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Preface

In this report we will give a treatment of important tools for analyzing stability
in nonlinear dynamical systems. This inludes both stability of equilibria and the
more general concept of set-stability. Some suggested applications for its use
are time-varying systems, maneuvering systems (Skjetne et al.; 2004), adaptive
systems, and observer designs.
A variety of references are used where the most important are Lin (1992);

Lin et al. (1995); Sontag and Wang (1995a); Lin et al. (1996); Teel and Praly
(2000); Teel (2002); Khalil (2002). Most of the definitions and theorems are
taken from the mentioned references and organized in a consistent notation. The
proper citations are clearly referenced. Using these references a few theorems
have been developed further by the author as minor extensions to the existing
theory. This concerns in particular Theorem 4.3, published in Skjetne et al.
(2005), and Theorem 5.2, published in Skjetne et al. (2004).



Chapter 1

Ordinary differential
equations

Consider the time-varying ordinary differential equation1

ẋ = f(x, t) (1.1)

where for each t ≥ 0 the vector x(t) ∈ Rn is the state.
To ensure existence and uniqueness of solutions, f is assumed to satisfy the

following properties (Teel; 2002): For each starting point (x0, t0) ∈ Rn ×R and
each compact set X × T containing (x0, t0) then:

• for all (x, t) ∈ X × T , the function f(·, t) is continuous and f(x, ·) is
piecewise continuous,

• there exists L > 0 such that

|f(x, t)− f(y, t)| ≤ L |x− y| , ∀(x, y, t) ∈ X ×X × T ,

• f is bounded on X × T .

This will ensure that there exists T > t0 ≥ 0 such that there is one and only
one solution of (1.1) on [t0, T ]. Often we simply assume that f(·, ·) is smooth
which implies all the above conditions.
Let x(t, t0, x0) denote the solution of (1.1) at time t with initial time and

state x(t0) = x0 where 0 ≤ t0 < ∞. If there is no ambiguity from the context,
the solution is simply written as x(t) with the initial state x0 at time t0. The
solution is defined on some maximal interval of existence (Tmin(x0), Tmax(x0))
where Tmin(x0) < t0 < Tmax(x0). The system (1.1) is said to be forward complete

1 Since the vector x in reality is a function of time, the notation ẋ(t) = f(x(t), t) would
perhaps be more precise than (1.1). However, to indicate that t in (1.1) is an explicit time-
variation in the system, the notation without the time argument for the states is chosen.
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if Tmax(x0) = +∞ for all x0, backward complete if Tmin(x0) = −∞ for all x0,
and complete if it is both forward and backward complete (Lin et al.; 1996).
A solution is an absolutely continuous function satisfying x(t0, t0, x0) = x0

and:

• x(·, t0, x0) is differentiable a.e. on (Tmin, Tmax) ,

• d
dtx(t, t0, x0) = f(x(t, t0, x0), t) is Lesbegue integrable on (Tmin, Tmax) ,

• x(t, t0, x0)− x0 =
R t
t0

d
dtx(τ , t0, x0)dτ =

R t
t0
f(x(τ , t0, x0), τ)dτ .

A convenient but crude way to ensure forward completeness is:

Proposition 1.1 (Teel; 2002) Suppose the function f : Rn×R≥0 → Rn satisfies
the above conditions for existence and uniqueness of solutions. Suppose also that
f(·, ·) satisfies a global sector bound, that is, ∃L ≥ 0 and c ≥ 0 such that ∀(x, t),

|f(x, t)| ≤ L |x|+ c.

Then all solutions are defined for all t ≥ t0.

To prove this proposition, a differential version of the Gronwall-Bellman
lemma is needed:

Lemma 1.2 Let y : R→ R be absolutely continuous and satisfy

ẏ(t) ≤ a(t)y(t) + b(t), a.e. t ∈ [t0, t1] (1.2)

where a(t), b(t) are continuously differentiable functions that satisfy ȧ(t)b(t) −
a(t)ḃ(t) = 0 and 0 < a0 ≤ |a(t)| < ∞ for some a0 and |b(t)| < ∞, ∀t ∈ [t0, t1].
Then,

y(t) ≤
µ
y(t0) +

b(t0)

a(t0)

¶
exp

µZ t

t0

a(s)ds

¶
− b(t)

a(t)
, ∀t ∈ [t0, t1]. (1.3)

If b ≡ 0 then the above constraints can be relaxed and a(t) needs only be locally
integrable to give

y(t) ≤ y(t0) exp

µZ t

t0

a(s)ds

¶
, ∀t ∈ [t0, t1]. (1.4)

Furthermore, when a, b are constants, the result is

y(t) ≤
µ
y(t0) +

b

a

¶
exp (a(t− t0))−

b

a
. (1.5)

Proof. Consider the differentiable function

η(t) :=

µ
y(t) +

b(t)

a(t)

¶
exp

µ
−
Z t

t0

a(s)ds

¶
. (1.6)
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In view of (1.2) and the constraints, differentiation gives

η̇(t) =

Ã
ẏ(t) +

ḃ(t)a(t)− b(t)ȧ(t)

a(t)2

!
exp

µ
−
Z t

t0

a(s)ds

¶
− a(t)

µ
y(t) +

b(t)

a(t)

¶
exp

µ
−
Z t

t0

a(s)ds

¶
= (ẏ(t)− a(t)y(t)− b(t)) exp

µ
−
Z t

t0

a(s)ds

¶
≤ 0. (1.7)

This implies that η(t) ≤ η(t0), ∀t ∈ [t0, t1] so that when substituting the defin-
ition for η(·) and using that exp

³
−
R t
t0
a(s)ds

´
> 0 gives (1.3). When b ≡ 0,

then the fraction b/a in (1.6) vanishes so that the same result follows by only a
locally integrable function a(·).

Proof of Proposition 1.1: Consider y := |x| =
√
x>x which is continu-

ously differentiable on Rn\{0}. Suppose that a solution x(t, t0, x0) of ẋ = f(x, t)
escapes at the finite time T > t0. Then, for each M <∞ there exists τ ∈ [t0, T )
such that |x(τ , t0, x0)| > M. Differentiating y with respect to time gives for each
compact time interval [t1, t2] ⊂ [t0, T ), with x(t) 6= 0 ∀t ∈ [t1, t2],

ẏ(t) =
d

dt
|x(t, t1, x1)| =

x(t, t1, x1)
>f(x(t, t1, x1), t)

|x(t, t1, x1)|
≤ Ly(t) + c

where x1 := x(t1, t0, x0). In view of Lemma 1.2 this implies that

|x(t, t1, x1)| ≤
³
|x1|+

c

L

´
eL(t−t1) − c

L
, ∀t ∈ [t1, t2].

By picking M >
¡
|x1|+ c

L

¢
eL(T−t1) − c

L this last inequality implies that no
τ ∈ [t0, T ) can be found so that |x(τ , t0, x0)| > M. By contradiction it follows
that T =∞.
Some convenient classes of functions are next defined. These are instrumen-

tal in nonlinear control theory.

Definition 1.3 A function α : R≥0 → R≥0 with α(0) = 0 is positive semi-
definite if α(s) ≥ 0 for s > 0 and positive definite if α(s) > 0 for s > 0. It
belongs to class-K (α ∈ K) if it is continuous, α(0) = 0, and α(s2) > α(s1),
∀s2 > s1, and it belongs to class-K∞ (α ∈ K∞) if in addition lims→∞ α(s) =∞.
A function β : R≥0 × R≥0 → R≥0 belongs to class-KL (β ∈ KL) if for each
fixed t ≥ 0, β(·, t) ∈ K, and for each fixed s ≥ 0, β(s, ·) is nonincreasing and
limt→∞ β(s, t) = 0.

An equilibrium point xe ∈ Rn of (1.1) at t = t0 is a point such that f(xe, t) =
0, ∀t ≥ t0. Such an equilibrium can always be shifted to the origin, giving the
following stability definitions:
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Definition 1.4 For the system (1.1), the origin x = 0 is:

• Uniformly Stable (US) if there exists δ(·) ∈ K∞ such that for any ε > 0,

|x0| ≤ δ(ε), t ≥ t0 ≥ 0 ⇒ |x(t, t0, x0)| ≤ ε. (1.8)

• Uniformly Globally Asymptotically Stable (UGAS) if it is US and Uni-
formly Attractive (UA), that is, for each ε > 0 and r > 0 there exists
T > t0 ≥ 0 such that

|x0| ≤ r, t ≥ T ⇒ |x(t, t0, x0)| ≤ ε. (1.9)

The following comparison principle (Lin et al.; 1996, Lemma 4.4) is also
useful, especially in proving asymptotic stability by Lyapunov arguments and
KL-estimates:

Lemma 1.5 For each continuous positive definite function α there exists a KL-
function βα(s, t) with the following property: if y(·) is any (locally) absolutely
continuous function defined for each t ≥ t0 ≥ 0 and with y(t) ≥ 0, ∀t ≥ t0, and
y(·) satisfies the differential inequality

ẏ(t) ≤ −α(y(t)), a.a. t ≥ t0 (1.10)

with y(t0) = y0 ≥ 0, then it holds that

y(t) ≤ βα(y0, t− t0), ∀t ≥ t0. (1.11)

Proof. See Lin et al. (1996, Lemma 4.4).



Chapter 2

Set-stability

Often we will consider attractors other than equilibrium points. Such attractors
will be closed subsets A of the state space. They can be compact or noncompact
sets. In order to measure the distance away from the set, the “distance to the
set A function” is defined as

|x|A := d (x;A) = inf {d(x, y) : y ∈ A} (2.1)

where the point-to-point distance function is here simply taken as the Euclidean
distance d(x, y) = |x− y| . Stability of the set is then determined in terms of
bounds on the distance function.
For instance, an equilibrium xe ∈ Rn of the system ẋ = f(x) is a point such

that f(xe) = 0. It is represented by the compact set

A := {x ∈ Rn : x = xe} ,

for which the distance function becomes |x|A = inf {|x− y| : y = xe} = |x−xe|
showing that the distance function reduces to the traditional norm function.
Another example is the ε-ball given by the compact set

Aε = {x ∈ Rn : |x| ≤ ε} ,

for which the distance function becomes |x|Aε
= max{0, |x|− ε}.

In this framework, as shown by Teel and Praly (2000), we can consider the
explicit time dependence of t 7→ f(x, t) in (1.1) as a state with its own dynamics
and analyze stability of an augmented system with respect to a noncompact set
in which t is free. For clarity, for this purpose we use the variable p, that is, the
extended-state dynamic system becomes

ż =
d

dt

·
x
p

¸
=

·
f(x, p)
1

¸
=: g(z) z0 =

·
x0
t0

¸
. (2.2)

Correspondingly, the time variable for the new extended-state system will be
denoted by t with initial time t = 0. Notice that, in particular, p(t) = t+ t0 for
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all t ≥ 0 and consequently f(·, p(t)) for t ≥ 0 is equal to f(·, t) for t ≥ t0 ≥ 0.
According to Lin (1992, Lemma 5.1.1) it follows that x(t, t0, x0) is a solution
of (1.1) for t ≥ t0 ≥ 0 if and only if z(t, z0) := col (x(t+ t0, t0, x0), t+ t0) is a
solution of (2.2) for t ≥ 0.
Stability of the origin x = 0 for (1.1) is captured by stability of the set of

points
A0 = {(x, p) ∈ Rn ×R≥0 : x = 0} (2.3)

for which the distance-to-the-set function becomes |z|A0 =
inf{|z − y| : y ∈ A0} = |x| .
With this motivation in mind we can therefore, in general, use set-stability

analysis for time-invariant ODEs

ẋ = f(x) (2.4)

where x(t, x0) ∈ Rn, ∀t ≥ 0, is the solution with initial condition x0 = x(0).

Definition 2.1 A nonempty closed set A ⊂ Rn is a forward invariant set for
(2.4) if the system is forward complete and ∀x0 ∈ A the solution x(t, x0) ∈ A,
∀t ≥ 0.

For noncompact sets there is a possibility that a solution may escape to
infinity in finite time within the set. Forward completeness is therefore a re-
quirement in stability analysis of such sets. The tool called finite escape-time
detectability through | · |A is helpful:

Definition 2.2 (Teel; 2002) The system (2.4) is finite escape-time detectable
through | · |A if, whenever a solution’s maximal interval of existence is bounded,
that is, x(t, x0) is defined only on [0, T ) with T finite, then limt%T |x(t, x0)|A =
∞.

This is equivalent to what is called the unboundedness observability property
in Mazenc and Praly (1994) by defining the output y = h(x) = |x|A. Never-
theless, we will continue using finite escape-time detectability to ensure forward
completeness of the system.
Stability definitions using ε − δ neighborhoods as in Definition 1.4 is, as

shown by Lin et al. (1996); Khalil (2002), equivalent to using class-K and class-
KL estimates. For stability of sets we have:

Definition 2.3 If the system (2.4) is forward complete, then for this system a
closed, forward invariant set A ⊂ Rn is:

1. Uniformly Globally Stable (UGS) if there exists a class-K∞ function ϕ
such that, ∀x0 ∈ Rn, the solution x(t, x0) satisfies

|x(t, x0)|A ≤ ϕ (|x0|A) , ∀t ≥ 0. (2.5)
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2. Uniformly Globally Asymptotically Stable (UGAS) if there exists a class-
KL function β such that, ∀x0 ∈ Rn, the solution x(t, x0) satisfies

|x(t, x0)|A ≤ β (|x0|A , t) , ∀t ≥ 0, (2.6)

3. Uniformly Globally Exponentially Stable (UGES) if there exist strictly pos-
itive real numbers k > 0 and λ > 0 such that, ∀x0 ∈ Rn, the solution
x(t, x0) satisfies

|x(t, x0)|A ≤ k |x0|A e−λt, ∀t ≥ 0. (2.7)

When A is compact (for instance an equilibrium point), the forward com-
pleteness assumptions is redundant since in this case the system is finite escape-
time detectable through | · |A, and the above bounds therefore imply that solu-
tions are bounded on the maximal interval of existence.

Definition 2.4 A smooth Lyapunov function for (2.4) with respect to a non-
empty, closed, forward invariant set A ⊂ Rn is a function V : Rn → R≥0 that
satisfies:

1. there exist two K∞-functions α1 and α2 such that for any x ∈ Rn,

α1(|x|A) ≤ V (x) ≤ α2(|x|A), (2.8)

2. there exists a continuous and, at least, positive semidefinite function α3
such that for any x ∈ Rn\A,

V x(x)f(x) ≤ −α3(|x|A). (2.9)

Note that when A is compact, the existence of α2 is a mere consequence of
continuity of V. We now have:

Theorem 2.5 Assume the system (2.4) is finite escape-time detectable
through | · |A. If there exists a smooth Lyapunov function for the system (2.4)
with respect to a nonempty, closed, forward invariant set A ⊂ Rn, then A is
UGS with respect to (2.4). Furthermore, if α3 is strengthened to a positive def-
inite function, then A is UGAS with respect to (2.4), and if αi(|x|A) = ci |x|rA
for i = 1, 2, 3, where c1, c2, c3, r are strictly positive reals with r ≥ 1, then A is
UGES with respect to (2.4).

Proof. By integrating (2.9) along the solutions of x(t, x0) we get

V (x(t, x0))− V (x0) =

Z t

0

d

dt
{V (x(τ , x0))} dτ

=

Z t

0

V x(x(τ , x0))f(x(τ , x0))dτ

≤ −
Z t

0

α3(|x(τ , x0)|A)dτ ≤ 0, t ≥ 0
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showing that V (x(t, x0)) ≤ V (x0), and consequently that

|x(t, x0)|A ≤ α−11 (V (x(t, x0))) ≤ α−11 (V (x0)) ≤ α−11 (α2 (|x0|A)) (2.10)

for all t in the maximal interval of existence [0, T ). Suppose the system escapes
at a finite time T > 0. From the finite escape-time detectability property, this
means that for each M <∞ there exists t1 ∈ [0, T ) such that |x(t1, x0)|A > M.
Picking M > α−11 (α2 (|x0|A)) contradicts that (2.10) must hold ∀t ∈ [0, T ).
Hence, T = ∞ and the system is forward complete. By defining ϕ (·) :=
α−11 (α2 (·)) ∈ K∞, then (2.10) proves UGS according to (2.5). Suppose next
that α3(·) is positive definite. From (2.8) and (2.9) we have

d

dt
{V (x(t, x0))} ≤ −α(V (x(t, x0)))

where α(·) := α3(α
−1
2 (·)) is positive definite. Let βα(·, ·) be the class-KL func-

tion, corresponding to α, from Lemma 1.5. This gives

V (x(t, x0)) ≤ βα(V (x0), t), ∀t ≥ 0
⇓

|x(t, x0)|A ≤ α−11 (V (x(t, x0))) ≤ α−11 (βα(V (x0), t))

≤ α−11 (βα(α2(|x0|A), t)) =: β (|x0|A , t) , ∀t ≥ 0,

where β ∈ KL and UGAS follows from (2.6). In the last case we have that
αi(|x|A) = ci |x|rA for ci > 0 and r ≥ 1, and this gives

|x(t, x0)|A ≤ r

r
1

c1
V (x(t, x0)) ≤ r

r
1

c1
V (x0)e

− c3
r t

≤ r

r
c2
c1
|x0|A e−

c3
r t, ∀t ≥ 0,

which shows UGES according to (2.7).

Example 2.1 Consider the linear system

ẋ = Ax+ bu(t) (2.11)

y = c>x (2.12)

where x ∈ Rn is the state, y ∈ Rm is the measured output, A is Hurwitz, (c>, A)
is an observable pair, and u(t) is some known, bounded input function. In an
observer design for this system we consider x̂ ∈ Rn as the observer state and
stability of the noncompact set

A = {(x, x̂) ∈ Rn ×Rn : x̂ = x} . (2.13)

Using a traditional linear observer design, we propose

˙̂x = Ax̂+ bu(t) + L
¡
y − c>x̂

¢
(2.14)
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where the feedback gain L is designed so that A− Lc> is Hurwitz.
For stability analysis we first calculate the distance function. Letting (x, x̂) be
fixed, we get

|(x, x̂)|A = inf
(ξ,ξ̂)∈A

¯̄̄̄·
x− ξ

x̂− ξ̂

¸¯̄̄̄
= inf

ξ

¯̄̄̄·
x− ξ
x̂− ξ

¸¯̄̄̄
= inf

ξ

q
|x− ξ|2 + |x̂− ξ|2 = min

ξ
J(ξ). (2.15)

The argmin ξ∗ of J(ξ) is found where ∂J
∂ξ = 0, giving

∂J(ξ)

∂ξ
=
−1
2J(ξ)

h
(x− ξ)

>
+ (x̂− ξ)

>i
= 0 ⇒ ξ∗ =

1

2
(x+ x̂) , (2.16)

and substituted back into the definition, this gives

|(x, x̂)|A =
¯̄̄̄·

x− ξ∗

x̂− ξ∗

¸¯̄̄̄
=
1

2

¯̄̄̄·
(x− x̂)
− (x− x̂)

¸¯̄̄̄
=

√
2

2
|x− x̂| . (2.17)

Since A is Hurwitz and u(t) is bounded, the solution x(t) is also bounded. This
implies that the system is finite escape-time detectable through |(·, ·)|A. Letting
next P = P> > 0 solve P

¡
A− Lc>

¢
+
¡
A− Lc>

¢>
P = −I, we define the

function
V (x, x̂) := (x− x̂)> P (x− x̂) (2.18)

for which the time derivative is

V̇ = (x− x̂)
>
P
³
ẋ− ˙̂x

´
+
³
ẋ− ˙̂x

´>
P (x− x̂)

= − (x− x̂)> (x− x̂) . (2.19)

Since V (x, x̂) satisfies

2pm |(x, x̂)|2A ≤ V (x, x̂) ≤ 2pM |(x, x̂)|2A (2.20)

V̇ = −2 |(x, x̂)|2A (2.21)

where pm := λmin(P ) and pM := λmax(P ), it follows that V is a smooth Lya-
punov function for the overall system, and Theorem 2.5 states that the set A is
UGES.



Chapter 3

Set-stability for systems
with inputs

Consider the system
ẋ = f(x, u) (3.1)

where x(t) ∈ Rn, u(t) ∈ Rm, ∀t ≥ 0, and the map f : Rn × Rm → Rn
is smooth. The input u is a measurable, locally essentially bounded function
u : R≥0 → Rm. The space of such functions is denoted Lm∞ with the norm
||u[t0,∞)|| := ess sup {u(t) : t ≥ t0 ≥ 0} .We use ||u|| = ||u[0,∞)|| and let ||u[0,t]||
be the signal norm over the truncated interval [0, t]. For each initial state
x0 = x(0) ∈ Rn and each u ∈ Lm∞, let x(t, x0, u) denote the solution of (3.1) at
time t. If there is no ambiguity from the context, the solution is simply written
x(t).
For a nonempty closed set A ⊂ Rn we have:

Definition 3.1 The set A is called a 0-invariant set for (3.1) if, for the asso-
ciated “zero-input” system

ẋ = f(x, 0) =: f0(x), (3.2)

it holds that for each x0 ∈ A then x(t, x0, 0) ∈ A for all t ≥ 0.

Definition 3.2 The system (3.1) is input-to-state stable (ISS) with respect to
a closed, 0-invariant set A if there exist β ∈ KL and γ ∈ K such that for each
u ∈ Lm∞ and all initial states x0, the solution x(t, x0, u) is defined for all t ≥ 0
and satisfies

|x(t, x0, u)|A ≤ β (|x0|A , t) + γ
¡¯̄¯̄

u[0,t]
¯̄¯̄¢

(3.3)

for each t ≥ 0.

Definition 3.3 A smooth ISS-Lyapunov function for the system (3.1) with re-
spect to the closed set A is a smooth function V : Rn → R≥0 that satisfies:



Set-stability for systems with inputs 13

1. there exist two class-K∞ functions α1 and α2 such that for any x ∈ Rn,

α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) , (3.4)

2. there exist a class-K function α3 and a K∞-function χ such that for all
x ∈ Rn and u ∈ Rm,

|x|A ≥ χ(|u|) ⇒ V x(x)f(x, u) ≤ −α3 (|x|A) . (3.5)

For compact sets A, an equivalent representation of (3.5) is:

2.’ There exist two class-K∞ functions α3 and α4 such that for all x ∈ Rn
and u ∈ Rm,

V x(x)f(x, u) ≤ −α3 (|x|A) + α4 (|u|) . (3.6)

Note that (3.6) implies (3.5) for both compact and noncompact sets:

V x(x)f(x, u) ≤ −α3 (|x|A) + α4 (|u|)
⇓

V x(x)f(x, u) ≤ −εα3 (|x|A)

for all |x|A ≥ α−13
³

1
1−εα4 (|u|)

´
=: χ(|u|) where ε ∈ (0, 1). The converse is a

bit more technical (Sontag and Wang; 1995b, Remark 2.4) and not generically
true for noncompact sets (Sontag and Wang; 1995a, Remark 2.9).
These preliminaries now lead to the ISS sufficiency theorem. Some powerful

converse results are found in Sontag and Wang (2000).

Theorem 3.4 Assume the closed set A is 0-invariant for (3.1). If the system
(3.1) is finite escape-time detectable through | · |A and admits a smooth ISS-
Lyapunov function with respect to A, then it is ISS with respect to A.

Proof. It follows from the bounds (3.4) and (3.5) that

∀ |x(t)|A ≥ χ (||u||)⇒ d

dt
{V (x(t))} ≤ −α3

¡
α−12 (V (x(t)))

¢
.

By Lemma 1.5 this shows that V (x(t)) and, consequently, |x(t)|A are bounded on
the maximal interval of existence. By the finite escape-time detectability through
| · |A property it follows that the system is forward complete and the solutions ex-
ist for all t ≥ 0. (The proof from here is the same as given in Sontag and Wang
(1995b, Lemma 2.14).) Let αi, i = 1, 2, 3 and χ be as in Definition 3.3, 1. and
2. For an inital state x0 and input function u, let x(t) = x(t, x0, u) be the cor-
responding trajectory of (3.1). Define the set Ω := {x : V (x) ≤ α2 (χ(||u||))} .
If there exists t1 ≥ 0 such that x(t1) ∈ Ω, then x(t) ∈ Ω for all t ≥ t1. To prove
this, assume otherwise. Then there exist some t ≥ t1 and some ε > 0 such that
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V (x(t)) > α2 (χ(||u||)) + ε. Let t2 = inf{t ≥ t1 : V (x(t)) ≥ α2 (χ(||u||)) + ε}.
Then |x(t2)|A ≥ χ (||u||) such that

V̇ (x(t2)) ≤ −α3 (|x(t2)|A) ≤ −α3
¡
α−12 (V (x(t2)))

¢
< 0.

Hence, there must exist t ∈ (t1, t2) so that α2 (χ(||u||))+ε ≤ V (x(t2)) ≤ V (x(t))
which contradicts minimality of t2.
To continue, let t3 = inf{t ≥ 0 : x(t) ∈ Ω} where t3 may be infinite. For all
t ≥ t3 we have that V (x(t)) ≤ α2 (χ(||u||)) so that

|x(t)|A ≤ α−11 (V (x(t))) ≤ α−11 (α2 (χ(||u||))) =: γ (||u||) . (3.7)

Moreover, for 0 ≤ t < t3 then x(t) /∈ Ω so that |x(t)|A ≥ χ(||u||) and

V̇ (x(t)) ≤ −α3 (|x(t)|A) ≤ −α3
¡
α−12 (V (x(t)))

¢
=: −α (V (x(t))) .

Let βα be the class-KL function from Lemma 1.5 such that

V (x(t)) ≤ βα (V (x0), t) , ∀t ∈ [0, t3).

Define β(s, t) := α−11 (βα (α2 (s) , t)) ∈ KL. Then for all 0 ≤ t < t3 it follows
that

|x(t)|A ≤ β (|x0|A , t) . (3.8)

Note that neither γ or β depends on the initial state x0 or the input function u.
Therefore, combining (3.7) and (3.8) gives

|x(t)|A ≤ β (|x0|A , t) + γ (||u||) (3.9)

for all t ≥ 0, and (3.3) follows by causality.

Corollary 3.5 Suppose the system (3.1) is ISS with respect to a closed, 0-
invariant set A. Then

lim
t→∞ |u(t)| = 0 ⇒ lim

t→∞ |x(t)|A = 0. (3.10)

Proof. For each ε > 0, r > 0, and each input function u such that
limt→∞ u(t) = 0, we need to show that there exists T = T (ε, r, u) > 0 such
that

|x0|A ≤ r, t ≥ T ⇒ |x(t, x0, u)|A ≤ ε. (3.11)

Existence and uniqueness of solutions for all forward time implies that for all
0 ≤ t1 ≤ t, a solution satisfies

x (t, x(0), u) = x (t, x(t1, x(0), u), u) a.e. (3.12)
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This is verified by integrating (3.1) to get

x (t, x(0), u) = x(0) +

Z t

0

f (x(s), u(s)) ds

= x(0) +

Z t1

0

f (x(s), u(s)) ds+

Z t

t1

f (x(s), u(s)) ds

= x(t1, x(0), u) +

Z t

t1

f (x(s), u(s)) ds

= x (t, x(t1, x(0), u), u) a.e. t ≥ t1 ≥ 0.

Moreover, for each initial state x0 and input function u, ISS guarantees a uni-
form bound c = c (x0, u) > 0 such that

|x(t, x0, u)|A ≤ β (|x0|A , t) + γ (||u||) ≤ c (x0, u) . (3.13)

Pick t1 ≥ 0 such that γ
¡¯̄¯̄

u[t1,∞)
¯̄¯̄¢
≤ ε

2 , and T ≥ t1 such that β (c, t− t1) ≤ ε
2

for all t ≥ T. This gives

|x(t, x0, u)|A = |x (t, x(t1, x0, u), u)|A
≤ β (|x(t1)|A , t− t1) + γ

¡¯̄¯̄
u[t1,∞)

¯̄¯̄¢
, ∀t ≥ t1

≤ β (c (x0, u) , t− t1) +
ε

2
, ∀t ≥ t1

≤ ε, ∀t ≥ T ≥ t1 (3.14)

where T depends on ε, u, and x0.

An application of the set-stability and ISS tools is illustrated by the following
example.

Example 3.1 Claim: The noncompact set

A = {(x, t) : x = xd(t)}

is UGAS with respect to the scalar system

ẋ = −
¡
x3 − xd(t)

3
¢
+ ẋd(t) =: f(x, t)

where the desired state xd(t) is bounded and absolutely continuous, and |ẋd(t)| ≤
M, a.a. t ≥ 0.
Proof: Forward completeness is established by the auxiliary function W := 1

2x
2

having a derivative Ẇ = −x4 + xδ(t) ≤ −ε |x|4 , ∀ |x| ≥ 3

q
δ0
1−ε where δ0 is a

bound on δ(t) := xd(t)
3+ ẋd(t) and ε ∈ (0, 1). This shows input-to-state stability

(ISS) of the system with δ as input, and consequently that x(t) and f(x(t), t)
are bounded for all t ≥ 0.
For the distance function we have that

|(x, t)|A = inf
(y,τ)∈A

¯̄̄̄·
x− y
t− τ

¸¯̄̄̄
= inf

τ

¯̄̄̄·
x− xd(τ)
t− τ

¸¯̄̄̄
≤ |x− xd(t)| .
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The absolute continuity of xd(t) together with boundedness of ẋd(t) implies that
xd(t) is globally Lipschitz such that |xd(t)− xd(τ)| ≤M |t− τ | holds. Let τ∗ be
the (optimal) value that satisfies the above infimum. Then

|x− xd(t)| = |x− xd(τ
∗) + xd(τ

∗)− xd(t)|
≤ |x− xd(τ

∗)|+ |xd(τ∗)− xd(t)|

≤ |x− xd(τ
∗)|+M |t− τ∗| ≤ max{1,M}

¯̄̄̄·
x− xd(τ

∗)
t− τ∗

¸¯̄̄̄
1

≤
√
2max{1,M} |(x, t)|A .

Defining k :=
√
2max{1,M} the result is the equivalence relation

1

k
|x− xd(t)| ≤ |(x, t)|A ≤ |x− xd(t)| .

Let a smooth Lyapunov function be V (x, t) := 1
2 (x− xd(t))

2 . This has the
bounding functions, according to (2.8) and (2.9), defined as:

α1 (|(x, t)|A) :=
1

2
|(x, t)|2A ≤ V (x, t) ≤ k2

2
|(x, t)|2A =: α2 (|(x, t)|A)

V x(x, t)f(x, t) + V t(x, t) =− (x− xd(t))
¡
x3 − xd(t)

3
¢
=: −α3(|(x, t)|A).

Recall the property (x− y)(d(x)− d(y)) > 0, ∀x 6= y, of a monotonically strictly
increasing function d(x). Using this with d(x) = x3 shows that α3 is a positive
definite function, and A is therefore UGAS according to Theorem 2.5.



Chapter 4

Convergence analysis

Many systems have stronger properties than only stability. A UGS system
may also have internal signals that converge to some value, often to zero. For
such convergence analysis the most commonly used result is Barbalat’s Lemma
(Barbălat; 1959):

Lemma 4.1 (Barbălat) Let φ : R≥0 → R be a uniformly continuous function
on [0,∞). Suppose that limt→∞

R t
0
φ(τ)dτ exists and is finite. Then

φ(t)→ 0 as t→∞.

Proof. Khalil (2002, Lemma 8.2).

A corollary is the following:

Corollary 4.2 If a function φ : R≥0 → R satisfies φ, φ̇ ∈ L∞ and φ ∈ Lp for
some p ∈ [1,∞), then φ(t)→ 0 as t→∞.

Blending Lyapunov’s direct method and Barbalat’s Lemma gives the the-
orem due to LaSalle (1968) and Yoshizawa (1966). This is next extended in
terms of stability of closed, forward invariant sets:

Theorem 4.3 (LaSalle-Yoshizawa) Let a closed set A ⊂ Rn be a forward
invariant set for (2.4). Suppose for each K ∈ [0,∞) there exists L ∈ [0,∞)
such that |x|A ≤ K ⇒ |f(x)| ≤ L. Then, if there exists a smooth function
V : Rn → R≥0 such that

α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) (4.1)

V̇ = V x(x)f(x) ≤ −α3 (|x|A) ≤ 0, (4.2)

∀x ∈ Rn, where α1, α2 ∈ K∞ and α3 is a continuous positive semidefinite
function, then A is UGS with respect to (2.4) and

lim
t→∞α3 (|x(t, x0)|A) = 0. (4.3)
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If α3 is strengthened to continuous positive definite, then A is UGAS with respect
to (2.4).
Proof. Integration of (4.2) and using the bounds in (4.1) imply that for each
x0 ∈ Rn, ∃K ≥ 0 such that

|x(t, x0)|A ≤ α−11 (V (x(t, x0))) ≤ α−11 (V (x0))

≤ α−11 (α2 (|x0|A)) = ϕ (|x0|A) ≤ K, (4.4)

holds for all t in the maximal interval of existence [0, T ), where
ϕ(·) := α−11 (α2 (·)) ∈ K∞ is independent of T. The bound (4.4) implies by
assumption that there exists L ≥ 0 such that |f(x(t, x0))| ≤ L, ∀t ∈ [0, T ).
Integration along the solutions of (2.4) then yields

|x(t, x0)− x0| ≤
Z t

0

|f(x(s, x0))| ds ≤
Z t

0

Lds ≤ Lt,

∀t ∈ [0, T ), thus excluding finite escape time so that T = ∞. UGS (and UGAS
in the case α3 is positive definite) follows then directly by Theorem 2.5. Since V
is nonincreasing and bounded from below by zero, it has a limit V∞ as t → ∞.
Integrating (4.2) gives

lim
t→∞

Z t

0

α3 (|x(s, x0)|A) ds ≤ − lim
t→∞

Z t

0

V̇ (x(s, x0))ds

= lim
t→∞ {V (x0)− V (x(t, x0))}

= V (x0)− V∞

which shows that the first integral exists and is finite. We next show that t 7→
α3 (|x(t, x0)|A) is uniformly continuous on R≥0. For each ε > 0 we let δ := ε/L,
and for any t1, t2 ∈ R≥0 with |t2 − t1| ≤ δ we get

|x(t2, x0)− x(t1, x0)| ≤
Z t2

t1

|f(x(s, x0))| ds ≤ L |t2 − t1| ≤ ε

which shows that the solution x(t, x0) is uniformly continuous. Next,

||x|A − |y|A| =

¯̄̄̄
inf
v∈A

|x− v|− inf
w∈A

|y − w|
¯̄̄̄

≤ ||x− s|− |y − s|| , s ∈ A
≤ |x− y| , ∀x, y ∈ Rn,

shows that |·|A is globally Lipschitz with Lipschitz constant equal to unity, and
consequently, |·|A is uniformly continuous. Finally, since α3 is continuous, it
is uniformly continuous on the compact set {s ∈ R≥0 : s ≤ K} . Putting this
together we conclude that t 7→ α3 (|x(t, x0)|A) is uniformly continuous, and
limt→∞ α3 (|x(t, x0)|A) = 0 follows from Lemma 4.1.
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Another important tool for convergence analysis is the invariance principle
that can be used to prove convergence to an equilibrium in the case when the
Lyapunov function only yields a negative semidefinite time derivative. One
version is due to Krasovskii (1959), while another is given by LaSalle (1960)
(see Rouche et al. (1977, Theorem 1.3, pp. 50-51) and Khalil (2002, Theorem
4.4, p. 128)). Since these theorems either require periodic systems or solutions
that live in compact sets, they are usually not applicable to general time-varying
systems. We omit these results here.
A powerful theorem that is applicable for time-varying systems and stability

analysis of noncompact sets, is the theorem of Matrosov (1962). A version of this
theorem, applicable to closed, forward invariant sets, is stated here as presented
by Teel et al. (2002):

Theorem 4.4 (Matrosov) Suppose the system (2.4) is finite escape-time de-
tectable through |·|A , and f(x) is continuous. If there exist:

• a locally Lipschitz function V : Rn → R≥0,

• a continuous function U : Rn → R≥0 that for each pair of strictly positive
real numbres δ ≤ ∆, is uniformly continuous on

HA (δ,∆) := {x ∈ Rn : δ ≤ |x|A ≤ ∆}

• class-K∞ functions α1 and α2,

such that

1. α1(|x|A) ≤ V (x) ≤ α2(|x|A) for all x ∈ Rn,

2. V x(x)f(x) ≤ −U(x) ≤ 0 for a.a. x ∈ Rn,

and, for each pair of strictly real numbers δ ≤ ∆,

• a C1 function W : Rn → R,

• strictly positive real numbers ε1, ε2, and ψ

such that

3. max {|W (x)| , |f(x)W (x)|} ≤ ψ for all x ∈ HA (δ,∆) ,

4. x ∈ HA (δ,∆) ∩ {ξ ∈ Rn : U(ξ) ≤ ε1}⇒ |Wx(x)f(x)| ≥ ε2,

then, for the system (2.4), the set A is UGAS.

See Teel et al. (2002) for the proof. Another useful extension of Matrosov’s
Theorem is the version by Loría et al. (2002) where a family of auxiliary func-
tions Vi, i ∈ {1, . . . , j}, are used, instead of a single function W as above, to
provide UGAS of the origin of a time-varying system. Consider the system (1.1)
and suppose that the origin x = 0 is an equilibrium. Then:
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Theorem 4.5 The origin of the system (1.1) is UGAS under the following
assumptions:

1. The origin of the system (1.1) is UGS.

2. There exist integers j,m > 0 and for each ∆ > 0 there exist

• a number µ > 0,

• locally Lipschitz continuous functions Vi : Rn ×R→ R,
i ∈ {1, . . . , j} ,

• a (continuous) function φ : Rn ×R→ Rm, i ∈ {1, . . . , j} ,
• continuous functions Yi : Rn ×Rm → R, i ∈ {1, . . . , j} ,

such that, for a.a. (x, t) ∈ Bn(∆)×R,

max {|Vi(x, t)| , |φ(x, t)|} ≤ µ

V x
i (x, t)f(x, t) + V t

i (x, t) ≤ Yi (x, φ(x, t))

where Bn(r) := {x ∈ Rn : |x| ≤ r} .

3. For each integer k ∈ {1, . . . , j} we have that

{(z, ψ) ∈ Bn(∆)× Bm(µ), Yi(z, ψ) = 0, ∀i ∈ {1, . . . , k − 1}}
⇓

{Yk(z, ψ) ≤ 0} .

4. We have that

{(z, ψ) ∈ Bn(∆)× Bm(µ), Yi(z, ψ) = 0, ∀i ∈ {1, . . . , j}}
⇓

{z = 0} .

See Loría et al. (2002) for the proof.



Chapter 5

Partial set-stability for
interconnected systems

Consider the interconnected system

ẋ1 = f1(x1, x2, u1)
ẋ2 = f2(x1, x2, u2)

(5.1)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the states, u1(t) ∈ U1 ⊂ Rm1 and
u2(t) ∈ U2 ⊂ Rm2 are inputs where U1,U2 are compact sets, and the vector
fields f1, f2 are smooth. We investigate stability of the set

A := {(x1, x2) ∈ Rn1 × Rn2 : |x1|A1
= 0} , (5.2)

where A1 ⊂ Rn1 is a compact set (for instance an equilibrim point x1 = 0). In
this case, we get that |x|A = |x1|A1 where x := col(x1, x2).
The next lemma will be used to guarantee forward completeness:

Lemma 5.1 If for each compact set X ⊂ Rn1 there exist L > 0 and c > 0 such
that:

|f2(ξ, x2, υ)| ≤ L |x2|+ c, ∀x2 ∈ Rn2 , (5.3)

uniformly for all (ξ, υ) ∈ X × U2, that is, f2 satisfies a sector growth condition
in x2, then the system (5.1) is finite escape-time detectable through | · |A.

Proof. We need to show that for each x20 = x2(0), each bounded function
x1(·) ∈ X , and each input function u2(·) ∈ U2, then the solution x2(t) =

x2(t, x20, x1, u2) exists for all t ≥ 0. Define y(x2) := |x2| =
p
x>2 x2 which

is continuously differentiable on Rn2\{0}. Time-differentiation gives

d

dt
y (x2(t)) =

1

|x2(t)|
x2(t)

>f2(x1(t), x2(t), u2(t)) ≤ Ly (x2(t)) + c (5.4)
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which in view of Lemma 1.2 (and the proof of Proposition 1.1) shows that
y(x2(t)) (and therefore x2(t)) is bounded on the maximal interval of existence
[0, T ). Assume that x2(t) has a finite escape-time at T < ∞. Then, for each
M < ∞ there exists τ ∈ [0, T ) such that |x2(τ)| > M. However, this contra-
dicts boundedness of x2(t) on [0, T ), and the solution x2(t) must exist for all
t ≥ 0. As a result, the solution of (5.1) can only escape to infinity if x1(t) grows
unbounded, but this must necessarily be detected through |x|A = |x1|A1

.

This gives the following stability result for (5.2) with respect to (5.1):

Theorem 5.2 Assume that the sector bound (5.3) in Lemma 5.1 holds for
(5.1). If, in addition, there exist a smooth function V : Rn1 × Rn2 → R≥0
and K∞-functions αi, i = 1, . . . , 4, such that

α1 (|x1|A1) ≤ V (x1, x2) ≤ α2 (|x1|A1) (5.5)

and
V x1(x1, x2)f1 (x1, x2, u1)

+V x2(x1, x2)f2 (x1, x2, u2) ≤ −α3 (|x1|A1) + α4 (|u|)
(5.6)

hold, where u := col(u1, u2) ∈ U1×U2, then the system (5.1) is ISS with respect
to the closed, 0-invariant set (5.2). In the case when u1 = 0 and u2 = 0 then
the closed, forward invariant set (5.2) is UGAS with respect to (5.1), and if
αi(|x|A1

) = ci |x|rA1
for i = 1, 2, 3, where c1, c2, c3, r are strictly positive reals

with r ≥ 1, then (5.2) is UGES with respect to (5.1).

Proof. Since

d
dtV (x1(t), x2(t)) ≤ −α (V (x1(t), x2(t))) + α4 (|u(t)|)

≤ − 12α (V (x1(t), x2(t))) ,

for all V (x1(t), x2(t)) ≥ α−1 (2α4 (|u(t)|)) where α = α3 ◦ α−11 ∈ K∞ and u
is bounded, then V (x1(t), x2(t)), and consequently |x1(t)|A1 , is bounded on the
maximal interval of existence [0, T ). Since A1 is compact this implies that x1(t)
is bounded on [0, T ). By Lemma 5.1 this means that the system is finite escape-
time detectable through | · |A, and forward completeness follows. The fact that A
is 0-invariant for (5.1) follows from the above Lyapunov bounds with u(t) ≡ 0.
Recall Definition 3.3 and Theorem 3.4. Since |x|A = |x1|A1

, the function V is a
smooth ISS-Lyapunov function for (5.1) with respect to A, and this proves ISS.
UGAS in the case when u1 = 0 and u2 = 0 follows from the definition of ISS,
and UGES further follows from Theorem 2.5.

Remark 5.1 By defining the output y = h(x1, x2) := |x1|A1 for (5.1), then ISS
for the set A is equivalently characterized by the concept called State-Independent
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Input-to-Output Stability (SIIOS) as defined by Sontag and Wang (2000). In-
deed, the smooth function V in (5.5) and (5.6) becomes a SIIOS-Lyapunov func-
tion for (5.1), and this can be used to deduce that

|y(t, x0, u)| = |x1(t, x0, u)|A1
≤ β

¡
|x10|A1

, t
¢
+ γ (kuk) (5.7)

where β ∈ KL and γ ∈ K. Since |x|A = |x1|A1
ISS of the system (5.1) with

respect to the closed, 0-invariant set (5.2) follows from (5.7). The converse also
holds as shown in Sontag and Wang (2000).
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