
Tr
ia

l L
e

c
tu

re
Tr

ia
l L

e
c

tu
re

EXPLORING ADVANCED OBJECT-
ORIENTED CONCEPTS: INHERITANCE,
POLYMORPHISM, AND DESIGN PATTERNS

A trial lecture for a Doctor of Philosophy (Dr. Philos.) degree

Majid Rouhani
Date: May 2, 2024

Tr
ia

l L
e

c
tu

reAGENDA

Introduction

Inheritance

Polymorphism

Design Patterns

2

Tr
ia

l L
e

c
tu

reTHE OBJECTIVE

Providing an in-depth exploration and
understanding of inheritance, polymorphism and
design patterns through practical demonstrations.

Tr
ia

l L
e

c
tu

re

BASIC PRINCIPES

By embracing OOP principles developers can
create maintainable and scalable applications [8].

encapsulation inheritance

polymorphism abstraction

OOP
basic

principles

In
tr

o
d

u
c

tio
n

Tr
ia

l L
e

c
tu

reTHE CASE: COFFEE MAKER MACHINE

Waterlogic (Push button: Designed by: Freepik)

Designed by: Freepik

In
tr

o
d

u
c

tio
n

Select
type of
beverage

Prepare
selected
beverage

Hot water

Designed by: Freepik

Collection
of orders

Tr
ia

l L
e

c
tu

reTYPE THEORY[4]

• Acts like a set of rules that guides
computers to handle data correctly,
preventing errors.

• Type theory is important in programming
because it helps ensure

− high-quality,
− reliable,
− and efficient code.

• It is a broad and extensive field that has
been studied and developed for many
years.

Designed by FreepikIn
tr

o
d

u
c

tio
n

Tr
ia

l L
e

c
tu

re

INHERITANCE

 Allows a new class
(subclass) to inherit
properties and behaviors
from an existing class
(superclass).

 Subclasses can extend or
override the functionality
of the superclass.

 This promotes code
reusability and helps in
creating a hierarchical
relationship between
classes.

In
h

e
rit

a
n

c
e

Created by PlantUML

Tr
ia

l L
e

c
tu

re

TYPE THEORY FACILITATING
ABSTRACTION

• Provide common
functionality to derived
classes.

• Can't be instantiated
directly.

In
h

e
rit

a
n

c
e

Created by PlantUML

Tr
ia

l L
e

c
tu

re

TYPE THEORY FACILITATING
POLYMORPHISM

Different types can be
used interchangeably if
they adhere to the same
interface or type class

In
h

e
rit

a
n

c
e

Created by PlantUML

Tr
ia

l L
e

c
tu

re

ABSTRACT CLASS EXAMPLE

Collection<BrewedBeverage> onlyBrewedBeverages = getBrewedBeverageOrders();

prepareBrewedBeverages(onlyBrewedBeverages);

Definition

Usage

abstract class Beverage {abstract void prepare();}
…

class Tea extends HotBrewedBeverage {…}
…

Collection<BrewedBeverage> getBrewedBeverageOrders() {
 return List.of(new Coffee(), new Tea(), new IcedTea());
}

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {
 brewedBeverages.forEach(brewedBeverage -> {
 brewedBeverage.prepare();
 });
}

In
h

e
rit

a
n

c
e

Tr
ia

l L
e

c
tu

reQUESTION

Which of the class instantiations are valid?

1: Coffee coffee = new Coffee();
2: Beverage beverage = new Beverage();
3: HotWater hotWater = new HotWater();

In
h

e
rit

a
n

c
e

C
re

a
te

d
 b

y
P

la
n

tU
M

L

Tr
ia

l L
e

c
tu

rePOLYMORPHISM

Waterlogic (Push button: Designed by: Freepik)

Select
type of
beverage

Prepare
selected
beverage

Hot water

Designed by: Freepik

Po
ly

m
o

rp
h

is
m

Polymorphism

Tr
ia

l L
e

c
tu

rePOLYMORPHISM

Several different types of
polymorphism:

- Sub-type

- Override

- Parametric

- …

Po
ly

m
o

rp
h

is
m

C
re

a
te

d
 b

y
P

la
n

tU
M

L

Tr
ia

l L
e

c
tu

re

OVERRIDING

 Occurs when a subclass
provides a specific
implementation of a method
that is already defined in its
superclass.

 The purpose of overriding is
to provide a more specialized
implementation of the method
in the subclass.

C
re

a
te

d
 b

y
P

la
n

tU
M

L

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

re

CODE EXAMPLE

class Coffee extends HotBrewedBeverage {
public void prepare() {

boilWater();
brew();
pourInCup();
addCondiments();

}
…
}

class IcedTea extends ColdBrewedBeverage {
public void prepare() {

brew();
chillingMethod();
pourInCup();
addCondiments();

}
…
}

Created by PlantUML

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

reCOFFEE MAKER MACHINE

Waterlogic (Push button: Designed by: Freepik)

Po
ly

m
o

rp
h

is
m

It can make different
types of beverages

- Americano
- Espresso
- IcedTea
- …

One machine makes
different beverage
types > It is generic

Polymorphism

Tr
ia

l L
e

c
tu

re

GENERIC TYPES: PARAMETERIZED TYPES

Parametric polymorphism:

Allow for writing code that can
work with different data types
without specifying the actual type
until the code is used.

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

re

THE RELATIONSHIP BETWEEN
SUBTYPES & SUPERTYPES: VARIANCE

 Variance is about the relationship
between subtypes and
supertypes in the context of
generics

 Three types
• Covariance
• Contravariance
• Invariance

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

re

COVARIANCE (UPPER BOUND)

Covariance allows a subclass
to be used where a superclass
is expected (“Going in the
same direction” relationship)

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

re

COVARIANCE: EXAMPLE

Collection<? extends BrewedBeverage> getAnyBrewedBeverageOrders() {

 return List.of(new Coffee(), new Tea(), new IcedTea());

}

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {

 brewedBeverages.forEach(brewedBeverage -> { brewedBeverage.prepare();});

}

Collection<? extends BrewedBeverage> anyBrewedBeverages = getAnyBrewedBeverageOrders();

prepareBrewedBeverages(anyBrewedBeverages);

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

reQUESTION

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {
 brewedBeverages.forEach(brewedBeverage -> {brewedBeverage.prepare();});
}

Collection<? extends Beverage> anyBeverages = getAnyBeverageOrders();

prepareBrewedBeverages(anyBeverages);

Will this code compile?

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

re

CONTRAVARIANCE (LOWER BOUND)

Contravariance means that a
method in a subclass can accept
parameters that are more general
than the parameters accepted by
the same method in the
superclass ("opposite direction"
relationship).

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

re

CONTRAVARIANCE: EXAMPLE

void prepareHotBrewedBeverage(Collection<? super HotBrewedBeverage> hotBrewedBeverages) {

hotBrewedBeverages.forEach(hotBrewedBeverage -> {

if (hotBrewedBeverage instanceof HotBrewedBeverage)

((HotBrewedBeverage) hotBrewedBeverage).prepare();

});

}

Collection<HotBrewedBeverage> hotBrewedBeverages = getHotBrewedBeverageOrders();

prepareHotBrewedBeverage(hotBrewedBeverages);

Collection<? extends Beverage> getAnyBeverageOrders() {
 return List.of(new Coffee(), new Tea(), new IcedTea(), new HotWater());
}

Collection<HotBrewedBeverage> getHotBrewedBeverageOrders() {
 return List.of(new Coffee(), new Tea());
}

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

reQUESTION

void prepareHotBrewedBeverage(Collection<? super HotBrewedBeverage> hotBrewedBeverages) {
…
}

Collection<? extends Beverage> anyBeverages = BeverageFactory.getAnyBeverageOrders();
Collection<? extends BrewedBeverage> anyBrewedBeverages = getAnyBrewedBeverageOrders();
Collection<BrewedBeverage> onlyBrewedBeverages = getBrewedBeverageOrders();
Collection<HotBrewedBeverage> hotBrewedBeverages = getHotBrewedBeverageOrders();

prepareHotBrewedBeverage(anyBeverages);
prepareHotBrewedBeverage(anyBrewedBeverages);
prepareHotBrewedBeverage(onlyBrewedBeverages);
prepareHotBrewedBeverage(hotBrewedBeverages);

Which of the calls to prepareHotBrewedBeverage() are valid?

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

re

INVARIANCE (THE RELATIONSHIP IS FIXED)

It is the strictest form of type
relationship and does not allow
for any variance in type
relationships

Po
ly

m
o

rp
h

is
m

Tr
ia

l L
e

c
tu

reDESIGN PATTERNS[6]

 A general reusable solution to a commonly
occurring problem in software design.

 A template or blueprint that can be applied to
various situations to solve specific design
problems in a consistent and efficient way

 Help developers create software that is more
• maintainable, scalable, and flexible

 Some popular design patterns include Singleton,
Factory, Observer, and Template patterns.

D
e

si
g

n
 P

a
tt

e
rn

s

Tr
ia

l L
e

c
tu

reDESIGN PATTERS AND OOP

• These patterns not only tackle
recurring issues but also embody
principles of good object-
oriented programming.

• Design patterns and object-
oriented programming are
intertwined, with design patterns
serving as practical applications
of OOP concepts.

Source: Microsoft PowerPoint

D
e

si
g

n
 P

a
tt

e
rn

s

Tr
ia

l L
e

c
tu

re

TEMPLATE DP

 Defines the skeleton of an algorithm in a method,
deferring some steps to subclasses.

 It allows subclasses to modify certain steps of the
algorithm without changing its structure.

D
e

si
g

n
 P

a
tt

e
rn

s

Tr
ia

l L
e

c
tu

re

TEMPLATE DP: ABSTRACTION, INHERITANCE

abstract class HotBrewedBeverage … {
 @Override
 public void prepare() {
 boilWater();
 brew();
 pourInCup();
 addCondiments();
 }

 @Override
 public void boilWater() {
 …
 }
}

class Coffee extends HotBrewedBeverage {
void brew() {

System.out.println("Dripping Coffee…");
}

void addCondiments() {
System.out.println("Adding Sugar and Milk");

}
}

class Tea extends HotBrewedBeverage {
void brew() {

System.out.println("Steeping the tea");
}

void addCondiments() {
System.out.println("Adding Lemon");

}
}

Algorithm's skeleton Override

D
e

si
g

n
 P

a
tt

e
rn

s

Tr
ia

l L
e

c
tu

re

TEMPLATE DP: GENERICS, POLYMORPHISM

class BeverageMaker<T extends Beverage> {
 T beverage;

 BeverageMaker(T beverage) {
 this.beverage = beverage;
 }

 void prepare() {
 beverage.prepare();
 }
}

BeverageMaker<Tea> teaMaker = new BeverageMaker<>(new Tea());
teaMaker.prepare();

BeverageMaker<Coffee> coffeeMaker = new BeverageMaker<>(new Coffee());
coffeeMaker.prepare();

D
e

si
g

n
 P

a
tt

e
rn

s

Tr
ia

l L
e

c
tu

reCONCLUDING REMARKS
 Inheritance vs Composition

• Composition is when you add functionality by referencing
other objects

• Relationship
– Composition represents a “has-a” relationship
– Inheritance represents an “is-a” relationship

 Inheritance & composition are two main techniques
for code reuse in OOP.

 “Favor composition over inheritance”[6]

• favouring composition over inheritance makes objects and
classes more reusable, independent, loosely coupled and
focused on single responsibilities.

• Inheritance should only be used when composition cannot
achieve the required behavior.

D
e

si
g

n
 P

a
tt

e
rn

s

Tr
ia

l L
e

c
tu

reSUMMARY
 Inheritance

• Allows classes to inherit properties and behaviors from base classes in a hierarchical
relationship.

 Polymorphism
• Allows objects of different classes to be treated as objects of a common superclass.
• Key advanced concepts like covariance, contravariance were explained in the context

of inheritance and polymorphism.

 Design patterns
• Provide general reusable solutions to commonly occurring problems in software design.
• The template pattern was demonstrated as an example.

 The significance of these advanced OOP concepts is that they help create
reusable, adaptable and maintainable software, which are important for
robust large-scale applications.

 The objective of the lecture was to gain a deeper understanding of these
concepts and learn how to properly apply them when designing object-
oriented programs.

Tr
ia

l L
e

c
tu

reREFERENCES
 [1] Oracle (2022), Oracle Java Documentation. Retrieved Mars 14, 2024, from

https://docs.oracle.com/javase/tutorial/java/concepts/object.html

 [2] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: Abstraction and reuse of
object-oriented design. In ECOOP’93—Object-Oriented Programming: 7th European Conference
Kaiserslautern, Germany, July 26–30, 1993 Proceedings 7 (pp. 406-431). Springer Berlin Heidelberg.

 [3] Barnes, D. J., Kölling, M., & Gosling, J. (2006). Objects First with Java: A practical introduction using
BlueJ (p. 520). Pearson/Prentice Hall.

 [4] Powered by AI and the LinkedIn community (2024). What is type theory and how is it used in
programming languages? Retrieved Mars 10, 2024, from
https://www.linkedin.com/advice/3/what-type-theory-how-used-programming-languages-
mjy0f?trk=public_post_main-feed-card_feed-article-content

 [5] Veerpal Brar (June 30, 2021). Inheritance Vs Composition. Retrieved Mars 12, 2024, from
https://veerpalbrar.github.io/blog/2021/06/30/Inheritance-vs-Composition

 [6] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of reusable object-
oriented software. Pearson Deutschland GmbH.

 [7] Eliza Taylor (February 8, 2024). 4 Principles of Object-Oriented Programming. Retrieved Mars 14, 2024,
from https://www.theknowledgeacademy.com/blog/principles-of-object-oriented-programming/

 [8] ABHAY S. (April 27, 2023). The Importance of Object-Oriented Programming (OOP) in Java. Retrieved
Mars 14, 2024 from https://www.linkedin.com/pulse/importance-object-oriented-programming-oop-java-
abhay-singh/

Tr
ia

l L
e

c
tu

re

Designed by: Freepik

Tr
ia

l L
e

c
tu

re

INVARIANCE: EXAMPLE

BrewedBeverageMaker<HotBrewedBeverage> hotBrewedBeverageMaker =
 new BrewedBeverageMaker<>(new Coffee());

BrewedBeverageMaker<Coffee> coffeeMaker2 =
 (BrewedBeverageMaker<Coffee>)hotBrewedBeverageMaker; // Compile time error

Po
ly

m
o

rp
h

is
m

