
Tr
ia

l L
e

c
tu

re
Tr

ia
l L

e
c

tu
re

EXPLORING ADVANCED OBJECT-
ORIENTED CONCEPTS: INHERITANCE, 
POLYMORPHISM, AND DESIGN PATTERNS

A trial lecture for a  Doctor of Philosophy (Dr. Philos.) degree

Majid Rouhani
Date: May 2, 2024



Tr
ia

l L
e

c
tu

reAGENDA

Introduction

Inheritance

Polymorphism

Design Patterns

2



Tr
ia

l L
e

c
tu

reTHE OBJECTIVE

Providing an in-depth exploration and 
understanding of inheritance, polymorphism and 
design patterns through practical demonstrations.



Tr
ia

l L
e

c
tu

re

BASIC PRINCIPES

By embracing OOP principles developers can 
create maintainable and scalable applications [8].

encapsulation inheritance

polymorphism abstraction

OOP 
basic 

principles

In
tr

o
d

u
c

tio
n



Tr
ia

l L
e

c
tu

reTHE CASE: COFFEE MAKER MACHINE

Waterlogic (Push button: Designed by: Freepik)

Designed by: Freepik

In
tr

o
d

u
c

tio
n

Select 
type of 
beverage

Prepare 
selected 
beverage

Hot water

Designed by: Freepik

Collection 
of orders



Tr
ia

l L
e

c
tu

reTYPE THEORY[4]

• Acts like a set of rules that guides 
computers to handle data correctly, 
preventing errors.

• Type theory is important in programming 
because it helps ensure 

− high-quality, 
− reliable, 
− and efficient code.

• It is a broad and extensive field that has 
been studied and developed for many 
years.

Designed by FreepikIn
tr

o
d

u
c

tio
n



Tr
ia

l L
e

c
tu

re

INHERITANCE

 Allows a new class 
(subclass) to inherit 
properties and behaviors 
from an existing class 
(superclass).

 Subclasses can extend or 
override the functionality 
of the superclass.

 This promotes code
reusability and helps in 
creating a hierarchical 
relationship between 
classes. 

In
h

e
rit

a
n

c
e

Created by PlantUML



Tr
ia

l L
e

c
tu

re

TYPE THEORY FACILITATING 
ABSTRACTION

• Provide common
functionality to derived 
classes.

• Can't be instantiated 
directly.

In
h

e
rit

a
n

c
e

Created by PlantUML



Tr
ia

l L
e

c
tu

re

TYPE THEORY FACILITATING 
POLYMORPHISM

Different types can be 
used interchangeably if 
they adhere to the same 
interface or type class

In
h

e
rit

a
n

c
e

Created by PlantUML



Tr
ia

l L
e

c
tu

re

ABSTRACT CLASS EXAMPLE

Collection<BrewedBeverage> onlyBrewedBeverages = getBrewedBeverageOrders();

prepareBrewedBeverages(onlyBrewedBeverages);

Definition

Usage

abstract class Beverage {abstract void prepare();}
…

class Tea extends HotBrewedBeverage {…}
…

Collection<BrewedBeverage> getBrewedBeverageOrders() {
    return List.of(new Coffee(), new Tea(), new IcedTea());
}

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {
    brewedBeverages.forEach(brewedBeverage -> {
          brewedBeverage.prepare();
      });
}

In
h

e
rit

a
n

c
e



Tr
ia

l L
e

c
tu

reQUESTION

Which of the class instantiations are valid?

1: Coffee coffee = new Coffee();
2: Beverage beverage = new Beverage();
3: HotWater hotWater = new HotWater();

In
h

e
rit

a
n

c
e

C
re

a
te

d
 b

y 
P

la
n

tU
M

L



Tr
ia

l L
e

c
tu

rePOLYMORPHISM

Waterlogic (Push button: Designed by: Freepik)

Select 
type of 
beverage

Prepare 
selected 
beverage

Hot water

Designed by: Freepik

Po
ly

m
o

rp
h

is
m

Polymorphism



Tr
ia

l L
e

c
tu

rePOLYMORPHISM

Several different types of 
polymorphism:

- Sub-type

- Override

- Parametric

- …

Po
ly

m
o

rp
h

is
m

C
re

a
te

d
 b

y 
P

la
n

tU
M

L



Tr
ia

l L
e

c
tu

re

OVERRIDING

 Occurs when a subclass 
provides a specific 
implementation of a method 
that is already defined in its 
superclass.

 The purpose of overriding is 
to provide a more specialized 
implementation of the method 
in the subclass.

C
re

a
te

d
 b

y 
P

la
n

tU
M

L

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

re

CODE EXAMPLE

class Coffee extends HotBrewedBeverage {
public void prepare() {

boilWater();
brew();
pourInCup();
addCondiments();

}
…
}

class IcedTea extends ColdBrewedBeverage {
public void prepare() {

brew();
chillingMethod();
pourInCup();
addCondiments();

}
…
}

Created by PlantUML

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

reCOFFEE MAKER MACHINE

Waterlogic (Push button: Designed by: Freepik)

Po
ly

m
o

rp
h

is
m

It can make different 
types of beverages

- Americano
- Espresso
- IcedTea
- …

One machine makes 
different beverage 
types > It is generic

Polymorphism



Tr
ia

l L
e

c
tu

re

GENERIC TYPES: PARAMETERIZED TYPES

Parametric polymorphism:

Allow for writing code that can 
work with different data types 
without specifying the actual type 
until the code is used.

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

re

THE RELATIONSHIP BETWEEN 
SUBTYPES & SUPERTYPES: VARIANCE

 Variance is about the relationship 
between subtypes and 
supertypes in the context of 
generics  

 Three types
• Covariance
• Contravariance
• Invariance

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

re

COVARIANCE (UPPER BOUND)

Covariance allows a subclass 
to be used where a superclass 
is expected (“Going in the 
same direction” relationship)

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

re

COVARIANCE: EXAMPLE

Collection<? extends BrewedBeverage> getAnyBrewedBeverageOrders() {

        return List.of(new Coffee(), new Tea(), new IcedTea());

}

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {

 brewedBeverages.forEach(brewedBeverage -> { brewedBeverage.prepare();});

}

Collection<? extends BrewedBeverage> anyBrewedBeverages = getAnyBrewedBeverageOrders();

prepareBrewedBeverages(anyBrewedBeverages);

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

reQUESTION

void prepareBrewedBeverages(Collection<? extends BrewedBeverage> brewedBeverages) {
    brewedBeverages.forEach(brewedBeverage -> {brewedBeverage.prepare();});
}

Collection<? extends Beverage> anyBeverages = getAnyBeverageOrders();

prepareBrewedBeverages(anyBeverages);

Will this code compile?

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

re

CONTRAVARIANCE (LOWER BOUND)

Contravariance means that a 
method in a subclass can accept 
parameters that are more general 
than the parameters accepted by 
the same method in the 
superclass ("opposite direction" 
relationship).

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

re

CONTRAVARIANCE: EXAMPLE

void prepareHotBrewedBeverage(Collection<? super HotBrewedBeverage> hotBrewedBeverages) {

hotBrewedBeverages.forEach(hotBrewedBeverage -> {

if (hotBrewedBeverage instanceof HotBrewedBeverage)

((HotBrewedBeverage) hotBrewedBeverage).prepare();

}); 

}

Collection<HotBrewedBeverage> hotBrewedBeverages = getHotBrewedBeverageOrders();

prepareHotBrewedBeverage(hotBrewedBeverages); 

Collection<? extends Beverage> getAnyBeverageOrders() {
    return List.of(new Coffee(), new Tea(), new IcedTea(), new HotWater());
}

Collection<HotBrewedBeverage> getHotBrewedBeverageOrders() {
    return List.of(new Coffee(), new Tea());
}

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

reQUESTION

void prepareHotBrewedBeverage(Collection<? super HotBrewedBeverage> hotBrewedBeverages) {
…
}

Collection<? extends Beverage> anyBeverages = BeverageFactory.getAnyBeverageOrders();
Collection<? extends BrewedBeverage> anyBrewedBeverages = getAnyBrewedBeverageOrders();
Collection<BrewedBeverage> onlyBrewedBeverages = getBrewedBeverageOrders();
Collection<HotBrewedBeverage> hotBrewedBeverages = getHotBrewedBeverageOrders();

prepareHotBrewedBeverage(anyBeverages);
prepareHotBrewedBeverage(anyBrewedBeverages);
prepareHotBrewedBeverage(onlyBrewedBeverages);
prepareHotBrewedBeverage(hotBrewedBeverages);

Which of the calls to prepareHotBrewedBeverage() are valid?

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

re

INVARIANCE (THE RELATIONSHIP IS FIXED)

It is the strictest form of type 
relationship and does not allow 
for any variance in type 
relationships

Po
ly

m
o

rp
h

is
m



Tr
ia

l L
e

c
tu

reDESIGN PATTERNS[6]

 A general reusable solution to a commonly 
occurring problem in software design. 

 A template or blueprint that can be applied to 
various situations to solve specific design 
problems in a consistent and efficient way

 Help developers create software that is more
• maintainable, scalable, and flexible

 Some popular design patterns include Singleton, 
Factory, Observer, and Template patterns.

D
e

si
g

n
 P

a
tt

e
rn

s



Tr
ia

l L
e

c
tu

reDESIGN PATTERS AND OOP

• These patterns not only tackle 
recurring issues but also embody 
principles of good object-
oriented programming. 

• Design patterns and object-
oriented programming are 
intertwined, with design patterns 
serving as practical applications 
of OOP concepts. 

Source: Microsoft PowerPoint

D
e

si
g

n
 P

a
tt

e
rn

s



Tr
ia

l L
e

c
tu

re

TEMPLATE DP

 Defines the skeleton of an algorithm in a method, 
deferring some steps to subclasses. 

 It allows subclasses to modify certain steps of the 
algorithm without changing its structure.

D
e

si
g

n
 P

a
tt

e
rn

s



Tr
ia

l L
e

c
tu

re

TEMPLATE DP: ABSTRACTION, INHERITANCE

abstract class HotBrewedBeverage … {
    @Override
    public void prepare() {
        boilWater();
        brew();
        pourInCup();
        addCondiments();
    }

    @Override
    public void boilWater() {
 …
    }
}

class Coffee extends HotBrewedBeverage {
void brew() {

System.out.println("Dripping Coffee…");
}

void addCondiments() {
System.out.println("Adding Sugar and Milk");

}
}

class Tea extends HotBrewedBeverage {
void brew() {

System.out.println("Steeping the tea");
}

void addCondiments() {
System.out.println("Adding Lemon");

}
}

Algorithm's skeleton Override

D
e

si
g

n
 P

a
tt

e
rn

s



Tr
ia

l L
e

c
tu

re

TEMPLATE DP: GENERICS, POLYMORPHISM

class BeverageMaker<T extends Beverage> {
    T beverage;

    BeverageMaker(T beverage) {
        this.beverage = beverage;
    }

    void prepare() {
        beverage.prepare();
    }
}

BeverageMaker<Tea> teaMaker = new BeverageMaker<>(new Tea());
teaMaker.prepare();

BeverageMaker<Coffee> coffeeMaker = new BeverageMaker<>(new Coffee());
coffeeMaker.prepare();

D
e

si
g

n
 P

a
tt

e
rn

s



Tr
ia

l L
e

c
tu

reCONCLUDING REMARKS
 Inheritance vs Composition

• Composition is when you add functionality by referencing 
other objects

• Relationship
– Composition represents a “has-a” relationship
– Inheritance represents an “is-a” relationship

 Inheritance & composition are two main techniques 
for code reuse in OOP.

 “Favor composition over inheritance”[6]

• favouring composition over inheritance makes objects and 
classes more reusable, independent, loosely coupled and 
focused on single responsibilities.

• Inheritance should only be used when composition cannot 
achieve the required behavior.

D
e

si
g

n
 P

a
tt

e
rn

s



Tr
ia

l L
e

c
tu

reSUMMARY
 Inheritance 

• Allows classes to inherit properties and behaviors from base classes in a hierarchical 
relationship. 

 Polymorphism
• Allows objects of different classes to be treated as objects of a common superclass. 
• Key advanced concepts like covariance, contravariance were explained in the context 

of inheritance and polymorphism. 

 Design patterns
• Provide general reusable solutions to commonly occurring problems in software design. 
• The template pattern was demonstrated as an example.

 The significance of these advanced OOP concepts is that they help create 
reusable, adaptable and maintainable software, which are important for 
robust large-scale applications. 

 The objective of the lecture was to gain a deeper understanding of these 
concepts and learn how to properly apply them when designing object-
oriented programs.



Tr
ia

l L
e

c
tu

reREFERENCES
 [1] Oracle (2022), Oracle Java Documentation. Retrieved Mars 14, 2024, from  

https://docs.oracle.com/javase/tutorial/java/concepts/object.html

 [2] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: Abstraction and reuse of 
object-oriented design. In ECOOP’93—Object-Oriented Programming: 7th European Conference 
Kaiserslautern, Germany, July 26–30, 1993 Proceedings 7 (pp. 406-431). Springer Berlin Heidelberg.

 [3] Barnes, D. J., Kölling, M., & Gosling, J. (2006). Objects First with Java: A practical introduction using 
BlueJ (p. 520). Pearson/Prentice Hall.

 [4] Powered by AI and the LinkedIn community (2024). What is type theory and how is it used in 
programming languages? Retrieved Mars 10, 2024, from
https://www.linkedin.com/advice/3/what-type-theory-how-used-programming-languages-
mjy0f?trk=public_post_main-feed-card_feed-article-content

 [5] Veerpal Brar (June 30, 2021). Inheritance Vs Composition. Retrieved Mars 12, 2024, from
https://veerpalbrar.github.io/blog/2021/06/30/Inheritance-vs-Composition

 [6] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of reusable object-
oriented software. Pearson Deutschland GmbH.

 [7] Eliza Taylor (February 8, 2024). 4 Principles of Object-Oriented Programming. Retrieved Mars 14, 2024, 
from https://www.theknowledgeacademy.com/blog/principles-of-object-oriented-programming/

 [8] ABHAY S. (April 27, 2023). The Importance of Object-Oriented Programming (OOP) in Java. Retrieved 
Mars 14, 2024 from https://www.linkedin.com/pulse/importance-object-oriented-programming-oop-java-
abhay-singh/



Tr
ia

l L
e

c
tu

re

Designed by: Freepik



Tr
ia

l L
e

c
tu

re

INVARIANCE: EXAMPLE

BrewedBeverageMaker<HotBrewedBeverage> hotBrewedBeverageMaker =
 new BrewedBeverageMaker<>(new Coffee());

BrewedBeverageMaker<Coffee> coffeeMaker2 =
 (BrewedBeverageMaker<Coffee>)hotBrewedBeverageMaker; // Compile time error

Po
ly

m
o

rp
h

is
m


