Euler integration

The simplest method is Euler integration, see Figure 11.18, where we assume that
the derivative f(y, u) is piecewise constant over a time interval ∆t. If we are at time
t, then the value of y at time t + ∆t is

y(t + ∆t) = y(t) +

∫ t+∆t

t

f(y, u)dt ≈ y(t) + f(y, u)∆t

where f(y, u) is the local derivative (tangent) at time t. We repeat this at time t + ∆t
and so on, as explained next.

Algorithm for Euler integration:

1. Start at t = t0 with a known initial state y0).
2. Compute the derivative f = f(y(t), u(t)) at time t.
3. Euler approximation: Assume the derivative f is constant over the period ∆t and

compute y(t + ∆t) ≈ y(t) + f · ∆t.
4. Stop if t ≥ tfinal; otherwise set t := t + ∆t and y(t) := y(t + ∆t) and go to step 2.

The algorithm is best understood by considering an example.3

Example 11.13 Euler integration: Concentration response for tank.
Consider the continuous stirred tank in Figure 11.19 with the following given data:

• V = 5 m3 = constant
• q= 1 m3/min (assumed constant)

3 The unit for time (t) is minutes [min] in almost all examples in this chapter.
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Figure 11.19: Stirred tank without reaction

• Step change in cAi =


0.9 kmol/m3, t ≤ 0

1.0 kmol/m3, t > 0
• Ideal mixing and constant density is assumed.

The component balance d(cAV )/dt = qcAi − qcA [kmol A/s] is rearranged to:

dcA

dt
=

q

V
(cAi − cA) = f(cA)

For t ≤ 0, we assume the system is at steady state and the component balance gives
cA = cAi = 0.9 kmol/m3 (the initial value for cA). The exact solution of the differential
equation for t ≥ 0 is from (11.22)

cA(t) = 0.9 + 0.1 · (1 − e−t/5)

where the time constant is τ = V/q = 5 min (residence time).
Let us compare this with Euler integration using ∆t = 0.1 min, which is a relatively small

step compared to the time constant of 5 min. The steps of the algorithm are:

1. At t = t0 = 0 set cA(t) = 0.9.
2. With cAi = 1 (constant), we have for t ≥ 0:

f(cA) =
q

V
(cAi − cA) = 0.2(1 − cA)

3. Euler approximation: Value of cA at time t + ∆t is:

cA(t + ∆t) ≈ cA(t) + f(cA) · ∆t = cA + 0.2(1 − cA) · 0.1 = 0.98cA(t) + 0.02

4. Set the value for cA(t + ∆t) to cA(t) and go to step 2.

We then get:

Euler Exact
t cA(t) f(cA) = 0.2(1 − cA) f · ∆t cA(t + ∆t) cA(t + ∆t)

≈ cA(t) + f · ∆t

0+ 0.9 0.02 0.002 0.902 0.90198
0.1 0.902 0.0196 0.00196 0.90396 0.90392
0.2 0.90396 0.0192 0.00192 0.90588 0.90582
0.3 0.90588 0.0188 0.00188 0.90776 0.90768
...

...
...

...
...

...
5.0 0.9636 0.0073 0.00073 0.9643 0.9628
...

...
...

...
...

...
20.0 0.9982 0.0004 0.00004 0.9982 0.9982
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We see, as expected, that Euler integration gives a numerical error; see also
Figure 11.20. This error can be reduced by reducing the step length ∆t, but this
increases the computational effort and if it becomes too small it may conflict with
the accuracy of the computer. On the other hand, if ∆t gets too large, the Euler
integration may go unstable.

There are many possible improvements to Euler integration

• Higher-order method: Include more terms in the Taylor-series expansion for y (Euler
assumes y ≈ y0 + f∆t).

• Introduce step length control (adjusting ∆t during integration).
• Use an implicit solution that avoids the possible instability, for example, implicit

Euler:
y(t + ∆t) ≈ y(t) + f (y(t + ∆t), u(t + ∆t)) · ∆t

which has to be solved with respect to y(t + ∆t).

Examples of MATLAB routines which include improvements of this kind are ode45

and ode15s (the latter is recommended for most problems).

Euler integration with MATLAB

We continue Example 11.13. First, we write the following MATLAB routine to
compute the derivative dcA/dt = f(cA) (and save it in the file conctank.m):

function DYDT=f(t,y)
% This is file conctank.m
% Concentration response of tank with no reaction
% inlet: Time t and state vector y
% OUTPUT: derivatives DYDT
%
% Usage with odeeuler: [T,Y]=odeeuler(@conctank,[0 10],0.9,0.1)
% Usage with ode15s: [T,Y]= ode15s(@conctank,[0 10],0.9)
% Plot results: plot(T,Y)
%
% I. Data (parameters and independent variables)
V=5; % tank volume
q=1; % volumetric flow rate
tau=V/q; % residence time
cai=1; % inlet concentration for t>0
% II. Extract present value of states
ca=y; % tank concentration
% III. Evaluate derivatives of states
f= (cai - ca)/tau;
DYDT=f;

We note that the routine that calculates the derivative (in this case conctank.m)
generally contains the following parts:

I. Data (given values for parameters and independent variables u).

II. Extract variables from the state vector y (in this example there is only
one state so the “vector” y has only one element). It is recommended that the
variables be given physical names in order to enhance the readability of the code,
for example ca=y.

III. Evaluate the derivative, that is, compute function f (which s returned to the
MATLAB integration routine).
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In addition, we need a program that computes the numerical solution (“performs
the integration”). Below is a simple program for Euler integration which is saved
in the file odeeuler.m:

function [tout,yout]=odeeuler(odefile,tspan,y0,H)
% This is the function odeeuler.m
% Simple integration routine written by SiS in 1998
% Usage: [T,Y]=odeeuler(@F,TSPAN,Y0,H)
% for example: [T,Y]=odeeuler(@conctank,[0 10],0.9,0.1)
%
% T - solution time vector.
% Y - solution state (output) vector.
% F - filename with diff.eqns. (see also help ode15s).
% TSPAN = [initial_time final_time}
% Y0 - initial state vector
% H - integration step size
%
t0=tspan(1); tfinal=tspan(2);
% Initialize
tout=t0; yout=y0; neq=length(y0); t=t0; y=y0;
% Integrate
while t < tfinal,
t=t+H;
f=feval(odefile,t,y);

for i=1:neq,
y(i)=y(i)+H*f(i);
end

tout=[tout;t]; yout=[yout; y];
end

We can now use MATLAB to compute the concentration response using Euler
integration:

>> [T,Y]=odeeuler(@conctank,[0 1],0.9,0.1)

T =
0

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000
1.1000

Y =
0.9000
0.9020
0.9040
0.9059
0.9078
0.9096
0.9114
0.9132
0.9149
0.9166
0.9183
0.9199
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>> [T,Y]=odeeuler(@conctank,[0 20],0.9,0.1); % semicolon avoids output to the screen
% The result is compared with the more exact solution with ode15s:
>> [T1,Y1]=ode15s(@conctank,[0 20],0.9);
>> plot(T,Y,T1,Y1,’--’) % see plot in Figure

Figure 11.20 compares the results of the Euler integration with a more accurate
and effective integration method (ode15s in MATLAB). The difference is small in
this case.
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Figure 11.20: Concentration response with odeeuler (solid) and ode15s (dashed) for a
tank.

Example 11.14 Three tanks in series. This is an extension of Example 11.13, where we
had a feed of 1 m3/min to a large tank of V1 = 5 m3. We add two smaller tanks with volume
V2 = V3 = 1.5m3 (Figure 11.21).

Figure 11.21: Three tanks in a series

The component balance for the “old” tank (tank 1) gives

dcA

dt
=

q

V1
(cAi − cA1) = f1(cA1, cAi)
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The component balances for the new tanks 2 and 3 give

dcA2

dt
=

q

V2
(cA1 − cA2) = f2(cA1, cA2)

dcA3

dt
=

q

V3
(cA2 − cA3) = f3(cA2, cA3)

For t ≤ 0, steady-state conditions are assumed and the component balances give cA1 = cA2 =
cA3 = cAi = 0.9 kmol/m3 (which is the initial value for the three states). The dynamic
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Figure 11.22: Concentration response for three tanks in series

response is shown in Figure 11.22. Note the typical second-order response for cA2, which
starts “flat,” that is, the first derivative is initially zero. For cA3, the initial response is even
“flatter” since the second derivative is also initially zero.

Here, we used the following routine to compute the derivatives (saved in file conctank3.m):

function DYDT=f(t,y)
% This is file conctank3.m
% INPUT: Time t and state vector y
% OUTPUT: derivatives DYDT
% Usage with ode15s: [T,Y]= ode15s(@conctank3,[0 15],[0.9 0.9 0.9])
%
% I. Data (parameters and independent variables)
V1=5; % volume tank 1
V2=1.5; % volume tank 2
V3=1.5; % volume tank 3
q=1; % volumetric flow rate
tau1=V1/q; tau2=V2/q; tau3=V3/q; % residence time
cai=1; % inlet concentration for t>0
% II. Extract present value of states
ca1=y(1); % concentration big tank 1
ca2=y(2); % concentration small tank 2
ca3=y(3); % concentration small tank 3
% III. Evaluate derivatives of states
f1= (cai - ca1)/tau1;
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f2= (ca1 - ca2)/tau2;
f3= (ca2 - ca3)/tau3;
DYDT=[f1; f2; f3];

Example 11.15 Isothermal continuous stirred tank reactor (CSTR).
In an isothermal continuous stirred tank reactor (CSTR) with constant volume V , two

reactions take place

A → B; r1 = k1cA

B → C; r2 = k2cB

Data: cAF = 10 kmol/m3 (feed concentration), cBF = 0 kmol/m3, cCF = 0 kmol/m3,
V = 0.9 m3, q = 0.1 m3/min, k1 = 1 min−1, k2 = 1 min−1.

Task: Plot the responses of cA and cB to a step increase in q of 20%.
Solution. Component balances for A, B and C give

d

dt
(cAV ) = qcAF − qcA − k1cAV

d

dt
(cBV ) = 0 − qcB + k1cAV − k2cBV

d

dt
(cCV ) = 0 − qcC + k2cBV

The steady-state concentrations are found by setting the time derivatives to 0. We find

c∗A =
qcAF

q + k1V
= 1 kmol/m3

c∗B =
k1V

q + k2V
c∗A = 0.9 kmol/m3

c∗C =
k2V

q
c∗B = 8.1 kmol/m3
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Figure 11.23: Concentration response for isothermal CSTR after a step increase in flowrate
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The resulting time response is shown in Figure 11.23. We observe, as expected, a typical
“first-order” response for cA with time constant V/(q + k1V ) = (0.9/(0.12 + 1 · 0.9)) min =
0.88 min. The response for cB is however not a typical second-order response – we have a
so-called inverse response where cB initially drops (it is not so easy to see) and then reverses
and ends up with a steady state increase from 0.90 to 1.034 kmol/m3. The reason is that an
increase in the feed rate initially lowers cB because of the dilution effect. However, in the long
run the lower residence time results in less B being consumed in the reaction B → C.

Here, we used the following MATLAB routine in order to compute the derivative of the
three concentrations (state variables):

function DYDT=f(t,y)
% This is file cstr3.m
% INPUT: Time t and state vector y
% OUTPUT: derivatives DYDT
% Usage with ode15s: [T,Y]= ode15s(@cstr3,[0 5],[1.0 0.9 8.1])
%
% I. Data (parameters and independent variables)
cAF=10; cBF=0; cCf=0; % inlet concentrations
V = 0.9; % reactor volume (constant)
q = 0.1*1.2; % 20% increase in q
k1 = 1; k2 = 1; % rate constants
% II. Extract present value of states
cA=y(1);
cB=y(2);
cC=y(3);
% III. Evaluate derivatives of states
f1= (q*cAF - q*cA - k1*cA*V) /V;
f2= (q*cBF - q*cB + k1*cA*V - k2*cB*V) /V;
f3= (q*cCf - q*cC + k2*cB*V) /V;
DYDT=[f1; f2; f3;];

Let us now take a look at some more complicated examples where the temperature
varies and we also need to use the energy balance.

Example 11.16 Exothermic CSTR with cooling.
In a continuous stirred tank reactor (CSTR) with constant volume V and cooling, we have

the exothermic reversible reaction A ⇌ B. The component balances for A and B give

V
dcA

dt
= qcAF − qcA − rV [mol A/min]

V
dcB

dt
= qcBF − qcB + rV [mol B/min]

where the reaction rate is r = k1cA − k2cB [mol/m3 min]. The energy balance (11.19) gives

ρV cp
dT

dt
= ρqcp(TF − T ) + rV (−∆rH

⊖(T )) + Q [J/min]

where the “supplied” heat by cooling is Q = UA(Tc−T ). The reactor feed cAF = 10 kmol/m3,
cBF = 0 and TF = 300K, and the cooling temperature is Tc = 430K. We assume that the
heat capacity and heat of reaction ∆rH

o are independent of temperature.
The remaining data are as given in the MATLAB file cstrT.m (see below). By using a

long simulation time (10000 min) in MATLAB, the steady state values in the reactor are
numerically determined to be

c∗A = 2.274 kmol/m3; c∗B = 7.726 kmol/m3; T ∗ = 444.0 K



312 CHEMICAL AND ENERGY PROCESS ENGINEERING

0 10 20 30 40 50
439.5

440

440.5

441

441.5

442

442.5

443

443.5

444

time

T

0 10 20 30 40 50
439.5

440

440.5

441

441.5

442

442.5

443

443.5

444

time

T

Figure 11.24: Temperature response for exothermic CSTR to a 20% feedrate increase

Increasing the feed rate q by 20% (from 0.10 to 0.12 m3/min) (by editing the file cstrT.m;
try yourself !) gives a drop in the steady-state temperature from 444.0 K to 441.9 K. The
dynamic response is shown in Figure 11.24, and we note that we have a rather strange
response. The temperature first drops (because we supply more cold feed), but then it rises
because more reactant is converted and the reaction is exothermic. This is not an inverse
response because the response does not cross its original value.

If we increase the feed rate q by 50% (to 0.15 m3/min; try yourself !), we find that the
temperature drop is so large that the reaction “extinguishes” (that is, the reactor becomes
unstable), and the temperature drops all the way down to 348.7 K, which is much lower than
the “cooling” temperature (try yourself !).

Further simulations. (1) With a very large (infinite) reactor volume, we approach
chemical equilibrium and the steady-state reactor temperature is 453.4 K (independent of q,
but you may need to run for a very long time). (2) Removing the cooling gives an equilibrium
temperature of 461.0 K (“adiabatic temperature rise”). (3) If the cooling is removed at normal
conditions the reactor temperature is 453.5 K (rather than 444.0 K). (Try this and other
changes yourself ! It is easy with the MATLAB program; and if you think it is too much work
to write it yourself then you can get it from the author’s home page).

function DYDT=f(t,y)
% This is file cstrT.m
% INPUT: Time t and state vector y

% OUTPUT: derivatives DYDT
% Usage with ode15s: [T,Y]= ode15s(@cstrT,[0 50],[2274 7726 444.0])
% Plot: plot(T,Y(:,3))

% All in SI units except time which is in minutes.
% I. Data (parameters and independent variables)
cAF=10000; % feed concentration of A [mol/m3]
cBF=0; % feed concentration of B [mol/m3]
TF=300; % feed temperature [K]
V = 0.9; % reactor volume [m3]
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q = 0.10; % volumetric flow rate [m3/min] (CAN CHANGE, e.g., to 0.12)
dhr= -80e3; % Heat of reaction [J/mol]
cp= 4.e3; % specific heat capacity [J/kg K]
rho = 1000; % mean density [kg/m3]
U = 1000*60; % overall heat transfer coefficient [J/min,m2,K]
A = 5; % heat transfer area [m2]
Tc = 430; % cooling temperature [K]
k1_400 = 0.1; % rx1: rate constant at 400K [1/min]
k2_400 = 0.001; % rx2: rate constant at 400K [1/min]
E1 = 60e3; % rx1: activation energy [J/mol]
E2 = E1 - dhr; % rx2: activation energy [J/mol]
R = 8.31; % gas constant [J/K mol]
% II. Extract present value of states
cA=y(1);
cB=y(2);
T=y(3);
% IIIa. Intermediate calculations
k1 = k1_400 * exp(-(E1/R) * (1/T - 1/400));
k2 = k2_400 * exp(-(E2/R) * (1/T - 1/400));
r = k1*cA - k2*cB;
Q = U*A*(Tc-T);
% IIIb. Evaluate derivatives of states
Vdcadt = q*cAF - q*cA - r*V; % [mol A/min]
Vdcbdt = q*cBF - q*cB + r*V; % [mol B/min]
mcpdTdt = rho*q*cp*(TF-T) + r*V*(-dhr) + Q; % [J/min]

f1 = Vdcadt/V;
f2 = Vdcbdt/V;
f3 = mcpdTdt / (rho*cp*V);

DYDT=[f1; f2; f3];

In the above example, we assumed that the heat capacities and the heat of reaction
were independent of temperature. For the more general cases, it is recommended that
the energy balance is written in its original form with U (or H) as a state, and that T is
found numerically from the implicit algebraic equation U = U0(T, p, ni), as described
for the flash tank in Example 11.18.

Exercise 11.6 Second-order reaction in CSTR Consider a continuous stirred tank
reactor (CSTR) where component A decomposes in a second-order irreversible reaction
2A → B with reaction rate r = rB = kc2

AV [kmol/s]. The following steady state data are
given: V ∗ = 30 m3 (constant), q∗ = 0.5 m3/s, c∗AF = 4 kmol/m3 , c∗BF = 0 kmol/m3 (feed),
c∗B = 1 kmol/m3 (product and tank).

(a) Derive the equations that describe the concentration dynamics when the temperature
and volume are assumed constant.

(b) Use the steady state data to determine c∗A and the reaction rate constant k.
(c) Linearize the model and determine an expression for the time constant for the

concentration response for component A in the nominal working point.
(d) Sketch the expected response cA(t) (in product/tank) when we at t = 0 throw in some

catalyst such that k is doubled. (For calculations by hand you can for example use Euler
integration of the balance for component A with ∆t = 5 s). What is the new steady state
value of cA? What is the time constant?

Distillation examples

Example 11.17 Dynamics of distillation column (Figure 11.25). In a distillation
column, the components are separated based on their difference in volatility, and multiple
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stages and countercurrent flow are used to enhance this. Here, we look at a very simple
distillation column with only three equilibrium stages (a reboiler, a feed stage, and a stage
above the feed) plus a total condenser. We separate a binary mixture with a constant relative
volatility of 4.78. The MATLAB file dist.m given below should be self-explainable. In order
to find the steady state column profile, we simulate for a very long time. We then find the
following mole fractions of the lightest component on the four stages (including the total
condenser):

xss =

0.0998 0.3160 0.6536 0.9002

That is, we have about 10 mol% light component in the bottom product and about 90 mol% in
the top product. The subsequent response to a step in the feed rate F by 20%, with constant
reflux (L) and boilup (V ), is shown in Figure 11.25. We note that the responses are close to
first-order, in spite of the fact that we have four coupled differential equations.

Figure 11.25: Concentration response for distillation column

function DXDT = f(t,x)
% This is the file dist.m
% Distillation column with reboiler (stage 1), a feed stage (stage 2),
% ... a stage above this (stage 3) and a total condenser (stage 4)
% Assumptions; Binary mixture with constant alfa and constant molar flows
% Molar holdup on all stages is 1 kmol (M=1)
% States x : vector of liquid mole fractions of light component on the stages
% Usage:
% x0 = [0.5, 0.5, 0.5, 0.5]; % initial states (not steady-state)
% [T,X] = ode15s(@dist,[0 1000],x0) % First simulate to t=1000 (steady-state)
% xss = X(length(X),:) % Save the steady-state mole fractions
% [T,X] = ode15s(@dist,[0 20],xss) % Run new simulation (e.g change F=1.2)

% I. Data (parameters and independent variables)
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% Assume constant relative volatility
alfa = 4.78;

% Feed rate [kmol/min] and feed composition (may change this)
F=1.0; zF=0.5;

% Flows in the column [kmol/min] (feed liquid; constant molar flows)
V=3.55; V1=V; V2=V; V3=V;
L=3.05; L4=L; L3=L; L2=L+F;
% Assume constant condenser and reboiler holdup (perfect level control):
D=V3-L4; B=L2-V1;

% II. Extract present value of states
% ..... Not needed here since x is the state which is already a good name

% IIIa. Intermediate calculations
% Vapor-liquid equilibrium (constant relative volatility)
y(1) = alfa*x(1)/(1+(alfa-1)*x(1));
y(2) = alfa*x(2)/(1+(alfa-1)*x(2));
y(3) = alfa*x(3)/(1+(alfa-1)*x(3));
y(4)=x(4); % total condenser

% IIIb. Evaluate derivatives of states
% Component balances (assume constant stage holdups M1=M2=M3=M4=1 [kmol])
DXDT(1) = L2*x(2)-V1*y(1)-B*x(1);
DXDT(2) = L3*x(3)+V1*y(1)-L2*x(2)-V2*y(2)+F*zF;
DXDT(3) = L4*x(4)+V2*y(2)-L3*x(3)-V3*y(3);
DXDT(4) = V3*y(3)-L4*x(4)-D*x(4);

% Change vector DXDT to a column vector (MATLAB requires this..).
DXDT=DXDT’;

The above routine does not make use of MATLAB’s vector calculation features.
However, below is given an excerpt from a more general routine which uses vectors.
Note that we use element-by-element operators *. and ./ to multiply and divide
vectors. This code also allows for variable stage holdup M(i), which is important if
the model is to be used for control purposes. It is simple to change the number of
stages NT in the column.

% From code for general distillation column dynamics
% Vapor-liquid equilibria
i=1:NT-1; y(i)=alpha*x(i)./(1+(alpha-1)*x(i));

% Need algebraic for computing L(i) (e.g., Francis weir)
% and V(i) (e.g., constant molar flows or ‘‘valve" equation)
% ..... but these are not given here.

% Column mass balances
i=2:NT-1;
dMdt(i) = L(i+1) - L(i) + V(i-1) - V(i);
dMxdt(i)= L(i+1).*x(i+1) - L(i).*x(i) + V(i-1).*y(i-1) - V(i).*y(i);

% Correction for feed at the feed stage
% The feed is assumed to be mixed into the feed stage
dMdt(NF) = dMdt(NF) + F;
dMxdt(NF)= dMxdt(NF) + F*zF;

% Reboiler (assumed to be an equilibrium stage)
dMdt(1) = L(2) - V(1) - B;
dMxdt(1)= L(2)*x(2) - V(1)*y(1) - B*x(1);
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% Total condenser (no equilibrium stage)
dMdt(NT) = V(NT-1) - LT - D;
dMxdt(NT)= V(NT-1)*y(NT-1) - LT*x(NT) - D*x(NT);

% Compute the derivative for the mole fractions from d(Mx) = x dM + M dx
i=1:NT;
dxdt(i) = (dMxdt(i) - x(i).*dMdt(i) )./M(i);

% Output
DYDT=[dxdt’;dMdt’];

Systems with algebraic equations (DAE system)

In the above examples, all the model equations were differential equations. Actually,
we had some algebraic expressions, e.g., the reaction rate constant as function
of temperature, but these were explicit in the (dynamic) state variables y1, i.e.,
y2 = f(y1, u), such that they could easily be evaluated (using IIIa. Intermediate

calculations in the MATLAB code).
However, more generally, one will in addition to the differential equations

dy1

dt
= f1(y1, y2, u) (11.52)

also have “implicit” algebraic equations of the form

0 = f2(y1, y2, u) (11.53)

where y2 are the extra algebraic variables. Three approaches of dealing with systems
with both differential and algebraic equations (DAE systems) are:

1. Eliminate the algebraic variables y2 by substituting relationships for them into
the differential equations (which is actually what we do with the “intermediate
calculations” in the above examples). This approach does not generally work for
all the equations, but it should be used to some extent to reduce the number
of variables. However, you should avoid that things get too complicated, because
otherwise the code becomes difficult to read and you will make errors.

2. Use a separate “equation solver” for the algebraic equations f2 = 0,
which is “inside” an ordinary differential equation (ODE) solver (integrator). This
approach is common, but may be ineffecient in terms of computing time.

3. Use a DAE-solver that solves the differential and algebraic equation
simultaneously. The equation set is then written in the form

M
dy

dt
= f(y, u)

where the “mass matrix” M is a square matrix that tells the solver which equations
are algebraic. Usually, M is a diagonal matrix with 1’s on the diagonal for
differential equations and 0’s for algebraic equations. This is a general approach
and complicated “fixes” are avoided.

To illustrate the three approaches, consider a dynamic flash. We derive differential
equations (and dynamic states) from the dynamic balances for component mass and
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energy. The energy balance has internal energy U (or enthalpy H) as the “natural”
differential variable (dynamic state):

dU/dt = FhF (T, . . .) − GhG(T, . . .) − LhL(T, . . .)

where, as indicated, the enthalpies hF , hG and hL are (explicit) functions of
temperature T . In addition, we have the algebraic equations, which mostly are
associated with the vapor-liquid equilibrium (VLE). Again, these algebraic equations
do not depend explicitly on U , but rather on temperature T , etc. As discussed above,
there are three approaches to overcome this:

1. In simple cases, we can eliminate U as a state variable by substituting its
dependency on T and other variables into dU/dt, and rewrite the energy balance
with T as a state (dT/dt = · · ·). This approach was used in all the previous
examples, but generally it will not work, or at least be very cumbersome, see (11.14).
For the flash example, it will not work because U depends on the phase distribution
f and we lack an expression for df/dt in (11.14).

2. In general, with internal energy U and the component holdups as state variables,
we can solve an “UV -flash” to compute the temperature, pressure and phase
distribution. Here, we make use of the fact that the total volume V of the flash
tank is fixed. The UV flash must performed as a separate “intermediate”
calculation, which requires a separate solver, in addition to the solver for the
differential equations (integrator). This approach may require a long computation
time because of the nested loops.

3. The recommended approach, used in the example below, is to use a DAE solver
(ode15s in our case) to solve the flash equations and the differential equations
simultaneously. However, also here we should use “intermediate calculations”
(elimination; approach 1) to reduce the number of algebraic equations, for example,
for computimg physical properties. For each remaining algebraic equation, we
need an associated (algebraic) state variable, which should be chosen such that
algebraic equations in the “intermediate calculations” depend explicitly on the
state variables. In many cases, we need the temperature T in the “intermediate
calculations,” so it is recommended to choose T as a (algebraic) state variables. In
summary, it recommended to include both U and T in the state vector, by using
the following DAE set

dU

dt
= f1(T, ni, . . .)

0 = U − U0(T, ni, . . .)
︸ ︷︷ ︸

f2

This corresponds to including U in the differential variables y1 and T in the
algebraic variables y2 in (11.52)-(11.53).

We next consider an example with a flash tank where we use the simultaneous DAE
approach.

Example 11.18 Adiabatic flash. We have an adiabatic flash tank with feed stream F
[mol/s], vapor product G [mol/s] and liquid product L [mol/s]. The feed consists of methanol
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G

y

Figure 11.26: Adiabatic flash tank

(1) and ethanol (2). The mole fractions of the light component in the three streams are
denoted z (feed), y (vapor) and x (liquid), respectively. The feed is assumed to be liquid and
the pressure p0 downstream the tank (which must be lower than the bubble point pressure
of the feed to get flashing) is assumed given; see Figure 11.26. The vapor/liquid equilibrium
(VLE) is assumed to be ideal and follow Raoult’s law.

For a system with Nc components, we can generally set up Nc mass balances (we choose
to use 1 total mass balance, and Nc − 1 component balances) and 1 energy balance (11.11);

dn

dt
= F − G − L

dni

dt
= Fzi − Gyi − Lxi (i = 1, . . . , Nc − 1)

dU

dt
= FhF − GhG − LhL

Here n [mol] is the total holdup in the tank (in both phases), ni [mol i] is the holdup of
component i in the tank (in both phases) and U [J] is the internal energy in the tank. We
have assumed, in the energy balance, that the volume of the tank Vtot is constant, such that
pex

dVtot
dt

= 0. This gives Nc + 1 differential equations, corresponding to Nc + 1 dynamic
state variables (n, ni, U). However, in addition we generally have a large number of algebraic
equations, which may require us to add algebraic state variables, at least if the algebraic
equations are implicit.

First, we have the following algebraic relationships for mass and energy holdups

n = nG + nL

ni = nG yi + nL xi (i = 1, . . . Nc − 1)

U = nG hG + nL hL − pVtot

where nG and nL is the amount of gas and liquid (the phase distribution) in the tank.
Furthermore, we have algebraic expressions for hG(T, p, xi) and hV (T, p, yi) [J/mol], for G
(e.g., valve equation G = kg(p− p0)), for L (e.g., level control equation L = kL(V −V0)), for
the VLE (from which we can compute p and yi from T and xi), for the gas holdup nG (e.g.,
ideal gas law), etc. For details, see the MATLAB code below, which should be self-explainable.
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It is possible to set up all of these equations as one large equation set (and solve with a DAE
solver), but this gives many algebraic variables. In practice, we want to reduce the number of
algebraic equations (and the corresponding number of state variables) by inserting any explicit
algebraic relationships into the differential equations, as we did earlier using “intermediate
computations.” There are many ways of doing this, and it will depend on which variables we
select as the algebraic state variables.

For the present flash example, we select T and VL (liquid volume) as the algebraic state
variables, in addition to the three dynamic state variables n, n1 and U . With this choice, all
the algebraic equations are explicit in the state variables, except for two algebraic equations
for n and U (which are implicit in VL and T ). For details see the MATLAB file flash.m

below. Note that the mass matrix M has 0’s on the last two diagonal entries, to signal that
the last two equations are algebraic rather than differential.

The steady-state solution is, as before, found by simulating the dynamic response for a long
time (unfortunately, it is not allowed in MATLAB to set the mass matrix M = 0, which in
principle should have been OK). We find at steady state

n = 100.4e3 mol, n1 = 48.1e3 mol, U = 5.02e8 J, T = 344.5 K, VL = 5.02 m3

We start from this steady-state when performing further simulations. The liquid feed rate is
0.1 m3/s (2012 mol/s), so the residence time in the flash tank is about 50 s. The dynamic
response in the flash tank temperature T to a step increase in the feed temperature Tf from
400K to 440 K is shown in Figure 11.27. This corresponds to an increase in feed enthalpy.
Note that the feed is liquid, and the feed pressure (20 bar) is above the bubble point. There is
a fast initial temperature increase from 344.5 K to about 345.1 K, related to a fast pressure
increase (from p = 1.03 bar to 1.05 bar), followed by a slow temperature increase towards
345.3 K at the new steady state, related to the composition change in the liquid phase (from
x1 = 0.479 to 0.467 at the new steady state). The increase in vapor flow is from G = 302
mol/min to 533 mol/s at the new steady state. The MATLAB file used for this simulation is
given below.
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Figure 11.27: Adiabatic flash: temperature response after step in the feed enthalpy
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function F=f(t,y)
% This is file flash.m
% INPUT: Time t and state vector y
% OUTPUT: Right hand side of DAE set: M dy/dt = f(y)
% States n=y(1); n1=y(2); U=y(3); T=y(4); VL=y(5);
% Usage with ode15s:
% options = odeset(’mass’,diag([1 1 1 0 0]));
% y0 = [100.4e3 48.1e3 5.02e8 344.5 50.17]
% [t,y]= ode15s(@flash,[0 100],y0,options)
% Plot temperature: plot(t,y(:,4))

% All in SI units
% I. Data (parameters and independent variables)
% Data for: 1-methanol, 2-ethanol
A1=8.08097; B1=1582.271; C1=239.726; % Antoine psat1 [mmHg] w/ T [C] (T-range: 15C - 84C)
A2=8.11220; B2=1592.864; C2=226.184; % Antoine psat2 [mmHg] w/ T [C] (T-range: 20C - 93C)
cpl1=80; cpl2=131; cpv1=44; cpv2=65; % heat capacity [J/K mol]
T0=298.15; hvap01=38000; hvap02=43000; % heat of vap. at T0 [J/mol]
Vl1= 40.7e-6; Vl2=58.7e-6; % liquid molar volumes [m3/mol]
R=8.13; % J/mol K

% Feed data
q=0.1; % m3/s
z1=0.5; % mol1/mol
Tf=1.1*400; % K (increase from 400K to 440K)
p0=1e5; % N/m2 (=1 bar downstream pressure)
Vf = z1*Vl1 + (1-z1)*Vl2; % m3/mol (molar volume feed)
F = q/Vf; % mol/s (feed rate)

% Total tank volume
Vtot = 10; % m3

% Valve constant and controller gain
kg=0.1; kl=100e3; % note that the P-controller gain kl is large

% II. Extract present value of states
n=y(1); % total holdup in tank (both phases) [mol]
n1=y(2); % component 1 holdup in tank (both phases) [mol1]
U=y(3); % total internal energy (both phases) [J]
T=y(4); % temperature (same in both phases) [K]
VL=y(5); % liquid volume [m3]

% IIIa. Intermediate calculations
% VLE
x1 = n1/n;
p1s=10.^(A1-B1/(T-273.15+C1))/750e-5; % psat1 from Antoine [N/m2]
p2s=10.^(A2-B2/(T-273.15+C2))/750e-5; % psat2 from Antoine [N/m2]
p1 = x1*p1s; % partial pressure component 1 [N/m2]
p2 = (1-x1)*p2s; % partial pressure component 2 [N/m2]
p = p1+p2; % pressure = sum of partial pressures [N/m2]
y1 = p1/p; % vapor fraction component 1 [mol1/mol]
Vm = x1*Vl1 + (1-x1)*Vl2; % molar volume (liquid phase) [m3/mol]

% Phase distribution
VG = Vtot - VL; % gas volume [m3]
nL = VL / Vm; % liquid holdup [mol]
nG = p*VG / (R*T); % gas holdup (ideal gas law) [mol]

% Enthalpies [J/mol] (Ref.state: pure liquid at T0)
hF = [z1*cpl1 + (1-z1)*cpl2] * (Tf-T0);
hL = [x1*cpl1 + (1-x1)*cpl2] * (T -T0);
hG = [y1*cpv1 + (1-y1)*cpv2] * (T -T0) + y1*hvap01 + (1-y1)*hvap02;
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% Vapor and liquid flow
G = kg*(p-p0); % simple valve equation for outflow of gas [mol/s]
VLs = Vtot/2; % Setpoint level (volume): keep 50% liquid in tank [m3]
L = kl*(VL-VLs); % Level controller with proportional gain kl [mol/s]

% IIIb. Evaluate right hand side of DAE-set: M dy/dt = f(y)
f1 = F - G - L; % =dn/dt Dynamic: Overall mass balance
f2 = F*z1 - G*y1 - L*x1; % =dn1/dt Dynamic: Component 1 mass balance
f3 = F*hF - G*hG - L*hL; % =dU/dt Dynamic: Energy balance
f4 = U + p*Vtot - hL*nL - hG*nG; % = 0 Algebraic: Internal energy U
f5 = n - nG - nL; % = 0 Algebraic: Total holdup n
F = [f1; f2; f3; f4; f5];

Finding the steady-state. Above, the steady state was found by simulating the dynamic
response for a long time. Alternatively, one may find the steady-state directly, for example,
using the function fmincon in MATLAB:

yss = fmincon(’1’,y0,[],[],[],[],[],[],@flashss)

where the file flashss.m is identical to flash.m (above) except that the first line is changed
to function [c,ceq]=f(y) and the following line is added at the end: c=[]; ceq=F;.

Remark 1 Removing or adding algebraic state variables. In the MATLAB code given
above, we have two algebraic state variables (T and VL), but actually we can get rid of VL as
a state variable if we do a little work. This follows because the holdup equations are simple,
so we can combine them (including n = nG + nL which MATLAB solved using f5 in the
code above), and derive an explicit expression for VL as a function of n, p, Vtot and Vm (try
yourself, it is easy!). In the MATLAB code above, we then replace the line VG = Vtot - VL
by the following two lines of “intermediate calculations”:

VG = (Vtot-n*Vm)/(1 - (p*Vm)/(R*T));
VL = Vtot - VG;

We now have only 4 state variables, so we delete the algebraic equation f5 = n - nG - nL

at the end. Of course, we also need to change the mass matrix and the call to ode15s. The
final result is of course the same as before.

The main problem when we reduce the number of state variables is that the equations get
a bit more messy and it is easy to make mistakes. For this reason, we often choose to add
“unnecessary” state variables in the problem. This also makes plotting the results easier, as
MATLAB stores all the state variables. For example, if we want to plot pressure, then we can
simply add a “dummy” state variable (pdummy=y(6);) together with a “dummy” algebraic
equation (f6= p - pdummy;).

Remark 2 Fixing pressure and index problem. In the model of the flash tank given
in the MATLAB code above, we let the pressure vary dynamically, but from the very quick
initial rise in temperature in Figure 11.27 it follows that the pressure dynamics are very
fast. In such cases it might be tempting to say that the pressure is fixed by introducing the
algebraic equation p = p0 (f6 = p-p0;) and an additional state variable G (and omitting
the valve equation for G). This is in principle OK, but it turns out that the integration
routine ode15s is unable to solve this – we get an error message: “This DAE appears to

be of index greater than 1.” An “index problem” is often an indication of a non-physical
assumption (in this case, it is not physically possible to keep the pressure p constant), and
the problem can often be avoided by rewriting the equations, and/or avoiding non-physical
assumptions.
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11.6 Process control

Automatic feedback control is widely used in the process industry, and the
instrumentation and control system typically represents 30% of the investments in
a plant. For each process variable y that one wants to control one needs

• a measurement of the process variable (y),
• an independent manipulated variable u (usually a valve) that influences y.

We use the following notation

• CV = controlled variable (y, “output”)
• MV = manipulated variable (u, “input”, independent variable)
• DV = disturbance variable (d, independent variable that we cannot influence)

The MV should have a “direct” and large effect on the CV (with fast dynamics and
a small delay or inverse response). The idea of control is to adjust the MV (u) such
that the CV (y) is kept close to its desired setpoint ys, in spite of disturbances d, that
is, we want a small control error,

e(t) = y(t) − ys

We use negative feedback, where the sign of the control action is opposite the
sign of the process. This implies that the MV (u) is adjusted such that it counteracts
changes in the CV (y). A well-known feedback controller from daily life is the on/off
controller used in thermostats, where the heat is the MV and temperature is the CV.
The on/off controller is simple, but it gives large MV changes (between max and
min), and fluctuations in the CV (temperature) are unavoidable. This is undesirable,
so in the process industry one normally uses the proportional-integral-derivative (PID)
controller with algorithm

u(t) = u0 − Kc

(

e(t) +
1

τI

∫ t

0

e(t)dt + τD
de(t)

dt

)

(11.54)

We see that the MV-change away from its nominal value (u − u0) is a weighted sum
of the present value of the error e (the P-term), the integral of the error e (the I-term)
and the derivative of the error e (the D-term). The PID controller has three adjustable
parameters:

• Gain Kc

• Integral time τI [s]
• Derivative time τD [s]

The proportional term is usually the most important, and a large value of Kc results
in a faster initial response. The integral action causes the MV to change until the
error e(t) is zero, that is, we get no steady state off-set. A small value of the integral
time τI [s] results in the controller returning faster to steady state. For this reason,
the integral time is often called the “reset time.” The derivative term can give faster
responses for some processes, but it often gives “nervous control” with large sensitivity
to measurement noise. For this reason, a PI controller (with τD = 0) is most common.
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There are also other variants of the PID controller, for example, the cascade form,
but the differences are usually small for practical purposes. One should, however, note
that the vendors use different names and definitions for the three PID parameters.
For example, some vendors use the integral gain KI = Kc/τI and the derivative gain
KD = KcτD. Others use the “proportional band” 100/Kc, and “reset rate” 1/τI .

The main problem with negative feedback is that we can get instability if we over-
react (if Kc is too large or τI is too small) such that we get variations that grow over
time.

On-line tuning. Finding good control parameters (“tunings”) is not as simple
as one may believe. A common (and serious) mistake is to use the wrong sign for
Kc, which usually causes the system to drift to an operating point with a fully open
or fully closed valve. Tuning is often performed “on-line” using trial-and-error. One
usually starts with a controller with a low gain (Kc) and with no integral action
(τI = ∞). Kc is then gradually increased until either (a) the control performance to
disturbances and set-point changes is acceptable, (b) the MV change is too large or
(c) the system starts oscillating. If the system starts oscillating, then Kc is reduced
by approximately a factor 2 or more. Next, one gradually reduces the integral time τI

until (a) the settling time (back to the set-point) is acceptable or (b) the system starts
oscillating. If the system oscillates, then τI is increased by a factor of approximately 2
or more compared to the value that gave oscillations. If the response is too slow then
one may try introducing derivative time τD, which can be increased until (a) the MV
changes become too nervous or (b) the system starts oscillating. If the system starts
oscillating, then τD is reduced with approximately a factor 2 or more compared to the
value that gave oscillations.

Model-based tuning for fast response. Alternatively, model-based tuning is
used. The response (without control) from the MV (u) to the CV (y) is recorded
and then approximated as a first-order response with a delay, that is, one obtains
the model parameters k, τ and θ (see page 286). The following SIMC4 PI-tunings are
recommended

Kc =
1

k

τ

τc + θ
; τI = min{τ, 4(τc + θ)} (11.55)

Here, the “closed-loop” response time τc [s] is the only tuning parameter. A smaller τc

gives a faster response for the CV, but one may get oscillations and the MV-changes
are larger. In order to avoid oscillations and have good robustness (with a good margin
to instability), it is recommended to choose τc larger than the effective delay, that is,
τc ≥ θ.

If the response is dominant second order, meaning that the response is well
approximated by a second-order response with τ2 > θ, then a substantial improvement
can sometimes be obtained by adding derivative action, provided there is not too much
measurement noise. The response is then approximated by a second-order model with
parameters k, τ, τ2 and θ. For a PID controller on cascade form, Kc and τI are then as
given in (11.55) (but note that the parameter values will change because θ is smaller
when we use a second-order model) and the derivative time is

τD = τ2 (11.56)

4 S. Skogestad, “Simple analytic rules for model reduction and PID controller tuning,” J. Process
Control, Vol. 13 (2003), 291–309.
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Note that this is for a so-called cascade PID-form. To get the corresponding PID-
parameters for the “ideal” PID form in (11.54), compute the factor α = 1 + τD/τI ,
and multiply Kc and τI by α, and divide τD by α.

Conservative tuning for smooth response. The tuning procedure outlined
above is often time consuming, and as a starting point the following minimum
(“conservative”) gain can be used5

|Kc,min| =
|u0|

|ymax|
(11.57)

where |u0| is the MV change required to counteract the largest expected disturbance
and |ymax| is the largest accepted CV deviation. In industry, the variables have often
already been scaled such that |u0| ≈ |ymax| (for example equal to 1) and we get
|Kc,min| ≈ 1. Indeed, this is a common factory setting for the gain. In addition, it is
crucial that the sign of Kc is chosen correctly – remember that the control is supposed
to counteract and not intensify changes in the CV. As a conservative starting point
for the integral time, τI = τ can be chosen, where τ is the dominant time constant for
the effect of the MV on the CV.

Example 11.19 Control of exothermic CSTR. This is a continuation of Example 11.16
(page 311). We want to keep the reactor temperature y = T approximately constant at
ys = 444K. We assume that the reactor temperature can be measured and that we can affect
y = T by changing the coolant temperature u = Tc. The objective is to design a feedback
PI-controller with y = T as the controlled variable (CV) and u = Tc as the manipulated
variable (MV). We consider, as before, an increase in the feed rate of 20% (from 0.10 to
0.12 m3/min) – this is the “disturbance” to the process. Without control, we have found that
the reactor temperature T will eventually drop to 441.9 K, but with PI control the MV will
counteract the disturbance such that CV = T returns to its desired value (setpoint) of 444 K;
see Figure 11.28.

To tune the controller, we obtained first, without control, the response from the cooling
temperature (MV, u) to the reactor temperature (CV, y). This response (not shown in
Figure 11.28) can be closely approximated as a first-order response (without time delay θ)
with gain k = ∆y(∞)/∆u ≈ 0.5 and time constant τ ≈ 7 min. For example, this is obtained
by simulating a small step in Tc (for example, by changing Tc from 430 to Tc=431 and setting
q=0.1 in the MATLAB code on page 312), but it can also be found analytically by linearizing
the model. We chose the closed-loop response time to be τc = 3 min (a lower value gives a
faster response, but with larger changes in the MV Tc). From (11.55), this gives the PI-settings

Kc =
1

0.5

7

3 + 0
= 4.7, τI = min{7, 12} = 7 min

.
The response with control is shown in Figure 11.28. We see that the temperature y = T

returns to its setpoint Ts = 444 K after about 9 minutes (about three times τc). The simulation
was performed by adding the following lines after point II in the MATLAB code on page 312:

% PI-CONTROLLER: u = u0 - Kc*e - (Kc/taui)*eint, where deint/dt = e
% Note: (1) The integrated error eint is introduced as an extra state: eint = y(4)
% (2) The process ‘‘output" (CV) yreg is in this case the reactor temperature T
% (3) The process ‘‘input" (MV) u is in this case the cooling temperature Tc
yreg = T; yregs= 444; e=yreg-yregs; u0 = 430; eint=y(4); Kc=4.7; taui=7;
u = u0 - Kc*e - (Kc/taui)*eint;
Tc = u;

5 S. Skogestad, “Tuning for smooth PID control with acceptable disturbance rejection,” Ind. Eng.
Chem. Res., Vol. 45, 7817-7822 (2006).
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Figure 11.28: Exothermic CSTR with and without control: Temperature response after a
20% increase in feed flow rate

and by changing the last line to: DYDT=[f1; f2; f3; e];. The modified code is saved in the
file cstrTpi.m and can be run by entering:

[T,Y]= ode15s(@cstrTpi,[0 50],[2274 7726 444.0 0]);.

11.7 Summary

Typically, the following steps are involved for the derivation and analysis of a dynamic
model:

1. Formulate the relevant dynamic balance equations. The main problem is often:
Which balance? Which control volume?

2. Use steady state data (obtained at the nominal operating point) to determine any
missing parameters in the dynamic model equations.

3. Linearize and analyze the model.
4. Find the dynamic response by solving the dynamic equations (“dynamic

simulation”).
5. The model can, also, be used to design the control system, for example, to tune a

PID controller.





APPENDIX A

Some thermodynamics and
physical chemistry

Thermodynamics and physical chemistry are very important subject areas for process

engineering calculations. The contents of this appendix could just as well been placed within

the main text of the book, but I have chosen to put it here in order to maintain a clearer

separation between the different areas and show that thermodynamics is a distinct subject.

The reader is recommended to quickly read through the chapter in order to gain an overview,

returning later to individual subjects as needed. The presentation is mostly in the form of

an overview and you may want to consult other books for more details.

A.1 Concept of mol

The number of moles normally cannot be directly measured, but it is nevertheless a
very practical quantity – in particular for systems with chemical reactions and varying
composition. The main difference between a chemical engineer and a mechanical engineer
is said to be that the eyes of a chemical engineer do not start to wander at the mention of
the term mole. This section is primarily aimed at non-chemical engineers.

Consider the reaction N2 + 3H2 = 2NH3, where 1 molecule of nitrogen reacts with 3
molecules of hydrogen to form 2 molecules of ammonia. In order to describe what happens,
one needs to keep track of the number of the various molecules. However, molecules are
extremely small so the numbers become extremely large. Therefore, it has been decided to
call NA = 6.02214 · 1023 of molecules (or atoms or entities) for a mole (= 1 mol in SI units).
Just as a dozen eggs is 12 eggs, 1 mol of eggs is 6.02214 · 1023 eggs.

NA is also known as Avogadro’s number or Avogadro’s constant. The number originally
came from considering the number of atoms in 1 g of hydrogen, since the atomic mass for
hydrogen was set to M = 1 g/mol. The current IUPAC definition of 1 mol is that it is the
number of atoms in 12 g of carbon-12 (C12), and the atomic mass of hydrogen is then more
precisely M = 1.008 g/mol.1

The hydrogen molecule consists of two hydrogen atoms (H2) and the molar mass of
hydrogen is M = 2.016 g/mol. Correspondingly, the atomic mass of oxygen is 16.00 g/mol
and the molar mass of oxygen (O2) is 32.00 g/mol. The molar mass of water (H2O) is then
18.016 g/mol, that is, 6.02214 · 1023 molecules of water have a mass of 18.016 g.

1 The atomic mass of carbon is 12.011 g/mol (rather than 12.000 g/mol for the carbon-12 isotope),
because naturally occurring carbon also contains some of carbon-13. There is also a tiny amount of
carbon-14, which does not affect the atomic mass at our level of precision, but which is useful for
dating objects.
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The molar mass for mixtures is simply the molar average,

M =
X

i

xiMi

where Mi is the molar mass and xi is the mole fraction of substance i. For example, air
consists of 78.1 mol% N2, 21.0% O2 and 0.9% Ar. The molar mass for the components
[g/mol] are 28.01, 32.00 and 39.95, respectively, and the molar mass of air is then

0.781 · 28.01 + 0.210 · 32.00 + 0.009 · 39.95 = 28.96 [g/mol]

Note that I in this book mainly use “molar mass” (M) [g/mol], which has the same numerical
value as the closely related quantity “molecular weight” [dimensionless] = relative molar mass
(Mr).

Exercise A.1 ∗ Show that 1 liter of water contains 55.5 mol of water molecules.

A.2 Balancing chemical reactions

A chemical reaction can generally be written in the form 0 = ΣiνiAi where Ai are the
chemical components and νi the stoichiometric coefficients. To determine the stoichiometric
coefficients we use the atom balances. Usually, this balancing is done “by inspection,” but
alternatively the following systematic procedure can be used:

Step 1. Specify the chemical components that participate in the reaction.

Step 2. Formulate the atomic balances (“atoms in = atoms out”).

Step 3. Select the stoichiometric coefficient for one component (select a basis).

Step 4. Determine the remaining stoichiometric coefficients by solving the atom balances.

The main difficulty in this procedure is to specify the components in step 1. If one leaves out
one component, there may be no solution, and if one specifies extra components, then the
solution is not unique and more than one reaction can be formulated.

Example A.1 Step 1. Consider a reaction involving components CH3OH (methanol),
CO2, H2O and H2. The chemical reaction on standard form is

0 = νCH3OHCH3OH + νCO2CO2 + νH2OH2O + νH2H2

and we want to find the stoichiometric coefficient νi. Step 2. Atoms are conserved in the
reaction, so the atom balances for C, H and O give

C : νCH3OH + νCO2 = 0

H : 4νCH3OH + 2νH2O + 2νH2 = 0

O : νCH3OH + 2νCO2 + νH2O = 0

Step 3. We select that CO2 is a reactant and that 1 mol is consumed, that is, νCO2 = −1.
Step 4. We then have 3 independent equations (the atom balances) in three unknowns, and
we find

νCH3OH = 1, νH2O = 1, νH2 = −3

The chemical reaction can then be written

0 = CH3OH − CO2 + H2O − 3H2

or equivalently
CO2 + 3H2 = CH3OH + H2
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Extra for interested readers: General method for finding the number of independent
chemical reactions (Nr). Assume that we want to balance a single reaction, and we specify
Nc components to be included in the reaction (step 1). Assume that for these components we
can formulate Na independent atomic balances (step 2). Since for each reaction we can select 1
stoichiometric coefficient (step 3), we then have Nc − 1 unknown stoichiometric coefficients, and
we need Na equations to find a unique solution in step 4. There are now three possibilities. (a) If
Nc − 1 = Na or equivalently Nc − Na = 1, then we have as many equations as unknowns, and we
can compute the stoichiometric coefficients for the reaction. (b) If Nc − Na < 1, then there are too
few components, so we must have left out a component. (c) If Nc − Na > 1 then there are more
unknown stoichiometric coefficients than equations, so there are infinitely many solutions, and we
can formulate more than one reaction.

To study the last case in more detail, introduce Nr = Nc − Na. If Nr = 1, then we have case
(a) with a unique solution. In case (c) with Nr = 2, we have infinitely many solutions, and we can
select one stoichiometric coefficient to be zero. This component is then not included in the reaction
(let us call it reaction 1), but we can instead formulate an additional independent reaction (let us
call it reaction 2) involving this component. If Nr = 3 then we can set the stoichiometric coefficients
of two components to zero in reaction 1. We can then specify that the first of these components is
only included in reaction 2, and the second only in reaction 3. Again, these 3 resulting reactions are
clearly independent. We have then derived the following general result:

• In a system where Nc components are included in reactions, and where we can set up
Na independent atomic balances for these components, we have Nr = Nc−Na independent
reactions.

In some cases, it may be difficult to find the number Na of independent atomic balances. In such

cases, one can obtain the atom matrix A, which is simply a “table” that gives the number of atoms

in each of the Nc components, and we have that Na = rank(A); see page 90 for examples.

A.3 Thermodynamic concepts

Thermodynamics was originally the study of the relationship between heat and mechanical
work, but the area of thermodynamics has later been expanded to include, among other
things, chemical equilibrium and phase equilibrium.

Central to thermodynamics is the concept of temperature. Thermodynamics concerns itself
with systems in internal equilibrium and time (t) is therefore not a parameter. Because of the
concept of state, we can nevertheless use thermodynamics for actual (irreversible) processes
that change over time.

• Make sure that you know the following (see for example the list of concepts on page 18):

— System (open, closed, isolated, adiabatic)
— Surroundings
— Process
— State
— Intensive and extensive variables

• What is temperature T?
Microscopically, that is, on the molecular level, temperature is a measure of the intensity
of the random (chaotic) motions of the molecules including translation, rotation and
vibration.
Macroscopically, we can observe that a system’s state (for example, its volume, pressure or
phase) is changed when it comes into contact with another system because of a difference
in a property that we call temperature. The change is caused by transferred energy in the
form of heat Q from high to low temperature until we reach temperature equilibrium.2

2 It was only in the 19th century that the terms temperature (intensive variable) and heat (extensive
variable) were clearly distinguished.
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The Celsius temperature scale was originally defined by setting water’s freezing point to
0oC and water’s boiling point at 1 atm to 100 oC. Later, it was discovered that there is
an absolute lowest temperature, -273.15 oC, where there is no molecular motion, and from
this the Kelvin scale was defined:

T [K] = t[oC] + 273.15

T is called the “absolute temperature” because T = 0 at absolute zero. In all
thermodynamic equations, for example, in the ideal gas law, one must use
absolute temperature.
In the past, temperature was often measured using a mercury thermometer, utilizing the
fact that mercury expands when temperature increases. Today, a thermocouple is often
used, using the fact that electric conductibility varies with temperature.
For the thermodynamic definition of temperature, see (B.7) on page 390.

.
10.19

vacuum

(water)

Figure A.1: Measuring pressure

• What is pressure p? Pressure p [Pa = N/m2] is defined as force per unit area,

p [N/m2] =
F [N]

A [m2]

A fluid also has an (internal) pressure due to forces between the molecules. A negative
pressure is theoretically possible for systems with strong forces of attraction (but not for
gases).
Macroscopically, the pressure in a fluid can be measured with a manometer, as shown in
Figure A.1, where there is an equilibrium between the hydrostatic pressure from the liquid
column with height h and the pressure in the fluid (e.g., outside air). A liquid column
with area A and height h has a mass m = ρV = ρhA and from Newton’s second law the
gravitational force of this mass is F = mg, where g ≈ 9.81m/s2 is the acceleration of
gravity. The hydrostatic pressure exerted by the fluid is then

p =
F

A
= ρgh (A.1)

For example, a water column of h ≈ 10.2 m corresponds to a pressure of

p = ρgh = 1000 kg/m3 · 9.806 m/s2 · 10.2m = 1.0 · 105 N/m2 = 1 bar

For mercury (Hg), the density is much higher and 1 bar corresponds to a liquid column of
approximately h = 0.75 m = 750 mm.
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Example A.2 The barometric formula. We want to derive a formula for how the air
(barometric) pressure p depends on the elevation h (height above sea level), and use this
formula to calculate the air pressure at Mount Everest. We assume ideal gas and a constant
temperature of 0oC.
Solution. The expression p = ρgh in (A.1) cannot be used directly to find the variation
in air pressure p with height h because the density of air ρ is not constant. However, over
a small height difference, dh, we can assume ρ to be constant and the corresponding small
pressure drop is

dp = −ρgdh

Note that we have a negative sign because pressure drops as height increases. For an ideal
gas, we have from (A.9) that the density is

ρ =
pM

RT

which inserted gives
dp

p
= −Mg

RT
dh

To simplify the calculations, we assume that the composition (and thus the molar mass M
[kg/mol]), the temperature T [K] and the acceleration of gravity g [m/s2] are all independent
of the height h. Integration of the equation from pressure p0 = 1 atm (at h = 0) to p (at
height h) then gives the barometric formula

ln
p

p0
= −Mg

RT
h ⇒ p = p0 · exp

„

−Mg

RT
h

«

(A.2)

Inserting M = 29 · 10−3 kg/mol, T = 273.15K (0 oC), g = 9.81 m/s2 and R = 8.31 J/mol
gives

p = p0 · exp
`
−1.25 · 10−4 · h[m]

´
(A.3)

where p0 = 1 atm = 1.013 bar is the normal atmospheric pressure at sea level (h = 0).
At Mount Everest, we have h = 8848 m and we find that the normal pressure is
p = 0.331p0 = 0.331 atm = 0.335 bar.
In practice, the temperature also varies with the height and the result changes, see
Example A.11 on page 352.

Exercise A.2 ∗ The boiling point (Tb) depends on pressure, and we want to use (A.3) to
find how the boiling point of water depends on elevation.
(a) Use the Antoine vapor pressure formula from Example 7.13 (page 181) to derive an
expression for how the boiling temperature of water depends on elevation h.
(b) Show that the boiling point of water drops about 0.35K per 100 m.
(c) What is the boiling point of water at Mount Everest (8850m) ?

• What is a reversible process? A reversible process is a process where there is
a complementary process (e.g., the reverse process) that brings the system and its
surroundings back to their original states. In a reversible process, there is always a balance
between internal (in the system) and external (from the surroundings) forces, such that
we can reverse the process if desirable. For a reversible process, we will not be able to see
whether a movie film is running forwards or backwards!! A reversible process between two
states will, in many cases, take an infinite length of time and may therefore be without
any practical interest. Nevertheless, one may sometimes use an idealized reversible process
between two states to determine changes in the state variables (see below) which will also
apply to an actual irreversible process between the same states. Note. This is very
important!
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• What is a state variable? This a very important concept! A state variable depends only
on the present state of the system and on not how (“the way”) has arrived at the state.
The system is assumed to be at internal equilibrium in every state.
This means that if we start with a given amount of matter in a state 1 (e.g., 1 bar, 5m3),
go to state 2 (e.g., 2 bar, 5 m3) (perhaps by supplying heat), further to state 3 (e.g., 2
bar, 3 m3) (perhaps by supplying work to compress no volume), and then return to state
1 (1 bar, 5m3) (perhaps by extracting work while cooling), then the values of all the state
variables are unchanged. This is often written in the form (here for internal energy)

I

dU = 0

— Examples of state variables are: entropy S, enthalpy H , internal energy U , volume V ,
temperature T , pressure p, heat capacity Cp, density ρ, etc. A combination of state
variables is also a state variable. For example, U + pV − TS = H − TS is a state
variable (it is known as the Gibbs “free” energy and has the symbol G).

— The following are not state variables: Heat Q and work W .

In order to calculate the change in a state variable from one state to another given state,
we often use an idealized process, e.g., a reversible process, between the two given states.

• How many independent state variables are there? In general, a system in
equilibrium has 2+Nc independent state variables where Nc is the number of components.
For a system with given amounts of the Nc components (e.g., 1 kg of a pure fluid), there
are then only 2 independent state variables, e.g., V and p. One should in principle be able
to choose any other pair of independent state variables, e.g., p and S, p and H , S and H ,
S and V , p and T and so on. We can then write the other state variables as a function of
these two variables (coordinates), e.g., (here for internal energy U)3

U = U1(p, V ) = U2(p, S) = U3(p,H) = U4(S, H) = U5(S, V ) = U6(p, T )

But sometimes we have to be careful in choosing the pair. In partucular, the combination
of p and T does not give a unique state for a pure component in a region with several
phases. Consider, for example, 1 mol water at 1 atm and 100 oC, that is, at its normal
boiling point. From the given value of p and T , we cannot say anything about the phase
distribution.
This also follows from the Gibbs phase rule which states that for a system in equilibrium,
the number of independent intensive variables taken from the set temperature, pressure
and composition that can be specified is

F = 2 + Nc − NP − Nr (A.4)

where Nc is the number of components, NP is the number of co-existing phases and Nr is
the number of independent reactions (see page 89) that are in equilibrium in the system.
For example, if there is one component (Nc = 1), two phases (e.g., vapor and liquid)
(NP = 2) and no reactions (Nr = 0) then Gibbs phase rule gives F == 2 + 1 − 2 − 0 = 1,
so at most one of the intensive variables T and p can be specified independently. Note that
Gibbs phase rule does not contradict our assertion that there are always 2+Nc independent
variables for a system in equilibrium, because these independent variables are not restricted
to T , p and composition. For example, for our pure-component case with two phases, just
mentioned, we can independetly specify the following 2+ Nc = 2+1 = 3 variables: m [kg],
h [J/kg] and p [bar]. However, replacing the specification on h with a specification on T
does not work inside the two-phase region.

3 The most favorable choice of independent state variables (the so-called canonical variables)
depends on the process one is looking at, and many of the apparent mysteries of thermodynamics
are relations that arise when switching between different independent variable.
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• What is the critical point? In the state diagram in Figure A.2a, the thick lines indicate
the border of the two-phase region – with liquid at the left (with small volume) and gas
at the right (with large volume). Inside this region, we have equilibrium between gas and
liquid, and for a pure component, pressure is uniquely given by the temperature p = psat(T )
(or the other way around, temperature is uniquely given by pressure). At low pressure, the
density ρ [kg/m3] of the liquid is much larger than that of the gas, or equivalently, the
(molar) volume (Vm) of the liquid is much smaller than for the gas.
However, as we increase pressure (and thereby increase the equilibrium temperature in
the two-phase region), the gas will be more compressed and its volume decreases. On the
other hand, the volume of the liquid is affected far less by the pressure. At sufficiently
high pressure, the volume of the gas becomes equal to the density of the liquid. This is the
critical point (C in the Figure) where the gas and liquid phases are identical. Above the
critical point, there exists no separate phases for gas or liquid.

Example A.3 The molar volume of water (liquid) at 1.013 bar and 373.15 K (which is
the boiling point for water at atmospheric pressure) is 0.0188 · 10−3 m3/mol (Vm = M/ρ,
where M = 18.015 · 10−3 kg/mol and ρ = 958 kg/m3 for water at 373.15 K). The molar
volume of the corresponding water vapor (gas) is about 1600 times larger; for ideal gas
Vm = RT

p
= 8.31 · 373.15 over1.013 · 105 = 30.61 · 10−3 m3/mol. For water, the critical

point is at pc = 220.6 bar and Tc = 647.1 K (374oC ) where the volume is Vc = 0.0554·10−3

m3/mol (ρc = 325 kg/m3).
For larger molecules with a larger molar mass M , the critical point is at a lower pressure.
For example, for n-hexane the critical point is at 30 bar and 507 K (234oC ).

A.4 Thermodynamic diagrams

Consider a system with given amounts of the component, e.g., 1 kg or 1 mol of a pure
component. As mentioned above, we then have only two independent state variables. By
using the chosen state variables as axes in a coordinate system, the value of any other state
variables may be represented by iso-lines in a contour plot. These are the so-called state
diagrams or thermodynamic diagrams; see Figure A.2. The following variables are usually
shown on thermodynamic diagrams: p, T, H,S and V .

In a pV -diagram (Figure A.2a), V is on the x-axis and p on the y-axis, and we can, for
example, read off p as function of V for constant values of T (isothermals). An equation of
state (see below) gives a description in equation form of this type of diagram.

The isotherms in a pV -diagram can be found experimentally by filling a given amount
of fluid (e.g., 1 mol) into a cylinder, and then recording how the pressure p depends on
volume V . The cylinder needs to be cooled (or heated) to keep the temperature constant
during the experiment. We expect the pressure p to increase as we reduce the volume V . For
example, this is the case for an ideal gas, where pV remains constant; see for example the
isotherm for T1 for large volumes in Figure A.2a. When the pressure is sufficiently high, we get
condensation of liquid, and for a pure fluid the pressure will remain constant (at the vapor
pressure psat(T )) until all the gas has condensed. At this point, we only have liquid in the
cylinder, and a further decrease in volume will give a large increase in pressure. However, in
the critical point (C) the gas and liquid phases become identical, and for temperatures above
the critical temperature (Tc) it is not possible to observe any condensation when the “gas” is
compressed. Here, we write “gas” in quotation marks, because strictly speaking one cannot
distinguish between gas and liquid at supercritical conditions. The term (supercritical) fluid
is better.



334 CHEMICAL AND ENERGY PROCESS ENGINEERING

(a) pV -diagram. (b) pH-diagram.
Isothermals are the thin lines (with rising temperature upwards in the diagrams). Thick lines

represent phase transition between gas and liquid, with liquid at the left, two-phase in the middle

and gas at the right. C is the critical point.

Figure A.2: Typical thermodynamic diagrams for pure component

A pT -diagram is impractical because the two-phase region for a pure component is a
line (the vapor pressure line), and H,S and V make a jump along this vapor pressure line.
Therefore, for process calculations, pH-diagrams (see page 115 and Figure A.2b) or HS-
diagrams (see page 117 and Appendix F) are more common.

A.5 Equations of state

The term “equation of state” usually means an equation that describes how the pressure p
in a fluid depends on volume V and temperature T (and, if necessary, composition).

A.5.1 Equation of state for ideal gas

Let us consider a closed system with n mol of gas. Through observations, it has been
established that all gases at sufficiently low pressure satisfy the following laws:

Boyle’s law: pV = constant (at constant T )

Charles’ law: V = constant · T (at constant p)

Avogadro’s law V = constant · n (at constant p and T )

By combining the three “laws,” the equation of state for an ideal gas (the ideal gas law)
is derived,

Ideal gas law : pV = constant
| {z }

R

·nT (A.5)

where R [J/mol K] is the gas constant. (A.5) can also be derived from kinetic gas theory or
statistical mechanics. From Dalton’s law (see below), we have further that the gas constant
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R is the same for all gases and also for gas mixtures (of components, atoms and molecules).
For a mixture with ni mol of component i, we can introduce the mole fraction defined by

yi = ni/n, and the partial pressure pi defined by of component i

pi , yip (A.6)

Since
P

yi = 1, the total pressure is equal to the sum of the partial pressures,

p = p1 + p2 + · · · pi + · · · =
X

pi (A.7)

which applies for both ideal and real gases. Dalton’s law for a gas mixture says that for
an ideal gas, the partial pressure is equal to the pressure the component would have had if it
were alone in the given volume V . From (A.5), this can be written as

pi =
niRiT

V

Here, we have allowed for the possibility that the constant Ri [J/mol K] may differ for
different components. However, if we combine this equation with the definition of partial
pressure, pi = ni

n
p, we get p = nRiT/V and it follows (Why? Try another component!) that

the gas constant Ri must be the same for all components.4 The universal gas constant is
R = 8.3145 J/mol K.

The ideal gas law (A.5) can be written in many ways, for example, on molar basis

Ideal gas law : pVm = RT

where Vm = V/n [m3/mol] is the molar volume. Introducing the mass

m[kg] = n[mol] · M[kg/mol]

where M is the molar mass of the gas, we get the ideal gas law on mass basis,

Ideal gas law : pV = m
R

M
T (A.8)

We can also introduce the (mass) density ρ = m/V [kg/m3] and the ideal gas law becomes

Ideal gas law : p = ρ
R

M
T (A.9)

We note that on a mass basis the gas constant is R/M [J/kg K], which is a function of
composition, because the molar mass M depends on composition. Mechanical engineers
usually use mass basis, so they must learn a different value of the gas constant (R/M)
for every substance.

A.5.2 Deviation from ideal gas

The assumption of ideal gas holds well at low pressures and at high temperature. More
generally, the deviation from ideal gas can be quantified by introducing the “compressibility

4 Dalton’s law tells that a given number (e.g., 1 mol = 6.023 1023 molecules) of light molecules
(e.g., hydrogen) exerts the same pressure as the same number of heavier molecules (e.g., air), which
initially seems odd. The reason is that at a given temperature the light molecules move at a higher
velocity. For example, the average velocity (“root mean square” (rms)) v for translation for air at
298 K is from kinetic gas theory

v =

r
3RT

M
=

r
3 · 8.31 · 298
29 · 10−3

= 506 m/s

while the velocity of hydrogen at the same temperature is 1927 m/s.
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Figure A.3: Generalized compressibility diagram

From: A.L. Lydersen, R.A. Greenkorn, A. Hougen, University of Wisconsin, 1955.
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factor” z defined by

Real gas : z =
pV

nRT
=

pVm

RT
(A.10)

For an ideal gas, we have z = 1. For a “real” gas, z can be expressed by a virial equation,
which is a series expansion in pressure or density. The virial expansion in pressure is

z = 1 + Bp + Cp2 + Dp3 + · · · (A.11)

where the coefficients B, C, D, . . . are functions of T and composition (for ideal gas, they
are, of course, zero). The virial equation has a theoretical basis, as it represents interactions
between a molecule and its neighbors, but it is not used much for practical calculations.

Of more practical interest is the generalized compressibility diagram in Figure A.3, which
shows z as a function of reduced pressure and temperature,

Tr = T/Tc; pr = p/pc

where Tc is the critical temperature and pc is the critical pressure for the component.
The basis for the diagram is that most gases (pure components or mixtures) behave

similarly if we “normalize” with respect to the critical point by introducing Tr and pr. (This
is sometimes called the “law of corresponding states,” but the term “law” is here somewhat
misleading since this is only a useful empirical simplification.) From the diagram, we see that
at lower pressures the attracting forces dominate and z < 1. The deviation from ideal gas
is largest close to the critical point (where zc = 0.27 for the fluid given in the diagram). At
very high pressures (pr > 10), the repulsive forces between the molecules dominate and z can
be much higher than 1. We note that the deviation from ideal gas is small (with z ≈ 1) at
low pressure and also at high temperature. The generalized compressibility diagram is useful
because it gives insight into the deviation from ideal gas, but for practical calculations, and
in particular for mixtures, we use equations of state, e.g., the SRK or PR equations of state,
as described below.

Example A.4 We will use the generalized diagram in Figure A.3 to calculate the density of
ethane at p = 103 bar and T = 333 K (60 oC). The critical point for ethane is pc = 48.8 bar
and Tc = 305.4K, so the reduced pressure is pr = p/pc = 2.11 and the reduced temperature
is Tr = T/Tc = 1.09 (i.e., we are at a supercritical state which cannot be clearly classified as
gas or liquid). From the generalized compressibility diagram, we read off z = 0.39. The molar
volume of the gas is then Vm = zRT/p = (0.39 · 8.31 · 333/103 · 105) m3/mol = 0.105 · 10−3

m3/mol, and the density is ρ = M/Vm = 30.1 · 10−3/0.105 · 10−3 kg/m3 = 287 kg/m3. To
compare, the experimental value is about 296 kg/m3.

A.5.3 Equations of state for real gases

The ideal gas law

p =
nRT

V
=

RT

Vm

where Vm = V/n [m3/mol] is the molar volume is applicable at low pressures and high
temperatures. Many modified equations have been developed to describe real gases and
liquids. The most famous is the van der Waals equation of state.5 Van der Waals started
from the ideal gas law on the form p = RT/Vm and argued as follows: (1) There are attractive
forces between the molecules that give a reduction in pressure proportional to 1/V 2

m, which

5 Johannes van der Waals (1837–1923) received the 1910 Nobel prize in physics for this equation of
state. His Nobel lecture is interesting reading and provides insight into the equation; see the Nobel
committee’s home page: http://www.nobel.se/physics/laureates/1910/.
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expresses the likelihood for two molecules being close to each other. (2) When we account
for the volume of the molecules, the remaining “free” volume is Vm − b where b is the volume
of 1 mol of molecules when packed together. The van der Waals equation of state then
becomes

p =
RT

Vm − b
− a

V 2
m

(A.12)

where (1) a is an empirical parameter that describes the attractive forces between the
molecules, and (2) b is an empirical parameter that accounts for the volume that the molecules
occupy. The gas constant R is as before a universal constant but the parameters a and b
depend on composition. At a given p and T , (A.12) can be transformed into a cubic equation
in Vm:

pV 3
m − (bp + RT )V 2

m + aVm − ab = 0
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Figure A.4: Isotherms for ethane computed with the SRK equation of state (see Example A.6
for data).

For most cubic equation of states, including the van der Waals equation, the following
apply (see Figure A.2a and Figure A.4):

• The pressure goes to infinity when the mole volume Vm approaches the value b because of
the repulsion forces represented by the first term in (A.12).

• The attractive forces from the second term in (A.12) reduce the pressure, and it is possible
to achieve a negative pressure. This is shown in Figure A.4 which depicts the isotherms for
ethane calculated with a cubic equation of state. As mentioned earlier, negative pressures
are physically realizable in condensed phases (for example, liquid), but such states are
usually unstable (which they indeed are for ethane).
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• In the two-phase region, where we have both gas and liquid, the cubic equation has three
real, positive solutions (“roots”) – the solution with the smallest volume is the liquid
volume, the largest is the gas volume, while the middle volume is a non-physical solution.
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Isotherm for ethane at T = 250 K 
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Figure A.5: Maxwell’s “equal-area” rule for finding the vapor pressure psat(T ) from an
equation of state (in this case with the SRK equation)

• At the critical point (pc, Tc, Vc), there is no difference between gas and liquid and the three
solutions to the cubic equation are identical, that is, the isotherm T = Tc has a turning
point (see Figures A.2a and A.4), and at the critical point (pc, Tc)

dp

dV
= 0;

d2p

dV 2
= 0 (A.13)

From this and (A.12), we derive that

a = 0.42188
R2T 2

c

pc
; b = 0.125

RTc

pc
(A.14)

which can be used to calculate a and b for pure components from critical data (Tc and pc).
• For a pure component in the two-phase region, the pressure is constant and equal to its

vapor pressure psat(T ) (as shown by the horizontal lines in Figure A.2a; they are not shown
in Figure A.4). The vapor pressure at a given temperature can easily be found from the
isotherm using the Maxwell’s “equal-area” rule for pure components: In the two-phase
region, the area −A below the horizontal vapor pressure line (on the liquid side) is the
same as the area A above the line (on the gas side); see Figure A.5 and Example A.9.

Example A.5 (continuation of Example A.4). We want to use the van der Waals equation
of state to calculate the density of ethane at p = 103 bar and T = 333 K (which is above
the critical point). For ethane, we have pc = 48.8 bar and Tc = 305.4K, and (A.14) gives

a = 0.42188
R2T2

c
pc

= 0.557Nm4 and b = 0.125RTc
pc

= 0.0650 · 10−3m3/mol. The real solution
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of the resulting cubic equation is Vm = 0.126 · 10−3 m3/mol (see MATLAB code below). The
density is then ρ = M/V = 30.1 ·10−3/0.126 ·10−3 kg/m3 = 239 kg/m3, which is a somewhat
different from the experimental value of 296 kg/m3.

% MATLAB code for solving van der Waals equation:
b=0.0650e-3; a=0.557; p=103e5; R=8.31; T=333;
C(1)=p; C(2)=-(b*p+R*T); C(3)=a; C(4) = -a*b
roots(C)
% MATLAB answers: ans =
% 1.0e-003 *
% 0.1039 + 0.1309i
% 0.1039 - 0.1309i
% 0.1259

Improved equation of states for practical calculations

The most well-known extensions of the van der Waals equation are the Soave-Redlich-
Kwong (SRK) and Peng-Robinson (PR) cubic equations of state, which are used
frequently in practical calculations. Let us take a look at the SRK equation which originates
from the modified van der Waals equation (A.12) of Redlich and Kwong (RK) (1949):

p =
RT

Vm − b
− a(T )

Vm(Vm + b)
(A.15)

Redlich and Kwong originally proposed using a(T ) = ac/
√

Tr where Tr = T/Tc. The
constants ac and b can be determined from critical data using (A.13), and we derive

ac = 0.42747
R2T 2

c

pc
; b = 0.08664

RTc

pc
(A.16)

At a given p and T , (A.15) can be transformed into a cubic equation in Vm,

pV 3
m − RTV 2

m + (a − pb2 − bRT )Vm − ab = 0 (A.17)

After its introduction in 1949, the RK equation (A.15) soon gained widespread use for
computing densities and other thermodynamic data for real gases.

In theory, an equation of state can also be used for the liquid phase, and if we use the same
equation of state for both phases, we can compute the vapor pressure, for example, using
Maxwell’s “equal-area” rule (see Figure A.5). However, it turns out that the vapor pressures
computed from the RK equation are unsatisfactory. For this reason, Giorgio Soave6 in 1972
published an article where he modified the temperature dependency for a and introduced
an extra parameter such that the equation’s ability to estimate vapor pressure was greatly
improved. Soave’s formula for a is

a(T ) = ac

h

1 + m(1 −
√

Tr)
i2

(A.18)

where ac is a constant, Tr = T/Tc and m is the new parameter. Soave proposed estimating
m from the correlation m = 0.48508 + 1.55171ω − 0.15613ω2, where ω is acentric factor.

From (A.18) and (A.16), we can obtain a and b for pure components. For mixtures, Soave
proposed the following “mixing rules”:

a =
X

i

X

j

xixj
√

aiaj(1 − kij); b =
X

xibi (A.19)

6 G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state,”
Chem.Eng.Sci., Vol. 27, pp. 1197-1203 (1972).
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where the binary interaction parameters kij need to be determined from experimental data.
For an ideal mixture, kij = 0. The combination of (A.15), (A.16), (A.18) and (A.19) is called
the SRK equation of state.

Example A.6 (continuation of Example A.4). We want to use the SRK equation to
calculate the density of ethane at p = 103 bar and T = 333 K. For ethane, we have

pc = 48.8 bar, Tc = 305.4K and ω = 0.099, and we find ac = 0.42747
R2T2

c
pc

= 0.564Nm4,

b = 0.08664RTc
pc

= 0.0451 · 10−3m3/mol and m = 0.637. This gives a(333K) = 0.564[1 +

0.637(1 −
p

333/305.4)]2 = 0.533Nm4. The cubic equation (A.17) in Vm gives the (real)
solution Vm = 0.118 · 10−3 m3/mol.

MATLAB: C(1)=p; C(2)=-R*T; C(3)=a-p*b*b-b*R*T; C(4)=-a*b; roots(C).
The density is then ρ = M/V = 30.1 · 10−3/0.118 · 10−3 kg/m3 = 255 kg/m3, which is

somewhat different from the experimental value of 296 kg/m3. Isotherms for ethane computed
with the SRK equation of state are shown in the pV -diagram (Figure A.4).

Comment. The SRK equation was primarily developed to give good values for the
vapor/liquid equilibrium (including vapor pressures) and not to give good values for z or
densities. The relatively large deviation in density for supercritical ethane in Example A.6
(255 kg/m3 versus 296 kg/m3) is therefore not surprising. The next example shows that vapor
pressure prediction for ethane with SRK is very good.

Example A.7 Vapor pressure of ethane from SRK equation of state. Figure A.5
shows the isotherm for ethane at T = 250 K computed from the SRK equation of state.
From Maxwell’s equal-area rule, we find that the vapor pressure at this temperature is
psat = 1.32 · 106 N/m2 = 13.2 bar (the vapor pressure is not computed this way in practice).
This is very close to the value of 13.1 bar computed from the experimental vapor pressures
formula given in Poling, Prausnitz and O’Connell, The properties of gases and liquids, 5th

Ed., McGraw-Hill (2001).

Exercise A.3 ∗ The experimental compressibility factor of saturated ammonia at T = 325
K and p = 21.2 bar is z = 0.81. Check this using (a) the thermodynamic diagram for
ammonia on page 419 (you will need to extrapolate outside of the diagram), (b) the generalized
compressibility diagram in Figure A.3, (c) van der Waals equation and (d) the Redlich-Kwong
equation. Data: Tc = 405.7K, pc = 111.3 bar.

Example A.8 3-component mixture. Consider a mixture of 50 mol-% methane (1), 40
mol-% ethane (2) and 10 mol-% CO2 (3). (a) Determine the SRK parameters a and b for
the mixture at 200 K (we need to know the temperature because a depends on Tr). (b) What
is the density of the gas mixture at 200 K and 4 bar? (c) A 20 l gas tank contains 10 mol of
this mixture. What is the density and pressure at 200 K?
Component data:

Methane: Tc = 190.6 K, pc = 46.0 bar, ω = 0.008.
Ethane: Tc = 305.4 K, pc = 48.8 bar, ω = 0.099.
CO2: Tc = 304.2 K, pc = 73.8 bar, ω = 0.239.

Binary interaction coefficients:
CH4 − C2H6: k12 = 0; CH4 − CO2: k13 = 0.0973; C2H6 − CO2: k23 = 0.1346

Solution. (a) We choose to use volume in l (liter) and pressure in bar. The gas constant in
these units is R = 0.0813 l, bar/K, mole.

m1 = 0.48508 + 1.55171 · 0.0008 − 0.15613 · 0.0082 = 0.4975
m2 = 0.6372, m3 = 0.8470

a1 = 0.42747 0.083142 ·190.62

46
· [1 + 0.4975(1 −

p
200/190.6)]2 = 2.2778 bar (l/mol)2
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a2 = 7.0858 bar (l/mol)2, a3 = 4.9560 bar (l/mol)2

b1 = 0.08664 0.08314·190.6
46

= 0.02983 l/mol
b2 = 0.04502 l/mol, b3 = 0.02969 l/mol
b =

P

i xibi = 0.5b1 + 0.4b2 + 0.1b3 = 0.03589 l/mol
a(200K) = x2

1a1 + x2
2a2 + x2

3a3 + 2[x1x2
√

a1a2(1 − k12) + x1x3
√

a1a3(1 − k13)
+x2x3

√
a2a3(1 − k23)] = 4.0734 bar (l/mol)2

(b) With given p = 4 bar and T = 200K, the cubic equation (A.17) in Vm has three solutions
(3.94, 0.160 and 0.058 l/mol). The largest value Vm = 3.94 l/mol is for gas. The density is
then ρ = M/Vm = 24.4/3.94 = 6.2 g/l = 6.2 kg/m3.
(c) We have Vm = 20l/10mol = 2 l/mol. The molar mass of the mixture is M =
0.5 · 16+0.4 · 30+0.1 · 44 = 24.4 g/mol. The density is ρ = M/Vm = 24.4/2 = 12.2g/l = 12.2

kg/m3. The pressure in the container at T = 200 K is from (A.15) p = RT
Vm−b

− a(T )
Vm(Vm+b)

=
0.0813·200
2−0.03589

− 4.0734
2·2.03589

= 7.28 bar.

Comments on the SRK equation. The SRK equation gives very good values of
vapor pressure for non-polar components, and it also predicts well the phase equilibria for
mixtures of such components, for example, for hydrocarbons at high pressures (as found in
reservoir conditions). The SRK equation can also be used for mixtures with supercritical
components, for example, nitrogen dissolved in heavier hydrocarbons. After its introduction
in 1973, the SRK equation quickly became very popular in industry, and almost revolutionized
the use of simulations for the design of processes with non-polar components (for example,
hydrocarbons, air separation and many others). Those who wish to take a closer look at this
can read more about it in a paper that I published while working in industry in 1983.7

A drawback with the SRK equation is that it gives a critical compressibility zc = 0.33 for
all pure components. This is a rather high value; for example, zc equals 0.288 for methane,
0.259 for n-octane, 0.290 for nitrogen, 0.271 for benzene and 0.25 for NO. Because of this
Peng and Robinson in 1976 proposed another modification of the Redlich-Kwong equations
which gives zc = 0.307 for pure components. Today, both the SRK and PR equations are
used commonly for practical computations and the difference in their predictions is usually
small (the main difference seems to be that SRK is more popular in Europe, while PR is
more popular in North America).

Use of equation of state for computing “everything”

An equation of state gives a relationship between pressure, volume and temperature. However,
more generally, an equation of state can be used to compute the deviation from ideal gas –
both for gas and liquid – and we have already discussed that it can be used to compute vapor
pressures and vapor/liquid-equilibrium. Since an ideal gas is exactly described if we have
data for the heat capacity for the ideal gas, C′

p(T ), it follows that we can, with an equation
of state (e.g., SRK in (A.15–A.19) or PR), compute “all” of thermodynamic quantities of
interest (including enthalpy (see page 356), heat of mixing, entropy, fugacity coefficient,
activity, vapor pressure, phase distribution, composition in gas and liquid phases, density,
etc.). For this, we need only the following data for each component (believe it or not!):

• Critical temperature Tc

• Critical pressure pc

• Acentric factor ω (or value of m)
• Ideal gas heat capacity C′

p(T ) (usually given as a polynomial in T )

For mixtures, we also need

7 S. Skogestad, “Experience in Norsk Hydro with cubic equations of state,” Fluid phase equilibria,
Vol. 13, pp. 179-188 (1983).
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• The interaction parameter kij for each binary combination of components i and j in the
mixture.

For most non-polar mixtures, we get good results by setting kij = 0. With the SRK and PR
equations, one usually finds that the largest deviation compared to experimental data is for
the liquid density (so one often uses a separate for liquid density), while the other quantities
usually have good accuracy.

How is it possible that we can calculate “everything” from only one equation?
First, we need the ideal-gas heat capacities (C′

p(T )) for all pure components. These are found
in reference tables; e.g., Poling, Prausnitz and O’Connell, The properties of gases and liquids,
5th Ed., McGraw-Hill (2001). This gives an accurate description of the energy for an ideal
gas as a function of temperature and composition. In addition, we need an equation of state
(for example, SRK or PR) which gives the p, V, T relationship for a real gas, and can be used,
for example, using relationships such as (A.53) on page 357 to compute the deviation from
ideal-gas enthalpy, etc., and from this obtain the enthalpy, entropy, density, and so on for the
real gas. The liquid phase and its properties can also be computed given that the equation of
state describes both gas and liquid phase. We can also compute the vapor-liquid equilibrium,
for example, with Maxwell’s equal-area rule, as shown in Figure A.5. The heat of vaporization

can also be obtained, for example, using the Clapeyron equation
∆vapH

T∆vapV
= dpsat

dT
, see (7.28).

Example A.9 Derivation of Maxwell’s “equal-area” rule for a pure component.
At a given temperature T , the vapor pressure psat(T ) of a liquid (l) is the resulting equilibrium
pressure in the gas phase (g) (the vapor). At equilibrium, the pressure and temperature in the
two phases are equal (pg = pl = psat(T ), Tg = Tl = T ). In addition, the Gibbs energy in the
two phases is equal (see page 179): Gg = Gl. This gives the equilibrium condition

∆G = Gg − Gl =

Z gas

liquid

dG =

Z gas

liquid

V dp = 0

Here, the relationship dG = V dp follows from the fundamental equation dG = −SdT + V dp
(see (B.66) for pure component) since we choose to integrate along an isotherm (dT = 0).
Some further manipulation is needed to obtain the desired condition. Integration by parts gives

Z gas

liquid

V dp = pV |gasliquid −
Z gas

liquid

pdV

Since pg = pl = psat(T ), the first term on the right side can be written

pV |gasliquid = (pV )g − (pV )l = psat(Vg − Vl) =

Z gas

liquid

psatdV

and the equilibrium condition becomes

∆G =

Z gas

liquid

(psat − p)dV = 0

In other words, in a pV -diagram the areas above and below the line psat must be equal (see
Figure A.5).

A.6 Work, heat and energy

Work, heat and energy are very central concepts and you should familiarize yourself with
them. It may take some effort – and you should not worry if you have some difficulties,
because science struggled with this for centuries.
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• What is work W ? Work is the “organized” energy transfer when a body (system)
is moved under the influence of a force. Work is usually easy to observe and therefore
relatively easy to understand. For example, to lift a 20 kg rock up 2 m from the ground,
the supplied work (force · displacement) is W = F l = mgl ≈ 20 kg ·10 m s−2 · 2 m = 400
J (see Figure A.6).

Figure A.6: Example of 400 J of mechanical work

There are many work forms:

— Expansion work W∆V (often called pV -Work) is the work for a system’s volume
change.

— Flow work Wflow is the work performed by a stream that enters or exits the system.
— Shaft work Ws is the mechanical work related to pressure changes from/to movable

machinery such as compressor, pump or turbine.
— Further, we have the electrochemical work Wel in a battery or fuel cell
— and other forms of work, Wother, for example, the surface work needed to change

the surface area, or electromagnetic work.
— The total work is

W = Wflow + W∆V + Ws + Wel + Wother
| {z }

Wn

(A.20)

where Wn indicates the “useful” non-flow work. Usually, we only consider cases where the
first three terms contribute, that is,

W = Wflow + W∆V + Ws
| {z }

Wn

• What is energy E ? The classic definition of energy is “ability to perform work.” However,
this definition dates back to the time when the true relationship between heat and work
was yet not established, and is in fact a very poor definition. For example, energy that
exists as thermal energy at ambient temperatures is useless as a source of work (see the
second law of thermodynamics). A better definition would be that energy is “ability to
perform work or release heat,” and that energy is a conserved quantity (see page 40).
Energy can have many forms, some of which are

— Kinetic energy EK : macroscopic motion where the center of mass moves (example:
the velocity of a gas in a pipe).
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— Rotational energy ER: macroscopic motion where the center of mass is at rest
(example: liquid that rotates (swirl) in a tank).

— Potential energy EP : potential energy compared to a reference level (example: a
tank with liquid placed above ground level).

— Electric energy Eel (example: energy stored in a capacitor).
— Surface energy Es.
— Internal energy U : energy of the molecules, including their kinetic, rotational,

electric, potential and chemical energy. Sometimes, it is practical to consider internal
energy as the sum of thermal energy (microscopic kinetic energy from the random (non-
organized) motion of the molecules), chemical bonding energy and latent energy (the
last one is “liberated” during phase transition). Internal energy is a state variable that
includes the (thermodynamic) energy in a system when we neglect energy related to
magnetic, electric and other fields. Internal energy is usually the most important form
of energy for “our” systems.

— The total energy for the system is the sum of all of these energy forms

E = U + EK + ER + EP + Eel + ES + Eother (A.21)

• What is heat Q ? Heat is the “disorganized” transfer of energy that results when
systems with different temperatures are contacted. The physical mechanism is the transfer
of molecular thermal (kinetic, rotational, etc.) energy as molecules collide or get close to
each other.
Thus, for a closed system, there are two mechanisms for transferring energy between the
system and the surroundings:

Work W – organized energy transfer

Heat Q – disorganized (or chaotic or thermal) energy transfer

Note that heat Q is not included in the system’s energy E, because heat is the energy
transfer between systems whereas the energy E is within a system. In everyday speech, it
is common to use the term “heat” to mean “thermal energy,” but this is thermodynamically
incorrect. On the other hand, it is correct to say that heat is the transfer of thermal energy
from one system to another.

• What is the relationship between energy, work and heat? The first law of
thermodynamics (which is a special case of the energy balance) states that energy is
a conserved quantity. More precisely, for a closed system, the change (increase) in a
system’s energy is equal to the sum of supplied work and supplied heat

∆E = Q + W (A.22)

Here, ∆E = Ef − E0 where E0 is the energy in the initial state (at the time t0), and Ef

is the energy in the final state (at the time tf ). For our systems, internal energy changes
are often the main contributions, that is, ∆E ≈ ∆U , and we derive the the first law
thermodynamics (the energy balance) for a closed system

∆U = Q + W (A.23)

An isolated system is a closed system with no exchange of heat or work with the
surroundings, that is, Q = 0 and W = 0, and we get

Isolated system : ∆U = 0 (A.24)

The generalization of the energy balance to open systems is discussed in Chapter 4.1
(page 95).
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A.7 Volume change work for closed system

Figure A.7: Work during moving of piston

Consider a closed system with pressure p and surroundings with pressure pex (external).
We want to find the expansion work W = W∆V related to a volume increase.

We assume that the expansion takes place in a cylinder with a movable piston with area
A [m2]; see Figure A.7. For a small (differential) expansion where the piston moves the
length dl [m], the change in volume is dV = Adl. The work the system performs on the
surroundings when the pistol is moved is force · displacement, where the force is pexA [N].
That is, performed work is

(−dW∆V ) = pexAdl = pexdV (A.25)

Note that:

1. The negative sign is due to the convention of W being supplied work (from the
surroundings). During expansion, work is performed by the system, so the supplied work
is negative.

2. One must always use the surrounding’s pressure pex when calculating the expansion work.
This is because work is an energy exchange with the surroundings. The special case with
p = pex applies only when the expansion process is reversible.

The total performed work for the whole expansion from the initial state (with volume V0) to
final state (with volume Vf ) is found by integration,

(−W∆V ) =

Z Vf

V0

pexdV (A.26)

For a reversible process, we have a balance between the forces such that p = pex and the
reversible expansion work is:

W rev
∆V = −

Z Vf

V0

pdV (A.27)

For an irreversible (spontaneous, natural) process, there will be a difference between the
pressures p and pex. For example, during an expansion with ∆V > 0, we need p > pex. The
performed work on the surroundings is then pex∆V , while the work that we extract from
the system (and which would have been performed on the surroundings during a reversible
process) is only p∆V . The following question is appropriate:

• What happens to the rest of the work, |(p − pex)|∆V ?
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The answer is that it is converted to heat by friction. This heat will, depending on how the
process takes place, be supplied to the system (as an increase in internal energy) and/or be
transferred to the surroundings (as heat Q).

Reversible volume change work for ideal gas.

For an ideal gas, the reversible expansion (volume change) work is

W rev
∆V = −

Z Vf

V0

pdV = −
Z Vf

V0

nRT

V
dV (A.28)

However, work is not a state function, so in order to calculate the exact value of the integral,
we need to specify the process (“the path”) in more detail. For the simple case with constant
temperature T0 (isothermal process), we get

W rev
∆V = −nRT0

Z Vf

V0

dV

V
= nRT0 ln

V0

Vf
= nRT0 ln

pf

p0
(A.29)

where V0/Vf = pf/p0 since pV = constant for an isothermal process.

A.8 Internal energy

Let us summarize some fundamental properties about internal energy.

Internal energy. There exists a state function called internal energy U . In a
closed system, the change in U equals the sum of supplied heat and work,

dU = δQ + δW (A.30)

Equation (A.30) is the differential form of the first law of thermodynamics ∆U = Q + W ,
and if you take a close look, you will see that we have used an “ordinary” differential for U
(dU) and a “curly” differential for Q and W (δQ and δW ). This is a standard way to show
that U is a state function, while Q and W are not state functions.

Since U is a state function, it is uniquely determined by the system’s state (e.g., for an
ideal gas with constant composition, U is only a function of temperature T ). Actually, the
fact that internal energy is a state function has not been proven, so it should be considered
to be a postulate8. (But the statement is very reasonable as here so far there have been no
cases where it has not been valid).

Constant volume. In order to get a clearer understanding of what internal energy is,
let us consider a closed system with constant volume where no work is supplied such that
W = 0. The energy balance (the first law of thermodynamics) gives

∆U = Q (closed system with constant volume) (A.31)

That is, for a closed system with constant volume, the change in internal energy is equal
to the supplied heat (see Figure A.8a). This also gives a practical way of measuring the
relationship between internal energy and temperature: We simply measure the temperature
as a function of the supplied heat (internal energy) in a closed container with constant volume
(bomb calorimetry). This is used below to define heat capacity for a system with no phase
transition; see (A.36).

8 A postulate or axiom is a statement that is not proved; there is perhaps a small difference in that
an axiom is considered self-evident, which is not necessarily the case for a postulate.
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c c

(b)(a)

Figure A.8: Supplied heat to a closed system is equal to (a) the change in internal energy
when the volume is constant, (b) the change in enthalpy when the pressure is constant

A.9 Enthalpy

The definition of enthalpy is

H = U + pV [J] (A.32)

where p is the system pressure [N/m2] and V is the system volume [m3]. (Let us check if the
term pV really has the unit [J]: p [N/m2] ·V [m3] gives the unit [Nm] which indeed is the
same as [J]).

Enthalpy is a state function since U, p and V all are state functions. The molar (n = 1
mol) enthalpy is

Hm = Um + pVm [J/mol] (A.33)

where Vm is the mole volume [m3/mol]. For an ideal gas, we have pVm = RT and

Hm = Um + RT J/mol (A.34)

Since internal energy Um is only a function of temperature for an ideal gas, it then follows
that enthalpy is only a function of temperature for an ideal gas (at constant composition).

For most “condensed” phases, such as solids and liquids, we have Hm ≈ Um because the
molar volume Vm is small. For example, for water, the density is ρ = 1000 kg/m3, the molar
mass is M = 18 g/mol and the molar volume is Vm = M/ρ = 18 · 10−3/1000 = 18 · 10−6

m3/mol which is more than a factor 1000 less than a typical mole volume for a gas (for
example, the molar volume for an ideal gas at 298 K and 1 bar is 24.4 · 10−3 m3/mol).

Constant pressure. In order to get a clearer understanding of what enthalpy is, let us
consider a closed system with constant pressure. The volume of the system varies as a function
of temperature, and here we consider the case of reversible expansion (pressure-volume) work

(that is, pex = p = constant). We then have W rev
∆V = −

R Vf

V0
pdV = −p(Vf −V0) = −p∆V and

the energy balance (A.23) becomes

∆U = Qrev − p∆V

But from the definition of enthalpy, we have at constant pressure that

∆H = ∆U + p∆V

The energy balance can therefore in this case be written

∆H = Qrev (closed system with constant pressure) (A.35)
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where superscript rev denotes that the pV work is reversible. We therefore conclude that for
a closed system with constant pressure and reversible pressure-volume work, the change in
the system’s enthalpy equals the supplied heat (see Figure A.8b).

Comment. (A.35) can be used to experimentally measure enthalpy, but an unfortunate
consequence of (A.35) is that many believe that the use of enthalpy is limited to processes
with constant pressure. However, this is completely wrong for open systems with inlet and
outlet flows. Here, the enthalpy represents the sum of the flow’s internal energy and its
accompanying flow work, and the pressure may very well vary (see page 99).

Exercise A.4 Consider a process where we heat an ideal gas with heat capacity Cp,m = 30
J/mol K from 20 oC to 80 oC and at the same time increase its pressure from 6 bar to
8 bar. Suggest (a) a closed process, and (b) an open (continuous) process that takes the
system between the two states (note that there may be many possible processes). (c) What
is the difference in the enthalpy change, the work and the supplied heat [J/mol] for the two
processes? (Enthalpy is a state function, so the enthalpy change is the same in both cases,
but the work and heat will differ).

A.10 Heat capacity

The heat capacity Cp [J/K] equals the amount of heat Q [J] that must be supplied to increase
the system’s temperature with 1 K at constant pressure for a closed system, with no phase
transition or reaction. The corresponding expansion is assumed to be reversible, such that
the same heat amount is liberated when the temperature is lowered by 1 K. Similarly, the
heat capacity CV [J/K] equals the amount of heat (Q) that must be supplied in order to
increase the temperature 1 K at constant volume in a closed system with no phase transition
or reaction. The mathematical definitions are

Cp ,

„
∂Qrev

∂T

«

p

; CV ,

„
∂Q

∂T

«

V

[J/K] (closed system) (A.36)

However, as shown in (A.35), we have at constant pressure that the supplied heat equals
the change in enthalpy, dQrev = dH ; and at constant volume, we have from (A.31) that the
supplied heat equals the change in internal energy, dQ = dU . This leads to the following
equivalent definitions of heat capacities

Cp ,

„
∂H

∂T

«

p

; CV ,

„
∂U

∂T

«

V

[J/K] (A.37)

These definitions are more useful because H and U are state functions, and they also imply
that Cp and CV are state functions. For solids and liquids, Vm is usually small so ∆H ≈ ∆U
and we have Cp ≈ CV .

Ideal gas. It can be shown that the internal energy U of an ideal gas is only a function
of temperature and composition (that is, independent of volume and pressure). For a system
with constant composition, we can then write dU = CV dT . Furthermore, dH = dU + d(pV )
where pV = nRT for an ideal gas. For 1 mole of an ideal gas, we then have

dHm = d(Um + pVm) = dUm + RdT = CV,mdT + RdT = (CV,m(T ) + R)
| {z }

Cp,m(T )

dT

This implies that for an ideal gas with constant composition: (1) H is only a function of
temperature, and (2) the difference between Cp,m(T ) and CV,m(T ) is constant and equal to
R.
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A.11 Adiabatic reversible expansion of ideal gas

Figure A.9: Adiabatic reversible expansion

We consider, as shown in Figure A.9, an adiabatic (Q = 0) reversible expansion of an
ideal gas in a closed system, from an initial pressure p0 to a final pressure pf . We assume for
simplicity that the heat capacity Cp is constant, or, more precisely, that the ratio

γ ,
Cp

CV
(A.38)

is constant (independent of T ). We then have the following relationship between p and V
during this expansion,

pV γ = constant (A.39)

or equivalently the following relationship between p and T ,

Tf

T0
=

„
pf

p0

« γ−1
γ

=

„
pf

p0

« R
Cp

(ideal gas) (A.40)

where Cp [J/K mol] is the molar heat capacity. Of course, the ideal gas law also applies,

so we also have p0V0
T0

=
pf Vf

Tf
= nR. (A.39) and (A.40) are not exact, because Cp generally

increases with temperature, but nevertheless they are very useful.

Proof. The first law of thermodynamics (A.23) (energy balance) for a closed system gives for an
adiabatic process (Q = 0) with reversible pV work

∆U = W rev = −
Z Vf

V0

pdV

Equivalently, the differential form becomes

dU = −pdV (A.41)

Let us here consider 1 mol of gas (n = 1 mol). For an ideal gas, we have p = RT/V , and U is only a
function of temperature, that is, dU = CV dT . (A.41) then gives CV dT = −pdV or

CV dT = −RT

V
dV ⇒ dT

T
= − R

CV

dV

V
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If CV is assumed constant (independent of temperature), we get by integrating from state 0 to f

ln
Tf

T0
= − R

CV
ln

Vf

V0
⇒ Tf

T0
=

„
V0

Vf

«R/CV

Here, for an ideal gas
V0

Vf
=

T0

Tf

pf

p0

and we get

Tf

T0
=

„
pf

p0

« R/CV
1+R/CV

=

„
pf

p0

« R
CV +R

=

„
pf

p0

« R
Cp

Note that here
R

Cp
=

γ − 1

γ

and we have derived (A.40) and thereby also (A.39). 2

• Important comment. (A.39) and (A.40) provide relationships between p, V and T for
an adiabatic reversible process in a closed system. However, they apply generally to any
reversible, adiabatic process, also for open systems. This follows because for such process
Qrev = 0, and from the definition of entropy in (B.3), we have ∆S = Qrev/T = 0, so the
entropy is constant. Since entropy is a state function (which is not obvious, but it can
be shown), this implies that (A.39) and (A.40) apply to any isentropic process.

Finally, let us calculate the expansion (pV ) work W rev for this process in a closed system.
The energy balance for a closed system with Q = 0 gives W = ∆U , and with assumed CV

constant we have

W rev = ∆U = CV (Tf − T0) = CV T0

 „
pf

p0

«R/Cp

− 1

!

(A.42)

Example A.10 Expansion of closed system. Consider n = 1 mol of an ideal gas at
T0 =400 K and p0 = 10 bar and let it expand reversibly to pf = 1 bar in a closed system.
Calculate the performed work and the supplied heat for (a) an isothermal process and (b) an
adiabatic process (see Figure A.10). Data: CV,m = 25 J/mol K can be assumed constant.

Isotherm: Adiabatic:

Figure A.10: Reversible expansion in closed system: (a) Isothermal. (b) Adiabatic

(a) For the reversible isothermal process, we have Tf = T0=400 K. From (A.29), the
performed work is

(−W rev) = −RT0 ln
pf

p0
= 8.31 · 400 · ln 10 = 7653 J/mol
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For an ideal gas at constant temperature, we have ∆U = 0 and from the energy balance the
supplied heat equals the performed work

Q = (−W ) = 7653 J/mol

(b) For the reversible adiabatic process, we have Q = 0 and the final temperature is from
(A.40)

Tf = T0

„
pf

p0

« γ−1
γ

= 400 ·
„

1

10

«0.249

= 225.2 K

The performed work during the expansion is, from (A.42),

(−W rev) = CV T0

„

1 − Tf

T0

«

= 25 · 400
„

1 − 225.2

400

«

= 4370 J/mol

The performed work is significantly smaller than for the isothermal process because the gas is
cooled during the expansion and thereby has a smaller final volume.

For an expansion process, where we want to extract (perform) work, we therefore conclude
that it is favorable to supply heat (isothermal process). Conversely, for compression it is
favorable with cooling in order to reduce the supplied compression work (note that this also
applies to continuous processes).

Example A.11 Maximum temperature variation with elevation. The outdoor
temperature is generally lower at higher elevations. Show that the (maximum) temperature
drop per 100 m at 273K is about 1.0 K.

Solution. In ExampleA.2 (page 331), we derived the barometric formula for the air
pressure’s dependency on elevation (height above sea level) is,

p

p0
= exp

„

− Mg

RT0
h

«

This expression was derived at constant temperature T0, but we now want to use it to calculate
the temperature change with elevation. This seems a bit odd, but it is acceptable if the elevation
difference (and thereby the pressure and temperature change) is sufficiently small. From
(A.40), we have for a reversible adiabatic expansion

T

T0
=

„
p

p0

« γ−1
γ

which inserted into the barometric formula gives

T

T0
= exp

„

− Mg

RT0
h

« γ−1
γ

= exp

„

− Mg

RT0

γ − 1

γ
h

«

With h = 100 m and T0 = 273.0 K we get

T = T0 · exp

„

− Mg

RT0

γ − 1

γ
h

«

= 273 · exp

„

−29 · 10−3 · 9.81

8.31 · 273
1.4 − 1

1.4
100

«

= 272.0K

That is, the temperature drop is about 1.0 K per 100 m.
Comment: This is the maximum temperature drop we can expect. If it exceeds this value

(about 1 K), then we get an unstable situation where the upper layer is too heavy, so that
we get a large exchange of mass between the upper cold and lower hot layers. Therefore, the
actual temperature drop is usually smaller; typically about 0.5 K per 100 m, and we have a
stable situation with the air layers at rest.



SOME THERMODYNAMICS AND PHYSICAL CHEMISTRY 353

A.12 Pressure independence of U and H for ideal
gas: Joule’s experiment

Ideal gas. For an ideal gas with constant composition, internal energy and enthalpy are, as
mentioned, only a function of temperature, that is, they are independent of pressure. We will
now describe an experiment that was historically used to derive this. The example is mostly
intended as an eye-opener for those with an extra interest.

Example A.12 Joule’s experiment. Joule placed two metal containers in a water bath, as
shown in Figure A.11. One container (tank 1) was filled with gas (air) at p0 = 22 atm while
the other (tank 2) was empty (vacuum; evacuated). Prior to the experiment, the temperature
was T0 everywhere (in the water bath and in the containers). He then opened a valve and
let the air from tank 1 flow to the other container (tank 2) until the pressures were equal in
both containers. He did not observe any temperature change in the water bath following the
experiment. If the experiment was accurately performed, we can then conclude that internal
energy is independent of pressure.

Water bath

(everywhere)

Open valve

(everywhere)

Water bath

Observed:

Figure A.11: Joule’s experiment

To analyze the experiment in more detail, we define the two containers as the system,
and the water bath as the surroundings. It is then obvious that W = 0 since the system’s
volume (the total volume of the two containers) is constant, and Joule’s observation that
the temperature was unchanged in the bath implies that Q = 0. From the energy balance
∆U = Uf − U0 = Q + W , we then have that the internal energy of gas is unchanged

Uf = U0

and since the temperature, despite the pressure changes, was unchanged (Tf = T0), we
conclude that U for the gas is a function of temperature only (i.e., U is independent of
pressure).

Note that even though the energy is constant in this experiment, the energy has been
“degraded” because the energy that originally was “concentrated” in tank 1 (at high pressure)
has been distributed to both tanks (at lower pressure). A degradation of this kind corresponds
to increased entropy and takes place for all natural (spontaneous) processes.

This shows that internal energy is independent of pressure for an ideal gas (strictly
speaking, the assumption of ideal gas is only valid at low pressure, but Joule’s measurements
were too inaccurate to detect the small temperature change he really should have observed).
The same applies for enthalpy since H = U + pV = U + nRT for ideal gas; so if U is
independent of p then H is also independent of p.
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Example A.13 Joule’s experiment (continued): What happens before the
temperature equilibrium is reached? The following is a treat for those who are
particularly interested. The analysis above considered what happens when time tf goes to
infinity such that temperature equilibrium is reached. But before equilibrium is reached, there
will be temporary temperature changes: When the valve is opened, the temperature T1 in tank
1 drops because of the work the gas in tank 1 performs on tank 2. More specifically, T1 initially

is a function of pressure p1 according to the equation T1/T0 = (p1/p0)
γ−1

γ ; see (A.40) and
Example C.1 on page 393. (Later, the temperature rises back to T0 because of the heat transfer
between tank 1 and the surrounding water bath). On the other hand, the temperature in tank
2 will immediately rise to γT0 after the valve is opened, see (4.21), but it will then drop
because the temperature in tank 1 drops (and it will later drop further to T0 because of the
heat transfer to the surrounding water bath). As time goes to infinity, the temperature will,
as shown above, return to its original temperature T0. In summary, temporary changes take
place which could give temporary changes in the temperature of the water bath (depending on
how good the heat transfer is from each of the two tanks).

Numerical example. Let us take a look at a specific case where we assume that the heat
transfer between the tanks and the water bath is very slow (for example, because the tanks are
insulated). We assume that the two tanks are equal in size, T0 = 300 K, p0 = 22 atm and
γ = 1.4. At the end of the first part of the experiment (which here refers to the time before
the heat transfer to the water bath has any effect), we have mechanical equilibrium, that is,
p1 = p2. But what is the pressure? The energy balance Uf − U0 = 0 for the two combined
tanks, assuming constant CV , gives

n1CV (T1 − T0) + n2CV (T2 − T0) = 0 ⇒ n1T1 + n2T2 = n0T0

which using the ideal gas law gives p1V1 + p2V2 = p0V0, and with V1 = V2 = V0, we derive
that p1 = p2 = p0/2 = 11 atm (as expected). The temperature in tank 1 initially drops from
T0 = 300 K to T1 = (11/22)0.4/1.4 T0 = 0.820 T0 = 246.1 K. The temperature in tank 2 rises
initially from T0 to γT0 = 420 K, but then drops because of the temperature drop in tank 1.
From the mass balance and the ideal gas law, we have at any given time that

n1 + n2 = n0 ⇒ p1

T1
+

p2

T2
=

p0

T0

At the end of the first part of the experiment (before heat transfer to the water bath has any
effect), we have p1 = p2 = p0/2 which gives

1

T1
+

1

T2
=

2

T0

and with T0 = 300K and T1 = 246.1K, we find that T2 = 384.1K. Also note that
n1/n2 = T2/T1 = 1.56 6= 1 at this time, which is before the heat transfer to the water
bath has started. The heat transfer will eventually result in a temperature equilibrium where
the temperature is 300 K everywhere. This will be accompanied by additional mass moving
from tank 1 to tank 2, so that we eventually have n1/n2 = 1.

A.13 Calculation of enthalpy

Here, we consider the enthalpy’s dependency on temperature, pressure and composition
H(T, p, ni). We begin with the dependency on composition.



SOME THERMODYNAMICS AND PHYSICAL CHEMISTRY 355

A.13.1 Composition dependency

For ideal mixtures (both for liquid and gas), the enthalpy of the mixture is the sum of the
contributions from the pure components, that is, at a given T and p:

H = nHm =
X

i

niH
∗
m,i = n

X

i

xiH
∗
m,i [J ] (A.43)

Here, Hm [J/mol] is the molar enthalpy, H∗
m,i [J/mol] is the molar enthalpy for pure

component i at T and p, n =
P

i ni is total number of moles, ni [mol] is the amount of
component i in the mixture and xi = ni/n is the mole fraction [mol i/mol]. The same applies
on weight basis (where n is the mass in kg).

For non-ideal mixtures, we need to include the contribution from heat of mixing (see
page 359).

A.13.2 Temperature dependency

For ideal gases with constant composition, the enthalpy is only a function of temperature,
dH = CpdT , that is, the enthalpy is independent of pressure. This applies also to most solids
and liquids. If we know the enthalpy in state 1, then the enthalpy in state 2 is

H(T2) = H(T1) +

Z T2

T1

Cp(T )dT (A.44)

Temperature-varying heat capacity. For more accurate numerical calculations,
empirical correlations are used for Cp(T ), for example, a polynomial form

Cp(T ) = A + BT + CT 2 + DT 3 [J/mol K] (A.45)

Integration gives

H(T2) − H(T1) =

Z T2

T1

Cp(T )dT =

A(T2 − T1) +
B

2
(T 2

2 − T 2
1 ) +

C

3
(T 3

2 − T 3
1 ) +

D

4
(T 4

2 − T 4
1 ) (A.46)

Average heat capacity. It can be practical to define an average C̄p over a certain
temperature interval, for example from T1 to T2,

C̄p ,

R T2

T1
Cp(T )dT

T2 − T1
(A.47)

and we have that
H(T2) = H(T1) + C̄p(T2 − T1) (A.48)

Constant heat capacity. For the case where Cp can be assumed independent of
temperature, we have C̄p = Cp, and

H(T2) = H(T1) + Cp(T2 − T1) (A.49)

Linear heat capacity. For the case where the heat capacity can be approximated by a
linear temperature function, that is, Cp(T ) = A + BT , the mean heat capacity equals the
arithmetic mean value,

C̄P =
Cp(T1) + Cp(T2)

2
(A.50)

Proof: Cp(T ) = A+BT inserted into (A.44) gives H(T2)−H(T1) = A(T2−T1)+ B
2

(T 2
2 −T 2

1 ). But

here we have that (T 2
2 −T 2

1 ) = (T2−T1)(T2+T1) and we get H(T2)−H(T1) =
(A+BT1)+(A+BT2)

2
(T2−

T1) =
Cp(T1)+Cp(T2)

2
(T2 − T1). 2
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Example A.14 Heating of a gas stream. m = 2 kg/s of an ideal gas is heated from
Tin = 290 K to Tout = 620 K. The specific heat capacity is

cp(T ) = 862 + 0.43T [J/kg K]

where the temperature T is in K. How much heat must be supplied and what is the mean heat
capacity?

The energy balance for a steady-state continuous process gives that the supplied heat is
equal to the enthalpy change

Q = Hout − Hin = m

Z Tout

Tin

cp(T )dT = mc̄p(Tout − Tin)

Since the heat capacity is linear in temperature, we can use the mean value

c̄p = 862 + 0.43
290 + 620

2
= 1058 J/K kg

and we get

Q = 2kg/s · 1058J/K kg · (620K − 290K) = 698kJ/s

Mixtures. Note that the value for Cp (and for A, B, C, D) given above is for the mixture.
For an ideal mixture, Cp is easily obtained from pure component data, and we have that
(here on molar basis)

Cp =
X

i

xiC
∗
p,i [J/mol K] (A.51)

where xi is the mole fraction and C∗
p,i [J/mol K] is the heat capacity for pure component i.

Data for pure components, for example, on polynomial form

C∗
p,i(T ) = Ai + BiT + CiT

2 + DiT
3 [J/mol K]

are found in the literature.9 Instead of calculating C∗
p,i(T ) for each component and then

obtaining the mean Cp using (A.51), it is often more practical to first compute the mean
coefficients

A =
X

i

xiAi, B =
X

i

xiBi, C =
X

i

xiCi, D =
X

i

xiDi (A.52)

and then calculate Cp(T ) for the mixture using (A.45).
For ideal mixtures, it is also easy to determine Cp for a mixture of several streams as the

mean of the Cp’s for the individual streams, that is, we can use the above equations, but let
i represent stream number (instead of component). This follows trivially from evaluating the
streams as the sum of their components.

A.13.3 Pressure dependency

Ideal gas. For ideal gas, the enthalpy is independent of pressure, see page 353, and we have

H ′(T1) = H ′(T0) +

Z T1

T0

C′
p,m(T )dT

where C′
p is the ideal gas heat capacity which is independent of pressure.

9 A good source for physical data is Poling, Prausnitz and O’Connell, The properties of gases and
liquids, 5th Ed., McGraw-Hill (2001).



SOME THERMODYNAMICS AND PHYSICAL CHEMISTRY 357

For real gases (and to a certain degree, for liquids and solids), enthalpy is a function of
pressure. For gases, we generally use ideal gas as the reference state (ideal gas is indicated
with ′ in the following). Since all real gases can be described as ideal gas as p → 0, we get

H(T1, p1) = H ′(T1) +

Z p1

0

µT (T1, p)dp

| {z }

=0 for ideal gas

»
J

mol

–

(A.53)

where

µT ,

„
∂H

∂p

«

T

[J/mol bar] (A.54)

is called the isothermal Joule-Thompson-coefficient. From thermodynamic identities, it can
be shown that 10

µT =

„
∂H

∂p

«

T

= V − T

„
∂V

∂T

«

p

(A.55)

where
`

∂V
∂T

´

p
can be determined from an equation of state, e.g., the SRK equation. For ideal

gases, it is easy to show that µT = 0, and µT is also small for most liquids and solids because
the volume is relatively smaller for condensed phases. It can also be shown that11

µT = −Cp,mµ [J/mol bar]

where µ = (∂T/∂p)H [K/bar] is the (normal) Joule-Thompson coefficient.
In practice, we don’t use µT for calculating the pressure dependency of enthalpy. Rather,

for hand calculations for pure components, we use thermodynamic diagrams (as given for
methane, ammonia and water in appendix). More generally, the integral of µT in (A.53) is
calculated numerically using an equation of state.

A.14 Thermochemistry

Thermochemistry is the evaluation of enthalpy changes for standard processes such as
evaporation, mixing and reaction. It is very important to note that enthalpy is a state
function. This implies that the enthalpy change can be evaluated as the sum of idealized
subprocesses that take the system from the initial to the final state. Typical subprocesses
are:

1. Change in temperature at constant pressure (same phase), ∆T H = H(T2, p0) −
H(T1, p0) =

R T2

T1
Cp(T )dT

2. Change in pressure at constant temperature (same phase), ∆pH = H(T0, p2) −
H(T0, p1) ( = 0 for ideal gas)

10 From the exact differential for enthalpy, dH = TdS + V dp, see (B.68), we derive (∂H/∂p)T =
V + T (∂S/∂p)T where from the Maxwell relation (∂S/∂p)T = −(∂V/∂T )p , and (A.55) follows.

11 Write the total differential for enthalpy as (constant composition)

dH =

„
∂H

∂T

«

p

dT +

„
∂H

∂p

«

T

dp

Set dH = 0 and we find for 1 mole

µ =

„
∂T

∂p

«

H

= −
„

∂H

∂p

«

T

/

„
∂H

∂T

«

p

= −µT /Cp,m
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3. Change in phase (transition) at constant temperature, ∆trsH , for example

Evaporation (reverse of condensation) : ∆vapH for l → g

Fusion = melting (reverse of freezing) : ∆fusH for s → l

Sublimation (reverse of deposition) : ∆subH for s → g

Note here that since the enthalpy is a state function, we have

∆subH = ∆fusH + ∆vapH

4. Mixing of two or more streams (substances) at constant temperature and
pressure, ∆mixH ( = 0 for ideal gas)

5. Chemical reaction at constant temperature and pressure, ∆rH

The total enthalpy change is, as mentioned, the sum of the individual processes since
enthalpy is a state function. Generally, there are many ways (paths) to go between two given
states but the enthalpy change is always the same. The so-called Hess’ law (page 362) is a
special case of enthalpy being a state function applied to chemical reactions.

A.14.1 Heat of vaporization

The heat of vaporization ∆vapH(T ) is the enthalpy to go from liquid to gas at a given
temperature T .

∆vapH(T ) = H(g, T ) − H(l, T ) [J/mol; J/kg] (A.56)

The pressure is the saturation pressure at temperature T . The heat of vaporization is used
for pure components, but for mixtures, the term is not well defined and should be avoided.
This is because the composition of the liquid phase for mixtures differs from the composition
of the vapor phase.

∆vapH is a function of temperature and decreases to 0 at the critical point. Let us illustrate
this with an example. Make sure you understand this!

Example A.15 Heat of vaporization Calculate the heat (enthalpy) of vaporization at
temperature T when the heat of vaporization at temperature T0 is known and constant heat
capacities are assumed for gas and liquid.

vapor

liq
uid

Figure A.12: The heat of vaporization is a function of temperature
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Solution. We want to go from liquid at temperature T to gas at temperature T (from A
to D on Figure A.12). Enthalpy is a state function and we can therefore find this as the sum
of the following three subprocesses:

1. A to B: Heat the liquid from T to T0. ∆1H = Cp(l)(T0 − T ) [J/mol] or [J/kg].
2. B to C: Evaporate the liquid at T0. ∆2H = ∆vapH(T0) [J/mol] or [J/kg]
3. C to D: Cool the gas from T0 to T . ∆3H = Cp(g)(T − T0) [J/mol] or [J/kg]

That is, the heat of vaporization at temperature T is

∆vapH(T ) = ∆1H + ∆2H + ∆3H = ∆vapH(T0) + (Cp(l) − Cp(g))(T0 − T )

Note that we generally have Cp(l) > Cp(g) so that the heat of vaporization decreases with
increasing temperature. Note that we have neglected the influence of pressure for subprocesses
1 and 3. This is acceptable as long as we are not too close to the critical point. (At the critical
point there is no longer any difference between gas and liquid and the heat of vaporization is
0).

Exercise A.5 ∗ Heat of vaporization for water. Given for water: Cp(l) = 75.4 J/mol K
and Cp(g) = 33.6 J/mole K (both assumed constant) and ∆vapH = 40.6 kJ/mol at 100 oC
and 1 atm. (a) Use the result from Example A.15 to calculate the heat of vaporization for
water at 25 oC.
(b) The critical temperature for water is 647.3 K. Compare this with the value of T that gives
∆vapH(T ) = 0 using the simplified expression where we assume constant heat capacities.

A.14.2 Heat of mixing

Consider mixing of two or more streams with same temperature T . The enthalpy is constant
during the mixing process, but the temperature of the mixture, Tmix, will generally differ
from T . The heat of mixing ∆mixH (the heat of solution, the enthalpy of mixing) is defined
as the heat that must be supplied in order to maintain constant temperature T . The heat of
mixing is usually given compared to the pure components, that is, we define the heat of
mixing as (at a given temperature T and given pressure p, here given on mole basis)

∆mixH(T ) = Hm(T ) −
X

i

xiH
∗
m,i(T ) [J/mol] (A.57)

where Hm [J/mol] is the molar enthalpy of the mixture, H∗
m,i [J/mol] is the molar enthalpy

of pure component i, and xi is the mole fraction of component i in the mixture.

Example A.16 Nitric acid. Calculate the heat of mixing [kJ/kg solution] when 40 weight%
nitric acid is produced from the pure components (HNO3 and H2O). Data: see page 417.

Solution. We mix 0.4 kg HNO3 with 0.6 kg water in order to produce 1 kg 40% nitric
acid. With molar mass 63 g/mol and 18 g/mol, this corresponds to 400/63= 6.35 mol HNO3

and 600/18=33.33 mol H2O. The number of moles H20 per mol HNO3 (non-diluted acid) is
then n = 33.33/6.35 = 5.25. From the formula on page 417, we then have that the heat of

mixing is (−37.5)·5.25
5.25+1.74

= −28.2 kJ/mol HNO3, that is,

∆mixH = −28.2
kJ

mol HNO3
· 6.35

mol HNO3

kg solution
= −179

kJ

kg solution
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A.14.3 Heat of reaction

Let a stoichiometric mixture at temperature T react completely at constant pressure p. The
heat of reaction (reaction enthalpy) ∆rH(T, p) for the given chemical reaction is defined as
the heat that must be supplied to keep constant reaction temperature T , when reactants and
products are assumed to be in their standard form.

For an endothermic reaction, the heat of reaction is positive, that is, we must supply
heat in order to keep the temperature constant. For an exothermic reaction, the heat of
reaction is negative, that is, we must cool (remove heat) in order to keep the temperature
constant.

The heat of reaction is usually given per mole reacted according to the given reaction
equation 0 =

P

i νiAi, where νi is the stoichiometric coefficient.
The reactants and products may be in many states, and we here consider the standard

heat of reaction, where the pressure is p⊖ = 1 bar and the reactants and products are in their
standard state as pure components. We then have

∆rH
⊖(T ) =

X

i

νiH
⊖
m(i) =

X

i=products

νiH
⊖
m(i) −

X

i=reactants

|νi|H⊖
m(i) [J/mol] (A.58)

where H⊖
m(i)(T ) [J/mol] is the standard enthalpy of pure component i. The subscript m is

used in order to clearly show that it is a molar quantity, but is often omitted. The temperature
T is often chosen to be 298.15 K (25oC).

To calculate the standard enthalpy H⊖
m, we usually choose the elements in their standard

state (e.g., O2 (g), H2 (g), N2 (g), C (s) (graphite), etc.) as the reference. We then have that
H⊖

m(i) = ∆fH
⊖(i) [J/mol] is the standard enthalpy of formation of pure component i from

its elements at temperature T . However, there are also other possible reference states, for
example, the combustion products and we then have H⊖

m(i) = ∆cH
⊖(i) [J/mol] which is the

standard enthalpy of combustion (see page 362). Since enthalpy is a state function, the value
of the heat of reaction ∆rH

⊖ is of course the same independent of the choice of reference
state.

• The heat of reaction is often given per mol (e.g., in kJ/mol), and we can ask the question
“per mol of what ?” The answer is that it is the stoichiometric coefficients of the given
reaction that tells how many moles of each component that react.

Example A.17 Consider the reaction

CO(g) + 2H2(g) = CH3OH(g)

which can be written in the standard form 0 =
P

i νiAi with stoichiometric coefficients

ν(C0) = −1; ν(H2) = −2; ν(CH3OH) = 1

From (A.58), the heat of reaction is the enthalpy of the products minus the enthalpy of the
reactants with the given stoichiometric coefficients, that is,

∆rH = H⊖(CH3OH) − H⊖(CO) − 2H⊖(H2)

With the elements as the reference, this gives

∆rH
⊖ = ∆fH

⊖(CH3OH) − ∆fH
⊖(CO) − 2∆fH

⊖(H2)

At 298.15 K, we get with data given on page 416:

∆rH
⊖(298) = (−200.66) − (−110.53) − 2 · 0 = −90.13 kJ/mol
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In summary, we have

CO(g) + 2H2(g) = CH3OH(g); ∆rH
⊖(298) = −90.13 kJ/mol

or

∆rH
⊖(298) =

−90.13 kJ

1 mol CO reacted
=

−90.13 kJ

2 mol H2 reacted
=

−90.13 kJ

1 mol CH3OH formed

Note, however, that the heat of reaction is half of this value if only 1 mol (rather than 2 mol)
of H2 reacts. That is, we have

0.5 CO(g) + H2(g) = 0.5 CH3OH(g); ∆rH
⊖(298) = −45.06 kJ/mol

The heat of reaction is a function of temperature (but not of pressure since pressure is 1 bar
at standard conditions). If we have data for the reaction at temperature T0 (e.g., T0 = 298.15
K), then the heat of reaction at temperature T is

∆rH
⊖(T ) = ∆rH

⊖(T0) +

Z T

T0

∆rC
⊖
p (T )dT (A.59)

where ∆rC
⊖
p (T ) =

P

i νiC
⊖
p (i, T ) is the change in heat capacity during the reaction. (A.59)

is derived by calculating the standard enthalpy for each component at temperature T and
pressure p⊖ = 1bar, see (A.44)

H⊖(i, T ) = H⊖(i, T0) +

Z T

T0

C⊖
p (i, T )dT

and inserting this into ∆rH
⊖(T ) =

P

i νiH
⊖
m(i, T ). If the heat capacities are assumed constant

(independent of temperature), then (A.59) simplifies to

∆rH
⊖(T ) = ∆rH

⊖(T0) + ∆rC
⊖
p · (T − T0) (A.60)

Example A.18 Consider again the reaction

CO(g) + 2H2(g) = CH3OH(g)

What is the standard heat of reaction at 270 oC? We have ∆rH
⊖(298) = −90.13 kJ/mole

and the pure components’ heat capacities at 298.15 K are

C⊖
p (CO)(g) = 29.14

J

mol K
; C⊖

p (H2)(g) = 28.82
J

mol K
; C⊖

p (CH3OH)(g) = 43.89
J

mol K

and we have

∆rC
⊖
p (298) = 43.89 − (−29.14) − 2 · 28.82 = −42.89

J

mole K

If we assume that ∆rC
⊖
p is independent of temperature, then we get from (A.60)

∆rH
⊖(T ) = ∆rH

⊖(298) + ∆rC
⊖
p · (T − 298.15)

= −90130
J

mol
− 42.89

J

mol K
(270 − 25)K = −100638

Jr

mol

that is, ∆rH
⊖(270oC) = −100.64 kJ/mol. For more accurate calculations, one should use

data for the heat capacity as a function of temperature and integrate (A.59).
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We can also calculate the reaction enthalpy by adding the reaction enthalpies of individual
reactions that sum up to give the total reaction. This is the so-called Hess’ law, which is
best illustrated by an example.

Example A.19 Hess’ law. We want to find the enthalpy of reaction at 298.15 K for the
gas phase reaction where ethylene and water form ethanol,

Reaction 1 : C2H4 + H2O = C2H5OH

by using data for the following individual reactions (everything in gas phase and everything
at 298.15 K):

Reaction 2 : C2H5OH + 3O2 = 2CO2 + 3H2O; ∆rH
⊖
2 = −1233.59kJ/mol

Reaction 3 : C2H4 + 3O2 = 2CO2 + 2H2O; ∆rH
⊖
3 = −1322.12kJ/mol

We have that
Reaction 1 = Reaction 3 − Reaction 2

and from Hess’ law (see proof below), the heat of reaction for reaction 1 is that of reaction 3
minus that of reaction 2, i.e.,

∆rH
⊖
1 = ∆rH

⊖
3 − ∆rH

⊖
2 = −1322.12 − (−1233.59) = −88.53 kJ/mol

It is easy to prove Hess’ law. We have for reaction 1:

∆rH1 = H(C2H5OH) − H(C2H4) − H(H2O)

Similar expressions apply for reactions 2 and 3, and we get

∆rH3 − ∆rH2 = 2H(CO2) + 2H(H2O) − H(C2H4) − 3H(O2)

− [2H(CO2) + 3H(H2O) − H(C2H5OH) − 3H(O2)]

= H(C2H5OH) − H(C2H4) − H(H2O)

which equals ∆rH1 and Hess’ law is proven.

A.14.4 Heat of combustion

In combustion reactions, the feed mixture (fuel) reacts with oxygen to produce the combustion
products CO2, SO2, N2 and H2O. By complete combustion, we mean that the maximum
amount of oxygen is consumed and also that CO2 is generated rather then CO. The
composition of the combustion product (flue gas) can be given on “wet” basis (when we
include H2O =water) or on “dry” basis (without water). Examples of complete combustion
reactions are

C + 2O2 = CO2

CH4 + 2O2 = CO2 + 2H2O

CnHm +
“

n +
m

4

”

O2 = nCO2 +
m

2
H2O

H2S + 1.5O2 = SO2 + H2O

The negative of the standard heat of combustion ∆cH
⊖ ([J/mol] or [J/kg]), also known as the

heating value, can be found in the literature for many substances. Note that “per mol” or
“per kg” here refers to 1 mol or 1 kg of the substance. More precisely, the heat of combustion
is defined for the complete combustion of the substance in its natural state (for example,
methane (CH4) as a gas, and methanol (CH3OH) as a liquid) to the combustion products in
their natural state, that is, to CO2 (g), SO2 (g) and N2 (g) (all at 298.15 K). For the water
product there are two choices:
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1. The natural state of water at 298.15 K and 1 bar is liquid, and the corresponding heat of
combustion with H2O (l) as the product is known as the higher heat of combustion
(gross heating value, GHV). This is the value (usually in [kcal/100 g] or in [kJ/100
g]) given on food labels. Specifications for the heating value of natural gas for domestic use
are also given in terms of the higher heating value (GHV), and the specification is typically
that the GHV should be between 38 MJ/Sm3 and 42 MJ/Sm3. Note here that methane
has GHV=37.7 MJ/Sm3 and ethane has GHV=66.0 MJ/Sm3, so the GHV specification
indirectly puts quite strong specifications on the composition.

2. In many cases the combustion product is a gas, and the corresponding heat of combustion
with H2O (g) as the product is known as the lower heat of combustion (net heating
value). This value is lower than the gross heating value because one does not make use
of the heat released when water condenses.
The (higher) heat of combustion (GHV) for most hydrocarbons (including gas and oil) is
about 48000 kJ/kg (or about 1150 kcal/100 g), whereas the lower heat of combustion (to
H2O (g)) is about 45000 kJ/kg.
The lower heat of combustion is commonly used when giving the heating value of liquid
and solid fuels. For example, the energy unit “1 ton oil equivalent” (toe) corresponds to
the lower heating value of 1 ton of crude oil, which is approximately 42 GJ (see page 12).

For most purposes (except for buying and selling) the difference between the two heating
values is not very important. The difference depends on the amount of hydrogen in the fuel
and the difference varies from 11% for methane, to about 5% for heavier hydrocarbons, and
down to no difference for carbon (C) or coal with no hydrogen.

The (standard) heat of combustion can be used for calculating the (standard) heat of
formation, ∆fH

⊖ (see the example below). The following data for the standard heat of
formation at 298.15 K are useful for this:

O2(g) : 0 kJ/mol
N2(g) : 0 kJ/mol

CO2(g) : −393.51 kJ/mol
H2O(g) : −241.82 kJ/mol; H2O(l) : −285.83 kJ/mol
SO2(g) : −296.83 kJ/mol

Example A.20 Heat of formation from heat of combustion. We want to find the
heat (enthalpy) of formation for amino ethane (C2H5NH2) liquid. In an old reference (CRC
Handbook from 1977–78), we find that the (higher) heat of combustion for ethyl amine
(l) at 25 oC is 409.5 kcal/mol, which converted to SI units is ∆cH

⊖ = 409.4kcal/mol ·
4.184kJ/kcal = 1713.3 kJ/mol. The combustion reaction for 1 mol of the substance is

C2H5NH2(l) + 3.75O2(g) = 2CO2(g) + 3.5H2O(l) + 0.5N2(g)

Using the heat of formation data given above, the standard heat of reaction for this combustion
reaction is

∆rH
⊖ = 2(−393.51) + 3.5(−285.83) + 0.5 · 0 − 3.75 · 0 − x = −1713.3 [kJ/mol]

(note the negative sign on the right hand side since the combustion reaction is exothermic).
Here, x is the unknown heat of formation for amino ethane (l) at 298.15 K, and we find
x = −74.1 kJ/mol.

Comment. In the reference book SI Chemical Data (2002), we find data for the gas (rather
than for the liquid). Specifically, it is given that the heat of formation for amino ethane (g)
is −46 kJ/mol and that the heat of vaporization is 32 kJ/mol (both at 298.15 K). This gives
that the heat of formation for amino ethane (l) is −46 − 32 = −78 kJ/mol, which is a bit
different from the value −74.1 kJ/mol found above. (I would assume that SI Chemical Data
is more reliable, since it is newer, but I am not sure).
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Exercise A.6 ∗ The (higher) heat of combustion for methyl formate (HCOOCH3) (l) to H2O
(l) at 25 oC is, in an old reference book, given as 234.1 kcal/mol. (a) Calculate the standard
heat of formation for methyl formate. (b) Which value do you find in a reference book (e.g.,
in SI Chemical Data)?

Exercise A.7 Find the heat of combustion for some foodstuff and check if this is consistent
with the calculated (theoretical) values.

A.15 Alternative reference states

Although enthalpy is a state function and the change in enthalpy between two states is
uniquely given, it is important to realize that the “absolute” numerical value of the enthalpy
is not a unique quantity. Thus, if we specify an (absolute) enthalpy H(T, p, ni) in a given state
(for example for a stream) then this must always be specified relative to a defined reference
state, which must be the same for all streams we consider.

A.15.1 Elements as reference (“absolute” enthalpy)

The “safest” (in the sense that it can always be used as a common reference state) is to
use the elements at p⊖= 1 bar and 298.15 K as the standard reference state, that is, we
set H = 0 for the elements in their standard (natural) state at 1 bar and 298.15 K. The
“absolute” enthalpy H(T, p, ni) is then the enthalpy change when we (1) take the elements
and react them to components of interest (heat of formation ∆fH

⊖); (2) convert to the actual
phase (∆trsH), (3) heat from 298.15 K to the actual temperature T , then (4) produce the
actual mixture (heat of mixing), and finally (5) compress the mixture from 1 bar to the actual
pressure p. We then have that the “absolute” enthalpy is

H = ∆1H1 + ∆2H + ∆3H + ∆4H + ∆5H

In more detail, the individual terms are (on a molar basis):

(1) chemical energy of formation (form the actual components in their standard
state at 1 bar and 298 K from the elements in their standard state at 1 bar and
298 K)

∆1H = ∆fH
⊖(298) =

X

i

ni∆fH
⊖
m(i, 298)

where ni [mol] is the amount of component i and ∆fH
⊖
m(i, 298) [J/mol] (f for

formation) is the enthalpy for formation of component i in its standard state (phase).

+ (2) energy for phase change (“latent heat”) (if the actual mixture has a different
phase from the “natural” of one or more components)

∆2H = ∆trsH
⊖ =

X

component with different phase

ni∆trsH
⊖(i)

where ∆trsH
⊖
m(i) [J/mol] (trs for transition) is the energy for phase change for

component i from its standard phase to the mixture phase at 298 K. (This is, for
example, a positive number if the component is in gas phase while the standard state
is a solid).
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+ (3) thermal energy (“sensitive heat”). This is for heating the components at 1 bar
from 298 K to T :

∆3H = H⊖(T ) − H⊖(298) =
X

i

ni

Z T

298

Cp,m(i, T )dT

+ (4) heat of mixing (sometimes called the heat of solution) for forming the actual
mixture from its pure components at temperature T ,

∆4H = ∆mixH = n∆mixHm

The heat of mixing is 0 for ideal liquid mixtures and for ideal gases. For real gases,
the heat of mixture is usually included in the term ∆5H for pressure correction and is
computed using an equation of state.

+ (5) pressure correction (going from p⊖ = 1 bar to p at temperature T ). From (A.55),
we have

∆5H = ∆pH = n

Z p

1 bar

"

Vm − T

„
∂Vm

∂T

«

p

#

dp

where Vm [m3/mol] is the molar volume of the actual mixture. The term ∆pH is 0
for ideal gases (where Vm = RT/p), and is close to 0 for liquids and solids since they
have a very small molar volume. For real gases, the pressure correction H5 may be
important, and can, as just mentioned, be obtained from an equation of state.

Comments.

1. This is one way of going from elements to the actual mixture, but since enthalpy is a state
function, that is, only dependent on initial state (here: the elements at 298 K and 1 bar)
and the final state (here: the final mixture at T and p), we get the same value for H if we
go other ways (for example, first heating the elements and then forming the components
etc.).

2. We can always choose the elements as the reference state because all streams can be formed
from this state. Another common reference state is the combustion products, CO2, H2O,
SO2 etc. (which gives the standard heat of combustion, ∆cH

⊖).
3. Use of “absolute” enthalpies in the energy balance is generally recommended, and is

discussed on page 105.

To summarize, the absolute total enthalpy H for a stream with the elements at 1 bar and
298 K as the reference is the sum of the enthalpy changes in all these subprocesses, that is,

H = ∆fH
⊖ + ∆trsH

⊖ + (H⊖(T ) − H⊖(298)) + ∆mixH + ∆pH
| {z }

H2

| {z }

H1

[J ] (A.61)

In practical calculations, the use of an equation of state takes care of the three terms related
to phase change, heat of mixing and pressure correction, whereas the thermal energy term
H⊖(T ) is calculated from C′

p data for ideal gases.

A.15.2 Other reference states for enthalpy

For hand calculations, we often evaluate the enthalpy differences directly (“method 2,” see
page 106) and it is in fact unnecessary to define reference state. For numerical calculations
using a computer, it is recommended that you always use the elements at 298 K and 1 bar
as a reference because you are then sure to avoid errors. Nevertheless, other reference states
are sometimes used for practical calculations.
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No reactions. With no chemical reactions, the terms related to heat of formation (∆fH
⊖)

will drop out when we calculate enthalpy changes. There is then little point in
“carrying” these terms, in part because their numerical value is often large. We then,
instead, specify the absolute enthalpy as H = H1, see equation (A.61), that is, with
the components in their standard state as the reference.

No phase change. If, in addition, all of the streams have the same phase, then the terms
for the latent heat (∆trsH

⊖) will drop out of the energy balance. There is then little
point in “carrying” this term, and we may specify the absolute enthalpy as H = H2,
that is, with the components at 1 bar and 298 K in the phase that the streams have as
reference.

Other cases. As you may already have understood, there is an unlimited number of possible
choices for the reference state. For example, we can choose a different reference
temperature than 298 K, and we can even choose different reference temperatures
for different components (for example, this may be practical for calculating distillation
columns, where the enthalpy is often set to zero for a component as liquid at its boiling
point at the column pressure). Nevertheless, it always necessary to have a common
reference state which all mixtures and streams in the process can be formed from.

A.15.3 Internal energy

Above we showed how to calculate the enthalpy H . Given the value for H , we find the internal
energy from

U = H − pV

where V is the system volume. Note that we usually choose H = 0 in the reference state (for
example, the elements at 298.15 K and 1 bar), and since pV > 0, we will then have U < 0
(not equal to zero) in the reference state.

A.15.4 Gibbs energy

The Gibbs energy G is defined as

G = H − TS (A.62)

and can therefore be calculated once we know the enthalpy H and the entropy S (the entropy
S is defined further in Appendix B). H and S are both state functions, and thereby G is
also a state function. If we choose H = 0 and S = 0 in the reference state (for example, the
elements at 298.15 K and 1 bar), we also get G = 0 in the reference state.

Example A.21 In the reference book SI Chemical Data, we find the following values:

∆fH
⊖(298) ∆fG

⊖(298) S⊖(298)
[kJ/mol] [kJ/mol] [J/mol K]

H2(g) 0 0 131
O2(g) 0 0 205

H2O(g) −242 −229 189

Note that data for both ∆fG
⊖(298) and S⊖(298) are included, which we will show is not

really necessary. S⊖(i, 298) [J/mol K] is the “absolute” entropy of the component with a
perfect crystal at 0 K as the reference. Alternatively, we can from the given absolute entropies,
calculate the entropy of formation, with the elements as ideal gas at 298.15 K as reference.
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For example, for H2O the formation reaction is H2 + 1
2
O2 = H2O and we get:

∆fS
⊖(298) =

X

i

νiS
⊖(i, 298) = (−1) · 131 + (−0.5) · 205 + 189 = −44.5 J/mol K

From the given value for ∆fH
⊖(298), we can then calculate ∆fG

⊖(298):

∆fG
⊖(298) = ∆fH

⊖(298) − ∆fS
⊖(298) · 298.15 [K]

= (−242 · 103 + 44.5 · 298.15) J/mol = −228.7 · 103 J/mol

which is consistent with the given value of −229 J/mol. This shows that the listing of ∆fG
⊖

in SI Chemical Data is not really necessary, as it can be computed from the given values for
∆fH

⊖ and S⊖.





APPENDIX B

More thermodynamics: Entropy
and equilibrium

In order to proceed to the second law of thermodynamics, we need the state function entropy.
This is a measure of the disorder in a given state, or more precisely for the probability of
the state. The second law of thermodynamics states that the total entropy increases for
all natural processes, and reaches its maximum at the equilibrium state. From this, we can
derive quantitative conditions for equilibrium. We can derive how much work it is theoretically
possible to extract from heat. The reader should go quickly through this appendix to gain
an overview, and then return to the individual topics as needed later.

B.1 Entropy and the second law of

thermodynamics

B.1.1 Introduction

We know the following from experience:

• Heat is transferred from high temperature to low temperature (but not vice versa);
• A bouncing ball will eventually come to rest (but a ball at rest will not suddenly start

bouncing around);
• If we mix salt and sugar in a bowl, we will eventually have a homogeneous mixture (it is

highly unlikely that by stirring we will end up with an ordered state where pure sugar and
pure salt end up in separate parts of the bowl);

• Methane reacts with oxygen in the air to form CO2 and water (but water and CO2 in the
air will not suddenly combine to form methane).

All of these processes (and all other natural or spontaneous processes) are irreversible. If we
show a film, we can use our experience about natural processes to tell whether the film is
run forwards or backwards.

Is there a common quantitative measure that explains the direction of all these processes?
Yes, we can look at the entropy S. Loosely speaking, the entropy is a measure of the disorder
which, according to the second law of thermodynamics, must increase for all natural processes.
The reason is that the probability of an ordered state is very low. Another statement of the
second law is then that all natural processes move towards a more probable state, that is,
the entropy increases.

Increased entropy Stotal ⇔ More probable
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Note that it is the total entropy in the system plus the surroundings, Stotal = S + Ssur, that
must increase according to the second law of thermodynamics.

The system’s entropy S is a state variable, so let us first recall what a state variable is.

A state variable is a variable (function; property) that only depends on the
system’s state (typically, specified by pressure, temperature and composition).
The value of a state function is independent of how the system arrived at its
state.

Note that we here by the term “state” mean the macroscopic state, as observed from
macroscopic properties, such as pressure, temperature and volume.

B.2 Definition of entropy

There are two views that may be used for defining entropy; the microscopic and macroscopic
(thermodynamic) views. We start with the microscopic view, which is the most intuitive and
emphasizes the fundamental character of entropy. It may be used to accurately compute the
entropy of simple systems using statistical mechanics. However, for our purposes, where we
deal with macroscopic quantities such as temperature, pressure and volume, the macroscopic
view is more useful. Fortunately, the two views give the same value for the entropy.

B.2.1 Definition 1 of entropy: Microscopic

The probability of a given (macro)state is determined by the number of microstates
corresponding to this macrostate. Quantitatively, the entropy of a given (macro)state is
defined as

S = k ln Ω (B.1)

where
k = 1.380658 · 10−23 J/K = R/NA = Boltzmann’s constant (gas constant per molecule)
Ω = number of microstates corresponding to a given (macro)state (including both position

and energy of the molecules).

Example B.1 Consider a box with 4 molecules: two A-molecules (A1 and A2) and two B-
molecules (B1 and B2). What is the likelihood of having two molecules of the same kind at one
side of the box? To compute this, we consider the order of the molecules from the left to the
right inside the box. Each of the 4 molecules may be first, and for each of these 3 molecules
may be second, and for each of these 2 molecules may be third, giving a total of 4 · 3 · 2 = 24
microstates. These are

1.A1A2B1B2 2.A1A2B2B1 3.A1B1A2B2 4.A1B1B2A2 5.A1B2A2B1 6.A1B2B1A2

7.A2A1B1B2 8.A2A1B2B1 9.A2B1A1B2 10.A2B1B2A1 11.A2B2A1B1 12.A2B2B1A1

13.B1A1A2B2 14.B1A1B2A2 15.B1A2A1B2 16.B1A2B2A1 17.B1B2A1A2 18.B1B2A2A1

19.B2A1A2B1 20.B2A1B1A2 21.B2A2A1B1 22.B2A2B1A1 23.B2B1A1A2 24.B2B1A2A1

There are two macrostates:

Macrostate 1. Ordered state with molecules of the same kind on each side of the box. 8
microstates (no.s 1, 2, 7, 8, 17, 18, 23, 24) correspond to this macrostate, so its entropy
is S1 = k ln Ω = k ln 8 = 2.08k.
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Macrostate 2. Unordered state with molecules of different kinds on each side of the box.
16 microstates correspond to this macrostate, so its entropy is S2 = k ln Ω = k ln 16 =
2.77k.

As expected, the “unordered” macrostate 2 is the most likely one and has the highest entropy.
Now, this box had only 4 molecules, so the difference in entropy was quite small, but as
the number of molecules increases, the likelihood of an unordered state becomes increasingly
larger.

B.2.2 Definition 2 of entropy: Macroscopic (thermodynamic)

The macroscopic definition of entropy may be stated as follows:

There exists a state function called entropy S. The change in S between two
states can be found by considering an (idealized) reversible process between the
two states, and we have

∆S = S2 − S1 =

Z 2

1

dQrev

T
(B.2)

or for a small (differential) change

dS =
δQrev

T
(B.3)

Here Qrev is the heat supplied in the reversible process and T is the system’s
temperature.

This definition is not very intuitive, so let us at least establish that is reasonable:

1. We already know from the microscopic definition that there is a state function S related
to “the degree of disorder.”

2. It seems reasonable that the disorder (S) increases when we supply heat (since heat is
“disorganized energy transfer,” see page 345).

3. It seems reasonable that we have to divide the supplied heat by the system temperature
T , because the change in disorder is larger when T is small.

4. For a reversible process, work is not included in the calculation of the entropy change in
(B.3). This seems reasonable since work is “organized energy transfer,” and thereby does
not change the degree of disorder.

Let us further try to establish that item 3 is reasonable with two illustrative examples.

Example B.2 Disorder in lecture room. Consider a lecture room with students where
everyone is sitting down (“the crowd has a low temperature”). The degree of disorder (“the
entropy”) will then rise sharply if one of the students gets up (“heat is added”) and starts
walking about in the room. Then consider a break where most of the students are moving
around (“the crowd has a high temperature”). The degree of disorder is now so large that
it is hardly noticeable if one more student gets up and starts walking about (“the change in
entropy is small even though the same amount of “heat” is added”).

Example B.3 Disorder in a gas. For an ideal gas, we know from kinetic gas theory that
the temperature is directly related to the kinetic energy of the molecules. At low temperature,
the gas molecules move slowly and the degree of disorder will increase sharply if the wall is
heated such that it vibrates more and gives the gas molecules that collide with it a real “kick.”
On the other hand, the degree of disorder increases considerably less if we supply the same
amount of heat to a gas mixture where the temperature is already high.
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In Section B.3 (page 373) on the Carnot process it is proved that entropy is a state function
for an ideal gas.

Note that entropy is defined in (B.3) by considering an (idealized) reversible process, but
it can also be used for (real) irreversible process because entropy is a state function: The
entropy change for an irreversible process can be found by considering the heat supply Qrev

in an idealized reversible process between the same two states.
Note that we here use the term reversible. The closely related terms “lossless” and

“frictionless” are often used to denote that the mechanical subprocesses are reversible.

B.2.3 The second law of thermodynamics

The second law of thermodynamics. For any real process, the total entropy
change for a system and its surroundings is positive. The total entropy change
is zero for a reversible process. Mathematically:

∆Stotal = ∆S + ∆Ssur ≥ 0 (B.4)

where ∆S is the change in the system’s entropy and ∆Ssur is the change in the
surrounding’s entropy. ∆Stotal = 0 for a reversible process.

The second law is here formulated as a postulate, but all observations so far confirm that
it is true. There exists many equivalent, and certainly more obvious, versions of the second
law. One is the following:

Heat cannot spontaneously flow from a material at lower temperature to a
material at higher temperature.

Another version is Lord Kelvin’s postulate (1851)

It is impossible to extract heat from a body with uniform temperature and convert
it completely to work without at the same time changing the state of another body.

(The word “completely” is, strictly speaking, redundant because if there are no changes in
the state of any bodies then we must have, from the first law of thermodynamics, that all
heat is converted to work). Kelvin’s postulate was based on experiences from heat engines
and seems reasonable.

From Kelvin’s postulate, we can (i) derive that entropy is a state function, (ii) that changes
are given by dS = dQrev/T , and (iii) that that total entropy is constant for a reversible
process. These derivations, which go back to the work of Clausius in the period 1850–1865
(he also introduced the term entropy), are straightforward but still relatively involved (they
cover pages 26–38 in the excellent book of Denbigh1), and this is why many, like us, prefer
to start directly by postulating the entropy function.

Computing the entropy. The total entropy change (∆Stotal) is the sum of the entropy
changes in the system (∆S) and the surroundings (∆Ssur), which may be obtained as follows:

• ∆S. The entropy change for the system is a state function and can be calculated from (B.2),
∆S =

R
dQrev

T
where T is the system’s temperature and Qrev is found by considering an

(idealized) reversible process between the system’s initial and final states. In Section B.4, we
use a reversible closed system to derive general expression for how S depends on pressure,
temperature and composition.

• ∆Ssur. In principle, the entropy change for the surroundings can also be calculated
from (B.3), that is, dSsur = δQrev

sur/Tsur. However, we must make sure that unrelated
irreversibilities in other parts of the surroundings don’t “help” achieving “impossible”

1 K. Denbigh, The principles of chemical equilibrium, Cambridge Press, 4th Ed, 1981.
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changes in our system. For example, if we try to separate a mixture of ethanol and water
(the system), then it doesn’t help that someone somewhere else in another part of the world
(the surroundings) is mixing a drink, thereby making an irreversible mixture of ethanol
and water. The entropy change for the surroundings is therefore calculated by assuming
that all internal changes in the surroundings are reversible, that is, we therefore always
assume that dQrev

sur = −dQ, where dQ is the actual heat supplied to the process from the
surroundings. In summary, we have that

∆Ssur =

Z −dQ

Tsur
(B.5)

The second law of thermodynamics for a process can then be written

∆Stotal = ∆S +

Z −dQ

Tsur
≥ 0 (B.6)

where −Q is (the actual) heat transferred from the system to the surroundings, and Tsur is
the surrounding’s temperature. We may have several kinds of surroundings, for example a
cold reservoir and a hot reservoir.2 Often, we further assume that the heat transfer to the
surroundings is reversible such that Tsur = T , where T is the system’s temperature, but this
is not a requirement and depends on the particular process.

Note that from (B.6) that it is possible to have processes where the system’s entropy
decreases (that is, ∆S < 0) provided heat is transferred to the surroundings (that is, Q is
negative) such that the surrounding’s entropy increases even more. On the other hand, for
an adiabatic process (Q = 0), the system’s entropy must always increase, that is, ∆S ≥ 0.
Furthermore, if the adiabatic process is reversible, we must have ∆S = 0, that is, the entropy
is constant (isentropic process).

B.3 Carnot cycle for ideal gas

We here consider the hypothetical3 Carnot cycle for an ideal gas that operates between
a heat reservoir at temperature TH and a cold reservoir at temperature TC (see Figure 8.2,
page 199). It is a closed system which, in each cycle, passes through four steps of isothermal
and adiabatic processes, as illustrated in Figure B.1. We assume that all four processes in the
system are reversible. We will now use the first law of thermodynamics (= energy balance)
for a closed system, which applies to each step,

∆U = Q + W

together with our knowledge about an ideal gas (including that U is a function of temperature
only, so ∆U = 0 for an isothermal process), to prove that

1. Entropy is a state function for an ideal gas.
2. The second law of thermodynamics is correct for an ideal gas.
3. There exists a cyclic process that can achieve the Carnot factor (1−TC/TH) for conversion

of heat to work.

For the two isothermal steps, we have ∆U = 0, so from the first law

W = −Q

2 A reservoir is a body with infinite heat capacity or a pure fluid that condenses/boils at a constant
temperature.

3 The Carnot cycle is a heat engine which can be realized in practice, but it is hypothetical in the
sense that it is not used in practice (for economic reasons).



374 CHEMICAL AND ENERGY PROCESS ENGINEERING

Here, the reversible expansion (pV ) work for an ideal gas (see (A.29)) is

W = RT ln
pf

p0

For the two adiabatic steps we have Q = 0, and for an ideal gas where for simplicity we
assume constant heat capacity, the work is then

W = ∆U = CV ∆T

Figure B.1: Carnot cycle

In summary, the work for the four steps of the Carnot cycle for an ideal gas is:

1 → 2: Isothermal reversible expansion at TH ,

W12 = RTH ln
p2

p1
= −|QH | (Work is performed)

2 → 3: Adiabatic reversible expansion from TH to TC ,

W23 = CV (TC − TH) (Work is performed)

3 → 4: Isothermal reversible compression at TH ,

W34 = RTC ln
p4

p3
= |QC | (Work is supplied)

4 → 1: Adiabatic reversible compression from TC to TH ,

W41 = CV (TH − TC) (Work is supplied)

For a full cycle, the net supplied work in the four steps is

W = W12 + W23 + W34 + W41
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Here, the works in the two adiabatic steps cancel since W23 = −W41. We further have for an
ideal gas, from (A.40), that the following applies for the two adiabatic reversible steps

p1

p2
=

p4

p3

The total performed work is then

(−W ) = |W | = RTH ln
p1

p2
+ RTC ln

p3

p4
= R(TH − TC) ln

p1

p2

(we use the absolute sign to show clearly that (−W ) is positive, which means that net work
is performed). Furthermore, |QH | = RTH ln p1

p2
and we derive

|W |
|QH | =

TH − TC

TC
= 1 − TC

TH

which is known as the Carnot factor for conversion of heat QH to work |W | in a reversible
cycle operating with a hot and cold reservoir. As shown in Chapter 8.3 this result can also
be derived using the second law of thermodynamics and the definition of entropy (see (8.4)),
but here we derived it for an ideal gas without using the second law nor the term entropy.

Let us also calculate the entropy changes from the definition in (B.3). We find for the four
steps

∆S12 =
|QH |
TH

, ∆S23 = 0, ∆S34 = −|QC |
TC

, ∆S41 = 0

and we get

∆S =
|QH |
TH

− |QC |
TC

= 0

This means that the entropy change is zero in a cyclic process and, consequently, we have
shown that entropy indeed is a state function for an ideal gas.

Comment. The net performed work for a full cycle is given by the shaded area in the
pV -diagram in Figure B.1. This is interesting to know, but this fact was not used in the
above derivation. Note that the fact also holds for a cyclic process involving a real gas.

Example B.4 Check that entropy is a state function for ideal gas. Let us consider
a closed system with 1 mol ideal gas and assume constant heat capacity Cp = 29.1 J/mol K
(which for an ideal gas gives CV = Cp − R = 20.8 J/mol K and γ = Cp/CV = 1.4). In the
initial state (1), we have T1 = 300 K and p1 = 1 bar. In the final state (2), we have p2 = 5
bar and the temperature T2 = 475K is achieved by a reversible adiabatic compression (see
process A below).

We consider three different reversible processes that take the system from states 1 and 2:
Process A. Reversible adiabatic compression from the initial state (T1, p1) to the final

state (T2, p2). From (A.40), we have that (note that we are not using the term entropy):

T2 = T1

„
p2

p1

« γ−1
γ

(B.7)

Inserting numerical values gives T2 = 475 K.
Process B. This process consists of two reversible subprocesses:

(a) Reversible isothermal compression from p1 to p2 at T1, followed by

(b) Heating from T1 to T2 at constant pressure p2.

Process C. This process resembles process B, but the order of the subprocesses is switched:

(a) Heating from T1 to T2 at constant pressure p1, followed by
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Figure B.2: Internal energy is a state function

(b) Reversible isothermal compression from p1 to p2 at temperature T2.

Task:

1. Calculate the net supplied work and heat for the three processes.
2. Calculate the entropy changes and show that entropy is a state function.

Solution. 1. First, we calculate supplied work and heat for the three processes. From the
first law of thermodynamics for a closed system, we have

∆U = Q + W

where ∆U is the same for the three processes since internal energy is a state function. For
an ideal gas, internal energy is only a function of the temperature, and we find

∆U = U2 − U1 = CV (T2 − T1) = 20.8 · (475 − 300) = 3640 [J/mol]

In words, the sum of the supplied energy Q and work W must equal ∆U = 3640 [J/mol] for
all three processes.

Process A is adiabatic and we have QA = 0. The supplied work is then, from the first
law, given by

WA = ∆U = 3640 [J/mol]

For process B, there is first (a) an isothermal expansion at T1, where for ideal gas ∆U = 0,
and we get Qrev

a = −W rev
a = RT1 ln(p2/p1). This is followed (b) by an isobaric heating, where

we get Qb = Cp(T2 − T1). The total supplied heat is

Qrev
B = −RT1 ln

p2

p1
| {z }

QBa

+Cp(T2 − T1)
| {z }

QBb

= −4012 + 5093 = 1081 [J/mol]

The work that must be supplied is then from the first law of thermodynamics

WB = ∆U − QB = 3640 − 1081 = 2559 [J/mol]

We need to supply less work than for process A because the compression occurs at a lower
temperature.

Similarly, we have for process C

QC = Cp(T2 − T1) − RT2 ln
p2

p1
= 5093 − 6353 = −1260 [J/mol]
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The compression occurs at a high temperature, which is unfavorable, so the supplied work is
larger:

WC = ∆U − QC = 3640 + 1260 = 4900 [J/mol]

The results are summarized as follows

Qrev W rev ∆U ∆S
Process A 0 3640 3640 0
Process B 1081 2559 3640 0
Process C −1260 4900 3640 0

2. Let us finally show that ∆S is the same (in fact, it is zero) for all three processes, as it
should be if it is a state function. The three processes are all reversible so we first note that
Qrev is not a state function. Let us now compute ∆S =

R
dQrev/T (see page 371) for our

three reversible processes.
Process A is adiabatic with Qrmrev = 0 so we have ∆SA = 0.
Process B is an isothermal expansion from p1 to p2 (with dQrev = −dW rev = pdV =

−RTdp/p) followed by an isobaric heating from T1 to T2 (with dQrev = CpdT ). Using
the definition of entropy, ∆S =

R
dQrev/T , and integrating then gives (for details see

Section B.4):

∆SB = −R ln
p2

p1
+ Cp ln

T2

T1
(B.8)

By inserting T2/T1 from (B.7) and using γ−1
γ

= R
Cp

we derive that

∆SB = 0

Finally, for process C, we have

∆SB = Cp ln
T2

T1
− R ln

p2

p1
= 0

Consequently, we find for this example that ∆SA = ∆SB = ∆SC , which confirms that
entropy is a state function. Our derivation was for an ideal gas, but this fact holds for any
material.

B.4 Calculation of the system’s entropy

Here, we derive expressions for the system’s entropy change ∆S for three important
processes:

1. Phase transition
2. Temperature change
3. Pressure change

The derivations are for reversible processes in a closed system, but since entropy is a state
function, the result applies to any process between the same states, including an irreversible
continuous process. Before we continue let us first briefly review what we know about a
reversible closed system.

Reversible closed system. The energy balance for a closed system is U2 −U1 = Q+W
where, for a reversible closed process, W = −

R 2

1
pdV . For a small (differential) change, the

energy balance is then dU = δQrev − pdV or

δQrev = dU + pdV (B.9)

The enthalpy is H = U + pV , so if pressure is constant we have

Constant pressure : δQrev = dH (B.10)
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B.4.1 Entropy change for phase transition

When a liquid evaporates, the degree of disorder increases so we expect that the entropy
increases. The same applies similarly for a melting substance. Here, we derive the entropy
change for phase transitions (see page 358) at constant pressure. From (B.10) or (A.35) we
then have Qrev = ∆trsH [J/mol], and from (B.3) the entropy change for the phase transition
is

∆trsS =
∆trsH

Ttrs
(B.11)

This applies to pure substances where Ttrs is constant during the phase transition. As
expected, the entropy increases for phase transitions where heat must be supplied (∆trsH >
0), such as melting (fusion) and evaporation. Note that there is equilibrium between the
two phases during the phase transition and the temperature Ttrs is determined by the given
pressure. For example, the temperature is 0oC when ice melts to water at 1 atm, and the
temperature is 100oC when water evaporates at 1 atm.

As a rule of thumb, the entropy of vaporization (evaporation) at the normal boiling point
(1 atm) is typically

Trouton′s rule : ∆vapS ≈ 85 J/K mol

This is because the increase in disorder during the transfer from liquid to gas at 1 atm is
similar for all substances.

Example B.5 For n-butane, the normal boiling point (1 atm) is Tb = Tvap = 272.7 K
(we usually use the symbol Tb for the boiling point), and the heat of vaporization at this
temperature is ∆vapH = 22.41 kJ/mol. The entropy of vaporization is then

∆vapS =
∆vapH

Tb
=

22.41 · 103

272.7
= 82.17 J/mol K

which is reasonably consistent with Trouton’s rule.

The largest deviations from Trouton’s rule are expected for substances with abnormal
structural organizations, especially in the liquid phase. This is the case for water, where
strong hydrogen bonding results in “more order” in the liquid phase than normal, and as a
result the increase in disorder during evaporation is larger than normal. This is confirmed
by computing the entropy of vaporization for water at its normal boiling point, which is
∆vapS = ∆vapH/Tb = (40.68 · 103 J/mol)/(373.15 K) = 109.0 J/mol K.

Example B.6 Entropy of melting (fusion). For water, the heat of melting for the phase
transition between ice (s) and water (l) is ∆Hfus = 6.01 kJ/mol. The entropy change when
ice is melting is then ∆Sfus = 6.01 kJ/mol / 273.15 K = 22.00 J/mol K, which is as
expexted positive since the liquid phase is less ordered. However, in winter water freezes
spontaneously (the opposite of melting) when the temperature drops below 0 oC, and the
system’s entropy decreases, ∆S = −22.00 J/mol K. How can this be compatible with the
second law of thermodynamics?

The explanation is that the entropy of the surroundings (the air) increases even more. The
air must necessarily be a little colder in order to make the water freeze, and if we assume that
the air temperature is −1oC, the entropy change for the air (the surroundings) according to
(B.5) is ∆Ssur = 6.01 kJ/(mol ice) / 272.15 K = 22.08 J/(mol ice) K. The total entropy
change is then ∆Stotal = ∆S + ∆Ssur = (−22.00 + 22.08) J/mol K = +0.08 J/mol K which
as expected is positive.
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B.4.2 Entropy change for temperature change

When temperature increases (heating), the molecules move faster and we expect the entropy
to increase. Let us consider heating at constant pressure without phase transition. For
a small temperature change dT , the supplied heat amount (in a closed system) is then
δQrev = dH = CpdT [J/mol] (see and (B.10) and (A.36)) and from (B.3), the entropy
change is

dS = Cp
dT

T
(constant p)

which integrated gives

S(T2) − S(T1) =

Z T2

T1

Cp(T )
dT

T
(constant p) (B.12)

This is indeed positive since Cp > 0. For the simplified case with constant heat capacity
(independent of the temperature), we get

∆S = S(T2) − S(T1) = Cp ln
T2

T1
[J/molK] (constant p and Cp) (B.13)

B.4.3 Entropy change for pressure change for ideal gas

Let us consider an increase of pressure (compression) at constant temperature. The volume
then becomes smaller such that the molecules have less space, and we expect that there is
“more order” such that entropy decreases. Let us confirm this for ideal gas where internal
energy is only a function of temperature, that is, dU = 0 when T is constant. The energy
balance (B.9) for a closed system gives δQrev = pdV and thus the entropy change is

dS =
δQrev

T
=

pdV

T

For 1 mol of an ideal gas, we have V = RT/p which at constant T gives dV = −(RT/p2)dp
which inserted gives dS = −Rdp/p. Integrated, we get

∆S = S(p2) − S(p1) = −R ln
p2

p1
[J/mol] (ideal gas; constant T ) (B.14)

In summary, from (B.13) and (B.14), the entropy change for 1 mol of ideal gas (with constant
composition) when going from an arbitrary state 1 to state 2 is

S(T2, p2) − S(T1, p1) =

Z T2

T1

Cp(T )
dT

T
− R ln

p2

p1
[J/mol K] ideal gas (B.15)

B.4.4 Isentropic expansion of ideal gas

Here, we use the above results to rederive the result (6.8) that we previously derived for an
adiabatic expansion of an ideal gas. Assuming constant heat capacity, we get from (B.15)

∆S = S(T2, p2) − S(T1, p1) = Cp ln
T2

T1
− R ln

p2

p1
(B.16)

For an isentropic process, we have ∆S = 0 and we derive

Cp ln
T2

T1
= R ln

p2

p1
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This gives

T2

T1
=

„
p2

p1

«R/Cp

(B.17)

which, since R/Cp = γ−1
γ

, is identical to expression (6.8) that we have used many times.
However, whereas the “original” derivation on page 350 assumed an adiabatic process, we
have now shown that it holds for any isentropic process involving an ideal gas with constant
CP .

B.4.5 Standard entropy change for chemical reaction

Here, we consider the standard entropy change for a chemical reaction. This is not the actual
entropy change for the reaction, because the important mixing entropy is not included.
Consider a reaction 0 = ΣiνiAi, where as usual the stoichiometric coefficient νi is negative
for a reactant and positive for a product. The standard entropy change of reaction is the
difference between the entropy of the products as pure components in their standard state
and the entropy of the reactants as pure components in their standard state, that is

∆rS
⊖(T ) =

X

i=components

νiS
⊖
m(i) =

X

i=products

νiS
⊖
m(i) −

X

i=reactants

|νi|S⊖
m(i) [J/mol K]

(B.18)
This is similar to the definition of the standard heat (enthalpy) of reaction, see (A.58).
However, unlike enthalpy, it is possible to assign an absolute value for the entropy S⊖

m(i)
of each component. This is because from the third law of thermodynamics there exists a
perfectly ordered state (corresponding to only one microstate) where the entropy is zero. The
“absolute” value of the entropy (S⊖

m(i)) relative to this perfect state is tabulated in many
reference books. However, in this book we are not really interested in absolute entropies, but
rather in changes. We may therefore alternatively use data for enthalpy and Gibbs energy of
formation (∆fH

⊖(i), ∆fG
⊖(i)) to obtain the standard enthalpy and Gibbs energy of reaction

(∆rH
⊖, ∆rH

⊖), and from this the standard entropy of reaction,

∆rS
⊖ =

∆rH
⊖ − ∆rG

⊖

T
(B.19)

Example B.7 We want to find the standard entropy change at 298.15 K for the gas-phase
reaction

CO2 + 3H2 = CH3OH + H2O

The following data at 298.15 K are found in the reference book SI Chemical Data:

∆fH
⊖ ∆fG

⊖ S⊖

(kJ/mol) (kJ/mol) (kJ/mol K)
CO2 −394 −394 214
H2 0 0 131

CH3OH −210 −163 240
H2O −242 −229 189

Using (B.18) we find

∆rS
⊖ = S⊖(CH3OH) + S⊖(H2O) − S⊖(CO2) − 3S⊖(H2) = −178J/K mol

Alternatively, we find from the above data that ∆rS
⊖ = −49 kJ/mol and ∆rG

⊖ = 2 kJ/mol
and using (B.19) we get

∆rS
⊖ =

(−49 − 2) · 103J/mol K

298.15K
= −171J/K mol



MORE THERMODYNAMICS: ENTROPY AND EQUILIBRIUM 381

The two methods should give the same result, but for this example the deviation between the
two values, −178 kJ/mol K and −171 kJ/mol K, is large. The deviation is mainly because
of round-off errors because SI Chemical Data uses no decimals. If we use the more accurate
component data given on page 416, we find ∆rH

⊖ = −48.97 kJ/mol and ∆rG
⊖ = 3.83 kJ/mol

which gives ∆rS
⊖ = −177 J/mol. Thus, based on this example, it seems better to base the

calculation of ∆rS
⊖ on data for the absolute entropy S⊖.

B.5 Mixtures (variable composition)

Consider a process where, from the pure components at T and p, we produce a mixture at
the same T and p. The mole fraction of each component after mixing is xi. During such a
mixing process, there is generally a change in the properties. In order to quantify them, let
us introduce the following notation (here for volume V , but the same notation applies to any
extensive variable, such as H , S and G):

• V ∗
i : molar volume of pure component i [m3/mol]

• V̄i (or just Vi): partial molar volume = molar volume of component i in the mixture
[m3/mol]

• V =
P

i niV̄i: total molar volume of the mixtures [m3]
• ∆mixV = V −Pi niV

∗
i =

P

i ni(V̄i − V ∗
i ): mixing volume (volume change during mixing

of 1 mol) [m3]

Note that everything is at a given T and p. Similarly, the enthalpy and entropy of mixing
are:

∆mixH , H −
X

i

niH
∗
i =

X

i

ni(H̄i − H∗
i ) [J] (B.20)

∆mixS , S −
X

i

niS
∗
i =

X

i

ni(S̄i − S∗
i ) [J/K] (B.21)

For an ideal mixture (gas or liquid), both the mixing volume and heat of mixing are zero,

V̄i = V ∗
i ⇒ ∆mixV = 0 (B.22)

H̄i = H∗
i ⇒ ∆mixH = 0 (B.23)

That is, for an ideal mixture, the volume and enthalpy of a component in the mixture
is the same as the volume and enthalpy of the pure component at the same pressure and
temperature.4

But what about the entropy of mixing? Based on experience, mixing is clearly an
irreversible process (no one has ever observed that air magically separates itself such that
there is oxygen in one part of the room and nitrogen in the other). Thus, the entropy of
mixing is clearly positive – even for an ideal mixture:

∆mixS > 0 (B.24)

We want to derive the mixing entropy for an ideal mixture by considering the case of ideal
gas. In ideal gas each component (and molecule) in the mixture behaves as if no other
components were present. A consequence of this is (Gibbs’ theorem):

For an ideal gas, the entropy of a component i in the mixture (at its partial
pressure pi = xip) equals the entropy of a pure component i at pressure pi, that
is, S̄i(p) = S∗

i (pi).

4 For real mixtures, the mixing volume and heat of mixing are not zero. For example, we found on
page 55 that ∆mixV is negative when we mix water and ethanol, that is, the volume is reduced.
Further, we found on page 113 that ∆mixH is negative when we mix water in acid, that is, heat is
released. For other non-ideal mixtures the values of ∆mixV and ∆mixH may be positive.
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Ideal mixture:

but:

Figure B.3: Mixture is an irreversible process

B.5.1 Osmotic pressure

A consequence of Gibbs’ theorem is that for an ideal (reversible) membrane that only lets
component A through, the pressure p∗

A on the side with pure A is equal to the partial pressure
of A in the mixture on the other side, that is,

p∗
A = xAp

This implies that there will be a pressure difference over the membrane, known as the osmotic
pressure Π, which for an ideal membrane and ideal gas is

Π = p − p∗
A = (1 − xA)p

Thus, for a binary mixture, Π = xBp, where B is the component that does not go through
the membrane. Introducing the concentration cB = nB/V = xBn/V [mol/m3] of molecules
that do not pass through the membrane, we derive

Π = cBpV/n = cBRT [N/m2] (B.25)

This equation is here derived for a gas membrane. An identical equation was derived by van’t
Hoff 5 for a liquid phase membrane. The equation can be used to determine the molar mass
of large molecules, by dissolving a known mass (in gram) of the molecule in the liquid, and
measuring the resulting osmotic pressure difference over a membrane with the pure liquid on
the other side.

Example B.8 Let us calculate the osmotic pressure of seawater at 288K (15oC). We assume
a salinity of 3.5% l or 35 kg/m3, and assume that the only salt is NaCl with a molar mass
of 58.4 kg/kmol. The molar concentration of NaCl is then 35 kg/m3/58.4 kg/kmol = 0.60
kmol/m3 = 600 mol/m3. However, when NaCl dissolves in water it splits into Na+ and Cl−,
so the concentration of dissolved molecules in seawater is twice as high, that is, cB = 2 · 600
mol/m3. With a liquid phase membrane that only lets water pass, the osmotic pressure is then
from van’t Hoff’s equation (B.25)

Π = cBRT = 2 · 600 · 8.31 · 288 N/m2 = 2872000 N/m2 = 28.7 bar

5 Jacobus van’t Hoff (1852-1911) received the first Nobel prize in chemistry in 1901 for his work on
liquid solutions, including osmotic pressure.
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B.5.2 Entropy of mixing for ideal mixture

From (B.14), we know the entropy’s dependency on pressure for an ideal gas, and we then
get from Gibbs’ theorem that the entropy for 1 mol of component i in the mixture is:

S̄i(p) = S∗
i (pi) = S∗

i (p) − R ln
pi

p
= S∗

i (p) − R ln xi [J/mol K] (B.26)

where xi = pi/p is the mole fraction of component i in the mixture and S∗
i (p) is the entropy

of pure component i at pressure p. The entropy for an ideal gas mixture at T and p is then

S(T, p) =
X

i

niS̄i(T, p) =
X

i

niS
∗
i (T, p)−

X

i

niR ln xi

| {z }

∆mixS

[J/K] (B.27)

We have derived that the mixing entropy for an ideal mixture is

∆mixS = −R
X

i

ni ln xi = −nR
X

i

xi ln xi [J/K] (constant T and p) (B.28)

Since ln xi is negative, (B.28) gives as expected that the entropy increases when we mix pure
components. (B.28) applies similarly for an ideal liquid mixture (ideal solution)6.

Example B.9 For an equimolar two-component ideal mixture (with x1 = x2 = 0.5), we have
that

∆mixS = −R · 2 · 0.5 · ln 0.5 = 0.69R [J/mol K]

Similarly, for an equimolar five-component mixture (with xi = 0.2),

∆mixS = −R · 5 · 0.2 · ln 0.2 = 1.61R [J/mol K]

and for an equimolar Nc-component mixture (with xi = 1/Nc),

∆mixS = Nc

„

−R
1

Nc
ln

1

Nc

«

= R lnNc [J/mol K]

Note that ∆mixS in theory can become arbitrarily large if the number of components Nc is
large, but because we take the logarithm the increase is in practice small. For example, an
equimolar mixture with 1 million components has ∆mixS = 13.8R [J/mol K], which is only a
factor 20 larger than for a two-component mixture.

Comment. Equation (B.28) for the ideal mixing entropy is of fundamental importance,
and is in fact the basis for all reaction and vapor/liquid equilibrium calculations.

B.6 Equilibrium

We mentioned that the total entropy (in the universe) always increases. More generally, we
have that the entropy in an isolated system always increases (an isolated system is
a closed system without exchange of heat and work with the surroundings, and the universe
can be considered as a special case of an isolated system). But in an isolated system, it is
limited how much the entropy can increase, and we will eventually as time goes to infinity
reach an equilibrium state:

6 Inspired by thermodynamics, communications technology also use the term entropy, defined
similarly to (B.28) but with xi replaced by probability. Information is the opposite of entropy,
and during communication the information content always decreases, that is the entropy increases.
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Left to itself, an isolated system will reach an equilibrium state where the entropy
has a maximum.

In a system at equilibrium, we know from experience that temperature and pressure are
uniform and that the composition is also uniform within each phase. Chemical equilibrium
is also reached, although in practice some reactions may run so slowly that we can neglect
them. These observations can be derived mathematically by seeking the state with maximum
entropy.

Example B.10 Temperature equilibrium. We consider an isolated system that consists
of two bodies; one body (for example a hot bathtub) with temperature T1 and another body
(for example air) with temperature T2, and we have initially T1 > T2. The total entropy is
Stotal = S1+S2. If we transfer an amount of heat |δQ| from the bathtub to the air, the entropy
in the bathtub will decrease by dS1 = −|δQ|/T1, while the entropy in the air will increase by
dS2 = |δQ|/T2. As long as T1 > T2, we will have |dS2| > |dS1| and the total entropy change
dStotal = dS1 + dS2 is positive. At equilibrium, entropy has reached its maximum and we
have for any change that dStotal = 0. From this we derive the equilibrium condition T1 = T2,
which is consistent with our observations.

B.6.1 Equilibrium at constant temperature and pressure:
Gibbs energy

We can always determine the equilibrium state by maximizing the total entropy Stotal (which
is not a state variable). However, we are often interested in finding equilibrium state at a
given value of T and p, and it then turns out that the equilibrium condition is equivalent to
minimizing the Gibbs7 energy G of the system (which is a state variable!). Here, we derive
this equilibrium condition for a closed system, but since G is a state function, the result is
generally applicable. We start from the second law of thermodynamics, which states that for
all real processes we must have that

∆S + ∆Ssur ≥ 0

where ∆S is a state variable. We assume that the interaction with the surroundings is
reversible, which in particular implies that Tsur = T . Since temperature is assumed constant,
we then have from (B.5)

∆Ssur = − Q

Tsur
= −Q

T

Since pressure p is constant, we further have Q = ∆H , which applies to a closed system with
reversible pV work, see (A.35)). The second law of thermodynamics, then gives that all real
processes at constant T and p must satisfy ∆S − ∆H/T ≥ 0 or (by multiplying both sides
by T )

∆H − T∆S ≤ 0 (B.29)

Now, the Gibbs energy of the system is defined as G = H − TS(which is a state function),
and since T is constant, we see from (B.29) that for all natural processes we must have

∆G ≤ 0 (constant T and p) (B.30)

7 It was the American physicist Josiah Willard Gibbs (1839–1903) at Yale University who, at the
end of the 19th century, laid the basis for modern chemical thermodynamics. Even though he was
awarded the first doctoral degree (PhD) in the US in engineering, Gibbs was a theoretician who
worked alone and had little contact with practical engineering problems. Nonetheless, his work has
later had a deep practical impact.
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In other words, all natural processes will, at a given T and p, proceed in a direction that
reduces G. Eventually, we reach an (internal) equilibrium state where the system’s Gibbs
energy G has reached its minimum, and we must have for any perturbation (change ∆) at
the equilibrium state that

∆G = 0 (equilibrium at constant T and p) (B.31)

or, more precisely, in differential form:

(dG)T,p = 0 (B.32)

B.6.2 Chemical equilibrium

We consider chemical equilibrium at given temperature and pressure. Assume that the
reactants A and B react to the products C and D following the general reaction equation:

0 =
X

i

νiAi = νAA + νBB + νCC + νDD (B.33)

where νi is the stoichiometric coefficient for component i, which is negative for reactants. We
now apply the equilibrium condition (B.31) to the chemical reaction (B.33) and find

∆rG = 0 (constant T and p) (B.34)

where ∆rG [J/mol] is the change in Gibbs energy when 1 mol reacts according to the given
reaction equation.
Derivation of (B.34): Let ξ [mol] be the extent of reaction. At a given T and p, the equilibrium

condition (B.32) becomes (dG)T,p = ∆rG · dξ = 0. Since this must hold for any value of dξ, we get

∆rG(T, p) = 0. 2

In (B.34) we have that

∆rG =
X

i

νiḠi [J/mol] (B.35)

where Ḡi = Ḡi(T, p) is the (partial) Gibbs energy for component i in the mixture. Here, Ḡi

is also called the chemical potential and is given the symbol µi,

µi , Ḡi ,

„
∂G

∂ni

«

T,p.nj

(B.36)

We can further write µi = Ḡi(T, p) = H̄i(T, p) − T S̄i(T, p). The change in Gibbs energy for
the reaction is then (at given T and p)

∆rG =
X

i

νiḠi =
X

i

νiH̄i

| {z }

∆rH

−T
X

i

νiS̄i

| {z }

∆rS

[J/mol] (B.37)

For an ideal gas, we have from (B.23) and (B.26) that

H̄i(T, p) = H∗
i (T, p⊖) (B.38)

S̄i(T, p) = S∗
i (T, p⊖) − R ln(pi/p⊖) (B.39)
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Because we are considering chemical reactions, it is practical to use the elements as the
reference state. We then have

H∗
i (T, p⊖) = H⊖

i (T ) = standard enthalpy of formation at temperature T

S∗
i (T, p⊖) = S⊖

i (T ) = standard entropy of formation at temperature T

We then get that the chemical potential for an ideal gas can be written as

µi , Ḡi(T, p) = G⊖
i (T ) + RT ln(pi/p⊖) (B.40)

where G⊖
i(T ) = H⊖

i(T )−TS⊖
i(T ) is the standard Gibbs energy of formation for component

i.
For real gases, liquids and solids, we can more generally in (B.40) introduce the activity

ai relative to a defined standard state at T and 1 bar. For gases, the standard state is ideal
gas. We can then write the chemical potential as

µi , Ḡi(T, p) , G⊖
i (T ) + RT ln ai (B.41)

From (B.35) and (B.41), we then have for the reaction (B.33)

∆rG =
X

i

νiḠi =
X

i

`
νiG

⊖
i (T ) + νiRT ln ai

´

= ∆rG
⊖ + RT (νA ln aA + νB ln aB + νC ln aC + νD ln aD)

For logarithms it holds that

n ln a = ln an and ln an + ln bm = ln(anbm)

so this can be written

∆rG = ∆rG
⊖ + RT

Y

i

aνi
i = ∆rG

⊖ + RT ln Q (B.42)

where ∆rG
⊖ is the standard change in Gibbs energy for the reaction at T and p⊖ = 1 bar,

and Q is defined by

Q ,
Y

i

aνi
i (B.43)

At chemical equilibrium, we have from (B.34) ∆rG(T, p) = 0 and we derive the equilibrium
condition:

∆rG = ∆rG
⊖ + RT ln Q = 0 (given T and p) (B.44)

We now introduce the equilibrium constant K defined by

ln K(T ) , −∆rG
⊖(T )

RT
(B.45)

The equilibrium condition for the chemical reaction (B.33) is then ln Q = ln K or K = Q or

K =
Y

i

aνi
i =

aνC
C aνD

D

a−νA
A a−νB

B

(given T, p) (B.46)

where we, in the final equality, have assumed that A and B are reactants, and C and D are
products.
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• ai is here the activity relative to the component’s standard state used when calculating
the equilibrium constant K. Note that we, for each component, are free to choose the
standard state. For example, for gas phase reactions, we usually choose the ideal gas as
the standard state for all components (even though some of the components may be liquid
at 298.15 K). The activity is generally a function of composition, T and p.

• For gas components, the standard state is ideal gas at T and p⊖ = 1 bar.

— For ideal gas, we then have, as shown in (B.40), that the activity of component i is

ai =
pi

p⊖
= yi

p

p⊖
(B.47)

where pi is the partial pressure, p⊖ = 1 bar and yi is the mole fraction in the mixture.
That is, the activity is directly proportional to the partial pressure and is independent
of temperature.

— For real gases, we replace the partial pressure pi by its fugacity fi [bar] and write
ai = fi/p⊖. Alternatively, we write ai = φipi/p⊖ where φi is the fugacity coefficient.
For an ideal gas, φi = 1.

• For liquid components, the standard state is usually pure liquid at T and 1 bar and we
often write

ai = γixi (B.48)

where γi is the activity coefficient and xi is the mole fraction in the mixture. For a pure
component we have γi = 1, and for an ideal liquid mixture we also have γi = 1 (strictly
speaking, this holds only if we neglect the effect of pressure on the liquid phase activity,
or alternatively, we must in (B.48) include a liquid pressure correction term, similar to the
Poynting factor on page 188).

• The standard Gibbs energy for the reaction is usually obtained from

∆rG
⊖(T ) =

X

i

νi∆fG
⊖(i, T ) [J/mol]

where ∆fG
⊖(i, T ) [J/mol] is the Gibbs energy of formation for component i (relative to

the elements in their standard state at 298.15 K and 1 bar), and νi is the stoichiometric
coefficient for component i in the reaction. In reference books (see page 415), we find values
for the Gibbs energy of formation specified at 298 K, so we can easily obtain the standard
Gibbs energy of reaction at 298 K,

∆rG
⊖(298) =

X

i

νi∆fG
⊖(i, 298)

In order to obtain ∆rG
⊖(T ), and thereby the equilibrium constant at other temperatures,

we can use

∆rH
⊖(T ) = ∆rH

⊖(298) +

Z T

298.15

∆rC
⊖
p (T )dT (B.49)

∆rS
⊖(T ) = ∆rS

⊖(298) +

Z T

298.15

∆rC
⊖
p (T )

T
dT (B.50)

∆rG
⊖(T ) = ∆rH

⊖(T ) − T∆rS
⊖(T ) [J/mol] (B.51)

where ∆rC
⊖
p (T ) =

P

i νiC
⊖
p (i, T ) is the change in heat capacity for the reaction.
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A little more on the temperature dependency of the equilibrium constant

The equilibrium constant K(T ) is a function of the temperature, and in order to study this
closer, we start with the defin/Althtion of the equilibrium constant:

ln K(T ) = −∆rG
⊖(T )

RT
= −∆rH

⊖(T )

RT
+

∆rS
⊖(T )

R
(B.52)

If we differentiate (B.52), we get van’t Hoff’s equation8

d ln K

dT
=

∆rH
⊖(T )

RT 2
(B.53)

or
d ln K

d(1/T )
=

−∆rH
⊖(T )

R
(B.54)

that is, when we plot lnK as a function of 1/T the slope is −∆rH
⊖(T )/R. The plot is a

straight line if ∆rH
⊖(T ) is constant.

For practical calculations, four different assumptions are commonly used to compute the
equilibrium constant’s temperature dependency:

1. Very rough assumption: Assume that K is independent of T (this is only OK if the heat
of reaction, ∆rH

⊖, is close to 0).
2. Less rough assumption: Assume that ∆rH

⊖ is independent of the temperature. Integration
of (B.53) then gives the “integrated form” of van’t Hoff’s equation

ln
K(T )

K(T0)
= −∆rH

⊖

R

„
1

T
− 1

T0

«

(B.55)

3. Minor assumption: Assume that the heat capacities are constant, or more exactly that
the change in heat capacity for the reaction, ∆rC

⊖
p =

P

i νiC
⊖
p (i), is independent of

temperature. With this assumption, (B.49) and (B.50) are simplified to

∆rH
⊖(T ) = ∆rH

⊖(T0) + ∆rC
⊖
p · (T − T0) (B.56)

∆rS
⊖(T ) = ∆rS

⊖(T0) + ∆rC
⊖
p · ln T

T0
(B.57)

and we obtain ∆rG
⊖(T ) = ∆rH

⊖(T ) − T∆rS
⊖(T ) and from this K(T ) =

exp{−∆rG
⊖(T )/RT}.

4. No assumption: Use data for the heat capacity C⊖
p (T ) from a reference book9. For example,

it may be in the form
cpi(T ) = Ai + BiT + CiT

2 + DiT
3

Integration of equations (A.44) and (B.12) then gives the enthalpy and the entropy for
each component at temperature T ,

∆fH
⊖
i (T ) = ∆fH

⊖
i (T0)+Ai(T −T0)+

Bi

2
(T 2−T 2

0 )+
Ci

3
(T 3−T 3

0 )+
Di

4
(T 4−T 4

0 ) (B.58)

∆fS
⊖
i (T ) = ∆fS

⊖
i (T0) + Ai ln

T

T0
+ Bi(T − T0) +

Ci

2
(T 2 − T 2

0 ) +
Di

3
(T 3 − T 3

0 ) (B.59)

8 The derivation of (B.53), where we differentiate (B.52), presupposes constant ∆rH⊖ and ∆rS⊖

(independent of temperature). However, a more complicated derivation, where we use the Gibbs-
Helmholtz equation, see (B.70), gives that van’t Hoff’s equation (B.53) is exact, that is, it applies
also when ∆rH⊖(T ) and ∆rS⊖(T ) are not constant.

9 A good source for ideal gas-heat capacities is: Poling, Prausnitz and O’Connell, The properties of
gases and liquids, 5th Ed., McGraw-Hill (2001)
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From this, we can obtain for the reaction

∆rH
⊖(T ) =

X

i

νi∆fH
⊖
i (T )

∆rS
⊖(T ) =

X

i

νi∆fS
⊖
i (T )

and ∆rG
⊖(T ) = ∆rH

⊖(T ) − T∆rS
⊖(T ), and from this find the exact value of K(T ) =

exp{−∆rG
⊖(T )/RT}. Alternatively, we get the same result by using ∆rC

⊖
p (T ) = ∆rA +

∆rB · T + ∆rC · T 2 + ∆rD · T 3 and integrating equations (B.49) and (B.50).

For comparison of the above methods see the ammonia example on page 176.

Example B.11 We want to find the equilibrium constant for the combustion reaction

CO +
1

2
O2 = CO2; K =

(pCO2/p⊖)

(pCO/p⊖)(pO2/p⊖)0.5

where p⊖ = 1 bar and we assume ideal gas. From the ideal gas component data on page 416,
we find ∆rG

⊖(298) = −282.98kJ/mol, ∆rG
⊖(298) = −257.19kJ/mol and ∆rC

⊖
p (298 =

−6.71J/K mol. This gives ∆rS
⊖(298) = (∆rH

⊖(298) − ∆rG
⊖(298))/298.15K = −86.57

J/K mol. Using (B.56) and (B.57), we can then obtain the equlibrium constant K(T ) as a
function of temperature,

T [K] 500 1000 1500 2000 2500 3000
K(T ) 1.04E25 1.22E10 1.12E5 317 9.0 0.81

% Computed using MATLAB:
dh0=-282.98E3; ds0=-86.57; dcp0=-6.71; T0=298.15;
T=500; dh=dh0+dcp0*(T-T0); ds=ds0+dcp0*log(T/T0); dg=dh-T*ds; K=exp(-dg/(8.31*T))

We note that the equilibrium is strongly shifted towards CO2 at low temperatures, which is
expected since the reaction is exothermic. In practice, combustion of fuels at low temperature
may give a high CO concentration (incomplete combustion), but this is because of kinetics;
adding a catalyst (as used for cars) or adding a secondary combustion chamber with higher
temperature (as used in modern wood stoves) may give complete combustion (CO2) as expected
from equilibrium thermodynamics.

B.7 The fundamental equation of thermodynamics
and total differentials

In this book, we have stayed away from most of the intricate thermodynamic relationships
of partial derivatives, but let us end this Appendix with a few useful relationships.

The starting point for these seemingly mysterious relationships is that a thermodynamic
system at internal equilibrium has 2 + Nc independent variables (see page 332), where Nc

is the number of components. For example, we can specify T , p + the amounts of each of
the Nc components. These specifications define the state in the system, and we can then
calculate from them all other state variables (for example V , U , S, etc.). The main reason
for the seemingly myriad of formulas is that there are many other choices, in addition to T
and p, for specifying the two degrees of freedom. The “natural” (canonical, most suitable)
variables depend on which thermodynamic function we consider.
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Let us start with internal energy, where the “natural” canonical variables turn out to be
S and V (+ the molar amounts), that is, we write

U = U(S, V, n1, n2, . . . nc) (B.60)

We are interested in changes in U and express the total differential

dU =

„
∂U

∂S

«

V,n1,...,nc

dS +

„
∂U

∂V

«

S,n1,...,nc

dV +

cX

i=1

„
∂U

∂ni

«

S,V,nk(k 6=i)

dni (B.61)

The first law of thermodynamics for a closed system gives dU = dQ + dW , where for a
reversible process dQ = TdS and dW = −pdV . This is at constant composition, and by
adding the contributions for changes in the number of moles, which can be expressed by the
chemical potential µi, we get the so-called fundamental equation of thermodynamics:

dU = TdS − pdV +
X

i

µidni (B.62)

This is here derived for a reversible process in a closed system, but since U is a state function,
(B.62) applies for all systems at internal equilibrium. A comparison of (B.61) and (B.62) then
gives the following exact relationships between temperature, pressure and chemical potential
and the partial derivative of U :

Temperature : T =

„
∂U

∂S

«

V,n1 ,...,nc

(B.63)

Pressure : p = −
„

∂U

∂V

«

S,n1,...,nc

(B.64)

Chemical potential : µi =

„
∂U

∂ni

«

S,V,nk(k 6=i)

(B.65)

These are actually the thermodynamic definitions of pressure and temperature. Fortunately,
they are consistent with our “ordinary” definitions of pressure and temperature from everyday
life.

In the expression (B.62) for internal energy, the independent variables are S and V , while
we, for practical calculations, often want to specify p and T . Is there any state variable or
combination that has p and T as its “natural” variables? Yes, this is the Gibbs energy defined
by

G = U + pV − TS

In order to show this, we differentiate this equation and get dG = dU+pdV +V dp−TdS−SdT
which, when combined with (B.62), gives

dG = −SdT + V dp +
X

i

µidni (B.66)

which is the total differential of G in the variables T , p and mole amounts. By differentiating
the function G(T, p, ni), we find that

S = −
„

∂G

∂T

«

p,n1,...,nc

; V =

„
∂G

∂p

«

T,n1,...,nc

; µi =

„
∂G

∂ni

«

T,p,nk(k 6=i)

(B.67)

where we note that the last equation is consistent with our definition in (B.36) of the chemical
potential µi as the partial Gibbs energy. Accordingly, for H the “natural” variables are S
and p and we have

dH = TdS + V dp +
X

i

µidni (B.68)
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and

T =

„
∂H

∂S

«

p,n1,...,nc

; V =

„
∂H

∂p

«

S,n1,...,nc

(B.69)

With different combinations and introduction of other variables, as heat capacity, we can
derive many other relationships between the different partial derivatives, which probably
seems more or less mysterious to most people, but which actually have a rather simple basis.

Example B.12 As an example of one of these “mysterious” relationships, let us derive the
Gibbs-Helmholtz equation which states that the temperature dependency of the function G/T
is determined by the enthalpy (assuming constant composition):

„
∂(G/T )

∂T

«

p

= − H

T 2
(B.70)

Proof: The left side can be written as 1
T

(∂G/∂T )p − G
T2 , that is, we want to show that

(∂G/∂T )p = (G − H)/T . This is simple: We have (G − H)/T = −S which, according to
(B.67), is identical to (∂G/∂T )p.





APPENDIX C

Differential balances: Examples

Here, we consider some more difficult examples where we must solve differential balances.

C.1 Emptying of gas tank

Example C.1 Emptying of gas tank. This is Example 4.3 shown in Figure 4.5(b)
(page 105): A container with gas at 10 bar and 300 K (state 0) is emptied such that the final
pressure is 1 bar (state f). Calculate the corresponding final temperature when we assume
adiabatic conditions and constant γ = Cp/CV = 1.4. Note that the temperature inside the
tank will decrease because of the displacement (pv-work) performed on the surroundings by
the exiting gas.

We have previously given up on solving this exercise, but it can be solved using the
differential energy balance. Let the volume of the container be V . The number of moles in
the container is n [mol] which varies with time. The outflow is ṅout [mol/s]. The dynamic
material balance (11.5) with no chemical reaction is

dn

dt
= ṅin − ṅout [mol/s]

Since the inflow is zero this gives

dn

dt
= −ṅout [mol/s]

Next, consider the dynamic energy balance (11.11),

dU

dt
= Ḣin − Ḣout + Q̇ + Ẇs − pex

dV

dt
[J/s]

Note that it is the internal energy, and not the enthalpy, that enters on the left hand side.
This is important for gases. The volume of the container is constant so dV/dt = 0. The
system is adiabatic so Q̇ = 0. No mechanical work is supplied so Ẇs = 0. There is no inflow
so Ḣin = 0. The energy balance then simplifies to

dU

dt
= −Ḣout [J/s]

We introduce the molar enthalpy from the identity

U = nUm = n(Hm − pVm) [J ]

where pVm = RT (ideal gas). Accordingly, we have

Ḣout = ṅoutHm
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where we have assumed perfect mixing such that at any given time Hm,out = Hm. Inserted
into the energy balance, we now get

d

dt
[n(Hm − RT )] = −ṅoutHm

which upon insertion of the material balance gives

n
dHm

dt
− nRT

dT

dt
= −RTṅout

For an ideal gas, enthalpy depends only on temperature and we have dHm = Cp,mdT , and we
get

dT

dt
= − R

Cp,m − R
T

ṅout

n
= −(γ − 1) T

ṅout

n

where γ = Cp,m/CV,m. We are actually not interested in the time here, but rather in finding
the relationship between temperature T and the amount of gas n left in the tank. We can
eliminate dt by introducing ṅoutdt = −dn from the material balance, and we derive1

dT

T
= (γ − 1)

dn

n
(C.1)

Integration from state 0 to state f gives

ln(Tf/T0) = (γ − 1) ln(nf/n0)

or
Tf

T0
=

„
nf

n0

«γ−1

Since the gas is ideal, we finally find

nf

n0
=

pf

p0

T0

Tf
⇒ Tf

T0
=

„
pf

p0

« γ−1
γ

(C.2)

Together with pf/p0 = 0.1, T0 = 300K and (γ − 1)/γ = 0.286, this gives

Tf = 0.10.286 · 300K = 155.38 K

Note that emptying the tank gives a large drop in temperature from 300 K to 155.38
K. Correspondingly, filling a tank gives a temperature increase as shown in Example 4.2
(page 104), but note that the governing equations for the two cases are different.

Comment: By comparing (C.2) with (B.17) we note that the state change for the process
follows that of an isentropic process. This is a bit surprising because the overall process is
clearly irreversible.

C.2 Logarithmic mean temperature difference

Here, we derive the expression for the logarithmic mean temperature difference for an ideal
countercurrent heat exchanger by (1) formulating differential energy balances for the two
sides of the heat exchanger, (2) combining them and (3) integrating the resulting differential
equation in Th − Tc. Note that we assume constant heat capacities for the two sides.

1 An alternative and simpler derivation of (C.1) is: Start from the energy balance of differential
form dU = −dHout = Hmdn where we note that dn is negative. Introducing dU = d(Umn) =
Umdn + ndUm gives ndUm = (Hm − Um)dn = RTdn which, with dUm = CV,mdT , gives (C.1).
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dQ

out

in

1 2

Figure C.1: Energy balance over small (differential) part of countercurrent heat exchanger

(1) We consider a small (differential) part of the heat exchanger with area dA, see
Figure C.1. The heat transferred is

dQ = (Th − Tc)UdA (C.3)

where Th − Tc is the “local” temperature difference between the hot and cold sides. Next,
differential energy balances for the cold and hot side give

mcCp,c(Tc − (Tc + dTc)) = mcCp,c(−dTc) = dQ (C.4)

mhCp,h((Th + dTh) − Th) = mhCp,hdTh = −dQ (C.5)

where the negative sign for (−dTc) in (C.4) appears because the flow on the cold side is
reverse when we go from point 1 to 2 (see the figure).

(2) Multiplying and then adding the equations, (C.4)·mhCp,h+ (C.5)·mcCp,c, we derive

mhCp,hmcCp,c(dTh − dTc) = (mhCp,h − mcCp,c) (Th − Tc)UdA
| {z }

dQ

⇒ d(Th − Tc)

Th − Tc
=

mhCp,h − mcCp,c

mhCp,hmcCp,c
UdA = −RUdA

where we have introduced

R =
mcCp,c − mhCp,h

mhCp,hmcCp,c

(3) We integrate through the heat exchanger (from 1 to 2) assuming constant heat
capacities

ln
(Th − Tc)2
(Th − Tc)1

= ln
∆T2

∆T1
= −RUA ⇒ ln

∆T1

∆T2
= RUA (C.6)

The energy balance of the whole heat exchanger

mhCp,h(Th,in − Th,out) = mcCp,c(Tc,out − Tc,in) = Q

gives
Q

mhCp,h
= Th,in − Th,out;

Q

mcCp,c
= Tc,out − Tc,in
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Subtracting yields

Q

„
1

mhCp,h
− 1

mcCp,c

«

| {z }

R

= (Th,in − Tc,out)
| {z }

∆T1

− (Th,out − Tc,in)
| {z }

∆T2

(C.7)

which combined with (C.6) gives

Q =
∆T1 − ∆T2

R
=

∆T1 − ∆T2

ln ∆T1
∆T2

UA (C.8)

2

C.3 Batch (Rayleigh) distillation

Figure C.2: Single-stage batch (Rayleigh) distillation

A single-stage batch (or more exactly, semi-batch since the product is continuously
removed) distillation process is shown in figure C.3. This is often called Rayleigh distillation
or open distillation. What happens is simply that we boil a mixture, condense the vapor and
collect the condensate. We get a separation of the components, since the lightest components
are enriched in the vapor (gas) phase.

Assume that the amount of liquid in the apparatus at any time is n [mol], and that we
continuously remove a vapor flow V = Q/∆vapH [mol/s] by supplying heat. Let us consider
a component with mole fraction x in the liquid phase and mole fraction y in the vapor phase.
The total mass balance for the tank gives when we neglect the holdup of gas:

dn

dt
= −V [mol/s] (C.9)

Similarly, the component mass balance becomes

d(xn)

dt
= −yV (C.10)

⇒ n
dx

dt
+ x

dn

dt
= −yV

Inserting dn/dt from (C.9) gives

n
dx

dt
= −V (y − x) (C.11)

For a “light” component, y − x is positive so dx/dt negative, that is, x (mole fraction of the
component in the liquid) decreases over time.
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(C.11) can be a bit difficult to solve since n depends on time. However, we are often not
interested in x as a function of time, but rather in x as a function of n. A common “trick” is
then to eliminate dt by dividing (C.11) by (C.9), which gives

n
dx

dn
= y − x

which can be rearranged to
dn

n
=

dx

y − x
(C.12)

which is known as the Rayleigh equation. The equation can be integrated if we know y as
function of x from the vapor/liquid equilibrium.





APPENDIX D

Summary of the whole book

Here, we summarize the most important concepts and formulas from the book (you may
think there are too many formulas, so having them in one place may be helpful).

The most important basis for process engineering calculations is to choose a control volume
and formulate the relevant balance equations for:

• total mass [kg]
• mole component [mole A]
• energy [J] (if we are interested in temperature changes)
• momentum or mechanical energy (if we are interested in pressure changes)

Some important points that you should know:

1. A stream (and the state of a system) is generally specified by Nc + 2 independent pieces
of information (for example, Nc component masses, temperature and pressure). Nc is the
number of components.

2. For any control volume, we can generally formulate Nc+2 independent balances. They are:
Nc independent mass balances (for example, 1 total mass balance and Nc −1 independent
component balances), 1 energy balance and 1 momentum balance or mechanical energy
balance.

3. The energy balance for a closed system, where we neglect changes in kinetic and potential
energy (the first law of thermodynamics), is

∆U = Q + W (D.1)

where ∆U = Uf − U0 is the change in the system’s internal energy from time t0 to tf .
Here, we use the convention that Q is the supplied heat and W is the supplied work (from
the surroundings to the system).

4. Internal energy U [J/mol] is a state function, that is, a function of composition,
temperature and pressure. For an ideal gas, internal energy is only a function of
temperature.

5. Enthalpy H = U + pV [J/mol] is also a state function, that is, a function of composition,
temperature and pressure. For an ideal gas, enthalpy is only a function of temperature.

6. Heat Q and work W are not state functions, but the sum is uniquely determined by the
initial and final states, see (D.1).

7. The heat capacity is defined as the amount of heat that must be supplied to a closed
system in order to increase its temperature by 1 K in a reversible process (that is, the
same amount of heat is liberated when cooling by 1 K). For heating under constant volume,
we then define

CV ,

„
∂Qrev

∂T

«

V

[J/K] (closed system)
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For a closed system with constant volume, we get from the energy balance (first law;
dU = δQ+δW ) that dU = δQ, which gives the following alternative (equivalent) definition

CV =

„
∂U

∂T

«

V

[J/K]

For heating under constant pressure, we accordingly define

Cp ,

„
∂Qrev

∂T

«

p

[J/K] (closed system)

For a closed system with constant pressure, we get from the energy balance dU = ∂Q−pdV ,
i.e., dH = dU + pdV = ∂Q which gives the following alternative (equivalent) definition

Cp =

„
∂H

∂T

«

p

[J/K]

8. For an ideal gas, the following applies on a molar basis,

Cp = CV + R [J/mol, K]

(This follows because for 1 mol of ideal gas, we have d(pV ) = d(RT ) = RdT ).
9. The work W can be written as W = W∆V + Ws, where W∆V is the expansion (pV ) work

related to volume changes and Ws is useful mechanical work (shaft work). For a closed
system, the work for a small volume change is δW∆V = −pexdV [J], and we get

W∆V = −
Z Vf

V0

pexdV

where pex is the surrounding’s pressure. For a reversible process, we have pex = p.
10. For an open system (continuous process), the following generalized version of the first

law of thermodynamics (energy balance) in (D.1) applies:

Ef − E0 = Ein − Eout + Q + W (D.2)

where W = W∆V + Ws is the supplied work and E = U + EK + EP + · · · is the system’s
total energy. In many cases, it is sufficient to consider changes in internal energy and we
have E = U . Note that in W∆V we also include the flow work that the streams perform
as they enter or exit the system, and we have

W∆V = pinVin − poutVout −
Z Vf

V0

pexdV

Introducing the definition of enthalpy,

Hin = Uin + pinVin

Hout = Uout + poutVout

the energy balance for an open system becomes (for the case where assume E = U)

Uf − U0 = Hin − Hout + Q + Ws −
Z Vf

V0

pexdV (D.3)



SUMMARY OF THE WHOLE BOOK 401

11. For an open system at steady-state (continuous process with no accumulation), we have
U0 = Uf and V0 = Vf , and the energy balance becomes

0 = Hin − Hout + Q + Ws

which is a very important result for process engineering calculations! By writing
∆H = Hout − Hin, it can be written in the form

∆H = Q + Ws (D.4)

where you should note that the “∆” represents the difference between in and out flows
(whereas the “∆” in (D.1) represents the difference between the initial and final times).

12. For an open system (continuous process), the reversible shaft work related to a small
pressure change is

∂W rev
s = V dp [J ]

(Do not confuse it with ∂W rev = −pdV , which is the reversible pV -work for volume
changes.) Integrating from state 1 to state 2 gives

W rev
s =

Z p2

p1

V dp [J ]

or on mass basis (introducing m = ρV where the mass flow m is assumed constant)

W rev
s

m
=

Z p2

p1

dp

ρ
[J/kg]

13. The above equations are used to calculate the compression or expansion work for
continuous processes. For 1 mol of ideal gas, we have V = RT/p and derive

dW rev
s = RT

dp

p
[J/mol] (ideal gas)

14. For isothermal reversible compression (which requires cooling if the pressure increases),
we then get by integration that the shaft work is

W rev
s = RT ln

p2

p1
[J/mol] (ideal gas)

15. For adiabatic reversible compression, we get a temperature increase. If we assume that
γ = Cp/CV is constant, we can derive pV γ = constant, or equivalently (see page 350)

T2

T1
=

„
p2

p1

« γ−1
γ

=

„
p2

p1

«R/Cp,m

(ideal gas with constant Cp)

The corresponding shaft work for the compression is from the energy balance

Ws = Cp(T2 − T1) [J/mole] (ideal gas with constant Cp)

Note that for an adiabatic reversible process, the entropy is constant, and we can also
derive the expression for T2/T1 from this starting point (see page 380).

16. Above we neglected changes in other energy forms, such as kinetic and potential energy,
but if this assumption is incorrect, we can always include them by replacing the internal
energy U in the equations above by the total energy E = U + EP + EK + · · ·. Here the
potential energy for a mass m is

EP = mgz [J ]
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and the kinetic energy is

EK = α · mv2

2

where we define v [m/s] = q[m3/s]

A[m2]
and the factor α corrects for the velocity profile not

being flat (we have α ≈ 1 for the most common case of turbulent flow, while α = 2 for
laminar pipe flow).
With potential and kinetic energy included, the steady state energy balance (D.4) then
becomes:

H2 + mα2
v2
2

2
+ mgz2 = H1 + mα1

v2
1

2
+ mgz1 + Q + Ws [J ] (D.5)

(1 is “inflow” and 2 is “outflow”). This can, for example, be used to calculate the
temperature drop if a gas accelerates to a higher velocity in a choke valve. Thus, we
use the energy balance with kinetic energy included if we want to calculate the effect of
velocity changes on temperature.

17. In a heat exchanger, heat is transferred through a wall from a hot to a cold stream. The
heat transferred is proportional to the area and the temperature difference, that is, we get

Q = UA∆T

where U [W/m2,K] is the thermal conduction number. Here the temperature difference
∆T varies through the heat exchanger, but if we assume constant heat capacity, we can,
for ideal countercurrent flow (and also for cocurrent flow), use the logarithmic mean of
the temperature differences at the two ends (1 and 2),

∆Tlm =
∆T1 − ∆T2

ln ∆T1
∆T2

18. Entropy is a state function, and changes in its value can be obtained by computing
∆S = S2 − S1 =

R 2

1
dS =

R 2

1
δQrev/T for a (imaginary) reversible process between the

same states.
19. For an ideal gas, we have

S(T2, p2) = S(T1, p1) +

Z T2

T1

Cp
dT

T
− R ln

p2

p1
[J/mol K] (ideal gas)

Note that the entropy for an ideal gas is a function of pressure (while the enthalpy for an
ideal gas is independent of pressure).

20. For an ideal mixture, the entropy of mixture (which is always positive) is

∆mixS = −R
X

i

xi ln xi [J/mole K] (ideal mixture)

21. The entropy and the enthalpy for an ideal gas stream is then calculated from the following
formulas

S(T, p) =
X

i

niS
∗
m,i(T0, p0)

| {z }

S∗(T0,p0)

+

Z T0

T

Cp(T )
dT

T
− nR ln

p

p0
− R

X

i

ni lnxi [J/K]

H(T, p) =
X

i

niH
∗
m,i(T0, p0)

| {z }

H∗(T0,p0)

+

Z T0

T

Cp(T )T [J ]
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where Cp[J/K] =
P

i niCp,m(i) is the mixture heat capacity. Usually, the elements at
T0 = 298.15 K and p0 = 1 are chosen as reference, and we have

S∗(T0, p0) =
X

i

ni∆fS
⊖
m(i, 298)

H∗(T0, p0) =
X

i

ni∆fH
⊖
m(i, 298)

The same formulas also apply for an ideal liquid mixture, except that the entropy’s pressure
dependency is omitted (that is, we do not include the term −nR ln p

p0
).

22. The second law of thermodynamics states that the total entropy Stotal = S+Ssur increases
for all natural process. For a (imaginary) reversible process, the increase is zero. S is the
system’s entropy and Ssur is the surrounding’s entropy.

23. At equilibrium, the total entropy Stotal reaches its maximum.
24. At a given p and T , this is equivalent to the system’s Gibbs energy G = H − TS reaching

a minimum, that is, (dG)T,p = 0 (see page 384).
25. For chemical equilibrium at T and p, this can be expressed as ∆rG = 0, and introducing

the “equilibrium constant”

ln K , −∆rG
⊖

RT

the equilibrium condition for the reaction

0 = νAA + νBB + νCC + νDD = 0

(where A and B are reactants, so νA < 0 andνB < 0) can be written in the form

K =
Y

i

aνi
i =

aνC
C aνD

D

a
|νA|
A a

|νB |
B

(given T, p)

Here ai is the activity of component i relative to its standard state used when obtaining
∆rG

⊖ (the change in standard Gibbs energy for the reaction at T ) and K. For an ideal
gas, the activity is ai = pi/p⊖ where pi = yip is the partial pressure and p⊖ = 1 bar.

26. The following expressions can be used to find ∆rG
⊖(T ), and the equilibrium constant

K(T ), from data at 298 K when the heat capacity is assumed constant:

∆rH
⊖(T ) = ∆rH

⊖(298) + ∆rC
⊖
p · (T − 298)

∆rS
⊖(T ) = ∆rS

⊖(298) + ∆rC
⊖
p · ln T

298

∆rG
⊖(T ) = ∆rH

⊖(T ) − T∆rS
⊖(T )

K(T ) = e−
∆rG⊖(T )

RT

(see the example for the ammonia synthesis on page 176).
27. Assume that we have available heat at temperature TH and cooling at temperature TC ,

and extract the difference as work, |W | = |QH | − |QC |. Then for a reversible process

∆Stotal = −|QH |
TH

+
|QC |
TC

= 0

and we derive that the maximum work is given by the Carnot “efficiency” (factor), that
is,

|W |max

|QH | = 1 − TC

TH
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28. In the mechanical energy balance, we concentrate on the mechanical energy terms
in the energy balance. If we have no friction, then mechanical energy can be reversibly
converted from one form to another. For a steady-state process, the mechanical energy
balance can then be written as (1 is here “in” while 2 is “out”).

mα2
v2
2

2
+ mgz2 + m

Z p2

p1

dp

ρ
+ Φ = mα1

v2
1

2
+ mgz1 + Ws [J ; J/s]

where Φ [J] is the friction loss, which is always positive. For the case with no friction, no
shaft work (Ws = 0) and constant density ρ (incompressible flow), this gives the Bernoulli
equation

p + ρgz + ρ
v2

2
= const

The mechanical energy balance is used when we want to calculate pressure changes.



APPENDIX E

Additional problems

E.1 Test exam

EXAM IN PROCESS ENGINEERING
Time: 0900 - 1500

Allowed: Approved calculator. Mathematical formula collection. SI Chemical Data. (No
printed or handwritten texts allowed).

For all problems: State clearly additional assumptions. Explain all answers.

Problem 1

500 g CO2 (s) (dry ice) is left in a 2 liter container at 35 oC.
(a) What is the final pressure in the container, provided it does not explode?
(b) Assume that the container explodes at a pressure of 70 bar. How much work does the

gas perform on the surroundings (air) when the container explodes? The surroundings have
the same temperature as the container, so assume an isothermal process. The surrounding’s
pressure is 1 bar.

Data: Constants for CO2 in van der Waals equation of state: a = 3.640 L2 bar mol−2,
b = 0.04267 L mol−1 (Here L means liter). Molar mass for CO2 is 44 g mol−1.

Problem 2

A steam reformer produces synthesis gas (a mixture of CO, CO2 and H2) from methane by
the following reactions

CH4 + H2O = CO + 3H2; ∆rH
⊖(1148K) = 246

kJ

mole
, ∆rG

⊖(1148K) = −66
kJ

mole

CO + H2O = CO2 + H2; ∆rH
⊖(1148K) = −38

kJ

mole
, ∆rG

⊖(1148K) = 0
kJ

mole
where the last is known as the shift reaction.

(a) Introduce the extent of reaction ξj for the reactions and formulate the mass balances
(you can denote the feed with n0 and the product with n).

(b) The feed to the steam reformer is 10000 mol/s and contains 30 mol% methane and 70
mol% steam (H2O). Compute the composition of the product when it is assumed that 80%
of the methane is converted and 770 mol/s CO2 is produced.

(c) Formulate the energy balance. The feed is at 300 oC and the product at 875 oC. How
much heat must be supplied to the reactor?

(d) What is the pressure in the reactor if it is assumed that the first reaction is in
equilibrium? How far is the shift reaction from equilibrium?
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(e) How does the conversion of methane change if the pressure drops?

Problem 3

Components A and B react in liquid phase according to the reaction

A + B → 2P

The reaction rate is

rA = −k · cA · cB [kmol/m3, s]

where the reaction rate constant k follows Arrhenius equation,

k = Ae−
E

RT

The activation energy is E = 16.67 kJ/mol. At 50 oC, k = 0.166 [m3/kmol s].
The reaction takes place in a continuous stirred tank reactor (CSTR) with constant volume

V = 0.3 m3. The total volumetric feed velocity is 3.6 m3/h and the reactants A and B are
fed in the stoichiometric ratio, cA0 = cB0 = 0.5 kmol/m3. The liquid density is assumed
constant.

(a) What is the reaction rate constant at 60 oC ?
(b) Formulate the mass balance for the system (derive the design equation for the reactor).
(c) What is the conversion if the reactor operates isothermally at 60 oC ?

Problem 4

2 kg/s of a product with 2 weight% potassium (K) and 3 weight% phosphorus (P) should
be produced. In the first step, stream 1 (which contains 2 weight% K and water) is mixed
with stream 2 (which contains 2 weight% P and water), and in the second step, pure water
is removed (stream 3) by evaporation. Find the value of the three streams.

Problem 5

You have available water at 100 oC and 1 bar that should be used to produce 1 kg/s of
superheated steam at 5 bar and 300 oC in a continuous process. The following two alternatives
are considered

1. (i) Evaporation at 1 bar, (ii) adiabatic lossless compression from 1 bar to 5 bar, (iii)
heating of the steam until 300 oC.

2. (i) Pumping from 1 bar to 5 bar, (ii) heating of the liquid to the boiling point (152 oC)
and evaporation at 5 bar, (iii) heating of the steam until 300 oC.

(a) Sketch a flow sheet for the two alternatives.
(b) Find the supplied heat and work in each step for the two alternatives.
(c) Compare the sum of the supplied work and heat for the two alternatives. Why might

one choose, in practice, the alternative with pumping?
Data. You can assume ideal gas and use the following data. The heat capacity for water is

Cp(l) = 4.18 kJ/kg K (liquid) and Cp(g) = 1.87 kJ/kg K (vapor). The heat of vaporization is
2260 kJ/kg at 100 oC/1bar and 2140 kJ/kg at 152 oC/5bar. For the vapor, γ = Cp/CV = 1.33.
The density of water is ρ = 1000 [kg/m3].
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E.2 Solution

EXAM IN PROCESS ENGINEERING
Suggested solution

Solution to Problem 1

Note that CO2 is a gas at 35 oC. The number of moles of gas in the container is

n =
m

M
=

500g

44g/mol
= 11.36 mol

(a) Inserting the numerical values (T1 = 308K, V = 2l = 2 · 10−3m3) in the van der Waals
equation of state gives

p = 192.0 − 117.4 = 74.5 bar

(b) The work performed is

W =

Z V2

V1

pexdV = pex(V2 − V1)

where pex = 1bar = 105N/m2, V1 = 2 · 10−3m3 and V2 is (assuming ideal gas at 1 bar at the
final temperature T2 = 308K)

V2 =
nRT2

pex
= 0.291m3

which gives that the performed work is W = pex(V2 −V1) = 105(0.291− 0.002) = 28900 J (if
we put V2 = 0.291m3 into the van der Waals equation, we get p2 = 0.995 bar, which is close
to 1 bar, so the assumption of ideal gas is OK).

Comment: If the container weighs 10 kg, then this work should be enough to lift the
container about 289 m up into the air (using W = mgh and g = 10m/s2). However, this
assumes that the gas leaves the container at 35 oC (isothermally), which is not realistic. In
practice, the temperature falls in the container; for an ideal gas with adiabatic condition, we

have T2/T1 = (p2/p1)
γ−1

γ . This means that the gas that leaves the cylinder has less volume
and the work for lifting the cylinder into the air is less. However, the total work is the same
as given above, and the remaining “useless” work is liberated afterwards, when the gas that
left the cylinder is heated to 35oC (but this work will only give rise to a “small breeze” which
cannot be used to lift the container).

Solution to Problem 2

CH4 + H2O = CO + 3H2; ξ1 [mol/s]

CO + H2O = CO2 + H2; ξ2 [mol/s]

(a) The component balances give (mol/s):

nCH4 = n0
CH4

− ξ1

nH2O = n0
H2O − ξ1 − ξ2

nCO = n0
CO + ξ1 − ξ2

nCO2 = n0
CO2

+ ξ2

nH2 = n0
H2

+ 3ξ1 + ξ2

(b) Given n0
tot = 10000 mol/s and n0

CH4
= 3000 mol/s and n0

H2O = 7000 mol/s. 80%
of the methane is converted ⇒ ξ1 = 0.8 · 3000 = 2400mol/s. It generates 770 mol/s
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CO2 ⇒ ξ2 = 770 mol/s. We then get [mol/s]:

nCH4 = 3000 − 2400 = 600

nH2O = 7000 − 2400 − 770 = 3830

nCO = 2400 − 770 = 1630

nCO2 = 770

nH2 = 3 · 2400 + 770 = 7970

ntot = 14800

The composition becomes

xCH4 = 0.0405, xH2O = 0.2588, xCO = 0.1101, xCO2 = 0.0520, xH2 = 0.5385

(c) The energy balance for a continuous steady-state process is Hout = Hin +Q+Ws [J/s].
Here, Ws = 0 and we get

Q = Hout − Hin

To compute Hout − Hin, we consider an idealized process that takes the inflow (feed) to the
outflow (product):

1. Heating of inflow from 300 oC to 875 oC (we assume constant heat capacity and take data
for Cp from the table on page 416):

∆1H = n0
CH4

· Cp,CH4 · (875 − 300) + n0
H2O · Cp,H2O · (875 − 300)

= 3000 · 35.31 · 575 + 7000 · 33.58 · 575 = 196.1 · 106 J/s = 196.1 MW

2. Reaction at 875 oC:
∆2H = ξ1 · ∆rH

⊖
1 + ξ2 · ∆rH

⊖
2

= 2400 · 246 · 103 + 770 · (−38 · 103) = 561.1 · 106 J/s = 561.1 MW

We get that the heat that must be supplied is

Q = Hout − Hin = ∆1H + ∆2H = 757.2 MW

(d) Equilibrium constants at 1148 K (875 oC)

K1 = e
−∆rG

⊖
1

RT = 1011

K2 = e
−∆rG

⊖
2

RT = 1

Reaction 1 is in equilibrium (assume ideal gas)

pCO
p0 ·

“
pH2
p0

”3

pCH4
p0 · pH2O

p0

= K1

Here, p0 = 1 bar and the partial pressure is pi = xip, where p is the total pressure. This gives

xCO · x3
H2

xCH4 · xH2O

„
p

p0

«2

= K1

Inserting numerical values, we find that the pressure is

p = 1 bar ·
r

1011

1.64
= 24.8 bar
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For the shift reaction, we have

Q2 =
xCO2 · xH2

xCO · xH2O
= 0.98

which is about the same as the equilibrium constant K2 = 1, i.e., the reaction is in equilibrium.
(e) From Le Chatelier’s principle: There is a net generation of molecules (moles) in reaction

1 and it is favorable to have a low pressure, i.e., the conversion of methane will increase
by reducing the pressure. (However, the reaction is slower at low pressure and this has
the opposite effect). (Comment. We can confirm this result quantitatively by assuming
equilibrium and using the equilibrium constant found above. We find that the conversion of
methane is 84% at 20 bar, 94% at 10 bar and 98% at 5 bar.

Solution to Problem 3

(a) The reaction rate constant k follows the Arrhenius equation

k(T2)

k(T1)
=

e−E/RT2

e−E/RT1

With data T1 = 323K, T2 = 333K, E/R = 2000K−1 and k(T1) = 0.166 m3/kmol s, we get

k(T2) = 0.200m3/kmol s

(b) Mass balance for component A (Out = In + Generated) [kmol A/s]:

nA = nA0 + rAV

Solving with respect to V gives the “design equation” V = nA0−nA
−rA

. Here, nA = V̇ cA where

V̇ [m3/s] is the volumetric stream. Since we have stoichiometric feed, cB = cA, the mass
balance gives

V̇ cA = V̇ cA0 − kc2
AV

(c) Inserting numerical values (V̇ = 0.001 m3/s, V = 0.3 m3, cA0 = 0.5 kmol/m3, k = 0.200
m3/kmol s) gives a second-order equation

0.06c2
A + 0.001cA − 0.0005 = 0

which gives cA = 0.083 kmol/m3, and the conversion of A is

XA =
nA0 − nA

nA0
=

cA0 − cA

cA0
=

0.5 − 0.083

0.5
= 0.834 (83.4%)

Solution to Problem 4

First, we sketch a simple flow sheet (not shown). Mass balances for the overall process with
two inflows (streams 1 and 2) and two outflows (stream 3 and product) [kg/s] give

Total : m1 + m2 = m3 + m (E.1)

Potassium : 0.02m1 = 0.02m (E.2)

Phosphorus : 0.02m2 = 0.03m (E.3)

Solution:

(E.2) gives : m1 = m = 2kg/s

(E.3) gives : m2 =
0.03

0.02
m = 3kg/s

(E.1) gives : m3 = m1 + m2 − m = 3kg/s
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Solution to Problem 5

Vapor Vapor Vapor

VaporVapor

WaterWater

Water

Figure E.1: Alternative processes for producing superheated vapor (exercise 5)

(a) The alternative flow sheets are shown in Figure E.1.

(b) We assume constant heat capacities, Cp(l) = 4.18 kJ/kg K and Cp(g) = 1.87 kJ/kg K.
The mass flow is m = 1 kg/s.

Alternative 1.

(i) Evaporation at 1 bar

Q1 = ∆vapH(100oC) · m = 2260 kJ/s

(ii) Adiabatic compression from 1 to 5 bar

T2

T1
=

„
p2

p1

« γ−1
γ

= 50.248 = 1.49

which gives T2 = 1.49T1 = 55K = 283 oC. Supplied work

Ws2 = Cp(g)(T2 − T1) · m = 1.87 · 183 · 1 = 342 kJ/s

(iii) Heat up the gas
Q3 = 1.87 · (300 − 283) · 1 = 32 kJ/s

Sum of the energy supplied in the three steps:

Q1 + Ws2 + Q3 = 2260 + 342 + 32 = 2634 kJ/s

Alternative 2.

(i) Pumping from 1 to 5 bar. Pump work

Ws1 = V̇ · ∆p =
1 kg/s

1000 kg/m3
· (5 − 1)105 N/m2 = 400 J/s = 0.4 kJ/s

(this gives a temperature rise of about 0.1 oC, which can be neglected).
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(ii) Heating of water from 100 oC to 152 oC and evaporation at 152 oC (5bar):

Q2 = 4.18 · 52 · 1 + 2140 · 1 = 2357 kJ/s

(iii) Heating of vapor from 152 oC to 300 oC

Q3 = 1.87 · 148 · 1 = 277 kJ/s

Sum of the energy supplied in the three steps:

Ws1 + Q2 + Q3 = 0.4 + 2357 + 277 = 2634 kJ/s

(c) The total energy supplied is the same for the two alternatives (2634 kJ/s) because
enthalpy is a state function and the total energy balance in both cases is

Hout − Hin = Q + W

where the in- and out-states are the same for both alternatives. Nevertheless,
alternative 2 (with pumping) is chosen because the supplied mechanical work Ws is
much smaller (0.4 kW in pump work versus 342 kW in compression work). However,
note that we, for the pump alternative, must supply heat for evaporation at a higher
temperature (152 oC instead of 100 oC).

E.3 Some more exercises

Mass balances

Exercise E.1 ∗ A feed gas stream consists of methanol and an inert gas. Methanol is to be
removed from this stream by dissolving it into water in an absorption column (see Figure 1.4).
The outgoing gas stream is free of methanol and the inert gas is not soluble in water. Data.
The gas feed is 100 mol/s with 7 mol% methanol. The water feed is 500 mol/s.

(a) Formulate three independent mass balances.
(b) State any assumptions made and find the amount and composition of the two product

streams.

Exercise E.2 3 kg/s of a solution with 20 weight% ethanol at temperature 50 oC should be
produced. You have available three streams: Pure ethanol at 20 oC, pure water at 20 oC and
pure water at 100 oC.

(a) Formulate the mass and energy balances.
(b) How much is needed of each stream? (Data: heat capacity for water is cp = 4.2 kJ/kg,K

and for ethanol cp = 2.6 kJ/kg,K. Heat of mixing can be neglected).

Energy balances and compression

Exercise E.3 (i) Find the changes in U, V, H,S and B when we take 1 mol of ideal gas
with Cp=30 J/K,mol from 400K/ 10 bar (state 1) to 300K/ 4 bar (state 2). (ii) For an open
system, suggest a continuous steady-state process that takes us from state 1 (inflow) to state
2 (outflow) (there may be several possible processes). What is Q, Ws and Q + Ws (per mol
in) for your suggested process? (iii) For a closed system, suggest a process that takes us from
state 1 (at start) to state 2 (at the end) (there may be several possible processes). What is Q,
W and Q+W for your suggested process? (iv) Is it possible to have a process without cooling
(i.e., with Q = 0)?



412 CHEMICAL AND ENERGY PROCESS ENGINEERING

Exercise E.4 A gas stream of 30800 kmol/h with temperature 76 oC is to be compressed
from 99 to 104 bar. The heat capacity can be assumed constant, cp=31 J/mol,K.

(a) What is the work and the temperature after a lossless (reversible) adiabatic
compression?

(b) What is the real work and the temperature with an adiabatic efficiency of 0.74?

Some exercises with chemical reaction

Exercise E.5 Formaldehyde (HCHO) is produced from methanol (CH3OH) by combustion
over a silver catalyst in a gas phase reactor,

CH3OH+
1

2
O2 = HCHO+H2O; ∆rH

⊖(973K) = −143
kJ

mole
, ∆rG

⊖(973K) = −218
kJ

mole

(a) Introduce the extent of reaction ξ for the reaction and formulate the mass balance
equations (you can denote the feed with n0 and the product with n).

(b) Find the product composition when the feed consists of 27 mol% methanol, 36% water,
7% oxygen and 30% nitrogen and we assume complete conversion of the limiting reactant.

(c) Formulate the energy balance. What is the feed temperature if the reactor operates
adiabatically and the product temperature is 700 oC?

(d) In practice, there is not complete conversion, but the reaction is in equilibrium at 700
oC and 1.5 bar. Find the fraction of oxygen in the product.

(e) What is the heat of reaction and equilibrium constant at 600 oC?

Exercise E.6 ∗ In a continuous methanol reactor that operates at 100 bar, the following gas
phase reactions take place

CO + 2H2 = CH3OH

CO2 + H2 = CO + H2O

(the last is the “shift reaction”).
(a) Introduce the extent of reaction ξj for the reactions and formulate the mass balances

(you can denote the feed with n0 and the product with n).
(b) The feed is 5000 mol/s and consists of 7.0%CO, 2.0%CO2 , 75.0%H2 and 16.0%CH4.

Find the product composition when 2/3 of the supplied CO and CO2 reacts to methanol and
this generates 40 mol/s of water.

(c) Formulate the energy balance. The feed is at 150 oC and the product at 270 oC. How
much cooling is needed in the reactor? (Use the component data given on page 416.)

(d) What is the product composition if 300 mol/s methanol is produced and the shift reaction
is in equilibrium at 270 oC? Assume that the equilibrium constant for the shift reaction is
K = 0.016.

(e) Find the equilibrium constant for the first reaction at 270 oC and check how close it is
from the equilibrium found in (d).

Exercise E.7 ∗ Combustion of ammonia to NO. Nitric acid is commercially produced
in a process where ammonia is burned with air (with platinum as catalyst) to generate
nitric gases that are cooled and absorbed in water. We consider the first part of the process
(see Figure E.2), where we assume that ammonia burns completely following the gas phase
reaction:

NH3 + 1.25O2 = NO + 1.5H2O

Data: Assume that the air contains 21% oxygen. The standard heat of reaction is
∆rH

⊖(298K) = −227 kJ/mol and ∆rH
⊖(1213K) = −223 kJ/mol. Assume constant mean

heat capacities:
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EVAPORATOR

PREHEATER

Air (g)

REACTOR

COOLER

Ratio NH3/Air = ?

Figure E.2: First step in the production of nitric acid

Cp(NH3)(g) = 37 J/K mol (up to 230 oC); = 54 J/K mol (230 oC to 940 oC)
Cp(luft)(g) = 29 J/K mol (up to 230 oC); = 32 J/K mol (230 oC to 940 oC)
(a) The reactor feed is a gas mixture of air and ammonia. Introduce the extent of reaction

of the reaction and formulate the reactor mass balances.
(b) Find the composition of the reactor feed and reactor product when we assume an

adiabatic reactor.
(c) Find the efficiency of the compressor from the data given in the figure.
(d) We have neglected the formation of NO2. To see that this is a reasonable assumption,

find the ratio between NO2 and NO, which could be theoretically obtained if the reaction

NO + 0.5O2 = NO2

was in equilibrium at 940 oC and 2.5 bar (use data from the appendix to find the equilibrium
constant).

Exercise E.8 Condensation of nitric acid. We consider here the second step in the
process for production of nitric acid; see Figure E.3. A gas stream (stream 1) at 200 oC has
the composition (mole percent): 9% NO, 7% O2, 70% N2 and 14% H2O. The stream is cooled
to 30 oC such that the resulting condensate (stream 2) is 40% nitric acid (i.e., 40 weight%
HNO3 and the rest H2O). The pressure in the process is 1 atm.

Data: The reaction equation is

2NO(g) +
3

2
O2(g) + H2O(g) → 2HNO3(l)

The partial pressure of water (in stream 3) in equilibrium with nitric acid (stream 2) is given
in Figure E.3 (note that 1 atm = 760 mm Hg). The partial pressure of HNO3 can be neglected.
Heat of mixing: see page 417 (remaining data can be taken e.g. from SI Chemical Data).

(a) Find the amount and composition of the three streams with 100 mol in stream 1 as basis.
Find the composition of the gas (stream 3) together with the conversion of NO to HNO3.
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Figure E.3: (a) Process for condensation of nitric acid. (b) Partial pressure of water in nitric
acid solution as function of temperature

(b) Find the standard enthalpy of reaction. Is the reaction exothermic?
(c) How can the process be changed to increase the conversion? (Some suggestions: change

pressure, change the temperature, recycle, add air, add water.)
(d) Estimate the cooling needed when the feed stream is 100 mol/s (assume constant heat

capacity for ideal gas and estimate the heat of mixing).



APPENDIX F

Data

Data are needed for all practical calculations. Some particularly useful numbers are given
on page 15, and thermodynamic data for some selected gases are given on the next page
(page 416). On page 186, Henry’s constant for the solubility of some gases in water is given,
and Antoine parameters to compute the vapor pressure of selected components are given on
page 190. On page 417, some data for heat of mixing for mixture of acids, bases and salts in
water are given. For additional data, see under data in the Index.

Furthermore, the following thermodynamic diagrams are included:

• pH diagram for methane (page 418)
• pH diagram for ammonia (page 419)
• HS diagram for water (steam) (page 420)
• cp for liquids as function of temperature (page 421)
• cp for gases as function of temperature (page 422)

On the book’s home page, you find electronic versions of these thermodynamic diagrams
for methane, ammonia and water, and in addition diagrams for:

• air, • CO2, • ethane, • ethylene,
• propane, • propylene, • n-butane, • Refrigerant R134a

Here are some other sources for physical and thermodynamic data:

• G. Aylward and T. Findlay, SI Chemical Data, Wiley, 6th Edition, 2007. This small
handbook is used as a reference in many chemistry classes. It is a bit inaccurate since
decimals are not included for most thermodynamic quantities. For example, the heat of
formation for CO2 (g) is given as −394 kJ/mol, rather than −394.36 kJ/mol (as given on
page 416). Also, the price is a little stiff when compared to its modest size and contents.

• Poling, Prausnitz and O’Connell, The Properties of Gases and Liquids, 5th Ed., McGraw-
Hill, 2001. This is an excellent book. It contains component data for 468 components,
including data for energy of formation and heat capacities as function of temperature for
ideal gas. The book also contains methods for estimating data for other components.

• CRC Handbook of Chemistry and Physics. It contains a lot of data, but perhaps not so
much for a process engineer.

• Perry’s Chemical Engineers’ Handbook. It contains a lot of data of interest for process
calculations, but it is mainly a reference work for equipment calculations.

• Built-in data based in commercial simulation programs such as Aspentech, Hysys,
Chemcad, Pro-II, etc.

• Many other books and journals, for example Journal of Chemical Engineering Data.
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Component data for some gases

M Tb ∆vapH Tc pc C⊖
p ∆fH

⊖ ∆fG
⊖

[g/mol] [K] [kJ/mol] [K] [bar] [J/K mol] [kJ/mol] [kJ/mol]

CH4(g) 16.04 111.7 8.17 190.6 46.0 35.31 −74.81 −50.72
C2H4(g) 28.05 169.4 13.53 282.3 50.4 43.56 +52.26 +68.15
C2H6(g) 30.07 184.6 14.70 305.5 48.7 52.63 −84.68 −32.82
C3H8(g) 44.10 231.0 19.04 369.8 42.5 73.50 −103.85 −23.49
C6H6(g) 78.12 353.2 30.72 562.0 49.0 136.1 +49.0 +124.3
CO(g) 28.01 81.7 6.04 132.9 34.5 29.14 −110.53 −137.17
CO2(g) 44.01 ∗ ∗ 304.1 73.7 37.11 −393.51 −394.36

HCHO(g) 30.03 253.8 24.48 408 66 35.40 −108.57 −102.53
CH3OH(g) 32.04 337.7 35.21 512.6 81.0 43.89 −200.66 −161.96
C2H5OH(g) 46.07 35.56 351.8 513.9 61.5 65.44 −277.69 −174.78

H2(g) 2.016 20.3 0.89 33.2 13.0 28.82 0 0
H2O(g) 18.015 373.15 40.68 647.1 220.6 33.58 −241.82 −228.57
O2(g) 32.00 90.1 6.82 154.5 50.4 29.36 0 0
O3(g) 48.00 161.8 14.20 261.0 55.7 39.20 +142.7 +163.2
Ar(g) 39.95 87.3 6.43 150.9 49.0 20.79 0 0
Cl2(g) 70.91 239.1 20.41 417.0 77.0 33.91 0 0
HCl(g) 36.46 188.2 16.15 324.7 83.1 29.12 −92.31 −95.30
He(g) 4.003 4.30 0.08 5.19 2.27 20.79 0 0
N2(g) 28.01 77.4 5.58 126.2 33.9 29.13 0 0
NO(g) 30.01 121.4 13.78 180.0 64.8 29.84 +90.25 +86.55
NO2(g) 46.01 294.3 16.55 431.4 101 37.20 +33.18 +51.31
NH3(g) 17.03 239.8 23.35 405.4 113.5 35.06 −46.11 −16.41
H2S(g) 34.08 212.8 18.68 373.4 89.6 34.23 −20.63 −33.56
SO2(g) 64.06 263.1 24.94 430.8 78.8 39.87 −296.83 −300.19

∗ CO2 has no normal boiling point because it does not exist as liquid for pressures below 5.2 bar

(triple point pressure). At 1 atm, CO2 sublimes (goes directly from solid to vapor) at 195 K.

• The table gives the molar mass (M), normal boiling temperature at 1 atm (Tb), heat of
vaporization (∆vapH) at Tb, critical temperature (Tc), critical pressure (pc), ideal gas heat
capacity C⊖

p (298), standard enthalpy (heat) of formation ∆fH
⊖(298) and standard Gibbs

energy of formation ∆fG
⊖(298). The latter three are for the standard state as ideal gas at

p⊖ = 1 bar and 298.15 K.
• Since the data in this table are for gases, ∆fH

⊖ and ∆fG
⊖ are the enthalpy and Gibbs

energy of reaction for forming the component as ideal gas from the elements in their
standard state (everything at 1 bar and 298.15 K). The standard states for the elements
in the table are: H2(g), N2(g), O2(g), C(s, graphite) and S(s, rhombic). For example, for
methanol, the formation reaction is C(s, graphite) + 2H2(g) + 0.5O2(g) = CH3OH(g).
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Data for heat of mixing1

We define for a mixture at given T and p:

• H∗
i [J/mol] – enthalpy of pure component i.

• H̄i = ∂H/∂ni [J/mol] – partial enthalpy for component i in the mixture, where H is the
enthalpy of mixing.

• H̄i − H∗
i [J/mol] – partial heat of mixing for component i.

• Hm =
P

i xiH̄i [J/mol] – molar enthalpy for the mixture.
• ∆mixH = H − H∗ =

P

i xi(H̄i − H∗
i ) [J/mol] – heat of mixing.

We have mostly omitted subscript m that is used to indicate molar quantities.

Partial heat of mixing (solution heat) for producing an infinite diluted solution at 20 oC:

Component Partial heat of mixing H̄i − H∗
i

i [kJ/mol i]

H2SO4 −96
HBr,HI −80

HCl −75
HNO3 −31
KOH −56
NaOH −43
NH3 −35

CaCl2 −75
K2CO3, Na2CO3 −25

The above table gives heat of mixing when 1 mol of pure component (undiluted acid or base
or pure salt) is mixed with a large amount (n mol) of water, where “large” is roughly n > 10
mol. For smaller amounts of water (more concentrated solutions), the following correlations
can be used (heat of mixing for 1 mol acid and n mol water):

HCl : (−72.6 + 50.1/n)
kJ

mol HCl
(1 < n < 10)

H2SO4 :

„
−74.7

1 + 1.80/n

«
kJ

mol H2SO4
(0 < n < 10)

HNO3 :

„
−37.5

1 + 1.74/n

«
kJ

mol HNO3
(0 < n < 10)

1 Data from S.D. Beskow, Technisch-Chemische Berechnungen, Deutscher Verlag für Grundstoffind-
ustrie, 1962.
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Figure F.1: Pressure enthalpy diagram for methane

From: Aksel Lydersen, Kjemiteknikk, Tapir, Trondheim, 1972
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Figure F.2: Pressure enthalpy diagram for ammonia

From: Aksel Lydersen, Kjemiteknikk, Tapir, Trondheim, 1972
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Figure F.3: Enthalpy-entropy diagram for water (steam)

From: Aksel Lydersen, Kjemiteknikk, Tapir, Trondheim, 1972
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X with 4.18

to get in

kJ/kg K

Liquids

     Cp

Figure F.4: Heat capacity for liquids as function of temperature

From: Perry’s Chemical Engineers’ Handbook
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x with 4.18

to get in

kJ/kg K

Gases

   Cp

Figure F.5: Heat capacity for gases as function of temperature

From: Perry’s Chemical Engineers’ Handbook



APPENDIX G

Solutions to starred exercises

Detailed solutions are available at the book’s home page. Solutions to non-starred exercises
are only available to instructors.

1.1, page 9. 44.70 m/s
1.3, page 13. 12.7 kW
1.6, page 26. C = CV · 63.09e − 6 ·

√
14.5e − 2 = CV /41625

1.7, page 31. 27.8 $/GJ
1.8, page 31. 27.8 $/GJ (assuming the lower heating value is 45 MJ/kg)
1.9, page 32. 0.46 $
1.10, page 32. 0.372 kg of oil (with water as a gas product)
1.11, page 32. 0.63 $/l = 2.38 $/gal
1.12, page 32. 0.71 $/GJ (Saudi), 7.63 $/GJ (Europe), 13.25 $/GJ (USA)
1.13, page 32. 0.32 $/Sm3

1.14, page 32. 1277 kg/s. 70.6 GW.
1.15, page 32. (a) 10.9 billion $/year. (b) 19.8 billion $/year.
1.16, page 32. 1.18 Sm3.
1.17, page 32. 1.2 E12 l/y, 26636 kg/s, 1.2 E12 J/s = 1.2 TW.
1.18, page 32. 504 EJ/y, 1.4 · 1014 kWh/y, 16 TW, 2.7 kW/person
1.19, page 33. 2.3 years.
1.20, page 33. 484 000 km2 (0.3% of the earth’s area).
1.21, page 33. 0.78 $/kWh
1.22, page 34. 44 W, 92 W, 218 W
1.23, page 34. 370g.
1.24, page 34. (a) 3600 W. (b) 305W.
1.25, page 34. 2000 W.
1.26, page 34. 111 W
1.27, page 34. 1.7 W
1.28, page 35. 7.9 W.
1.29, page 35. (a) 27oC. (b) 12oC. (c) −13oC.
1.30, page 36. 3.54 kg.
1.31, page 36. 339 W to 678 W.
1.32, page 36. 12 liters.
2.1, page 46. (ii) 20.3 mmol/l
2.3, page 52. 1183 kmol/h.
2.4, page 52. (a) 0.227 g S/l. (b) 0.077 g S/l. (c) Better with several small rinsings.
2.5, page 52. (a) 3. (b) 1.3527 kg/s
2.9, page 55. (a) 94.99 wt-% ethanol, (b) 40.25 g water and 763.98 g ethanol, (c) 42.39
weight% and 48.20 volume-% ethanol, (d) 0.9301 g/l, (e) 1.938 l.
2.10, page 56. See equations in Example 2.16 (page 73).
2.11, page 61. (a) 22.06 mol/s and 529.5 mol/s. (b) 8.59 mol/s and 850.3 mol/s. (c) 10.2
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mol/s and 244.6 mol/s.
2.12, page 61. (a) 977.84 mol/s (b)255.7 mol/s
2.13, page 62. 0.0521
2.16, page 64. (a) 0.44 kg/s, (b) 50%, 0.418 kg/s
2.17, page 71. RW = 0.41.
3.1, page 84. (a) methanol, 0.95, (b) 0.2 mol, (c), 0.7895, (d) 0.75/0.95 = 0.7895
3.2, page 85. (b) 2.6%C3H8, 48.7%C3H6, 48.7%H2. (c) 9.0065 (d)9.54%.
3.4, page 91. See detailed solution available on book’s home page.
3.5, page 91. (a) Nr = 1, (c) Nr = 5. See detailed solution.
3.6, page 94. 11.5% CO, 4.8% CO2, 3.9% CH4, 52.7% H2, 0.1% N2, 27.1% H2O.
4.2, page 111. (a) 0.841, 0.093, 1.566 [kg/s]. (b) 0.670, -0.145, 1.965 [kg/s]
4.4, page 111. 4.2, 0.3, 3.5, 1 [kg/s].
4.5, page 112. 5.6, 0.4, 5.0, 1 [kg/s], that is, 0.1 kg/s oil is lost.
4.7, page 113. (b) 72 K. (c) 326 kW.
4.9, page 118. (a) 105 oC (b)2.25 MW.
5.1, page 138. (a) 5.1 kg/s. (b) UA = 69910 W/K. (c) 304 oC and 7.22 kg/s
5.2, page 139. (a) 3.19 kg/s cooling water. (b) Countercurrent flow: ∆Tlm = 13.1K and
A = 28 m2. (c) Cocurrent flow: ∆Tlm = 9.9K and A = 37 m2. (d) Two tube passes: We read
F ≈ 0.88 and find A = 28 m2/0.88 = 32m2.
6.1, page 149. This is mostly an exercise in integration; note that

R
xndx = 1

n+1
xn+1.

6.2, page 153. 547 kW
6.4, page 153. (a) 41.8 kW, (b) 25.3 kW
6.5, page 158. 3.79 MW. 75.2%.
7.3, page 179. Assuming constant ∆rC

⊖
p gives K(940oC) = 0.033 and the ratio is 0.012.

7.5, page 182. See detailed solution.
7.6, page 182. 2.5 K, which is surprisingly large!
7.8, page 195. (a) 1.1585 bar, (b) 0.0018 bar
7.9, page 195. (a) 294.7 K, (b) 415.0K
7.11, page 195. 34.9 mol/s
7.13, page 196. (a) x1 = 0.5525, (b) Bubble point, T = 373.3408K, y1 = 0.4473, (c) Dew
point. T = 346.7518K, x1 = 0.1835.
8.1, page 202. (a) No, (b) Yes, zero
8.4, page 222. (a) 2.97 MJ, (b) -3.3 MJ
10.3, page 270. (a) 0.643. (b) 0.835.
10.5, page 270. (a) 0.0020 mol/l s. (b) nA = nA0 − 2kc2

AV . (c) 74.1 m3. (d) Yes (reaction
order positive).
10.6, page 270. (a) k = 0.0713 min−1 gives t = 9.72 min. (b) 51%.
11.2, page 299. τ = mcpL/wcpV

A.1, page 328. (1/18.015 e-3) mol = 55.5 mol
A.2, page 331. (a) Tb[K] = 46.13+3816.44/(11.6703+1.25·10−4h[m]). (b) dTb/dh = −0.0035
K/m. (c) 344.8 K (71.7 oC).
A.3, page 341. (b) z = 0.84, (c) z = 0.894, (d) z = 0.864.
A.5, page 359. (a) 43.7 kJ/mol, (b) 1344 K
A.6, page 364. (a)−379.2 kJ/mol. (b)−387 kJ/mol.
E.1, page 411. 507 mol/s liquid out
E.6, page 412. (b) 90 mol/s CO, (c) 10.5 MW, (e) 86.5 mol/s CO
E.7, page 412. (b) Feed: 11% NH3 and 89% air. Product: 11% NO, 16% H2O, 5% O2, 68%
N2. (c) 67.9%. (d) K = 0.033; NO2/NO = 0.012.
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A (area), 132
a (activity), 386
a (annum) (1 a = 1 y), 8
Å (Ångstrøm), 9
absolute enthalpy, 105, 364
absolute pressure, 11
absolute temperature (T ), 10
absorber, 21
absorption, 21
acceleration of gravity (g), 2
acentric factor, 340
acre-foot (Sigurd’s favorite unit ,), 9
acrylonitrile, 81, 87
activation energy (E), 256, 259
activity (a), 386
activity coefficient (γ), 188, 387
adiabatic, 19
adiabatic expansion, 350

derivation pV γ , 350
irreversible (isenthalpic), 171
reversible (isentropic), 170

adiabatic process, 170
adiabatic temperature change, 112, 120
air, data, 16
airplane wing, 241
algebraic equation, 316
ammonia, 417

chemical equilibrium, 176
combustion, 412
compression, 159
data, 416
flash, 194
Henry’s law, 187
kinetics, 258, 259
refrigerant, 208
synthesis gas, 94
thermodynamic diagram, 419

ammonia plant
heat recovery, 229

analysis, 75
Antoine parameters (data), 190
Antoine’s equation, 181
API gravity, 13
Arrhenius equation, 256, 276
atm (1 atm = 1.01325 bar), 11, 16

atmospheric pressure, 11
atom matrix (A), 89, 329
atomic balance, 41, 86, 329
atomic mass (weight), 327
auditorium

balance, 40
entropy, 371

autocatalysis, 260
automatic control, 322
availability, see exergy
Avogadro’s law, 334
Avogadro’s number (NA), 327
axiom, 347
azeotrope, 183

B (exergy), 213
balance

degrees of freedom, 66
dynamic, 273–325
no accumulation, 43
over time period, 42
per unit of time, 42
procedure for, 67
solvability, 66

quick analysis, 70
steady-state process, 43
with reaction, 77

balance equation, 66
dynamic, 274
general form, 42

balancing chemical reactions, 328
bank account, 40
bar, 11
barometric formula, 331

temperature change, 352
basis, 66, 67

smart, 48
batch distillation, 396
batch process, 20, 271

energy balance, 102
recycle, 64
typical batch size, 28

batch reactor, 78, 262

1 Page numbers in italic refer to definitions.
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bathtub, dynamics, 296
battery, 213
bbl (barrel), 9
BCFD (billion cubic feet per day), 15
Bernoulli’s equation, 240–251
biology, 266
bioproteins, 86
blending

linear mixing rule, 50
blower, 24
boiler, 21
boiling point (Tb), 16, 378

elevation, 184
pressure variation, 331

boundary, 19
Boyle’s law, 334
BPD (barrels per day), 15
Btu (British thermal unit, 12
bubble point

df, 190
butane

i-butane (refrigerant R600a), 209
n-butane, thermodynamic diagram, 415

bypass, 300

oC (degrees Celsius), 10
Cv (valve coefficient), 26
Cp, CV , see heat capacity
calcium chloride, heat of mixing, 113
calorie, 16
calorie (cal), 11
calorimetry, 347
canonical variable, 332, 389
carbon, 327
carbon dioxide, see CO2

Carnot cycle, 373
Carnot efficiency, see Carnot factor
Carnot factor, 200, 211, 375

log mean, 201, 233
steam turbine process, 233

catalysis, 259
car, 259

Celsius (oC), 10
centrifuge, 26
Charles’ law, 334
chemical bonding energy, 345
chemical equilibrium, 174, 179, 385

ammonia synthesis, 176
methanol reactor, 92
reaction kinetics, 258

chemical potential (µ), 385, 390
VLE, 180, 182

chemical reaction, 77
balancing, 328
energy balance, 118

dynamic, 281

choke
flow measurement, 242
valve, 26

choke valve, 114
Clapeyron, 180, 343
Clausius-Clapeyron, 181
closed system, 346, 377

energy balance, 101
CO

combustion, 389
CO2

combustion, 389
contents in air, 16
data, 416
refrigerant, 208, 209
solubility in water, 186
sublimation, 416
thermodynamic diagram, 415

coal, 17
coalescer, 21
cocurrent flow, 133
coefficient of performance (COP), 204
cogeneration, see combined cycle
cold reservoir, 199
colligative property, 185
column

section, 21
combined cycle, 203, 226
combustion, 119, 226, 229, 412

ammonia, 412
engine, 203
equlibrium between CO and CO2, 389

combustion gas turbine, 203
component balance, 48

concentration
dynamic, 277

with reaction, 78
dynamic, 276

compressibility factor (z), 337
generalized diagram, 336

compressible flow in pipe, 247
compression, 144

intermediate cooling, 151, 152
isentropic, 157
isothermal, 152, 156
real gas, 155, 156
work, 144

compression ratio, 153
compressor, 22, 70
condensation, 333, 358
condenser, 22, 23
conservation law, 40
conservation principle

energy, 40
mass, 40
momentum, 40
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conserved quantity, 40
balance equation, 43

constitutive equation, 20
continuity equation, 126, 240
continuous process, 28

reactor, 79
steady-state, 43
typical production rates, 28

continuous stirred tank
concentration response, 289
temperature response, 290

with heat exchange, 291
continuous stirred tank reactor (CSTR), see

reactor
control, 322
control valve, 26
control volume, 19, 67, 76
conversion (X), 79, 80

total, 85
conversion factors, 8–15

exercises, 31
cooking plate, dynamics, 293
cooling process

minimum work, 219
countercurrent flow, 133
countercurrent flow principle, 47, 130
critical compressibility (zc), 337
critical data (Tc, pc), 416
critical point, 180, 333, 337, 339
critical pressure (pc), 180, 333, 337, 339, 342
critical pressure ratio, 128
critical temperature (Tc), 180, 186, 333, 337,

339, 342
critical volume (Vc), 339
crude oil

classification, 13
density (API gravity), 13
heating value, 12, 363
price, 31

crystallization, 62
crystallizer, 22
CSTR, see reactor
cubic equation of state, 338
cyclic process, 198, 373

Carnot cycle, 373
Diesel cycle, 203
Otto cycle, 203
Rankine cycle, 203
Rankine refrigeration cycle, 206

cyclone, 22

d (day), 8
DAE system, 279, 283, 316
Dalton’s law, 335
data, 415

air, 16, 296

ammonia, pH-diagram, 419
Antoine parameters, 190
data for some gases, 416
heat capacity

gases, 422
liquids, 421

heat of mixing, 417
Henry’s constant, 186
hydrocarbons, 17
methane, pH-diagram, 418
water, 16, 296

HS-diagram, 420
decanter, 22
degrees of freedom, 66

equation counting, 68
quick analysis, 69, 70

delay (θ), 286
demister, 22
density (ρ), 5, 13
deposition, 358
design, 75

heat exchanger, 131
versus simulation, 139

deviation variables, 289
dew point, 191
dialysis, 44
Diesel cycle, 203
differential equation, 273
differential-algebraic equation (DAE) set,

316
distillation, 22, 223

batch, 396
continuous, dynamics, 313
entropy, 168
side stream, 51

dot notation (Ẋ), 5, 274
dry basis, 16, 362
dryer, 23
dynamic flash, 316
dynamic model, 273
dynamic pressure, 240
dynamics, 273–325

distillation, 313
gas tank, 393
process, 21
simulation, 303–325

Euler integration, 303

E, see energy
E (exa), 2
economy, 29
efficiency (η), 22, 26, 209

Carnot, 200, 211
compression, 144
energy, 210
exergy, 211, 215
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heat exchanger, 140
solar cell, 33
thermal, 210
thermodynamic, 209
turbine, 145

Einstein, 41, 97
electric energy, 345
electrochemical work, 98, 344
elementary kinetics, 256
elementary reaction, 257
end time (tf ), 76
endothermic, 360
energy, 344

chemical, 345
conversion factor, 11
electric, 345
fun exercises, 31
global consumption, 37
internal (U), see internal energy
kinetic, 344
latent, 345
potential, 345
pressure correction, 365
rotation, 345
sensitive, 365
surface, 345
thermal, 345, 365
total, 345

energy balance, 95–128
dynamic, 277–283
enthalpy, 100
enthalpy balance, 102
gas tank, 393
general form, 100
isenthalpic, 114
mechanical, 237–251
reaction, 118
reading rule, 102
steady state, 102, 126
with kinetic and potential energy, 125

energy efficiency, 210
energy forms, 96
engine

gasoline, 203
enthalpy (H), 99, 105, 348, 354, 357

absolute, 105, 364
constant pressure, 348
continuous process, 99
dynamic energy balance, 278
heat of reaction, 360
ideal mixture, 355
of reaction, 360
pressure dependency, 356

Joule’s experiment, 353
pressure relief valve, 172
reference state, 364, 365

subprocesses, 106, 122
temperature independency, 355
thermochemistry, 357
vaporization, 358

enthalpy of formation (∆fH
⊖), 219, 360,

364, 416
data, 416
from heat of combustion, 363

enthalpy-entropy (HS) diagram, 156
water, 420

entropy (S), 156, 161–179, 371
calculation of, 163, 173, 377
disorder, 369
friction, 249
heat exchanger, 167
ideal mixture, 165, 381
maximum (equilibrium), 384
phase transition, 378
state function, 375

enzyme, 260
equation of state, 20, 334–343

entropy, 167
ideal gas, 334
Peng-Robinson (PR), 340
Soave-Redlich-Kwong (SRK), 340
van der Waals, 337

equilibrium, 173, 179, 383
chemical, 174, 385
Gibbs energy, 384
temperature, 384
vapor/liquid, 179

equilibrium constant (K), 386
temperature dependency, 388

equivalent work, 215
ethane, 83, 341

data, 416
thermodynamic diagram, 415

ethylene
thermodynamic diagram, 415

Euler integration, 304
algorithm, 304
MATLAB, 306, 307
mixing tank, 304

evaporation, 358
dynamic energy balance, 280

evaporator, 24
energy balance, 280
temperature response, 299

Excel introduction, 59
exergy, 213
exothermic, 360
expansion, 144

closed system, 351
isentropic, 157
isothermal, 156
real gas, 118, 156
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expansion machine, 25
expansion work, 145
extensive variable, 3, 20
extent of reaction (ξ)

methanol reactor, 92
extent of reaction (ξ), 79
extraction, 24

Fahrenheit (oF), 10
fan, 24

typical power, 13
feedback control, 322
Fick’s law, 47
filtration, 24
first law of thermodynamics, 161
fittings, 24
flash, 24, 64, 189

UV , 317
pH , 195
pT , 193
bubble point, 190
calculations, 64, 189–196
dew point, 191
dynamic, 316, 317
Rachford-Rice, 65, 193

flotation, 24
flow in pipe

gas, 247
friction pressure drop, 242

flow process, 21
flow sheet, 66, 67, 109
flow system, see open system
flow work (Wflow), 99
flue gas, 362
fluid ounce (fl.oz.), 10
force (F ), 330

conversion factor, 10
formaldehyde, 412
fossil fuels

exergy, 219
freezing, 358
freezing point depression, 184, 185
frequency response, 285
friction, 26

second law, 249
friction factor (f), 243
friction loss (Φ), 239
friction pressure drop

rule of thumb, 245
friction pressure drop (∆pf ), 240

flow in pipe, 242
frictionless, 372

flow, 240
ft (foot, ’), 9
fuel, 12, 17
fuel cell, 98, 102, 213, 226, 344

fugacity (f), 342, 387
component (fi), 186

fugacity coefficient (φ), 178, 342, 387
fusion (melting), 186, 358

G, see Gibbs energy
g (acceleration of gravity), 2
gc (mystical factor in many US books), 10
G (giga), 2
g-mol, 9
gain (k), 286
gal (gallon), 9
gas, 116

dynamics, 298
emptying container, 393
filling tank, 104
flow in pipe, 247, 248
ideal, see ideal gas
volume, 14

gas constant (R), 2, 335
gas power plant, 236
gas turbine, 226

combustion, 203
gasoline, 32
gasoline engine, 203
gauge pressure (g), 11
Gibbs energy (G), 366, 385

equilibrium, 384
Gibbs energy of formation (∆fG

⊖), 219, 416
data, 416

Gibbs phase rule, 332
Gibbs’ theorem, 381
Gibbs, Josiah Willard (1839–1903), 384
Gibbs-Helmholtz, 391
global warming, 16

potential (GWP), 209
gpm (gallons per minute), 15
Gr (Grashof number), 296
Grand Canyon, 36
gravity

API, 13
specific (spgr), 13

gross heating value (GHV), 363
natural gas, 33

Guldberg and Waage, 175, 259

H , see enthalpy
h (hour, hr), 8
half time, 269
HAZOP analysis, 273
heat (Q), 329, 345, 345
heat capacity, 16, 349

constant pressure (Cp), 349
constant volume (CV ), 349
data

gases, 422
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hydrocarbons, 17
liquids, 421
water, 16

ideal gas, 17, 342, 349
ideal mixture, 356
mean (C̄p), 355
molar (Cp,m), 4
polynomial form, 355
specific (cp), 5

heat engine, 198
Carnot cycle, 373

heat exchanger, 24, 70, 129–142
cocurrent flow, 133, 137
countercurrent flow, 133, 134, 137
efficiency, 140
entropy change, 167
logarithmic mean temperature, 132, 394
pressure drop, 245
shell and tube, 130
two tube-pass, 137
typical numbers, 135

heat of combustion, 362
gross heating value (GHV), 363
higher, 362
hydrocarbons, 17
lower, 362

heat of combustion (∆cH
⊖), 363

heat of formation, see also enthalpy of
formation

heat of formation (∆fH
⊖), 363

heat of reaction (enthalpy), 360
heat of vaporization (∆vapH), 16, 281, 358
heat pump, 203
heat reservoir, 199, 373
heat transfer coefficient (h), see also overall

heat transfer coefficient (U), 136
heating value, see also heat of combustion

higher, 363
lower, 219

Henry’s law, 186
Hess’ law, 358, 362
higher heating value, 363
horsepower (hp), 12
humans

artificial kidney, 44
energy consumption, 34
heart work, 34
heat transfer, 35
sweating, 35

hydrocarbons
data, 17

hydrogen
data, 416
synthesis gas, 94, 405

hydrostatic pressure, 330

ideal gas, 334–335

equation of state (gas law), 20, 334
mass basis, 335

heat capacity, 17
mole volume, 14

ideal mixture, 381
density, 54
entropy, 165, 381–383
vapor/liquid equilibrium, 182

ideal solution, see ideal mixture
ideal tank reactor (CSTR), see reactor
implicit equation, 191
impulse response, 285
inch (′′), 9
incompressible, 126, 154

flow, 240
independent equation, 68
independent reaction, 88
index problem, 321
industrial ecology, 212
inertia, time constant, 287
initial time (t0), 76
input, 303
integrator dynamics, 297
intensive variable, 3, 20
internal energy (U), 96, 97, 345, 347

calculation of, 366
constant volume, 347

interpolation, 54
inventory, 39
inverse response, 311, 312
investment cost, 29
irreversible process, 369
isenthalpic, 21

pressure relief, 114, 171
isentropic, 21, 373, 379

expansion, 170, 350
ideal gas example, 172

pressure relief
ideal gas-example, 172

shaft work, 149
isobaric, 21
isochoric, 21
isothermal, 21

reactor, 260
shaft work, 148

iteration, 139
IUPAC, 2

J (Joule), 2, 11
Joule’s experiment, 353
Joule-Thompson coefficient (µ), 357
Joule-Thompson effect, 116, 117
Joule-Thompson valve, 26, 171

K (Kelvin), 2, 10
k (kilo), 2
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K value, 188
Kelvin’s postulate, 372
key reactant, 81
kg (kilogram), 2, 8
kidney, artificial, 44
kinetic energy, 96, 125, 344

neglect, 97
kinetics, see reaction kinetics

elementary, 256
KTPA (kilo ton per annum), 15
kWh (kilowatt hour), 12

l (liter), 9
laminar flow, 243, 297
Lang-factor, 30
Langmuir, 257
latent energy, 345
latent heat, 364
law of mass action, 175, 259
lb (pound), 8
lb-mol (strange unit in US books), 9
lbf (pound force) (strange unit in US

books), 10
Le Chatelier’s principle, 173
length, conversion factor, 9
Levenspiel plot, 265
lever rule, 54
light, speed of, 41
limiting reactant, 81
linearization, dynamics, 301–303
linearized model, 303
liquid, 116
LNG (liquefied natural gas), 219
log-mean Carnot factor, 201, 233
logarithmic mean temperature, 132, 394
lossless, 372
lower heating value, 219

M (molar mass), 3, 328
m, see mass
M (mega), 2
m (meter), 2, 9
m (milli), 2
M (roman numeral for 1000), 15
mass (m), 40

conversion factor, 8
mass balance, 47–76

component, 48, 276
dynamic, 275
matrix formulation, 90, 254
mixing, 49
mixture, 51
recycle, 55
total, 43
with reaction, 77–94

mass flow (mass rate) (ṁ ≡ w), 5, 41

mass flow rate (ṁ ≡ w), 274
material balance, see mass balance
MATLAB

ammonia equilibrium, 177
DAE system, 319
distillation, 314
Euler integration, 307
fmincon, 321
isothermal CSTR, 311
ode15s, 319
odeeuler.m, 307
rank, 89
stirred tank, 306
three stirred tanks, 309
vector calculations, 315

matrix, 303
matrix formulation of mass balances, 90, 254
Maxwell, 339
mean velocity (v), 125
mechanical energy, 239
mechanical energy balance, 237–251
melting point depression, 185
membrane unit, 24

artificial kidney, 44
methane

combustion, 119
data, 416
thermodynamic diagram, 418

methanol, 412
data, 416
energy balance, 120
equilibrium, 92
mass balance, 92
synthesis gas, 94

MIGD (million imperial gallons per day), 15
mile, 9
min (minute), 8
mixer, 24, 70
mixing rule

linear blending, 50
SRK equation of state, 341

mixing tank
dynamics, 306

mixture, 381
energy balance, 107
heat of mixing (∆mixH), 112, 281, 359,

365, 381
ideal, 381
mixing entropy (∆mixS), 381
mixing volume (∆mixV ), 55, 381
mixing work

natural gas power plant, 220
non-ideal, 188
separation work, 222

distillation, 223
MM (million), 15
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mol, 2, 9
molar enthalpy (Hm), 4
molar flow (mole rate) (ṅ ≡ F ), 5
molar flow rate (ṅ ≡ F ), 274
molar fraction, see mole fraction (xi)
molar heat capacity (Cp,m), 4
molar mass (M), 3, 328

data, 416
mixture, 328

molar quantity (Xm), 4
molar volume (Vm), 4

ideal gas, 14
mole, 327
mole fraction (xi), 4
molecular weight, 3, 328, see also molar mass

(M)
momentum (mv), 40
momentum balance, see mechanical energy

balance
bath tub, 297

Mount Everest, 331
MTPA (million ton per annum), 15
multivariable systems, 303

n (nano), 2
N (Newton), 2, 10
N (normal), 14
natural convection, 296

air, 296
water, 296

natural gas, 225
combustion, 119
heating value, 33
heating value (GHV), 33
sales gas, 33
sales gas specification, 33
ton oil equivalent (toe), 33

natural gas power plant, 225
negative feedback, 322
Newton’s 2nd law, 41, 238
nitric acid, 359

production, 412, 413
Nm3 (Normal cubic meter), 14
non-flow system, see closed system
non-ideal mixture, 188
normal boiling point, 378
normal boiling point (Tb), 16
normal cubic meter [Nm3], 14
notation, 1

simplified, 7
Nu (Nusselt number), 296
number of heat transfer units (Ntu), 141

oil, 12, 17
open system

energy balance, 95, 100

osmotic pressure, 221, 382
seawater, 382

Otto cycle, 203
ounce (oz), 10
output, 285
overall heat transfer coefficient (U), 132,

135, 293, 295
conversion factor, 135
typical values, 135

p, see pressure
P (peta), 2
p (pico), 2
packings, 22
paper machine, 69
partial molar enthalpy, 281
partial molar quantity (X̄i or Xi), 381
partial pressure (pi), 335
Pascal (Pa), 2
Peng-Robinson (PR) equation of state, 340,

342
perpetuum mobile, 162, 239
phase rule, Gibbs, 332
phase transition, 358

dynamic energy balance, 280
entropy, 378

physical chemistry, 327–391
PID controller, 322
platinum catalyst, 259, 260
poise (P) (unit for viscosity), 243
polytropic, 148
polytropic process, 149
postulate, 347
potential energy, 96, 125, 345

neglect, 97
pound (lb), 8
pound force (lbf ) (strange unit in US

books), 10
pound mole (lb-mol) (strange unit in US

books), 9
power

conversion factor, 12
Poynting factor, 183, 188
ppb, 4
ppb (parts per billion), 2
ppm, 4
ppm (parts per million), 2
Pr (Prandtl number), 296
PRBS response, 285
pressure

atmospheric (1 atm)), 11
pressure (p), 330

absolute, 11
barometric formula, 331, 352
conversion factor, 11
gauge pressure, 11
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standard (p⊖ = 1 bar), 3
thermodynamic, 390

pressure drop
friction (∆pf ), 242
gas, 247
heat exchanger, 245

pressure dynamics, 299
pressure ratio

critical, 128
pressure relief

ideal gas, 114
isenthalpic, 114
real gas, 118

pressure-enthalpy (pH) diagram, 118, 156,
333

ammonia, 419
methane, 115, 418

pressure-volume (pV ) work, 99
process, v, 18

batch, 20
continuous, 21
dynamic (non-steady state), 21
reversible, 20, 331
semi-batch, 20
steady-state, 21

process design, 75
production cost, 31
production rate, 28
propane

thermodynamic diagram, 415
propylene

thermodynamic diagram, 415
psi (pounds per square inch), 11
psia (pounds per square inch absolute), 11
psig (pounds per square inch gauge), 11
pump, 25, 70
pump work (Ws), 154
pumping head, 242
purge, 56

methanol process, 71

Q, see heat
Qatar, 33
quench, 25

R (gas constant), 2
R134a (refrigerant), 159, 209

thermodynamic diagram, 415
R600a (isobutane), 209
R717 (ammonia), 208, see also ammonia
Rachford-Rice flash equation, 193
radiator, 129
Rankine (R), 10
Rankine cycle, 203, 226

power plant, 227
reverse (refrigeration), 206

Rankine refrigeration cycle, 203, 206
Raoult’s law, 182
Rashig-ring, 22
rate, 5
rate of reaction, see reaction rate
Rayleigh distillation, 396
Re (Reynolds number), 243
reaction, 77

energy balance, 118
independent, 88

reaction engineering, 253–271
reaction kinetics, 253

chemical equilibrium, 258
reaction mechanism, 256
reaction order, 257, 267
reaction rate (r), 253, 277
reaction rate constant (k), 256
reactor, 25, 70, 260–271

batch, 78, 262, 299
continuous, 79
continuous stirred tank (CSTR), 262, 277

dynamic energy balance, 281
dynamics isothermal, 311
dynamics, first-order reaction, 299
dynamics, second-order reaction, 313

plug flow (PFR), 264
similarity batch and plug flow, 267

real gas, 335–343
compression, 155, 159
generalized diagram, 336
pressure relief, 118

reboiler, 23
recycle, 55

batch process, 64
mass balance, 62
methanol process, 71

Redlich-Kwong equation, 340
reduced pressure (pr), 337
reduced temperature (Tr), 337
reference state, 106, 364

elements, 364
other, 365

reflux, 23
refrigerant, 208

CO2 (R744), 208, 209
ammonia (R717), 208
CFCs, freons (R12, R22), 208
i-butane (R600a), 209
R134a, 159, 209, 415

refrigerator, 129, 203, 205
ammonia cycle, 206
R134a cycle, 159

relative volatility (α), 183
reservoir, 199, 373
residence time, 290, 291

reactor, 267
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residence time distribution (RTD), 285
restriction, pressure drop, 241
reversible process, 331, 372, 377

entropy, 371
Reynolds number (Re), 243
rotational energy, 345
rule of thumb

friction pressure drop, 245
heat exchanger ∆Tmin, 137
heating value of oil and natural gas, 32
Trouton’s rule for ∆S, 378
vapor pressure water, 181

s (second), 2, 8
S (standard), 3, 14
salt power, 221
saturated, 16, 116
saturation pressure, 65, 180, see also vapor

pressure (psat)
scaling, 66, 67
scaling exponent, 29
SCMH (standard cubic meters per hour), 15
scrubber, 25
sea water

boiling point, 185
freezing point, 186

second law of thermodynamics, 161
selectivity (φ), 82
semi-batch process, 20
sensitive heat, 365
separator, 25, 70
settler, 25
shaft work (Ws), 98, 344

adiabatic, 149
ideal gas, 148
important example, 150
isentropic, 149
isothermal, 148
real gas, 155
reversible, 145

shell and tube heat exchanger, 130, 136
shift reaction, 92, 405, 412
SI units, 2, 7
simulation, 75

dynamic, 303–325
heat exchanger, 139
versus design, 139

Sm3 (standard cubic meter), 14
,, 9, 93, 210, 250
Soave-Redlich-Kwong (SRK), 178, 187, 188,

340, 357
solar cells, 33
solubility

Henry’s constant, 186
solubility of gas, 186
solute, 184

solvent, 184
specific enthalpy (h), 5
specific gravity (spgr), 13
specific heat capacity (cp), 5
specific quantity, 5
speed of sound (cs), 127, 247
split fraction, 70
splitter, 25, 70
spreadsheet introduction, 59
standard ambient temperature (298.15 K), 3
standard cubic meter [Sm3], 14
standard pressure (p⊖), 3
standard state, 3
standard temperature and pressure (STP),

3
state, 19
state diagram, 109, see also thermodynamic

diagram
state function, 371
state variable, 19, 332

dynamics, 303
number of, 332

static pressure, 240
steady-state process, 21, 43

balance, 283
component balance, 78

steady-state value (∗), 283
steam

low pressure, 216
steam, H2O (g), 16

steam reformer, 405
steam turbine, 158, 227
thermodynamic diagram, 420
steam engine, 197

step response, 285, 286
first-order, 289
higher-order, 308

stirred tank
dynamics three tanks, 308

stoichiometric coefficient (ν), 79
stoichiometric matrix (N), 90
STP (standard temperature and pressure),

3
stream, 20
stream data, 67
stripping, 25
styrene, 124
subcooled liquid, 206
sublimation, 358

CO2, 416
supercritical, 116
superheated vapor, 228, 232
surface energy, 345
symbols, 1
synthesis, 76
synthesis gas, 94, 405
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heat exchanger, 137
system, 19

adiabatic, 19
boundary, 76
closed, 19, 346
isolated, 19
open, 19

system boundary, 19

T , see temperature
t, see time
T (tera), 2
t (ton), 8
Taylor-series expansion, 301
Tb (normal boiling point), 16
temperature, 329

absolute (T ), 10
Celsius (t), 10
conversion factor, 10
dynamic energy balance, 279
thermodynamic (T ), 390

thermal conductivity (k), 136, 296
thermal energy, 345, 365
thermal expansion coefficient (β), 296
thermal power, 197–236
thermochemistry, 357
thermocouple, 293
thermodynamic diagram, 115, 156, 333

HS-diagram, water, 420
pH-diagram, 333

ammonia, 419
ammonia cooling cycle, 207
methane, 418

pV -diagram, 333
other components, 415

thermodynamics, 329, 327–391
0th law, 161
1st law, 101, 161, 345
2nd law, 161, 173, 372
3rd law, 163
fundamental equation, 389
history of, 197
partial derivatives, 389

third law of thermodynamics, 163
time (t), units for, 8
time constant (τ ), 286

bathtub, 298
continuous stirred tank, 290

with heat exchanger, 291
continuous stirred tank reactor (CSTR)

first order reaction, 299
second-order reaction, 313

cooking plate, 293
first-order system, 287
gas tank, 298
outflow sink, 302

thermocouple, 295
time delay (θ), 287
time response, 284–290
toe (ton oil equivalent), 12, 17, 363
ton, 8

long, 8
metric (tonne), 8
short, 8

torr (mm Hg), 11
tower, 21
TPA (ton per annum), 15
TPD (ton per day), 15
trays, 22
triple point, 416
Trouton’s rule, 378
turbine, 25, 70, 144
turbulent flow, 243, 297, 302

U , see internal energy
U , see overall heat transfer coefficient
UNIFAC, 188
unit operations, 21
units

check , 7
conversion, 8

exercises, 31
SI, 2

unsteady state, see dynamic

V , see volume
v, see velocity
valve, 26

relative capacity coefficient (Cd), 245
choke, 26
energy balance

leak, 126
isenthalpic, 114, 172
Joule-Thompson, 26
pressure drop, 244
valve coefficient (Cv), 26
valve equation, 26, 244

van der Waals equation of state, 155, 337
van der Waals, Johannes (1837–1923), 337
van’t Hoff, 176

equation, 388
osmotic pressure, 382

van’t Hoff, Jacobus (1852–1911), 382
vapor (= saturated gas), 16, 179
vapor pressure (psat), 16, 180, 182, 340

water, 16, 180, 181
vapor/liquid-equilibrium (VLE), 179–189

distillation, 314
non-ideal, 188
Raoult’s law, 182
relative volatility, 183
SRK, 188, 342
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UNIFAC, 188
velocity (v), 97, 125, 126, 127, 239
viscosity, 243
viscosity (µ), 296
volume (V )

conversion factor, 9
gas, 14
standard, 14

volume change work, 99, 346–347
volumetric flow rate (V̇ ≡ q), 5, 274

W , see work
W (Watt), 2
water, 16

boiling point elevation, 185
boiling point variation

elevation, 331
pressure, 182

data, 16, 416
freezing point depression, 185
Henry’s law, 186
thermodynamic diagram, 420
vapor pressure, 16, 181, 182

experimental data, 181
rule of thumb, 181

water fall, 96
water turbine, 155
wet basis, 362
window pane, heat loss, 135
wood, 17
work (W ), 344, 345

expansion, 145
flow, 99
forms, 98
from heat, 197–377
lost, 239
sign convention, 3, 98
volume change, 99, 346–347

working fluid, see also refrigerant, 208

X, see conversion
xi (mole fraction), 4

y (year), 8
yard, 9
yield (Y ), 82

total, 85




