NTNU

EXPLORING ADVANCED OBJECT-
ORIENTED CONCEPTS: INHERITANCE,
POLYMORPHISM, AND DESIGN PATTERNS

A trial lecture for a Doctor of Philosophy (Dr. Philos.) degree

Maijid Rouhani
Date: May 2, 2024

NTNU

AGENDA

Introduction

nheritance

Polymorphism

Design Patterns

NTNU I R R B

THE OBJECTIVE

Providing an in-depth exploration and
understanding of inheritance, polymorphism and
design patterns through practical demonstrations.

BASIC PRINCIPES

encapsulation inheritance

OOP
basic
principles

polymorphism abstraction

By embracing OOP principles developers can
create maintainable and scalable applications .

NTN U RlaligeleNeitels

THE CASE: COFFEE MAKER MACHINE

Select
type of
beverage

Prepare
selected
beverage

Collection
of orders

Hot water

Designed by:

(Push button: Designed by:) Designed by:

TYPE THEORY4

. Acts like a set of rules that guides
computers to handle data correctly,
preventing errors.

- Type theory is important in programming
because it helps ensure

- high-quality,

- reliable,

— and efficient code.

It is a broad and extensive field that has
been studied and developed for many
years.

Designed by Freepik

NTN U RlaligeleNeitels

INHERITANCE

= Allows a new class
(subclass) to inherit
roperties and behaviors
rom an existing class
(superclass).

= Subclasses can extend or
override the functionality
of the superclass.

= This promotes code
reusablllt)ﬁ_and helps in

creating a hierarchical
relationship between
classes.

NTN U RaaElizeles

@ Beverage

void prepare()
void pourinCup() |

/N

@ BrewedBeverage

void brew()
void addCondiments()

]

@ ColdBrewedBeverage

- void chillingMethod()

(®) HoterewedBeverage

void boilWater()

A

©) Icedtea

void prepare()

void brew()

void addCondiments()
void chillingMethod()

~
~
N
N
Ny
~
\

©) cofree

void prepare()
void brew()
void addCondiments()

Created by PlantUML

@©) Hotwater

void prepare()
void boilWater()

void boilWater()

NTN U RaaElizeles

YPE THEORY FACILITA
ABSTRACTION

- Provide common
functionality to derived
classes.

ING

@ Beverage

void prepare()
void pourinCup() _

/

@ BrewedBeverage

void brew()
void addCondiments()

]

@ ColdBrewedBeverage

. Can't be instantiated
- void chillingMethod()

(®) HoterewedBeverage

void boilWater()

directly. A

©) Icedtea

void prepare()

void brew()

void addCondiments()
void chillingMethod()

IS

|

I
©) cofree

void prepare()
void brew()
void addCondiments()

Created by PlantUML

\

© HotWater

void prepare()
void boilWater()

q _V
@ Heatable

void boilWater()

TYPE THEORY FACILITATING

POLYMORPHISM
@) Beverage

void prepare()
void pourinCup() _

Different types can be / ‘\

U S e d I nte rCh a n g ea b Iy | f @ BrewedBeverage © HotWater
they adhere to the same o bren e —
i nt e r.[.' ace or ty p e Cl ass /Old addc?;drments() void Doi:Water()
@) coloBrewedseverage. |(B) HotBrewedBeverage ‘
void chillingMethod() void boilwater() j
B a - |
© IcedTea | © éoffee \C\ v

void prepare()
void brew()
void addCondiments()

@ Heatable
void prepare()

void brew() void boilWater()

void addCondiments()

void chillingMethod()

Created by PlantUML

NTN U RaaElizeles

ABSTRACT CLASS EXAMPLE

Definition

abstract class Beverage {abstract void prepare();}
class Tea extends HotBrewedBeverage {..}

Collection<BrewedBeverage> getBrewedBeverageOrders() {
return List.of(new Coffee(), new Tea(), new IcedTea());

}

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {
brewedBeverages.forEach(brewedBeverage -> {
brewedBeverage.prepare();

})s

O]
O
-
O
=
)
<
-

Collection<BrewedBeverage> onlyBrewedBeverages = getBrewedBeverageOrders();

prepareBrewedBeverages(onlyBrewedBeverages);

NTNU

@ aueston

@ Beverage

void prepare()

S S g A . id InCup()
Which of the class instantiations are valid? "°'4"°“r”§p(‘
’(,""f‘ \.\
X

Coffee coffee = new Coffee(); @5"9‘-‘“9039‘/@’398 ©"101WaIer
Beverage beverage = new Beverage(); e _

HotWater hotWater = new HotWater(); ey gl s edol,

void addCondiments() void boilWater()

P

=z |

@ ColdBrewedBeverage 1 @ HotBrewedBeverage
void cm’r’mgMernod() \ void boilWater()
L'TL ;ﬁ.‘n < "
I T \ '

| \ i

5 | > ‘
© IcedTea | ' @ C;offee

void prepare()

void brew()

void addCondiments()
void chillingMethod()

\ ™

{'.\ '|' I‘l
e § ¥
@ Heatable
void prepare()

void brew() void boilWater()
| void addCondiments()

)
O
-
O
=
)
<
-

NTNU

Created by PlantUML

POLYMORPHISM

Select
type of
beverage

Prepare

selected :
beverage Polymorphism

Hot water

(Push button: Designed by:) Designed by:

NTN U Rel¥aalelielsiNge

NTN U BExelagelielaiNgg

POLYMORPHISM

Several different types of

polymorphism:
- Sub-type
- Override

- Parametric

| @ Beverage |

void prepare()
void pourinCup() |

/N

@ BrewedBeverage

void brew()
 void addCondiments()

]

@ ColdBrewedBeverage

| void chillingMethod()

T

©) icedtea

void prepare()

void brew()

void addCondiments()
void chillingMethod()

@ HotBrewedBeverage

void boilWater()

©) cofree

void prepare()
void brew()
void addCondiments()

 © Hotwater

void prepare()
void boilwater()

T

i
i
¥
i
i
¥
I
!
[
[
I
I

I
A",
@ Heatavie

void boilwater()

Created by PlantUML

OVERRIDING

Occurs when a subclass

prow esa s?em ic - @ everage
implementation of a method _
that is already defined in its il

superclass. /4 \

@) Brewedseverage © Hotwater
- The purpose Of overrldlng IS void brew() void prepare()
I‘OVI de a more specialized void addGondiments() | void boilWater()
P lementation of the method
he subclass.
@) coiosreweaseverage. |(®) HotrewedBeverage

void chillingMethod() void boilWater()

- <
N
N
N
N
N

©) Icedtea © cofree QY

void prepare()
void brew()
void addCondiments()

void prepare()
void brew() void boilWater()

NTN U BExelagelielaiNgg

void chillingMethod() R I

Created by PlantUML

CODE EXAMPLE

class Coffee extends HotBrewedBeverage {
public void prepare() {
boilWater();
brew();
pourInCup();
addCondiments();

}

class IcedTea extends ColdBrewedBeverage {
public void prepare() {
brew();
chillingMethod();
pourInCup();
addCondiments();

void chillingMethod()

Il lI
l' 'l
]

© icedTea

void prepare()

void brew()

void addCondiments()
void chillingMethod()

@ ColdBrewedBeverage

NTN U BxelZagelielain

@ Beverage

void prepare()
void pourlnCup()

.,I/’ \'\.
@ BrewedBeverage © HotWater
void brew() void prepare()
void addCondiments()

void boilWater()

f @ HotBrewedBeverage

| void boilWater()

SA 7
{*h ¥
® Heatable

void boilWater()

' void prepare()

void brew()

| void addCondiments() |

Created by PlantUML

NTN U Rxe\agelielaiNa

COFFEE MAKER MACHINE

(Push button: Designed by:

)

It can make different
types of beverages

- Americano
- ESpreSSO Polymorphism
- |lcedTea

. One machine makes

different beverage
types > It iIs generic

GENERIC TYPES: PARAMETERIZED TYPES

©BrewedBeverageMaker @ Beverage
T brewedBeverage void prepare()
void prepare() ' void pourinCup()
Parametric polymorphism: T
. . BrewedBeverage HotWater
Allow for writing code that can ® ©
work with different data types void brew() void prepare()

. ep void addCondiments() void boilWater()
without specifying the actual type] -
until the code is used. Li :

|

. : p < |

@ ColdBrewedBeverage @ HotBrewedBeverage :
c void chillingMethod() void boilWater() :
o Ny |
: SN
S © rcearea . @coee | (© Tea SN ® VAR

S Heatable

— :g:g grr:\?,a)reo void prepare() void prepare()
Z ol A dC(on diments() void brew() void brew() void boilWater()
— void chillingMethod() ' void addCondiments() | ' void addCondiments() |
Z)

THE RELATIONSHIP BETWEEN
SUBTYPES & SUPERTYPES: VARIANCE

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

= Variance is about the relationshi P @ BrewedBeverageMaker . extends BrenedBeyerags @ Beverage |

between subtypes and T brewedBeverage P —
supertypes in the context of [BodinE) . ORI ENRCUR)
generics \ T
- Th ree typ es | ® BrewedBeverage @ HotWater |
. void brew() void prepare()
- Covariance void addCondiments() void boilWater()
o T
- Contravariance fi :
|
« Invariance , : _ _ :
@ ColdBrewedBeverage @ HotBrewedBeverage :
void chillingMethod() - void boilWater() :
|
I
|
|
|

/ AN

© IcedTea © Coffee © Tea a vV

void prepare()

. void prepare() void prepare()
:g;g Z;Z‘é%n P void brew() void brew() void boilWater()
01| void addCondiments() void addCondiments()

void chillingMethod()

NTN U BExelagelielaiNgg

COVARIANCE (UPPER BOUND)

‘T extends BrewedBeverage:

© brewedBeveragemaker - RECRLN20S @ 5everage
1] brewedBeverage void prepare()
void prepare() void pourinCup()
| -) o
Covariance allows a subclass [‘3
to be used where a superclass ' - - -
s expected (“Going in the @) sreweaseverage (©) Hotwater
same direction” relationship) void brew() void prepare()
void addCondiments{() | void boilWater()
:
|
|
: : ; . |
@ ColdBrewedBeverage ® HotBrewedBeverage :
|
§, void chillingMethod() - void boilWater() |
c o |
(OX ~ |
O / > [
& BN '
> } _ . ; ~ |
& © Iceatea ©) coffee ©) Tea A@ V -
i Heatable
;2 :g:g g::ze(l)re() void prepare() void prepare()
= oid addCondiments void brew() void brew() void boilWater()
> i cm"ingMétho : 00 void addCondiments() | | void addCondiments()

COVARIANCE: EXAMPLE

Collection<? extends BrewedBeverage> getAnyBrewedBeverageOrders() {

return List.of(new Coffee(), new Tea(), new IcedTea());

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {

brewedBeverages.forEach(brewedBeverage -> { brewedBeverage.prepare();});

Collection<? extends BrewedBeverage> anyBrewedBeverages = getAnyBrewedBeverageOrders();

prepareBrewedBeverages(anyBrewedBeverages);

NTN U BxelZagelielain

0 QUESTION

Will this code compile?

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {
brewedBeverages.forEach(brewedBeverage -> {brewedBeverage.prepare();});

}

Collection<? extends Beverage> anyBeverages = getAnyBeverageOrders();

prepareBrewedBeverages(anyBeverages);

NTN U BxelZagelielain

CONTRAVARIANCE (LOWER BOUND)

' T extends BrewedBeverage | '
© Brewedsevera\;Maker --------------------------------------- @) Beverage
i brewedBeverag& void prepare()
_ void prepare() void pourinCup()

Contravariance means that a \ / jk
method in a subclass can accept | .

parameters that are more general @ Brewedseverage ©H°t/ iz
than the parameters accepted by void brew() L f—
the same method in the void addCondiments() void boilwater()

11 0) . 1 I
superclass ("opposite direction 4

relationship).

@ ColdBrewedBeverage @ HotBrewedBeverage

void chillingMethod() . void boilWater() '
© IcedTea © Coffee © Tea N V

void prepare()

: void prepare() void prepare()
:g:g g;%"ggn — void brew() void brew() void boilWater()
07 void agdCondiments() | | void addCondiments()

void chillingMethod()

NTN U BExelagelielaiNgg

CONTRAVARIANCE: EXAMPLE

Collection<? extends Beverage> getAnyBeverageOrders() {
return List.of(new Coffee(), new Tea(), new IcedTea(), new HotWater());

}

Collection<HotBrewedBeverage> getHotBrewedBeverageOrders() {
return List.of(new Coffee(), new Tea());

}

void prepareHotBrewedBeverage(Collection<? super HotBrewedBeverage> hotBrewedBeverages) {
hotBrewedBeverages.forEach(hotBrewedBeverage -> {

if (hotBrewedBeverage instanceof HotBrewedBeverage)

((HotBrewedBeverage) hotBrewedBeverage).prepare();

Collection<HotBrewedBeverage> hotBrewedBeverages = getHotBrewedBeverageOrders();

prepareHotBrewedBeverage(hotBrewedBeverages);

NTN U BxelZagelielain

NTN U BxelZagelielain

@ aueston

Which of the calls to prepareHotBrewedBeverage() are valide

void prepareHotBrewedBeverage(Collection<? super HotBrewedBeverage> hotBrewedBeverages) {

}

Collection<? extends Beverage> anyBeverages = BeverageFactory.getAnyBeverageOrders();
Collection<? extends BrewedBeverage> anyBrewedBeverages = getAnyBrewedBeverageOrders();
Collection<BrewedBeverage> onlyBrewedBeverages = getBrewedBeverageOrders();
Collection<HotBrewedBeverage> hotBrewedBeverages = getHotBrewedBeverageOrders();

prepareHotBrewedBeverage(anyBeverages);
prepareHotBrewedBeverage(anyBrewedBeverages);
prepareHotBrewedBeverage(onlyBrewedBeverages);
prepareHotBrewedBeverage(hotBrewedBeverages);

INVARIANCE (THE RELATIONSHIP IS FIXED)

' T extends BrewedBeverage: | '
© BrewedBeverageMaker o ity @ Beverage

T brewedBeverage

void prepare()
void prepare() void pourinCup()
It is the strictest form of type \ ZF
relationship and does not allow | ‘ | |
fo r a ny va rl ance | N type @ BrewedBeverage © HotWater
relationships void brew() void prepare()
void addCondiments() void boilWater() _

@ ColdBrewedBeverage @ HotBrewedBeverage

void chillingMethod() void boilWater()

void prepare()

: void prepare() void prepare()
:g:g ELZ“ggn — void brew() void brew() void boilWater()
07 void agdCondiments() | | void addCondiments()

void chillingMethod()

NTN U BExelagelielaiNgg

DESIGN PATTERNS;,

= A general reusable solution to a commonly
occurring problem in software design.

= A template or blueprint that can be applied to
various situations to solve specific design
problems in a consistent and efficient way

» Help developers create software that is more
maintainable, scalable, and flexible

= Some popular design patterns include Singleton,
Factory, Observer, and Template patterns.

NTN U ESelaligeli=ligh

DESIGN PATTERS AND OOP

- These patterns not only tackle
recurring issues but also embody
principles of good object-
oriented programming.

- Design patterns and object-
oriented programming are
intertwined, with design patterns
serving as practical applications
of OOP concepts.

Source: Microsoft PowerPoint

NTN U ESelaligeli=ligh

TEMPLATE DP

= Defines the skeleton of an algorithm in a method,
deferring some steps to subclasses.

= |t allows subclasses to modify certain steps of the
algorithm without changing its structure.

prepare() method sequence:

Implemented in the abstract class: & @HotBrewedBeverage | 1. boilWater()

boilWater() — ——— 2. brew()
- prepare() prepare(y— 3. pourinCup()
o) boilwWater() 4. addCondiments()
O
o
c
< / \
g : : .

© Cofiee Concrete imp[ementation:'\ © Tea Concrete implementation: ™

D r=——_ brew() ~==—_ brew()
Z. 2l addCondiments() orew() addCondiments()
— ~addCondiments() ~addCondiments() |

TEMPLATE DP: ABSTRACTION, INHERITANCE

Algorithm's skeleton Override

abstract class HotBrewedBeverage .. class Coffee/extends HotBrewedBeverage {
void brew() {

@Override
public void prepare() { System.out.println("Dripping Coffee..");

boilWater(); }
brew();
void addCondiments() {

pourInCup();
addCondiments(); System.out.println("Adding Sugar and Milk");

}
}

}

@Override
public void boilWater() { class Tea extends HotBrewedBeverage {
void brew() {

System.out.println("Steeping the tea");

}
}

void addCondiments() {
System.out.println("Adding Lemon");

}

NTNU PEStehZeiE0s

TEMPLATE DP: GENERICS, POLYMORPHISM

class BeverageMaker<T extends Beverage> {
T beverage;

BeverageMaker (T beverage) {
this.beverage = beverage;

}

void prepare() {
beverage.prepare();

}

BeverageMaker<Tea> teaMaker = new BeverageMaker<>(new Tea());
teaMaker.prepare();

BeverageMaker<Coffee> coffeeMaker = new BeverageMaker<>(new Coffee());
coffeeMaker.prepare();

NTNU PEStehZeiE0s

CONCLUDING REMARKS

= Inheritance vs Composition

- Composition is when you add functionality by referencing
other objects

- Relationship
- Composition represents a “has-a” relationship
— Inheritance represents an “is-a” relationship

= Inheritance & composition are two main techniques
for code reuse in OOP.

= "Favor composition over inheritance”

- favouring composition over inheritance makes objects and
classes more reusable, independent, loosely coupled and
focused on single responsibilities.

- Inheritance should only be used when composition cannot
achieve the required behavior.

NTN U ESelgeEns

NTNU I R R B

SUMMARY

Inheritance

Allows classes to inherit properties and behaviors from base classes in a hierarchical
relationship.

Polymorphism
Allows objects of different classes to be treated as objects of a common superclass.

Key advanced concepts like covariance, contravariance were explained in the context
of inheritance and polymorphism.

Design patterns
Provide general reusable solutions to commonly occurring problems in software design.
The template pattern was demonstrated as an example.

The signiﬂcance of these advanced OOP concepts is that they help create
reusable, adaptable and maintainable software, which are important for
robust large-scale applications.

The objective of the lecture was to gain a deeper understanding of these
concepts and learn how to properly apply them when designing object-
oriented programes.

NTNU

REFERENCES

. L’I] Oracle (2022), Oracle Java Documentation. Retrieved Mars 14, 2024, from
ttps://docs.oracle.com/javase/tutorial/java/concepts/object.html

= [2] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: Abstraction and reuse of
object-oriented design. In ECOOP’93—Ok§ect-Or|ented Programmln?: 7th European Conference
Kaiserslautern, Germany, July 26-30, 199 431

Proceedings 7 (pp. 406-431). Springer Berlin Heidelberg.

= [3]Barnes, D. J., Kélling, M., & Gosling, J. (2006). Objects First with Java: A practical introduction using
lued (p. 520). Pearson/Prentice Hall.

= [4] Powered by Al and the LinkedIn communit§&2024). What is type theory and how is it used in
ﬁrogrammln? languages? Retrieved Mars 10, 2024, from _
ttps://www.linkedin.Com/advice/3/what-type-theory-how-used-programming-languages-
mjyOf?trk=public post main-feed-card feed-article-content

. LS] Veerpal Brar (June 30, 2021). Inheritance Vs Composition. Retrieved Mars 12, 2024, from
ttps://veerpalbrar.github.io/blog/2021/06/30/Inheritance-vs-Composition

= [6] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of reusable object-
oriented software. Pearson Deutschland GmbH.

. P] Eliza Taylor (February 8, 2024). 4 Principles of Object-Oriented Programming. Retrieved Mars 14, 2024,
rom https//www.theknowledgeacademy.com/blog/principles-of-objéct-oriented-programming/

. [\E/Bl] ABHAY S. (April 27, 2023). The Importance of Object-Oriented Programming (OOP) in Java. Retrieved
bahrs 14, 20h2/ from https://www.linkedin.com/pulse/importance-object-oriented-programming-oop-java-
abhay-sing

NTNU

THANK YOU

FOR YOUR ATTENTION

Designed by: Freepik

INVARIANCE: EXAMPLE

BrewedBeverageMaker<HotBrewedBeverage> hotBrewedBeverageMaker =
new BrewedBeverageMaker<>(new Coffee());

BrewedBeverageMaker<Coffee> coffeeMaker2 =
(BrewedBeverageMaker<Coffee>)hotBrewedBeverageMaker;

NTN U BxelZagelielain

