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Abstract— Sporadic ocean color events with characteristic
spectra, in particular algal blooms, call for quick delivery of
high-resolution remote sensing data for further analysis. Moti-
vated by this, we present the mission design for HYPerspectral
Smallsat for Ocean observation (HYPSO-1), a 6U CubeSat
at 500 km orbital altitude hosting a custom-built pushbroom
hyperspectral imager with wavelengths 387–801 nm at 3.33 nm
bandpass and a swath width of 70 km. The imager’s expected
signal-to-noise ratio is characterized for typical open ocean
water-leaving radiance which can be flexibly increased by binning
pixels. Using geometric principles, the satellite shall execute a
slew maneuver during a scan to induce greater overlap in the
pixels with a goal to enable better than 100 m spatial resolution.
Since high-dimensional hyperspectral data need to be transmitted
over limited space-to-ground communications, we have designed
a modular FPGA-based onboard image processing architecture
that significantly reduces the data size without losing important
spatial-spectral information. We justify the concept with a simu-
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lated scenario where HYPSO-1 first collects numerous hyperspec-
tral images of a 40 km by 40 km coastal area in Norway and
aims to immediately transfer these to nearby ground stations.
Using CCSDS123 lossless compression, it takes about one orbital
revolution to obtain the complete data product when considering
overhead in satellite bus communications and less than 10 min
without the overhead. It is shown that even better latency can
be achieved with more advanced onboard processing algorithms.

Index Terms— Hyperspectral imaging, HYPerspectral Smallsat
for Ocean observation (HYPSO-1), ocean color, onboard process-
ing, space optics.

I. INTRODUCTION

HYPERSPECTRAL and multispectral remote sensing are
typically utilized in the context of monitoring colorful

processes with large spatiotemporal extents. A commonly
observed substance is chlorophyll, a light-absorbing pigment
involved in phytoplankton photosynthesis which may have
clear signatures at the water surface [1]. Blooms of phyto-
plankton are variable in coloration, often categorized as “red
tides,” “green tides,” or “brown tides” with wavelengths from
400 nm to 700 nm [1]–[6]. They sporadically appear world-
wide with varying biomass concentrations, cover regions from
tens to hundreds of square kilometers, and may last from a few
hours to several days [7]. The malignant ones, often identified
as harmful algal blooms (HABs) or cyanobacteria, may cause
considerable damage to marine environments, ecosystems, and
sustainable food sources such as fish [8]. According to [2],
numerous plankton and algae types can be distinguished or
inferred from their photosynthetic pigments or fluorescence,
where using hyperspectral data with high spectral resolution
may reveal subtle spectral inflections imparted by the specific
pigment complements. However, the potential harmfulness
of algae is not easily determined from optical remote sens-
ing alone and is mostly attributed to in situ measurements
in the upper water-column [2], [9]. Moreover, challenges
in remote sensing also include atmospheric absorption and
scattering of light [10], and the fact that the majority of
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biomass typically resides between 10 m and 15 m below the
water surface [2]. Such heterogeneous and potentially dark
targets often demand a combination of larger space-based
optics with a high signal-to-noise ratio (SNR), rigorous
atmospheric correction schemes, and contemporary in situ
measurements [11], [12].

Traditional Earth observation (EO) satellites with large
optical systems, many of them being operated by the National
Aeronautics and Space Administration (NASA) and Euro-
pean Space Agency (ESA), are designed to cover the Earth
on a global scale and provide excellent ocean color data
with medium-to-high spatial resolution [13], [14], but they
normally offer low spectral resolution and revisit times of
several days [15]. For example, using multispectral data
products from Sentinel-3’s Ocean Color and Land Instru-
ment (OLCI) for detecting cyanobacterial blooms based on
pigments only, e.g., phycocyanin and chlorophyll-a, can be
inaccurate when analyzed by traditional ground-based algo-
rithms, unless employing methods that utilize band ratios
from a carefully selected set of spectral bands [16]. Providing
greater flexibility in choosing between more than a hundred
spectral bands [17], hyperspectral remote sensing missions
have shown great promise in ocean color remote sensing,
e.g., [18]–[26]. Still, many of these are stand-alone satellite
systems that lack the operational flexibility and revisit times
to monitor dynamic areas on demand [27]. They also depend
on rigorous data processing methods being usually performed
on the ground together with careful synergistic analysis of
in situ measurements, which can be time-consuming before
dissemination.

A small satellite, often categorized as nano- or microsatel-
lite, usually has a much shorter lifetime compared to the
traditional large satellites but can frequently be replaced
with new ones that have up-to-date technology and lower
development and production costs [28]. Given the recent
advances in sensor technology, miniaturization, and availabil-
ity of commercial-off-the-shelf (COTS) products, custom-built
hyperspectral imagers have now also become suitable for use
in nanosatellites [29]–[31]. Instead of mapping on a global
scale, such single-purpose hyperspectral imaging nanosatel-
lites may focus on regularly observing smaller dedicated areas
to characterize the temporal variation in both spatial and
spectral domains, also allowing for smaller camera systems
with relatively narrow field of view (FoV). Choosing target
area sizes to be at the mesoscale or submesoscale potentially
enables small satellites to support a network of in situ assets
that collect samples or capture images at finer resolution,
e.g., unmanned aerial vehicles (UAVs), unmanned surface
vehicles (USVs), autonomous underwater vehicles (AUVs),
and buoys [8]. To make such a multiagent network work
efficiently in real-time and decreasing the operational costs,
the remote sensing data must be downloaded quickly to keep
the validity in the highly time-varying information.

It is well known that hyperspectral imagers generate a
lot of data that consequently take a long time to transfer
from space to ground due to limited onboard computational
resources, bandwidth, and coverage to ground stations [27],
[32]. Reducing data size on board is, therefore, crucial to

satisfy real-time requirements but can be difficult given the
restricted power available per orbit, especially for small
satellites. However, onboard processing has developed con-
siderably for remote sensing in recent years [33], in par-
ticular by utilizing reconfigurable Field-Programmable Gate
Arrays (FPGAs) that have high computational speed and
low power consumption [34], [35]. Enabling algorithm paral-
lelism, an FPGA-based image processing architecture allows
modular arrangements of algorithms and processing pipelines.
Beyond onboard lossless compression of hyperspectral images,
then tailored data products may flexibly contain only the
necessary spatial-spectral information extracted from dimen-
sionality reduction, target detection, or classification [36], [37].
The resulting data size reduction grants shorter waiting time
between image acquisition to data distribution which can
therefore be utilized for real-time applications, e.g., directly
supporting algal bloom warning systems [6], [38], [39].

With the goal to provide tailored hyperspectral data products
with low latency to support marine environmental monitoring,
we present the mission design for the upcoming HYPerspectral
Smallsat for Ocean observation (HYPSO-1) developed at the
Norwegian University of Science and Technology (NTNU).
This article is organized as follows. Section II describes
the needs in ocean color remote sensing that motivate the
choice of imager design, HYPSO-1’s remote sensing capa-
bilities, and the concept of operations (CONOPS). Section III
presents the design and performance of the custom-made push-
broom hyperspectral imager payload. Section IV describes
HYPSO-1’s remote sensing technique to enhance the spa-
tial resolution in hyperspectral data by performing a slew
maneuver throughout imaging. In Section V we present
the HYPSO-1 6U CubeSat, its subsystems, and its power
budget for consecutive heavy-duty operations that involve
uplink, hyperspectral imaging, onboard processing, and down-
link sequences. In Section VI, we describe HYPSO-1’s
FPGA-based onboard image processing pipelines, provide a
survey of potential algorithms for onboard implementation,
and justify the mission feasibility regarding the overall latency
from image acquisition to data distribution for selected imag-
ing modes and tailored data products. Finally, conclusions are
provided in Section VII.

II. MISSION DESIGN

A. Objectives

The mission objective for HYPSO-1 is to monitor spa-
tiotemporal extents of biomass and primary production in the
ocean using the visual and near-infrared (VIS-NIR) wave-
lengths from 400 nm to 800 nm, while quickly distributing
the data to end-users in near real-time. The key user needs in
ocean color remote sensing are:

1) images should have spatial resolution better than 100 m
per pixel [15], [40];

2) raw hyperspectral data should have spectral resolution
of 5 nm for VIS-NIR wavelengths [15], [40];

3) the SNR at Top of Atmosphere (ToA) should be
greater than 400 in visual wavelengths for open
ocean water [41], whereas the SNR of atmospherically
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Fig. 1. Illustration of a pushbroom hyperspectral imager collecting Nx
frames, or lines, consisting of Nλ and Ny pixels.

corrected water-leaving signals should be between
40–100 [42];

4) data latency should be less than 1 h [43]; and
5) revisit times to dedicated areas of interest should be

3 h–72 h [43], [44].
Because HYPSO-1 is a single nanosatellite, but the first in
a prospective constellation, we focus on working toward the
recommendations 1), 2), 3) and 4).

B. Image Acquisition Basics

Even though many sorts of spectrometers can be integrated
on aerial or space platforms [45], the passive pushbroom
imager is an attractive choice that collects a good amount of
light [37], [46], [47]. Low-cost COTS components have also
made this type more accessible, flexible, and affordable [29],
hence chosen as the payload design for HYPSO-1.

A pushbroom imager sequentially scans several lines Nx ,
each consisting of instantaneous spatial pixels Ny and spectral
pixels Nλ, ultimately forming a hyperspectral data cube. Fig. 1
shows the pushbroom imager at altitude H with its scan
oriented toward the velocity direction, where Ny pixels are
counted perpendicular to the scan direction and Nλ pixels
carry the spectral information. The vertical and horizontal
FoV components are εw and εh , respectively. The integration
time �t = 1/FPS = τ + δt is the elapsed time between two
consecutive lines, or frames, where frames per second (FPS)
is the frame rate, τ is the camera exposure time and δt is the
read-out time.

With the imager mounted in a satellite moving at high
orbital speed, the optically induced drawback is generally
much lower spatial resolution along the scan direction.
A work-around is to overlap more frames by slowly tilting the
imager backward as it translates forward, similar to the method
described in [48]. This results in a greater amount of partial
overlap in the pixels, an effect that can be utilized to enhance
SNR or spatial resolution as tradeoffs using image restoration
techniques, e.g., deconvolution or super-resolution [49]. For
clarity, the Euclidean distance on the ground between the same
pixel in two consecutive frames is defined as the Sequential

Ground Sampling Distance (SGSD) which is not to be con-
fused with the Ground Sampling Distance (GSD) being the
ground distance between adjacent pixels in one instantaneous
frame.

C. Concept of Operations

The HYPSO-1 mission is mainly designed based on trade-
offs in spatial resolution, spectral resolution, SNR, data size,
coverage to ground stations, and preferred locations to be
observed. HYPSO-1 will be launched to a 500 km altitude
Sun-Synchronous Orbit (SSO) with Local Time of Descending
Node (LTDN) at 10:00 Universal Time Coordinated (UTC),
thus granting morning access to the Norwegian coastline
during Spring and Summer seasons while also avoiding detri-
mental sunglint effects [50].

The CONOPS for HYPSO-1, illustrated in Fig. 2, enables
five main capabilities:

1) after receiving uploaded telecommands and updates
(e.g., camera settings) from a nearby ground station,
HYPSO-1 is scheduled to orient its hyperspectral imager
to start scanning a predefined region;

2) HYPSO-1 executes a single-axis slew maneuver so that
the imager’s footprint slowly rotates backward with
respect to the velocity direction. With a high camera
frame rate, the goal is to enable an SGSD better than
100 m;

3) after imaging, the hyperspectral data cube is imme-
diately processed onboard to reduce its data size and
therefore speeding up download on the ground;

4) in the case of quick downlink after observing a coastal
region in Norway, the selected ground station network
includes S-band ground stations at NTNU in Trondheim,
Norway, and Kongsberg Satellite Services (KSAT) in
Svalbard, Norway, and Puertollano, Spain; and

5) the Mission Control Center at NTNU Trondheim oper-
ates several robotic assets, such as UAVs, USVs, and
AUVs, that may collect data in situ if within range of
the observed area.

D. System Capabilities

1) Imaging Modes: The hyperspectral imager has three
main configurations for image acquisition:

1) high-resolution mode: enables high spatial resolution
with narrow swath width and high frame rate settings;

2) wide FoV mode: enables a wider swath but at coarser
spatial resolution; and

3) diagnostics mode: provides raw data at full sensor res-
olution mainly to be used for in-orbit calibration and
characterization.

2) Attitude Determination & Control System: To obtain
better than 100 m spatial resolution requires a precise attitude
determination and control system (ADCS) [30]. For a pointing
or maneuvering satellite, attitude sensor and actuator noise
(e.g., reaction wheel jittering) will result in a nonuniform
distribution of images across the observed scene. The attitude
inaccuracies can be categorized by attitude control and knowl-
edge errors, bearing in mind that the latter affects the former.
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Fig. 2. CONOPS for HYPSO-1 where it 1) receives uploads from a nearby ground station; 2) acquires hyperspectral images during a slew maneuver;
3) immediately processes the images on board; 4) downlinks the data to nearby ground stations; and 5) supports in situ assets in the vicinity that may be
deployed to the observed scene for closer investigation.

To achieve consistent image registration or simply knowing
the location of each pixel to the accuracy of 100 m, e.g., for
georeferencing, then good performance is needed for attitude
and position determination and time synchronization between
the images, attitude data, and position data.

3) Onboard Image Processing: The image processing archi-
tecture shall be modular by design, alleviate the satellite oper-
ations, and quickly provide tailored data upon requests from
end-users. To make such data products useful, the high-level
goals are to:

1) employ lossless compression on hyperspectral data to
reduce their size on board for quicker download;

2) extract relevant spatial-spectral information in the
water-leaving signals by using e.g., dimensionality
reduction, target detection or classification;

3) register and rectify the images, and utilize the SGSD
to achieve better than 100 m spatial resolution by using
image restoration methods, e.g., deconvolution or super-
resolution; and

4) be able to transform pixel indices to geodetic latitude
and longitude, e.g., using georeferencing, such that the
coordinates may guide in situ assets to specific locations
of interest.

The hyperspectral data products shall normally be analyzed in
synergy with other available remote sensing data and in situ
measurements, especially during HYPSO-1’s commissioning
phase. In addition, modeling and simulation tools shall provide
estimated radiometric, spectral, and spatial properties of a
simulated ocean color event to support data analysis and
atmospheric correction [51], [52].

III. HYPERSPECTRAL IMAGER DESIGN

A. Optics

An optical diagram of HYPSO-1’s pushbroom hyperspectral
imager is shown in Fig. 3 with its cross section parallel to
the refraction axis [37]. The components are: 1) a front lens

with aperture diameter D0 and focal length F0; 2) an entrance
slit with height hslit and width wslit; 3) a collimator lens
with aperture diameter D1 and focal length F1; 4) a grating
receiving the incoming light at angle α = 0◦ then diffracting
it at angle β with respect to the grating normal; 5) a detector
lens with aperture diameter D2 and focal length F2; and
finally 6) an image sensor. The FoV components along and
perpendicular to the scan direction are

tan
(εw

2

)
= wslit

2F0
(1a)

tan
(εh

2

)
= hslit

2F0
. (1b)

Assuming no loss in light transmission from the front lens
to the image sensor, the geometric etendue can expressed as

G = π
D2

0

4F2
0

cos(β)wdhd (2)

where the projection of the slit dimensions onto the image
sensor are

wd = wslit F2

cos(β)F1
(3a)

hd = hslit
F2

F1
(3b)

and β is the diffraction angle assumed at the center wave-
length [53]. Shown to the right in Fig. 3, the number of
illuminated pixels along the projected slit width and height
are

Nw = wd

�pλ
(4a)

Nh = hd

�py
(4b)

where �pλ and �py are the pixel width and height,
respectively.

The theoretical spectral bandpass for the optical system
is the recorded full width at half maximum (FWHM) of
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Fig. 3. Schematic of the grating-type pushbroom hyperspectral imager. Light is first focused into a slit, collimated into a grating which then diffracts the
light to an image sensor. Shown to the right, the projected slit onto the image sensor plane with effective width wd and height hd corresponds to one spectral
band. The camera’s mechanical layout may block some of the light as indicated by gray pixels and weaker signals can be expected in pixels at the edges
because of partial illumination.

Fig. 4. Hyperspectral imager payload assembled for integration into
HYPSO-1.

a monochromatic spectral line and indicates how well the
adjacent spectral bands are resolved. Assuming no degradation
due to aberrations and diffraction, the spectral bandpass may
be approximated as

�λ ≈ gwslit

κF1
(5)

where g is the groove spacing of the grating and κ is the
spectral order [53].

B. Payload Flight Model

HYPSO-1’s hyperspectral imager, shown in Fig. 4,
is designed to provide a spectral range from 400 nm to 800 nm
at a bandpass of 3.33 nm and is mainly built using COTS
components from Thorlabs and Edmund Optics along with
a few custom machined parts. The F-numbers of the lenses
are here set as F0/# = F1/# = 2.8 and F2/# = 2 to avoid
detrimental stray light effects, even though in theory they
should be equal to maximize the light throughput.

A SONY IMX249 image sensor is mounted in an indus-
trial camera head from Imaging Development Systems (IDS)
GmbH. It has 1936 × 1216 pixels with a reported well depth of
about 33 022 e− (electrons) per pixel, equivalent to maximum
SNR of approximately 181.6. The camera’s upper limit on
frame rate is FPS = 47 but in practice, this can be lower

TABLE I

HYPERSPECTRAL IMAGER SPECIFICATIONS

depending on the data throughput and the chosen number of
binning operations, subsampling, bit-depth, and area of interest
(AoI), where the latter is the selected number of pixels in
a custom image sensor window. For more details, the key
specifications of the payload instrument are given in Table I.

C. Characterizing the SNR

Obtaining high SNR in hyperspectral imagery improves
the accuracy in discriminating dimmer optical constituents
in water scenes which is important for in-orbit calibra-
tion, atmospheric correction, and feature extraction in image
processing. Starting with the total ToA radiance reaching the
imager’s front lens, it is comprised of several components that
are functions of wavelength and viewing direction [54], [55]

LToA
tot = LToA

atm + tdir Lsg + tdiff Lwc + tdiff Lwater (6)
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where LToA
atm (λ) is the combined radiance due to Rayleigh,

aerosol, Rayleigh-aerosol interaction, and sky background,
and Lsg(λ), Lwc(λ) and Lwater(λ) are the sun glint radiance,
sun and sky radiance reflected by whitecaps and foam, and
water-leaving radiance, respectively. The terms tdir(λ, γ ; H )
and tdiff(λ, γ ; H ) are the direct and diffuse transmittances
along the imager’s optical path that are governed by wave-
length λ, viewing angle γ , and altitude above the surface H .

Writing LToA
ref (λ) as an arbitrary reference signal to

be detected at ToA, it can therefore be a chosen term
of interest from (6), for example, the total ToA radi-
ance LToA

ref (λ) = LToA
tot (λ) or a component therein, e.g.,

the water-leaving radiance LToA
ref (λ) = LToA

water(λ). The photon
flux reaching the sensor per spectral bandpass is then

�̇ToA
ref = LToA

ref η0η1ηGη2Gλ
�λ

hplanckc
(7)

where LToA
ref (λ) is the reference radiance, η0, η1, η2 are the

optical efficiencies of the front, collimator, and detector lenses,
respectively, ηG(λ) is the grating efficiency, c is the speed
of light, and hplanck = 6.62607015 × 10−34 J · s is Planck’s
constant. The count of photon-electrons per pixel is therefore

Cref = ηQ�̇
ToA
ref τ

NwNh
(8)

where ηQ(λ) is the quantum efficiency of the image sensor.
In general form, the SNR for a reference ToA signal in one
pixel, i.e., a [1, 1] window, can be expressed as

SNRref,[1,1] = Cref√
Cref + Cdark + C2

read-out + C2
quant

(9)

where Cref and Cdark have Poisson probability distributions,
and Cread-out and Cquant have Gaussian probability distributions
with zero mean [56], [57]. The average shot noise registered
due to the sensor’s dark current idark is Cdark = idark�t , Cread-out

is the standard deviation of electrons in the sensor read-out
circuits, and Cquant = Cmax/(2bit-depth

√
12) is the standard devi-

ation of quantization noise where Cmax is the well-depth and
bit-depth is that of the analog–digital converter (ADC).

1) Binning: With the ability to bin pixels on the image
sensor, photon-electrons can be gathered from adjacent pix-
els to create a merged pixel resulting in the signal being
increased proportionally with the square root of a number
of binning operations. To increase the SNR without losing
spectral resolution, one may therefore fully bin Bλ = �Nw�
pixels that approximately contain one spectral bandpass,
where Bλ is the number of binning operations in the
spectral dimension and �·� indicates rounding up a value
to the nearest integer. This results in an effective SNR
of SNRref,[�Nw�,1] ≈ √

NwSN Rref,[1,1]. Similarly, binning By

instantaneous spatial pixels along hd also results in higher
SNR but then at the cost of spatial resolution.

2) SNR for Total ToA Radiance: Earth’s atmosphere
reflects a lot of sunlight and significantly distorts visible
light traveling from the surface until reaching space, such
that the actual water-leaving radiance Lwater may consti-
tute a mere 10% of the total ToA radiance LToA

tot [58], [59].
LToA

tot for open ocean water scenes can typically range

Fig. 5. Water-leaving radiance Lwater measured by MOBY number 267 and
estimated water-leaving radiance at ToA LToA

water, for viewing angles γ = 0◦,
45◦, and 65◦ .

from 0.005 W/(m2 · sr · nm) to 0.06 W/(m2 · sr · nm) at
wavelengths 400–800 nm with the strongest signals being
in blue-green and decreasing toward the red part of
the spectrum [60]. Assuming LToA

tot = 0.042 W/(m2 · sr · nm)
based on [60] and setting τ = 51.6 ms, our hyperspectral
imager would get SNRtotal,[1,1] ≈ 133 and SNRtotal,[9,1] ≈ 392
for Bλ = 9, whereas Bλ = 18 gives SNRtotal,[18,1] ≈ 554
but at the cost of spectral resolution worsening from
�λ = 3.33 nm to �λ = 6.67 nm. Noteworthy, a radiance of
LToA

tot = 0.0725 W/(m2 · sr · nm) results in SNRtotal,[1,1] ≈ 182
which is above the saturation capacity for the SONY
IMX249 at SNR of 181.6. If raw pixels are expected to sat-
urate at wavelengths of interest, then one could appropriately
decrease the camera exposure time τ or increase the saturation
capacity by binning more pixels.

3) SNR for Open Ocean Water: To estimate the imager’s
ability to recognize the target radiance LToA

water, we have
used publicly available and calibrated water-leaving radi-
ance measurements from the Marine Optical BuoY (MOBY)
deployment number 267 off the coast of Hawaii [61], being
time-stamped at 21:11:38 UTC 3 July 2019. This partic-
ular day has a typical radiance profile for open ocean
water, hence a good example for a scene to be observed
by HYPSO-1 even though the signals are weak in the
red part of the spectrum. Fig. 5 shows the MOBY mea-
surements of the water-leaving radiance at the surface
Lwater(λ), and the simulated water-leaving radiance at ToA
LToA

water(λ) = tdiff(λ, γ, H )Lwater(λ). The original MOBY mea-
surements are fit with a spline curve to match the 3.33 nm
bandpass of the hyperspectral imager in the wavelength range
400–750 nm. Furthermore, the water-leaving signals traveling
to ToA are assumed to be weakened by only the Rayleigh
optical thickness based on [62]. This assumption does not
include other transmittance models and distortions due to
atmospheric effects that partially govern LToA

tot , e.g., Rayleigh
scattering, aerosol scattering, Rayleigh-aerosol interactions
and sun reflection [58]. A more realistic atmosphere can be
modeled for complete details but is considered to be beyond
the scope here.
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Fig. 6. SNR per pixel for the estimated LToA
water with exposure time

τ = 51.6 ms and Bλ = 1, 9, 18, and 26 binning operations.

Simulated by using (7), (8) and (9), Fig. 6 shows the
estimated SNRwater at ToA for the wavelengths 400–750 nm
where the hyperspectral imager observes the water-leaving
radiance LToA

ref = LToA
water in Fig. 5 for viewing angle γ = 0◦

and exposure time τ = 51.6 ms. At a chosen wavelength
of 500 nm, the SNR increases from SNRwater,[1,1] = 45.8 to
SNRwater,[9,1] = 134.8 for Bλ = 9, SNRwater,[18,1] = 190.6 for
Bλ = 18, and SNRwater,[26,1] = 233.5 for Bλ = 26. Given the
stated assumptions, the estimated performance at Bλ = 9 con-
forms with the recommended SNR of at least 40–100 for
atmospherically corrected water-leaving signals [42]. More-
over, the spectral bandpass is �λ = 3.33 nm for no bin-
ning and up to Bλ = 9, whereas Bλ = 18 and Bλ = 26 give
�λ = 6.67 nm and �λ = 10 nm, respectively.

IV. REMOTE SENSING APPROACH

A. Attitude Definition

Shown in Fig. 7, the orthogonal body frame unit vectors
x̂b, ŷb and ẑb are located at the satellite’s center of mass and
point along its principal axes of inertia. The hyperspectral
imager is assumed mounted with its optical axis coinciding
with ẑb and its slit width wslit and height hslit being placed
along x̂b and ŷb, respectively. The orbit frame is also located
at the satellite’s center of mass where x̂o coincides with the
velocity vector, ŷo points toward the negative orbit normal, and
ẑo corresponds to the nadir vector aligned with the negative
position vector as seen in the Earth-centered-inertial (ECI)
frame. For simplicity, it is assumed that the Earth is spherical
such that the nadir vector ẑo coincides with the line defining
the local altitude H . The orientation of the body with respect
to the orbit frame are represented by the Euler angles φ,
θ and ψ (roll, pitch and yaw), where φ = θ = ψ = 0◦ if
the body frame coincides with the orbit frame. The attitude
errors from reference angles φref, θref, ψref are δφ = φref − φ,
δθ = θref − θ , δψ = ψref − ψ . Furthermore, ωx , ωy , and ωz

are the angular velocities of the body frame relative to the
orbit frame.

Fig. 7. Geometry of an imaging satellite at altitude H covering the distance
so at orbital speed vo . Images are collected along the ground length sg while
rotating with angular velocity ωy from starting angle θ0 to final angle θ f . The
instantaneous starting and final along-track footprint components are x p(t0)
and x p(t f ). The unit vectors ŷb and ŷo point out of this article here.

B. Instantaneous Resolution

The instantaneous footprint of the hyperspectral imager can
be split into components along and perpendicular to its scan
direction, calculated by using (1a) and (1b) such that

Pw = H secφ

(
tan

(
θ + εw

2

)
− tan

(
θ − εw

2

))
(10a)

Ph = H sec θ

(
tan

(
φ + εh

2

)
− tan

(
φ − εh

2

))
(10b)

being transformed to along-track and cross-track components
of a central pixel with respect to the velocity direction as

x p � cos(ψ)Pw + sin(ψ)
Ph

Ny
(11a)

yp � cos(ψ)
Ph

Ny
− sin(ψ)Pw. (11b)

In practice, the footprints of pixels toward the edge of
the imager’s swath are elongated compared to those of the
central pixels. Along with effects from the Earth curvature,
these distortions are known as the “bowtie effect” which can
be corrected in post-processing [63], [64]. We note that the
footprint is taken to be relatively small, i.e., on a meter scale
per pixel, hence the “bowtie effect” can be ignored if a high
frame rate and narrow FoV are considered.

C. Spatial Resolution

Adding translational and rotational effects during exposure
time τ to the instantaneous footprint in (11a) and (11b),
the along-track and cross-track components of the spatial
resolution in a pixel are

�x = x p + v p,xτ (12a)

�y = yp + v p,yτ (12b)

where v p,x and v p,y are the along-track and cross-track veloc-
ity components of a pixel

v p,x � vo + θ̇H − ψ̇H tan(φ) (13a)

v p,y � −φ̇H + ψ̇H tan(θ) (13b)
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Fig. 8. SGSD is the distance on ground that the same pixel has shifted
between first capture at time tk and second capture at tk+1 = tk +�t , where
�t is the camera integration time.

with vo being the satellite’s orbital speed. Shown in Fig. 8,
the SGSD is defined as the ground distance between the same
pixel in two sequentially captured frames during integration
time �t , thus indicating how much the two frames overlap.
The SGSD is expressed in along-track and cross-track com-
ponents as

x̃ � v p,x�t (14a)

ỹ � v p,y�t . (14b)

Since x p can be significantly larger than yp when the
pushbroom scan is aligned with the velocity direction, then it is
preferred to slowly rotate about ŷo to enable better along-track
SGSD. Noting from (13a) and (14a), the required pitch rate
of the satellite θ̇ may be obtained from a desired x̃ or vice
versa.

D. Image Acquisition Strategy

Consider the ground length sg to be uniformly scanned
during time �T = t f − t0 where the satellite translates at
a constant orbital speed vo and rotates from starting pitch
angle θ(t0) = θ0 to final pitch angle θ(t f ) = θ f , as shown in
Fig. 7. Assuming a local linear track for relatively short �T
and small sg , the final pitch angle can be set to θ f = −θ0

such that x p(t0) = x p(t f ). Furthermore, it is assumed that
ωx = ωz = 0 rad/s and φ = ψ = 0◦ such that ωy = θ̇ [65].

Given these assumptions, the orbit track distance covered
during the slew maneuver can be calculated as

so = sg + 2H tan

(
θ0 − εw

2

)
(15)

where the total time elapsed is

�T = so

vo
(16)

which then results in the constant reference angular velocity
being obtained from

ωref,y = θ̇ref = �θ

�T
= − 2θ0

�T
. (17)

Fig. 9 shows the plots of required angular velocity
ωref,y at H = 500 km as a function of θ0 = −θ f for
sg = 10 km, 40 km, 80 km, and 500 km. Higher H or longer
sg demands slower rotation to achieve a constant SGSD.

Fig. 9. Angular velocity ωref,y versus pitch angles θ0 = −θ f required for
uniformly imaging sg = 10 km, 40 km, 80 km, and 500 km at H = 500 km.

TABLE II

SIMULATION PARAMETERS FOR IMAGE ACQUISITION

E. Simulation Results

1) Resolution at Nadir: Using the parameters in
Tables I and II, and assuming the scan is nadir-pointing and
aligned with the satellite’s velocity direction, the along-track
and cross-track components of a pixel footprint become
x p = 500 m and yp = 58.6 m with a swath width of
Ph = 40.08 km. The along-track and cross-track spatial
resolution are �x = 892.5 m and �y = 58.6 m, respectively,
and the along-track SGSD is x̃ = 422.9 m meaning that
3 frames partially overlap by 422.9 m. Moreover, it takes
�T = 5.2 s to scan the ground length sg = 40.08 km while
nadir-pointing.

2) Resolution During Slew Maneuver: Assuming
ωy = ωref,y without any attitude errors, and using the
parameters in Tables I and II, Figs. 10 and 11 show how
the spatial resolution varies with slew maneuvers starting at
θ0 at 0◦, 10◦, 20◦ and 30◦, and ending at the corresponding
θ f = −θ0. For these four configurations, Table III indicates
the required angular velocities, observation time and the
obtained along-track SGSD. For example, choosing θ0 = 20◦
and sg = 40.08 km, the satellite would have to rotate with
ωy = −0.0132 rad/s for �T = 53.1 s to achieve a constant
along-track SGSD of x̃ = 57.6 m. In this case, the along-track
spatial resolution varies from �x = 619.6 m at θ = 20◦ to
�x = 553.4 m when crossing nadir, whereas the cross-track
spatial resolution varies from �y = 62.4 m at θ = 20◦ to
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Fig. 10. Along-track spatial resolution �x during a scan for chosen
configurations of pitch angles θ0 = −θ f and angular velocity ωy .

Fig. 11. Cross-track spatial resolution �y during a scan for chosen
configurations of pitch angles θ0 = −θ f and angular velocity ωy .

�y = 58.6 m at nadir. For x̃ = 57.6 m there will be at least
10 frames that partially overlap in the along-track direction.
With this many overlapped spatial pixels of the same scene,
the effective SNR in the image may theoretically increase up
to

√
10 times, i.e., 83% more than for a nadir-pointing scan.

3) Attitude Error Requirements: Precise attitude control is
essential to obtain the desired SGSD at any time during image
acquisition. Referring to the recommended 100 m spatial
resolution discussed in Section II, the requirement for accuracy
in angular velocity can be calculated by using (13a) and (14a)
such that

|δθ̇ | ≤ |x∗ − x̃ |
H�t

− vo

H
+ ψ̇ tan(φ)− θ̇ref (18)

where x∗ is the upper limit of SGSD set between two sequen-
tial frames. It can be assumed that ψ̇ tan(φ) ≈ 0 if φ and ψ̇
are small. Using the parameters in Table II, and choosing an
reference angular velocity of θ̇ref = ωref,y = −0.0132 rad/s,
along-track SGSD of x̃ = 57.6 m, and setting x∗ = 100 m,

TABLE III

SLEW MANEUVER RESULTS FOR sg = 40.08 km AND FPS = 18

the angular velocity errors must be less than 0.0016 rad/s
throughout the whole image acquisition.

The attitude error problem can be relaxed to rather focus on
obtaining sufficient attitude knowledge for consistent image
registration or georeferencing. Assuming no uncertainty in
position and a precise onboard time synchronization, then
for pixel-to-pixel distance errors to remain within the bound
of |x∗|, the attitude knowledge error requirement can be
calculated as

|δθ̂ | ≤ tan−1

(
|x∗|

H sec(φ) + tan(θmax)

)
− θmax (19)

where θmax is the largest angle during image acquisition.
Given x∗ = ±100 m at θmax = 20◦ and φ = 0◦, and assuming
sec(φ) ≈ 1, the required attitude knowledge accuracy must be
better than 0.01◦. The required attitude knowledge accuracy
for the other three slew maneuver configurations are indicated
in the rightmost column in Table III.

V. HYPSO-1 SYSTEM

A. Satellite Bus

The hyperspectral imager is adapted to the Multipur-
pose 6U Platform (M6P), shown in Fig. 12, with a mass
of approximately 6.8 kg when fully integrated. The M6P
is a commercially available nanosatellite bus provided by
NanoAvionics. It has 16 bodymounted triple-junction Gallium
Arsenide solar cells and six Lithium-Ion batteries with a total
energy capacity of 64.9 Wh. Among its important subsystems
are a flight computer (FC) for onboard data handling and
ADCS functions, a SatLab global navigation satellite sys-
tem (GNSS) for orbit determination and time synchronization,
an electrical power system (EPS) for power management,
a ultrahigh frequency (UHF) radio for basic space–ground
communications, and a payload controller (PC) working as a
storage device and router between the payload and satellite
bus. The internal bus communications utilize the CubeSat
space protocol (CSP) over a controller area network (CAN)
where each subsystem is a network node with its dedicated
CSP address.

B. Dedicated Subsystems

To accomplish the CONOPS described in Section II,
the HYPSO-1 satellite bus is further equipped with:

1) a Nano Star Tracker ST-1 [66] and Sensonor STIM210
Inertial Measurement Unit (IMU) [67] for precise atti-
tude determination during imaging. The sensors are
turned on for at least 5 min before use to ensure suf-
ficient settling time after initialization. When imaging
operations are not scheduled, then six sun sensors, three

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 11,2021 at 09:55:55 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 12. Computer-aided drawing (CAD) model of HYPSO-1 with its top
and front solar panels removed. The hyperspectral imager can be seen in the
center with an RGB camera to its left and a star tracker to its right.

magnetometers, and three gyroscopes are used instead
which provide coarser attitude knowledge but consume
much less power;

2) four reaction wheels used for attitude control, three
being placed orthogonally along the satellite’s body axes
and the fourth being tilted at 54.7◦. Each reaction wheel
provides up to 3.2 m · Nm torque. Magnetorquers are
also placed along each body axis for reaction wheel
momentum dumping;

3) an IDS UI-125x Red-Green-Blue (RGB) camera with
a 6 mm F/1.4 Ci series fixed lens, providing a foot-
print of 770 km × 540 km and spatial resolution of
approximately 500 m. Its main purpose is to support
and validate the hyperspectral images in the spatial
domain [68];

4) a 2.4-GHz IQ Spacecom S-band transceiver provided
by IQ Wireless with a usable data rate of 1 Mb/s for
downlinking payload data; and

5) an Onboard Processing Unit (OPU) hosting a Zynq-7030
Xilinx PicoZed System-on-a-Chip (SoC) with flight her-
itage [33], which consists of two ARM core proces-
sors and a Field-Programmable Gate Array (FPGA) for
onboard image processing. The OPU allows for in-orbit
software updates and FPGA hardware reconfigurations
for algorithms or upgrades that can be uploaded from
the ground. The payload data are stored on a secure
digital (SD) card with 8 GB (Gigabytes) space, where-
from larger amounts can be buffered to the PC over
CAN before downlink through the S-band radio. Smaller
amounts can be downloaded directly from the OPU if
needed, although buffering the data to the PC generally
enables full utilization of the S-band data rate and avoids
keeping the OPU turned on for longer than necessary.
Furthermore, the OPU hosts a custom breakout board
with PicoZed interfaces that provide power and data
lines to the hyperspectral and RGB cameras.

C. Power Budget

M6P’s solar arrays generate about 11.65 W during 58.9 min
in sunlight out of an orbital period of 94.6 min. To estimate if
HYPSO-1’s energy is sufficient during burdensome operations,

Fig. 13. Position of HYPSO-1 in SSO at 10:25:00 UTC 28 May 2022.
Selected ground stations are marked by white circles and the target area by
a white square (here in Lofoten, Norway). Previous, current and successive
ground tracks are indicated by dashed lines.

TABLE IV

HYPSO-1 POWER BUDGET IN ONE ORBITAL REVOLUTION

the power budget assumes uplink, imaging, onboard process-
ing, and downlink are all happening during one orbital revolu-
tion. This scenario is illustrated in Fig. 13, where instructions
are first uplinked from KSAT in Svalbard before HYPSO-1
observes a target area in Lofoten, Norway, and downlinks as
much data as possible to NTNU Trondheim and KSAT in
Spain in one pass while being exposed to the sun.

Table IV shows power budget with 5% component margins
and the corresponding duty cycles (DCs). Battery input and
output efficiencies are assumed 92% each. Power consumed
in OPU, ADCS, and S-band radio are split into more than
one operational mode, whereas “Other” denotes the collective
power consumption by FC, EPS, PC, and internal communi-
cations. “ADCS precise” indicates preparing for and executing
a slew maneuver during imaging when both the IMU and star
tracker are active, consuming up to 1.5 W each.

Naturally, peaks in HYPSO-1’s power consumption are
expected during image acquisition, onboard image processing,
and downlink. Adding a 10% system margin results in remain-
ing power of about 174 mW. Enforcing the power budget to
stay positive and safe, the maximum allowed duration is set
to 6.33 min for onboard image processing and 33.42 min for
buffering data from OPU to PC. Allowed duration for data
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Fig. 14. Block diagram of the proposed onboard image processing pipelines. In order, the hyperspectral images are captured, binned, processed at a chosen
level, stored on the SD card, and downlinked together with telemetry and metadata. Depending on the chosen data product, additional ground-based processing
and fine-tuning can be applied before distribution to end-users. Black arrows indicate the minimal onboard processing pipeline whereas gray arrows are the
alternative routes for tailored data products.

TABLE V

HYPERSPECTRAL DATA PRODUCTS FOR Nx × Ny = 956 × 684 SPATIAL PIXELS

transmission through S-band radio is set to 10 min which
allows downlinking up to 75 MB (Megabytes) of data per
orbital revolution.

VI. ONBOARD IMAGE PROCESSING ARCHITECTURE

A. Overview

The OPU’s FPGA-based image processing algorithms are
key in enabling faster data download and distribution while
at the same time relieving HYPSO-1’s power budget. The
idea behind its image processing architecture is to support
modular arrangements of algorithms, or pipelines, as illus-
trated in Fig. 14. The minimal onboard image processing
pipeline (MOBIP), dimensionality reduction onboard image
processing pipeline (DROBIP), target detection onboard image
processing pipeline (TOBIP), and classification onboard
image processing pipeline (COBIP), are designed to generate
hyperspectral data products that are tailored to the immediate
needs of an user or operator. Useful satellite and payload
telemetry and other relevant metadata, e.g. attitude and posi-
tion, are also downlinked together with the processed data.

Table V shows the expected size reduction and processing
speeds for the algorithms to be employed in the architecture.

A raw hyperspectral datacube with 956 × 684 spatial pixels
and 1080 spectral pixels binned Bλ = 9 times is considered as
the starting point before any processing. “Bands/Components”
represent spectral bands for both the raw data and MOBIP,
extracted components for DROBIP, a probability map of
detected spectral target signatures for TOBIP, and a layer
containing spectral-based classes for COBIP. The data size
reduction and processing speed estimates are based on
reported performances of state-of-the-art algorithms having
been applied on various hyperspectral data of similar sizes.
For the relevant algorithms implemented in FPGA, more
details related to their occupation, execution time, operating
frequency, and latency can be found in the respective literature
where indicated in Sections VI-B–VI-D.

B. Minimal Onboard Image Processing

MOBIP consists of only the CCSDS123v1 lossless com-
pression algorithm [69], being employed after image acquisi-
tion, time-stamping, and binning. A Direct Memory Access
(DMA) solution, CubeDMA, is built into the FPGA to ensure
efficient streaming of the hyperspectral images by excluding
the Central Processing Unit (CPU) from its critical path of
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transfer and establishing direct communication link between
memory and the dedicated CCSDS123v1 processing core [70].
The CCSDS123v1 proposed in [71] and [72] offers a FPGA
core speed of up to 9984 Mb/s obtained on Zynq-7030 Xilinx
PicoZed, however, slightly lower speed is measured when
running in the whole pipeline on HYPSO-1’s OPU. With the
raw binned image as a starting point, a 55.6% compression
is achieved as shown in Table V, i.e., a size reduction of
2.25 times. Without any loss of spatial-spectral information,
this general data product can be independently processed and
analyzed further by any user on the ground.

C. Onboard Image Processing for Tailored Data

Given the FPGA reconfigurability in HYPSO-1, several
suitable algorithms for DROBIP, TOBIP, and COBIP are
described here. Some have already been demonstrated as
FPGA-implementations or software/hardware codesigns in rel-
evant hardware, although a few still run in pure software and
need more development for onboard implementation.

1) Dimensionality Reduction: Dimensionality reduction
methods extract the main spectral patterns and remove
redundancies from the high-dimensional hyperspectral data.
Spatial-spectral features of interest can therefore be utilized
for specifically studying the relevant water-leaving signals
and atmospheric effects. Because the data redundancies are
removed, then improved overall computational efficiency may
also be obtained if applied as a preprocessing step in a
pipeline [73]. Shown in Table V with 20 components cho-
sen for DROBIP, a 92.4% reduction in size is estimated
if dimensionality reduction is combined with CCSDS123v1.
As an optional step before dimensionality reduction, smile,
and keystone corrections can prevent intertwining systematic
artifacts by adjusting the images to account for optical and
measurement noise inherent to the imager [74].

A common dimensionality reduction technique is the prin-
cipal component analysis (PCA) which obtains a reduced and
denoised subspace representation of the raw hyperspectral
data, assuming a linear model with Gaussian noise [75]. The
extracted spatial-spectral information of a scene is contained
in only a few principal components instead of several dozens
or hundreds of spectral bands. An FPGA implementation of
PCA in Xilinx Virtex-7 XC7VX690T proposed in [76] obtains
a computation time of 4.17 s for extracting 24 principal
components from an Airborne visible/infrared imaging spec-
trometer (AVIRIS) image of Jasper Ridge Biological Preserve,
California, with 614 × 512 spatial pixels and 224 spectral
channels, which can be fast enough to process a stream of
hyperspectral images in real-time. Proposed in [77], an adap-
tive PCA-based On-the-Fly Processing (OTFP) algorithm may
sequentially process streaming blocks of high-dimensional
data instead of analyzing the whole dataset at the end of image
acquisition. Implemented in MATLAB, OTFP’s reported com-
putation time is 300.2 s for obtaining 3 principal components
from a 16-bit hyperspectral image of 1000 × 245 spatial
pixels and 450 spectral channels, although higher speed is
expected for an FPGA implementation. An alternative to
PCA, the extended multiplicative signal correction (EMSC)

estimates a denoised subset of relevant spectra using a
linear statistical model of observations with approximated
light absorbance and scattering [78]. Our software/hardware
codesign of a prototype EMSC on a Zedboard development
platform with ARM Cortex-A9 processor measured a com-
putation time of 3.81 s when applied on a 16-bit hyperspec-
tral datacube with 500 × 500 spatial pixels and 50 spectral
channels.

2) Target Detection: Hyperspectral images of heteroge-
neous scenes are amenable to spectral-based target detec-
tion because of their numerous spectral bands [79], [80].
An efficient use of such algorithms requires a set of a priori
known target spectra and high spatial resolution to reduce the
effects of spectral mixing. Target detection essentially creates
a probability map of specific spectral signatures across the
spatial domain of the image, resulting in a 2-D data product per
chosen number of signatures. As an example for TOBIP, only
one target signature is chosen in Table V such that the size of
the 2-D map is 1 × 956 × 684 × 16 b = 1.308 MB, i.e., a size
reduction of approximately 99.2% when compared to the
original data. Additional lossless compression is therefore not
needed due to the already small data product size.

The target detection module proposed in [81] supports
constrained energy minimization (CEM), adjusted spectral
matched filter (ASMF), and modified adaptive cosine estima-
tor (ACE) detectors to determine the likelihood of specific
spectral signatures in a spatial pixel. A software/hardware
codesign of modified ACE algorithm on a Zedboard devel-
opment platform with ARM Cortex-A9 processor reports a
computation time of 3.29 s for the input of a 16-bit HyMap
hyperspectral datacube with 224 000 spatial pixels and 16
principal components using PCA preprocessing [82]. Taken
to be the speed estimate in Table V, a computation time of
0.5 s is reported for an FPGA-implementation of the modified
ACE algorithm on Zynq-7035 SoC (Kintex-7) when applied
on the same HyMap datacube with 126 spectral bands and no
preprocessing [81].

3) Classification: Using a spatial-spectral classification
framework, the spatial pixels in a hyperspectral image can be
distinguished into various classes formed by specific spectral
signatures [83]. One of many such classification techniques
being suitable for FPGA-implementation is the fast spectral
clustering (FSC), which is a graph-based unsupervised method
and does not require training data [84], [85]. Indicated in
Table V, it is possible to represent each layer with a 4-bit
integer for fewer than 16 classes whereas 256 classes requires
8 bits. The size of 16 class signatures with 120 spectral bands
per signature is therefore 16 × 120 × 16 b = 0.0038 MB and
256 × 120 × 16 b = 0.0614 MB for 256 class signatures.
These auxiliary data products supplement the classification
map with size of 1 × 956 × 684 × 4 b = 0.327 MB for 16
classes and 1 × 956 × 684 × 8 b = 0.654 MB for 256 classes,
giving a total data size reduction of 99.8% and 99.6%,
respectively. Due to the already small data sizes obtained
from classification alone, the reduction factors for COBIP
in Table V do not include any lossless compression.

The Nystrøm extension clustering version of FSC, described
in [84], is estimated to have a processing speed of about
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245.8 Mb/s based on its MATLAB implementation. It reports
1.62 s computation time for obtaining 16 classes from a 16-bit
AVIRIS image of Salinas Valley, California, with 512 × 217
spatial pixels and 224 spectral bands, although higher speed is
expected for a software/hardware codesign of FSC in FPGA.
An alternative to FSC is the clustering using binary partition
trees (CLUS-BPT) framework which integrates embedded
hyperspectral data segmentation, region modeling, feature
extraction by PCA, and clustering [86]. Also in MATLAB,
it has a reported computation time of 7.48 s for the same
AVIRIS image, indicating that FSC generally outperforms the
CLUS-BPT in terms of speed if an input image has very
large dimensions. The estimated processing speed is therefore
assumed to be 53.2 Mb/s based on the CLUS-BPT as a worst
case in Table V. As with any other algorithms, cropping the
images in the spatial domain to rather focus on specific regions
can further relieve the computation time.

D. Discussion on Advanced Algorithms

Beyond those already described, other relevant algorithms
may potentially be uploaded to HYPSO-1 given that their oper-
ational maturity is reached for use in FPGA. For the interest
of the HYPSO-1 mission, candidate algorithms may include
image registration, georeferencing, atmospheric correction,
and super-resolution which may contribute to improved
accuracy in dimensionality reduction, target detection, and
classification. However, such algorithms are currently too
computationally intensive and complex for onboard implemen-
tation. Before any upload of these, they should first undergo
prototyping and rigorous testing on the ground with careful
validation with respect to speed, reliability, and accuracy.

1) Image Registration: The relative separation between
individual pixels is determined by image registration, also
known as orthorectification. Image registration algorithms are
too computationally expensive for onboard implementation
in general [87], but a potential candidate is the ray-tracing
method which is simpler and has been prototyped for joint
registration and georeferencing, similar to the one described
in [88].

2) Georeferencing: The benefit in onboard georeferencing
for HYPSO-1 lies in directly downlinking latitude and longi-
tude coordinates of the image pixels together with extracted
results from target detection or classification, requiring pre-
cisely time-synchronized attitude and position data. Using geo-
referencing on the ground instead, it is possible to download
only the relevant pixel indices where positive target detection
or classification have been made, and then identifying them
with the correct geodetic coordinates. The latter can therefore
be used to quickly direct any nearby in situ asset to the
locations of interest in HYPSO-1’s observed area.

3) Super-Resolution: The spatial resolution in images
can be enhanced using super-resolution algorithms as
described in [89], which may also result in improved
radiometric and geometric accuracy in the data. Proto-
types for super-resolution, e.g., those based on multiframe
super-resolution [90], [91], require a measurement process in
determining the point spread function (PSF) to infer higher

spatial resolution [92], [93]. However, when estimating the
PSF, these methods can be susceptible to noise, quantiza-
tion, compression, and inaccuracies [94], [95]. Prior-based
super-resolution techniques, e.g., sparse image representa-
tions [96] and convolutional neural nets [97], [98], over-
come these limitations in the measurement-based techniques
by supplying input pixels with the expectations of hyper-
spectral image statistics. Other alternatives involve using
multispectral-hyperspectral image fusion [99], [100], and
super-resolution based on dimensionality reduction [101].

Proposed in [102] and being under development,
a Richardson–Lucy (RL) deconvolution algorithm
implemented on a Xilinx Zynq-7020 Zedboard with
two ARM Cortex-A9 cores has been successfully applied
on hyperspectral data. A computation time of 1.06 ms
per iteration is reported for processing 150 × 640 pixels
with one spectral band using a kernel size of 9 × 9 pixels.
A corresponding software/hardware codesign of the RL
algorithm is described in [103].

4) Atmospheric Correction: Removing atmospheric effects
in the hyperspectral data before dimensionality reduction,
target detection or classification, can improve efficiency and
accuracy in extracting the relevant water-leaving signals. The
purpose of atmospheric correction is to identify all terms in (6)
that contribute to the total ToA radiance LToA

total, and predict
the actual water-leaving radiance Lwater which may further
contain the relevant optical properties of water constituents,
e.g., chlorophyll.

Several ground-based atmospheric correction schemes work
well for open ocean water scenes in multispectral data [54],
[104]–[106], and good performance has also been shown
for hyperspectral imagery of coastal waters [107]. The tra-
ditional atmospheric correction methods are generally based
on the radiative transfer model [37], and are, in princi-
ple, not designed for onboard use due to their complexity
and computational expense. Without contemporary empirical
or ground truth data, they can also be prone to over- or
undercorrection of the terms in (6), resulting in significant
radiometric inaccuracies for a highly variable atmosphere
and heterogeneous coastal waters. However, nondeterministic
atmospheric correction methods that use machine learning,
e.g., neural networks, have been regularly employed and are
considered to be effective when given a proper set of training
data [106]. If hyperspectral images or ground truth data are
unavailable for training, then tools such as accurate radiative
transfer (AccuRT) [108] could simulate the heterogeneous and
coupled water-atmosphere scenes to be utilized instead [109].
Regardless, such atmospheric correction methods need further
development and testing before any suitable onboard imple-
mentation in HYPSO-1.

E. Dynamic Reconconfiguration

Using dynamic reconfiguration (DR) on the OPU’s FPGA
enables both changes and adaptation in onboard process-
ing. The DR can also better utilize resources by switching
between different processing pipelines and incorporates func-
tional updates and upgrades being uplinked from the ground.
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TABLE VI

PERFORMANCE FOR SELECTED HYPERSPECTRAL IMAGER MODES

An advanced ability in modern FPGAs is the dynamic
partial reconfiguration (DPR) that reprograms only portions of
the FPGA, while the rest of the system continues to operate.
The DPR allows time-multiplexing of mutually time-exclusive
algorithms/steps on a finer scale of the available resources and
is characterized by shorter reconfiguration times as the FPGA
configuration time is directly proportional to its bitstream size.
DPR can also be used for applications such as mitigation and
recovery from single-event upsets (SEUs) and for dynamic and
adaptive real-time image processing.

Furthermore, the OPU also has a “golden image” that
enables booting a previous version of a steady onboard
processing configuration. In the case of corruption or any
unwanted updates and upgrades received from the ground,
the OPU will automatically revert to the “golden image.”

F. Ground Support

Several algorithms run on the ground to adjust, fine-tune,
and prepare data for end-users; assist in the in-orbit calibration
of the hyperspectral imager; and rigorously test accuracy
and reliability in updates or upgrades before uploading them
to HYPSO-1. As indicated at the bottom right in Fig. 14,
advanced modules such as image registration, georeferencing,
atmospheric correction, and super-resolution are initially ded-
icated for use on the ground because they require prompt

access to reference libraries and are highly complex and com-
putationally expensive in their current state. In-orbit upgrades
and extensions to the onboard image processing pipelines may
include versions of these algorithms only if maturity for FPGA
implementation is first demonstrated on the ground.

G. Data Latency in Typical HYPSO-1 Operations

Table VI shows HYPSO-1’s remote sensing performance
for five selected hyperspectral imaging modes and their cor-
responding data size and latency for data products generated
by MOBIP, a PCA-based DROBIP, TOBIP containing only
one 2-D map, and COBIP containing 16 classes. For each
pipeline, the chosen number of spectral channels, the pixel size
in bits, reduction factors, and processing speeds are assumed
to be the same as in Table V. The SNR is calculated using the
MOBY water-leaving radiance sensed at ToA as described in
Section III-C. The ADCS modes with slew maneuvers are set
with an angular velocity ωy = −0.0132 rad/s from starting
angle θ0 = 20◦ to final angle θ f = −20◦ with φ = ψ = 0◦,
and are assumed to have no attitude errors. The swath width,
spatial resolution and SGSD are calculated in the manner
described in Sections IV-B and IV-C.

From Table VI, it can be seen that the hyperspectral imaging
modes A and B provide higher spatial resolution but narrower
swath for an observed area size of approximately 40 km
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TABLE VII

MODE A DATA LATENCY FOR HYPSO-1 ON EXAMPLE DATE 28 MAY 2022

TABLE VIII

MODE A DATA LATENCY FOR HYPSO-1 WITHOUT CAN OVERHEAD ON EXAMPLE DATE 28 MAY 2022

by 40 km, whereas modes C and D provide coarser spatial
resolution and wider swath for an 70 km by 70 km area
size. Modes A, B, C and D use 1080 out of 1936 spec-
tral pixels to approximately match the relevant wavelengths
400–800 nm. Lastly, mode E uses the full sensor resolution
and is dedicated to diagnostics and in-orbit calibration during
HYPSO-1’s commissioning phase. “Onboard processing time”
is the computation time for a particular pipeline, “OPU-PC
transfer time” is the time to complete data buffering from OPU
to PC at a speed of 290 kb/s, and “Downlink time” is the total
time required to downlink all data through S-band radio at a
bandwidth of 1 Mb/s. It is also assumed that the onboard data
are written to the SD-card at a speed of 100 Mb/s which is
included in “Onboard processing time.”

From Table VI, we extend the results for the context of
a typical mission scenario where HYPSO-1 uses mode A
to observe a 40 km × 40 km area near Lofoten, Norway,
then immediately aims to downlink a particular data product
to the ground stations at NTNU Trondheim and KSAT in
Svalbard and Spain with elevation angles assumed to be 5◦,
2◦, and 8◦, respectively. Simulated using an orbit propagator in
Analytical Graphics, Inc., (AGI) Systems Toolkit (STK) with
epoch date set to 28 May 2022, the resulting time in UTC
and durations of each sequence are shown in Table VII with
OPU-PC overhead and in Table VIII without the overhead.
A dash (“—”) indicates that the operation is not available
or necessary. “Cruise” means that HYPSO-1 is harvesting
solar energy and “Eclipse” means that it is in Earth’s shadow.
Taking into account the overhead in OPU-PC transfer, all data
products except for the one from MOBIP can be downloaded
in less than 10 min. If there is no such overhead, then the
MOBIP data product can also be made available in less
than 10 min.

The reason for the bottleneck in OPU-PC transfer is that
the current hardware and software architecture in HYPSO-1 is
limited by the CAN communications interface between OPU
and PC with a data rate of only 290 kb/s. This adversely
impacts the overall latency for larger amounts of data as
indicated in Table VII. In future planned missions, the physical
interface may be replaced with a data bus capable of much
higher throughput, i.e., using Ethernet or RS-422. Larger
amounts of data can then be directly downloaded from the
OPU, resulting in better latency as shown in Table VIII.

VII. CONCLUSION

Following the advancements in miniaturization, low-cost
sensor technology, and development of image processing algo-
rithms, the mission design of HYPSO-1 shows that push-
broom hyperspectral imaging combined with FPGA-based
onboard processing in a nanosatellite may provide ocean color
data products with high spatial-spectral resolution and low
data latency, this being particularly useful for monitoring
rapidly changing marine environments. HYPSO-1’s payload
and systems design, remote sensing approach using a slew
maneuver, and onboard processing, grant flexible trade-offs
to be made between spatial resolution, spectral resolution,
SNR, and data latency. The chosen onboard FPGA-based
CCSDS123v1 lossless compression, dimensionality reduction,
target detection, and classification algorithms may reduce
the raw high-dimensional data size significantly without los-
ing crucial spatial-spectral information. On the contrary to
using rigorous data processing and analysis methods on the
ground, such smaller yet tailored data products can be made
available within minutes after first observation. This enables
quicker download of relevant data that may satisfy urgent
needs of operational end-users, e.g., for mitigating damage
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to aquaculture caused by HABs where an early warning
is critical. The lessons learned in operating HYPSO-1 will
produce new iterations and potential enhancements in future
planned missions such as in the hyperspectral imager design,
ADCS, satellite communications architecture, and onboard
image processing algorithms. After launch, the HYPSO-1
mission will determine the efficacy in quickly providing high-
resolution hyperspectral data from small satellites to be used
for real-time ocean color applications.
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dimensional DMA transfers for hyperspectral imaging applications,”
Microprocessors Microsyst., vol. 65, pp. 23–36, Mar. 2019.
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