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Abstract— The growing community of CubeSats vendors
makes it possible to launch and fly novel payloads for targeted
applications by procuring flight-proven CubeSat platforms. The
importance of embedded software for such Commercial Off-
The-Shelf (COTS) based payload systems has increased to
provide more functionality and flexibility. As COTS components
are not designed for space, they warrant extensive software
and hardware testing. The ongoing work on how the payload
software testing procedure is used in the development of
the HYPerspectral Smallsat for Ocean observation (HYPSO-
1) satellite is presented. This paper discusses the strategy of
software development, the challenges that were encountered,
and the lessons learned throughout the process. In particular,
the advantages of rehearsals, reviews, and manual testing are
compared to automated and programmer-driven testing.

I. INTRODUCTION

In this paper, we present the experiences and findings from
software system integration testing of a hyperspectral imager
(HSI) payload for a university CubeSat mission. A picture of
the CubeSat going to space is given in Fig. 2. The HYPSO-1
spacecraft is primarily a science-oriented technology demon-
strator enabling low-cost and high-performance hyperspectral
remote sensing and autonomous onboard processing to col-
lect ocean color data products in collaboration with other
autonomous platforms [1], [2]. The onboard processing is
intended to provide relevant information from and to other
assets.

The HSI collects light reflectance spectra in the visible
to the near-infrared wavelengths. These wavelengths are ob-
servable at the ocean surface and used to monitor important
biomarkers, which can be used for several applications [1].

The HYPSO-1 satellite will be the first scientific small
satellite developed at the Norwegian University of Science
and Technology (NTNU), with a launch planned for Q4
2021. The payload is an in-house developed, low-cost HSI,
mostly based on COTS components [3]. Functional and in-
tegration tests using breadboards and an Engineering Model
(EM), Qualification Model (QM), and Flight Model (FM)
model philosophy have been carried out [4]. Fig. 1 shows
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the relevant project progression during the final part of the
payload development and integration, and the most relevant
test types at different stages. The team is now working on
its second satellite, the HYPSO-2, which will be launched
in 2024.

Contribution

Here we present how the HYPSO-1 team performed the
testing of the payload software, and how testing strategies
were adapted to support our development and integration
challenges. These adaptions made the payload software test-
ing feasible, and possibly adequate, for the size of the team
and the mission’s acceptable risk. The testing focused on the
early use of target hardware and enabled early integration [5].
Rehearsals, reviews, and manual testing are compared to
automated and programmer-driven testing for our system.

Section II presents the background and related work. The
testing strategies are described in section III. The results from
the testing process are described in section IV. A discussion
of the findings and lessons learned are given in section V.
Lastly, in section VI, we provide conclusions.

II. BACKGROUND AND RELATED WORK

The CubeSat standard is a simple small satellite reference
model [6]. This standard is intended for low-cost satellites
with a short project cycle relative to traditional space mis-
sions, both in terms of development, launch, and operations
[7]. A CubeSat is based on the form factor of “cubes” or
“units” with each edge measuring 10 centimeters. These
units can be combined to create satellites with different form
factors, e.g., 1U, 3U, 6U or larger [7]. With this mechanical
envelope standardization, it is possible to launch several
CubeSats from a single launch vehicle, and there are multiple
CubeSat spacecraft and subsystem vendors available. Due to
the standardization of the mechanical interfaces a CubeSat
team can base their choice of vendor freely.

In this paper, the focus is on the development and testing
of the HSI payload as an onboard processing platform, as
well as its integration with the rest of the satellite bus
provided by the CubeSat vendor. The payload processor or
Onboard Processing Unit (OPU) receives and transmits com-
mands and telemetry, as well as raw or processed payload
data, to other satellite bus subsystems. The OPU does not
play a direct role in spacecraft telemetry and telecommand
data management. Those subsystems are provided by the
CubeSat vendor. This simplifies the design of the CubeSat
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Fig. 1: Relevant development and testing timeline for HYPSO-1

and provides more resources in the development of the
payload [7].

The European Cooperation for Space Standardization
(ECSS) body of standards encourages reviews to assure
better documentation, and states it as an opportunity for
stakeholders to get an overview of the system details [6],
[8]. Quality is assured in space missions by reviews and
tests [5], [6]. Tests should demonstrate that the implemen-
tation meets the functional and performance requirements.
CubeSat projects often discover unexpected and undesirable
behavior during testing and integration, and the importance
of these activities are strongly emphasized [4], [5].

In a university setting, there are challenges related to
team organization; such as availability of (qualified) students
at the right time as well as a high turnover [4], [5], [9].
This influences the whole development process; from de-
sign, implementation, test, and delivery. For many university
teams, it is difficult to successfully transfer knowledge to new
team members. Through trial-and-error, the HYPSO-1 team
adopted a version of an agile digital engineering workflow
described in [9]. The design of the software architecture to
accommodate these challenges is not covered here.

To mitigate the lack of a dedicated test team, all team
members are encouraged to contribute to testing. This makes
it even more important to adapt and implement clear and
efficient development and test routines.

Fig. 2: An image of the 6U CubeSat going to space during
final system check at the CubeSat vendors facilities.

Complex On-Board Data Handling systems are typical for
technology demonstrating CubeSats, where more services are
performed onboard. This requires more software to be devel-
oped to interface, control, and operate different subsystems,
which in turn leads to a need for more testing activities.

In the literature, several approaches for software testing
and integration activities of CubeSats have been reported.
The focus is often on Software In the Loop (SIL) [5], [6],
[10], Model In the Loop (MIL) [4], [6], and/or Hardware
In the Loop (HIL) [4]–[6], [10]. SIL focuses on procedures
and functions for isolated units and checks for the expected
input/output relationships. MIL focuses on simulation mod-
els and identification of expected communication flow and
interference. HIL focuses on the behavior of the software
executing on the target hardware, the use of target hardware-
specific functionality, and communication with other subsys-
tems. It is strongly encouraged to use any means possible to
enable testing, preferably on target hardware with a focus on
early integration [5].

Through this paper, we focus on the testing activities used
by the HYPSO-1 team to ensure the desired functionality of
the software deployed on the OPU and finally integrated into
the CubeSat. A summary of the testing strategies and their
focus is given in Tab. I.

III. EMBEDDED SOFTWARE TESTING

Ideally, the payload subsystem is tested in an environment
as close to flight as possible. Here, parts of the operation are
simulated, e.g., procedures for operation and flight, and only
parts of the satellite directly important for the payload are
used. Thus, it is not strictly a HIL-system, as we do not have
any simulated input from all sensors and outputs to virtual
actuators, but rather a Payload-HIL (P-HIL).

Embedded systems are typically tested in different ways
throughout various development stages. For the HYPSO-1
mission we tested the functionality and performance of
communication and image processing independently. The
communication is tested by interfacing the payload with
the other physical satellite bus subsystems. For the onboard
image processing, the development algorithms usually start
as a proof-of-concept prototype in Matlab or Python. If
the concept is promising, it is then transformed into a
C program and tested on a desktop computer. This code
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TABLE I: Testing Strategies, with details in Sec. III-B

Focus Category
Automated workflows focusing on Continuous Integration (CI) for development and deployment HIL SIL
High availability of target hardware for development and subsequent testing. HIL
The development of test suites simulating nominal operations HIL MIL
Rehearsal with trained and untrained operators HIL MIL SIL
Post-launch Testing and Development HIL MIL SIL

is then ported and adapted to the target hardware; where
the processor, power, and memory resources are limited
and thus constrain the operation and performance. In this
stage, target architecture-specific instructions have been used
to improve performance when possible. If appropriate, the
algorithm may be implemented in a hardware-accelerated
form; employing a Field Programmable Gate Array (FPGA).
This process is illustrated in Fig. 3.

As shown in Fig. 1, system and integration tests started
when the first HIL-setup with the OPU was in place in
February 2020. The testing continues as discovered bug fixes
and new features are intended to be updated during flight [1].

A. Testing infrastructure

Fig. 4 shows the basic system architecture for the fully
deployed system. The Payload Controller (PC) is responsible
for propagating commands and responses to and from the
payload. The lightweight and broker-less messaging library
used in parts of the fully deployed system is nanomsg Next
Generation (NNG). The other abbreviations are explained
below.

Fig. 5, 6, and 7 illustrates how multiple subsystems of the
procured CubeSat platform are accessed. Each colored box
has a unique CubeSat Space Protocol (CSP) address for the
given test setup. Different communication pathways can be
tested by using different CSP addresses through a Controller
Area Network (CAN) and internet-based connection to a
FlatSat at the satellite platform vendor’s premises. The
FlatSat is a mimic of the actual CubeSat where components
are installed and connected so that it can be interfaced with
remotely for testing [4].

The software propagating commands or requests from
an operator to the payload uses a service-oriented archi-
tecture based on a request-response pattern. That is, the
operator sends a request via the Command Line Interface
application hypso-cli application on the ground and the
opu-services application running on the OPU sends a
response. The satellite bus and its ground system rely upon
the use of CSP, and the OPU also implements CSP as its
main communication protocol.

FPGACPU

Algorithm
Concept

Desktop 
Implementation

Target Hardware
Implementation

Hardware 
Acceleration

Fig. 3: Illustration of the algorithm development flow. If one
stage passes it may move on to the next, or be revisited.

1) LidSat for development: The LidSat-setup is the most
complete and versatile setup. It includes the OPU and
integrates with the development models and prototypes of
the rest of the satellite bus. It also enables testing of
communication links by UHF-radio in the test-loop, as well
as the Mission Control System (MCS) environment to better
emulate the expected communication interfaces between the
operator and CubeSat, as seen in Fig. 5. This is also used
for the system functional test campaign here called rehearsals
(also known as Test-as-you-fly [4], [5]), covered in Sec. III-
B.4.

2) P-HIL for automated tests: The Payload-HIL in Fig. 6,
featuring only the OPU and an Electrical Power System
(EPS), is mainly used for automated testing. The P-HIL
setup connects to a testing automation server using Jenkins,
capable of running regression tests on Pull Requests (PRs)
and after branches were merged, and periodic performance
tests, as defined by the requirements. It is also possible
to remotely run the Jenkins tests on the LidSat, enabling
automatic tests of system functionality [4].

3) Aid for environmental tests: Environmental test setups,
i.e. the EM and QM of the payload [4] were used when
the payload was tested in the expected thermal and vacuum
conditions. A setup like this is given in Fig. 7. To support the
environmental test campaigns, semi-automated test scripts
allowing controlled repetitions of tests were developed, based
on the same tests used on the P-HIL test setup. In addition,
an electrical Ground Support Equipment set, consisting of
Power Supply Units (PSUs), cable harness for power, and
communication was developed, as it was not deemed expe-
dient to test the flight-proven EPS. The PSU in Fig. 7 can
be regarded as a simplified and manual EPS.

B. Testing Strategies

Several strategies for testing were attempted, to better
understand what worked best for our team. Here are four

HYPSO Spacecraft
OPU

PC

SPIS-band

CANUHF

FC

EPS

Ground Station

RFS-band
GS

RFUHF 
GS

Ground 
station 
server

Mission Control
System 

Mission Operations Center

NNGOperator hypso-cli

Propagation 
service

Database

WEBGRAFANA
telemetry display

CAN
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Fig. 4: Fully deployed system architecture. Onboard Pro-
cessing Unit (OPU), Flight Computer (FC), Electrical Power
System (EPS), Payload Controller (PC), Controller Area
Network (CAN), Ground Station (GS), Radio Frequency
(RF), nanomsg Next Generation (NNG)
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Fig. 5: The LidSat testing setups where different paths
for command propagation is used by utilizing unique CSP
addresses to test communication at different levels.
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Fig. 6: The P-HIL testing setups where the payload and EPS
is accessed via CSP over CAN marked with dashed red line.

EM, QM, FM 
ModelsOPU PSU
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Commands Manual

Commands Test Suites

Fig. 7: The testing setups used for environmental validation
of the payload where it is accessed via CSP over CAN,
marked with dashed red line. The PSU is manually operated
during environmental testing.

high-level descriptions of the testing strategies that were
eventually chosen.

1) Continuous Integration Workflows: As part of the
workflow, procedures and functions are tested using the
Check Unit Testing Framework for C [11]. That is, at each PR
a set of unit tests are executed to check if the input/output
relationship for the functions is still as expected. Ideally,
the tests would be developed first, followed by a function
that meets the defined requirements. Using this development
strategy for our team has proven difficult, possibly due to the
limited timeframe student developers have, and inexperience
in the methodology. As a result, relatively few unit tests have
been developed. Regardless, the tests that exist have helped
to discover undesirable artifacts.

2) Target Hardware for Development and Test: Ensuring
the availability of target hardware for both development and
testing has been a priority. Initial testing is done by the
developer on the target hardware, which helps to identify
basic errors. When the developer regards the code contri-
bution as ready to be merged into the main repository they
open a PR. A review of the written code, as well as a test
of the resulting executable(s), is then performed by other
team members. This will prompt a discussion as to whether
or not the code contribution performs as intended and is
maintainable. Changes can be requested before approval. The
process, further described in [9], has helped us to identify
errors and bugs hidden from the initial developer, as well as
to clarify misunderstandings in functional requirements. An
added benefit is that an overview and understanding of the
codebase is distributed among more team members.

This setup made early integration tests possible, which
is recommended [5]. These tests done during development,
for both new functionality and regression tests, are usually
manually executed with the payload connected to other parts
of the satellite; either locally or through a remote FlatSat.
Infrastructure functionality, e.g., subsystems communication,
execution of remote commands, etc., are tested more fre-
quently as a result. These tests focus on high-level func-
tionality and have uncovered Interface Control Document
(ICD) issues, functional problems with User Intrerface (UI),
illogical programming, and shortcomings of documentation,
among others.

3) Test Suites Simulating Nominal Operations: Auto-
mated tests, where nominal operations are simulated on
the P-HIL, were also made. A Jenkins-server builds a new
version of the software for every merged PR and tests its
performance on target hardware. These test suites can also
be invoked on demand. This has helped us uncover changes
in performance and changes in ICDs, as well as making con-
sistent testing of nominal operations more available across
different communication paths. The P-HIL is configured to
be tested with both the LidSat and a remote FlatSat provided
by the CubeSat vendor. The set of nominal tests were also
used to test the payload during mechanical, thermal, and
vacuum testing, ensuring consistent testing procedures.

4) Rehearsals with Operators: In the rehearsals, an op-
erator simulates how the satellite will be interfaced with
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during the mission. This includes enforcing constraints such
as communication windows, injecting errors on communi-
cation links, and letting the operator carry out complicated
procedures. Participants consisted of both people familiar
with the UI and people who had to rely on documentation.
These rehearsals have revealed functional issues and high-
level problems, as well as uncovering procedural inaccuracies
and illogical UI. It has proven multiple times to be a useful
way to test if the satellite and its interfaces behave as desired,
if the predicted constraints will hinder operations, and if the
documentation is sufficient.

5) Post-launch Testing and Development: The HYPSO-1
satellite is intended to be updated during its lifetime. There
are benefits of having a replica of the system on the ground,
e.g., to test telecommands and updates in a non-operational
environment [5]. We plan to use our existing test setups and
strategies to test new software modules and telecommands,
train operators and verify updates. It is planned to further
extend the existing testing infrastructure, with more replicas
of the CubeSat and Payload.

IV. TESTING RESULTS

In our team, it is the creator of a unit of software who
is responsible for creating unit tests. This can lead to rapid
deployment of tests. However, a risk of this approach is to
create tests that pass, rather than tests that test the current
software for unexpected results.

A majority of the software testing can be automated with
automated test setups. The automated testing has helped
uncover changes in the Command-Line Interface (CLI), as
well as unintended changes in the request-response pattern
between hypso-cli and opu-services. Three different
test suites are run and cover nominal operations of the
satellite at every code change. These test suites will then give
an error if there is an interface change in the commands used
for nominal operations. However, there are still some human
interactions that cannot be automated. This does not reduce
the importance of an automated test setup as it supports
rapid deployment and regression testing. The automated test
setups, i.e. LidSat and P-HIL, do not necessarily test for
new and unexpected states of the system. This can lead
to false confidence in the system, as a system can still
fail in operations despite passing all automated tests. This
potential false confidence supports the use of manual testing,
as done during the code reviews. The manual testing should
be extended to incorporate new tests of new functionality but
this is not done currently.

The issues discovered during code reviews were mainly
concerned with whether or not the proposed changes were
performed as desired. When doing these reviews function-
ality unrelated to the original PR was also tested, and
some issues could be reported as a result. Problems with
illogical UI and limited documentation were also addressed
as part of the review. The code reviews became a good
platform to discuss the proposed changes and often led to
incremental improvements from the original PR. Initially,
these code reviews were highly unorganized, but a more

coherent and effective process emerged when establishing
a bi-weekly three-hour session for code reviews employing
mob programming [12].

The rehearsals performed in the fall of 2020 uncovered
several new issues and areas of improvement for the soft-
ware. These issues were both quality-of-life changes for
the developers and operators, but some were crucial to the
mission. The rehearsals invoke more of the full mission
infrastructure and use more of the available communication
paths than our other tests. This has been helpful to discover
changes in communication performance, issues regarding
scheduling, planning, and timing, and learn how the operator
needs to handle errors during a satellite pass. In addition,
since the communication windows have been constrained, the
rehearsals have also let operators experience the stress related
to performing a set of tasks within each time window. This
experience also leads to the re-design of procedures and the
creation of more high-level functions that aid the operator to
perform tasks more efficiently. The issues resulted in, among
others, the following changes:

• Improved redundancy in the power control of the pay-
load.

• More appropriate default timeouts for file transfer be-
tween subsystems and ground.

• Improved state acknowledgment recovery during trans-
mission loss.

V. DISCUSSION

One challenge for the existing setup is the limited test cov-
erage. Not all of the software units have tests implemented
for them, both with or without target hardware. At the time of
writing, we have 8 test suites testing different services with
a total of 46 (successful) unit tests. It would be beneficial
to be able to test the entire satellite as part of HIL, and
our team attempted to get close to this with the use of a
remote FlatSat, a local FlatSat (i.e. the LidSat), and partial
reconstructions of the expected CubeSat system.

The use of automated testing, i.e. CI, test suites, and the
Jenkins server that connects to P-HIL, lowers the barriers
to perform testing and ensures repeatability in testing pro-
cedures. Within this test configuration, we can perform both
regression and acceptance testing for the satellite payload.
Setting up this test configuration comes at an initial cost,
but makes it easier to perform consistent tests repeatedly.
Thus the overall cost was justified. Setting it up properly
took 2 months. Adding more testing functionality became
easier with this setup and the protocols for creating tests
were established.

Manual testing is labor-intensive but has some clear ad-
vantages. The tester can determine if the code performs as
intended and we have experienced that a different perspective
from a third party has proven fruitful. The process has
also been used to request important changes, both for UI
and for operations, and larger parts of the team became
more familiar with the codebase by doing manual testing.
It is difficult to quantify the amount of manual testing
versus automatic testing that is performed, but more effort is
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definitely put into manual testing. During manual testing, we
have also started to do these sessions using a Remote Mob
Programming-strategy, where one driver is responsible for
sharing their screen and conducting code changes, whilst the
other team members provide helpful comments, questions,
and perspectives [12].

The most labor-intensive testing performed was the re-
hearsals, but they also provided very useful insight in terms
of operations. Over the development period, we conducted
two such rehearsals. During rehearsals, where communica-
tion outages were simulated, it became clear that some of the
needed functionality for operations had not yet been properly
specified. This testing helped us specify and develop that
functionality, while at the same time uncovering completely
new problems that would not be caught with automated
testing or code reviews.

The rigorous and extensive testing strategies used by large
space organizations, such as The European Space Agency
(ESA) are not always feasible for a small CubeSat team,
and they do not guarantee mission success [13]. The testing
strategies given here are not as rigorous or as extensive as
they could be but can prove adequate for the size of the team
and the accepted risk. The rehearsals and the different HIL-
like setups lead to a strong foundation upon which to build
further tests.

VI. CONCLUSION

In this paper we have described the testing strategies
adopted by the HYPSO-1 team in the development of their
first satellite, presented the issues that these strategies un-
covered, and discussed the benefits and limitations of these
testing strategies.

Certain aspects of the mission have not been tested end-to-
end on target hardware before launch. At launch, the planned
image processing pipelines are still under development and
need more testing. These processing pipelines will extend the
capabilities of the payload and are intended to utilize and
provide relevant information from and to other assets [1],
[2].

The time referencing of the actual system has not been
properly tested as the available clock hardware has not
reflected the actual target hardware for this part of the system.
This is a consequence of relying on a remote FlatSat.

Early testing is important, as it permits more time to
resolve issues. Having a testing infrastructure that is available
for as many of the developers and reviewers as possible has
proven very useful. The automated testing setups and the
nominal test suites provide good test repeatability and can be
extended with little additional overhead. The rehearsals and
manual testing during reviews have helped discover other
problems that were not caught by automated testing. Having
an operator in the loop when designing software is deemed
crucial for mission success, in addition to automated testing.
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