
73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-20-D.1.5.9

Testing of small satellite operation and software with target hardware and rehearsals

Dennis D. Langera∗, Sivert Bakkenb, Roger Birkelandc

aDepartment of Marine Technology, Norwegian University of Science and Technology (NTNU), Otto Nielsens veg 10,
7491 Trondheim, Trøndelag, Norway, dennis.d.langer@ntnu.no

bSINTEF, Brattørkaia 17C, 7010 Trondheim, Trøndelag, Norway, sivert.bakken@sintef.no
cDepartment of electronic systems, Norwegian University of Science and Technology (NTNU), O.S. Bragstads plass
2b, 7491 Trondheim, Trøndelag, Norway, roger.birkeland@ntnu.no

∗Corresponding Author

Abstract

In this paper we discuss testing of small satellite operations and software, employing target hardware and rehearsals
and presenting lessons learned during the development of the HYPSO-1 (HYPerspetral Smallsat for Ocean observa-
tion) satellite. Satellites following the standard CubeSat form factor make it easy to launch and fly novel payloads for
targeted applications by procuring already flight-proven subsystems or complete satellite buses. Such novel payload
systems often require custom onboard software development and implementation that provide more functionality and
operational flexibility, often made from scratch. However, this imposes extensive software testing requirements before
launch. Software testing and rehearsal strategies, including the challenges encountered throughout developing the 6U
HYPSO-1 CubeSat and the advantages and lessons learned of rehearsals, code reviews, and manual and automated
testing are evaluated.

An important principle in testing is to determine if tests will cost more to implement and perform than what they
will unveil to be worth. Automation in software development can help freeing time but is not useful if the time-
benefit tradeoff does not work out. Hardware-in-the-loop testing (‘FlatSats’) should use components as close to flight
hardware as possible, as opposed to development kits and possible previous versions of hardware. However this
might be expensive since more copies of the flight hardware must be procured. Team members that are working on
different tasks in the project have varying knowledge of the different system aspects and they have different methods
of solving problems. Code reviews and rehearsing "real" operational scenarios are effective ways to learn from each
other and consolidate unequal system knowledge and problem-solving methodologies. Especially of note are scenarios
simulating a need to identify and fix an unexpected issue with the satellite, which was particularly engaging and forced
members to think in different ways. Software updates are a planned part of the operation of the HYPSO-1 and manual
testing on target hardware as part of code reviews, can be combined with rehearsing operational scenarios.
Keywords: Cubesat, Smallsat, Software Development, Rehearsals, Lessons Learned.

Acronyms/Abbreviations
Hyperspectral Smallsat for Ocean Observation 1
(HYPSO-1)
Norwegian University of Science and Technology
(NTNU)
Commercial Off-the-Shelf (COTS)

1. Introduction
<ADD PREVIOUS/RELATED WORK & REFER-

ENCES>
Previous related work on testing of operational scenar-

ios for university CubeSats is sparse. Few published arti-
cles discuss operator training in small satellite missions.

Standardization of SmallSat form factors via the Cub-
Sat standard [1] was a necessary step towards today’s
COTS (Commercial Off-The-Shelf) CubeSat kits and
components. COTS components are cheaper to buy com-
pared to developing comparable systems in-house from

scratch. As a consequence, acquisition of multiple units
of the CubeSat components may become feasible for low
budget projects.

The Small-Satellite Laboratory ("SmallSat-Lab") at
NTNU developed a hyperspectral camera payload for the
HYPSO-1 CubeSat, which was launched on January the
13th 2022, and the satellite and payload is currently op-
erational. The hyperspectral camera payload consists of
hardware components such as frames and fixtures, opti-
cal components such as lenses, and electrical components
such as power regulation and distribution, data storage
and processing systems. In addition to the hardware com-
ponents, extensive custom software running on the pro-
cessing systems for command and control of the payload
was required and thus developed. In this article we focus
on the software development.

COTS CubeSat kits and components enable the setup
of multiple flatsats. Flatsat in this paper means functional

IAC-20-D.1.5.9 Page 1 of 3



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

replica of the satellite for software testing, which is set up
flat on a table as opposed to stacked in the satellite frame,
see Figure 1

Fig. 1. Image of one of the flatsats at NTNU. Constant
development and reconnections of subsystems and com-
ponents results in a messy look.

FlatSat setups that are running continuously can be
used for automated testing using continuous integration
or other automation techniques. These can be used for
component or system level regression testing, meaning to
check if previous functionality is not broken by a new ver-
sion of the software.

The HYPSO-1 satellite was designed to be operated
by the team at NTNU using a co-located ground station
and mission operations centre. Central parts of the soft-
ware has been developed by students who graduated be-
fore launch. This means the current team does not have
full overview of all parts of the software, and thus need
training to become skilled satellite operators. The train-
ing was done through rehearsals. Rehearsal in this con-
text means a planned walk-through of satellite operating
procedures using FlatSat models of the satellite hardware.

The contribution of this paper is to provide insight into
efficient and time-effective software development meth-
ods for custom payloads for small satellites and more ef-
ficient training methods for satellite operators.

Section 2 discusses the development, testing and train-
ing methodologies used. Section 3 presents and discusses
the lessons learned. Section 4 gives concluding remarks.

2. Materials and Methods
Software development is a rapid iterative process.

Feedback is received almost instantaneously as opposed
to hardware development where there is can be delay from
design change to finished product. This encourages exper-
imentation in methodology and teams may converge on an
optimal method in some way. A SCRUM methodology
using tools from Github [2] were also used. While every
developer should test their own changes to the code base,

the github flow [3] methodology was used to facilitate in-
dependent testing and code reviews from other members
of the team.

Early in the project, development kits with the same
processing platform as planned for the flight model were
available at the university and were used for initial devel-
opment and testing. Development consisted of the pay-
load processing system’s firmware (bootloader, operat-
ing system, packages) and on-board processing software
(drivers, telecommands). The build system of the on-
board processing software for the payload was designed
for both compilation and cross compilation for testing
on personal computers and target hardware respectively.
Their architectures are x86_64 for personal computers
and armv7 for the target hardware. The processing plat-
form also features programmable logic with which accel-
erator algorithms are designed. As the project progressed,
multiple FlatSat replicas of the HYPSO-1 satellite were
constructed to develop and test on, which replaced devel-
opment kits and other approximations that have not the
exact same components or interfaces as the flight model.
Programming interfaces like JTAG and other access inter-
faces like secure shell were also removed, as those will
not be available on the finished satellite.

Continuous integration techniques were used for
building, unit testing and regression testing. The continu-
ous integration framework used was Jenkins [4].

The rehearsals carried out during the project could
be classified into two types. The first type is a walk-
through of standard operating procedures of the satellite,
to gain familiarity with the system. During development,
these procedures may change in some details, but the re-
hearsals are nonetheless performed with the current oper-
ational model in mind. For HYPSO-1, the standard oper-
ating procedures included tasks such as taking an image,
transferring files like telemetry, or performing a software
upgrade, or a combination of multiple procedures. The
second rehearsal type is a session where one of the team
members designed an issue the FlatSat, for the other team
members to troubleshoot and repair. The designed issues
were, for example, no more storage space available, or
corruption of various system files.

Both rehearsal types had simulated contact restrictions
with the FlatSat, similar to how contact with an orbiting
satellite is limited to the time while it is passing over a
ground station. A low rate of random packet drops was
included to simulate unreliable link conditions.

3. Results and Discussion
See Figure 2 for a high level description of how soft-

ware development for HYPSO-1 was done. Rehearsals
and other kinds of function testing, while keeping the sys-
tem requirements in mind revealed missing features and
bugs in the software, and changes in how the satellite is

IAC-20-D.1.5.9 Page 2 of 3



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

expected to be operated (the Operation model). Tests and
rehearsals were designed to verify the operation model,
and the functionality of the software.

Fig. 2. Diagram of the software development process
the authors converged on. Software and the operation
model is tested by rehearsals and other testing procedures,
through which new desired changes are identified. These
can be removal of software bugs or addition of new fea-
tures.

Adding a new feature to software required code re-
view and system level functional testing and a short report
by another team member via the pull request tools that
Github provides. Enforcing at least one review before the
feature is added, increased the discovery of bug and the
quality of the code, although it slowed down development
speed. Reviews sparked numerous small discussions on
details of the software.

As the final target hardware design was completed and
set up for use in the FlatSats, extra work was required
porting the initially developed firmware to it. Even if
the development kits featured the same processing plat-
forms, they had different configurations when it came to
Input/Output and memory size. This had to be taken into
account on a (too) late stage in the process, causing time-
consuming porting. From then on, target hardware in Flat-
Sats was used for both development and testing.

Due to resource availability, software developers
tended to fill the operator role initially, as they are most
familiar with the system. Closing in on the launch, a ded-
icated operator sub-team was set up, as they learned the
systems and spent more time operating the satellite. The
software developers then could focus on other tasks.

As discussed in [5] The automated testing using Jenk-
ins was cumbersome and time consuming to set up and
maintain. The insights we got out of the automated test-
ing were minimal and not many bugs were discovered.
Then an update broke the automated testing setup, and no
one in the team found it worth the time to look into the
issue.

The bad results from automated testing were likely
due to two reasons. The choice of jenkins as continuous
integration framework and the lack of previous experience

of the team members with this software and with the Java
based scripting language it uses.

We found that it is recommendable to identify what
work (development, testing) can be done independent on
the hardware platform, in case target hardware is not
available yet, or is expected to change.

In the second type of rehearsals, where an issue is in-
troduced to the flatsat to be troubleshooted and solved by
other team members do not need to concern issues that are
realistic to happen on their own. They nonetheless helped
the team to share knowledge, learn how the software sys-
tem works, learn how to operate the satellite, find bugs
and discover new desired features.

4. Conclusions
Payload development centered around FlatSats with

target hardware proved valuable for the HYPSO-1 team.
There was always a change in firmware needed to be done
when moving from development kits to the true target
hardware. Developing for target hardware to begin with,
eliminates this integration step and saves time.

We would urge other projects to gamify their re-
hearsals in similar unique ways, as it boosted memora-
bility and engagement and thus knowledge retention and
transfer between team members.

Acknowledgements
This work was supported by the Research Council

of Norway (RCN) through the MASSIVE project, grant
number 270959, by the center of excellence Centre of
Autonomous Marine Operations and Systems (NTNU
AMOS) grant number 223254, and ELO-Hyp (Norway
Grants contract 24/2020).

References
[1] the Cube Sat Program. CubeSat Design Specifi-

cation. https : / / www . cubesat . org /
cubesatinfo. (Accessed on 08/31/2022).

[2] Github.com | service for software development and
version control. https://github.com/. (Ac-
cessed on 08/31/2022).

[3] Github Flow. https://docs.github.com/
en/get-started/quickstart/github-
flow. (Accessed on 08/31/2022).

[4] Jenkins | open source automation server. https:
//www.jenkins.io. (Accessed on 08/31/2022).

[5] Sivert Bakken et al. “Testing of Software-Intensive
Hyperspectral Imaging Payload for the HYPSO-1
CubeSat”. In: 2022 IEEE/SICE International Sym-
posium on System Integration (SII). Jan. 2022,
pp. 258–264. DOI: 10.1109/SII52469.2022.
9708802.

IAC-20-D.1.5.9 Page 3 of 3

https://www.cubesat.org/cubesatinfo
https://www.cubesat.org/cubesatinfo
https://github.com/
https://docs.github.com/en/get-started/quickstart/github-flow
https://docs.github.com/en/get-started/quickstart/github-flow
https://docs.github.com/en/get-started/quickstart/github-flow
https://www.jenkins.io
https://www.jenkins.io
https://doi.org/10.1109/SII52469.2022.9708802
https://doi.org/10.1109/SII52469.2022.9708802

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions

