
AGILE SMALLSAT OPERATION TOOL-CHAIN DEVELOPMENT: HYPSO-1
HYPERSPECTRAL EARTH OBSERVATION EXPERIENCES

Dennis D. Langer1, Simen Berg2, Joseph L. Garrett2, Roger Birkeland3,
Sivert Bakken2, Tor A. Johansen2, and Asgeir J. Sørensen1

Centre for Autonomous Marine Operations and Systems
1Department of Marine Technology

2Department of Engineering Cybernetics
3Department of Electronic Systems

Norwegian University of Science and Technology (NTNU)
O.S. Bragstads Plass, 7034 Trondheim, Norway

ABSTRACT
Satellite operations is important for a successful mission, but
can be time consuming for inexperienced operators in new
small satellite projects. We present a method for the contin-
uous development of an earth observation satellite operations
system based on agile principles, specific mission objectives
and lessons learned. Results are presented using data from
the HYPSO-1 satellite. Downloaded data amount and qual-
ity with regards to image cloud content is maximized using a
single ground station while drastically reducing operator time
investment.

Index Terms— cubesat, operations, hyperspectral remote
sensing, HYPSO-1, software development

1. INTRODUCTION

In concert with improvement, higher availability and cost re-
duction of satellite system technology, e.g. cubesat compo-
nents the number of satellites in orbit has increased [1]. Con-
sequently, more services and data products are available from
space-borne platforms. However, if a satellite is not able to
fulfil mission objectives, large amounts of effort, time and
money would be lost. The satellite will instead contribute
to the increasing amount of space debris, which over a long
period can threaten other functioning satellites in orbit. It
is therefore important that satellites are not destroyed during
launch or by the environment in orbit, and that they are oper-
ated to maximize benefit.

Many commercial entities have entered the small satel-
lite market [2]. This includes for example companies spe-
cialized in designing, manufacturing and operating satellites.

This work was supported by the Research Council of Norway through
the Centre of Excellence funding scheme NTNU AMOS (grant no. 223254),
MASSIVE (grant no. 270959), HYPSCI (grant no. 325961), Green-Platform
(grant no. 328724), EEA NO Grants 2014 - 2021 under Project ELO-Hyp
(contract no. 24/2020).

The expansion of the satellite market improves the expertise
for specialized parts of space technology, and there is there-
fore higher likelihood for successful satellite missions. An
increased market for space technology lowers the bar to start
smaller and less costly projects that can use Commertial Off-
The-Shelf (COTS) components. Instead of launching sev-
eral satellites to gain the experience and knowledge needed
to build a successful satellite system, it is reasonable to as-
sume instant success when relying on state-of-the-art prod-
ucts in the market. In addition, making a space system with
the ability to receive software updates, there is a possibility
of iterative improvements as seen fit, which is more adaptable
than a static configuration that is locked at launch.

Satellites used to require hundreds of involved personnel
to operate and maintain [3]. Today’s trend towards COTS
small satellites is decreasing the cost, time and manpower
requirements towards building, launching and operating a
satellite. When launching a satellite system largely based on
COTS componentsit is now possible to let the project team
operate the satellite themselves.

While there are many papers on the design of satellite
subsystems, the literature is sparse on how to operate a satel-
lite. Research into ground based satellite operations has been
down-prioritized in favor of on-board autonomy [4].

The first HYPerspectral Smallsat for Ocean observation
satellite (HYPSO-1) is an example of a low-budget small
satellite based on COTS components. Specifically, it consists
of a 6U satellite bus from Kongsberg NanoAvionics with
an in-house developed hyperspectral push-broom camera as
payload. HYPSO-1 [5, 6] is a science-driven mission collect-
ing ocean color data with its hyperspectral imager, as well
as a test platform for novel operational concepts, operational
procedures and planning methods. This includes the use of
onboard data processing with low-latency delivery of data for
real-use, e.g. guiding an autonomous surface vehicle [7], thus
HYPSO-1 can be a part of a system-of-systems that involve



in-situ marine robots and unmanned aerial systems [8].
HYPSO-1 is operated by a team with little experience of

satellite operations. To implement improvements from con-
tinuous lessons learned, the working methodology of the op-
erators and ground software developers is based on agile prin-
ciples.

There are many criteria for characterizing an agile soft-
ware development team. Some of them are about whether
the team is self-organizing, continuously striving for improve-
ment and work closely with their stakeholders [9]. The Agile
Alliance defines agile software development to be ”[...] an
umbrella term for a set of frameworks and practices based on
the values and principles expressed in the Manifesto for Agile
Software Development and the 12 Principles behind it”, [10].
Some argue that agile development is required in a univer-
sity context to support concurrent satellite development un-
der presence of time and cost constraints [11]. Others argue
for that agile means to continuously improve one’s methods
and tailor them to the team’s specific situation, as opposed
to sticking to a single framework [10, 12, 13]. In this sense,
agile is a meta-method, sitting on top of and influencing the
specific methods chosen.

Planet Labs PBC [14] is an example of a successful com-
mercial new-space entity employing agile methods. They
report that taking an agile approach helped with iterating and
improving the design, collaboration with the end users and
bringing in prospective customers early. Downsides are that
fast iteration requires inexpensive components and launch
costs, which is enabled by technological progress and minia-
turization of electronics.

In this paper, we propose a method for the continuous de-
velopment of a earth observation satellite operations system
based on agile principles and specific mission objectives. The
low-cost COTS aspects of HYPSO-1 are taken into account
during development of the ground system and operation.

First, the proposed method is expanded in Section 2.
Then Section 3 shows the results of continuous development
to software and operational procedures. Finally, Section 4
concludes the research.

2. METHOD

Design principles and operational goals depend heavily on the
specific mission. Hence, we some details in the principles and
goals discussed here are specific to HYPSO-1.

2.1. Design Principles and Operational Goals

The design principles that are followed overlap with the prin-
ciples attributed to agile software development [12]. Some
of them are listed in the following: 1) The software should
address specific user needs. Satellite operations have a time
pressing aspect, as satellites have limited lifetimes in orbit
that cannot be set on hold. There is often no time to focus

on general features before addressing specific needs. 2) The
software should be modular. The software tool-chain in a
satellite operations software system should consist of compo-
nents with few inter-dependencies and clearly defined inputs
and outputs. Related to the first point: 3) the software should
be simple and have intuitive user interfaces. It should not
contain unnecessary components and it should be possible to
figure out how to use a tool with minimal dependence on ex-
ternal documentation.

The main operational requirement for the HYPSO-1 satel-
lite is to maximize the delivery of useful hyperspectral re-
mote sensing data from the prioritized targets. The data is
in the form of hyperspectral data cubes with corresponding
metadata, see also [15]. The prioritized targets may change
on a day-to-day basis. In addition, HYPSO-1 missions typi-
cally have a number of additional requirements for frequently
revisit targets, for low latency data delivery, aiming to min-
imize cloud content in images, and to support experimental
image acquisitions and extension of on-board processing via
software updates.

The operational goal is to achieve these requirements un-
der a set of constraints. The driving constraints for HYPSO-
1 include factors like the power and energy budgets, ground
station availability, downlink throughput and available on-
board storage space, while also working with imposed soft-
ware tools and infrastructure that are provided by the COTS
satellite bus and components provider.

2.2. Development of Satellite Operations

As an inexperienced team begins to operate their recently
launched small satellite, it is likely that the operational pro-
cedures that are used initially include more manual work than
necessary. This manual work can be made more efficient and
less time intensive via automation.

Modern open source software packages and tools are
powerful while still being easy to use. This enables the de-
velopment of custom software utilities to rapidly improve
and automate satellite operations, according to the needs of
the operators. Another aspect of the availability of these
software tools, is that operators themselves can develop their
own software to automate their tasks. In a sense, the opera-
tors may become their own stakeholder, defining their own
requirements for software development. In another sense,
the requirements are defined by operational goals and design
principles.

2.3. Methodology

Figure 1 illustrates the proposed methodology, showing the
flow from identification of a need for improvement until use
of new software to address this need. The methodology can
be divided into 5 steps:



1. The operators identify a need for improvement to their
workflow.

2. New software is developed to satisfy the need.

3. The software is tested in simulation or on a hardware-
in-the-loop setup.

4. The software is tested on the satellite.

5. The software is integrated into day-to-day operations.

Fig. 1. Block diagram of the proposed workflow. This work-
flow was adopted during the operation of HYPSO-1.

The term software here can refer to both on-board soft-
ware of the satellite and software used on ground to aid in
satellite operations. As the ground software and operations
team gains experience operating the small satellite, ideas for
improvements become clear (1). These ideas inform the on-
going development of both the ground segment software and
the on-board software (2). Testing is essential to make sure
the software is working as intended without side effects of
causing issues (3) & (4), see [16]. After successful initial
deployment on the satellite during operations, the updates to
software is integrated into the nominal operational procedures
(5).

The methodology speeds up the software development cy-
cle, with real-time feedback, more software iterations and
faster deployment of new features that address specific user
needs. There is little delay between development, testing and
deployment if it is the operators themselves who are devel-
oping the software, and new functionality may be integrated
in a matter of days to weeks. Software relating to satellite
operations can be broadly categorized into three groups. I.e.
software is used:

1. by the operators to plan actions with the satellite,

2. on the satellite, or

3. to processes data from the satellite.

1) is used to schedule automated communication with the
satellite, and create and upload scripts to the satellite (ground
software for planning). 2) is used to add new features to the
on-board command and data processing of the satellite. 3) is
used for ground processing and analysis. For 1) and 3), step
4 in Figure 1 may not be relevant or possible, in which case
this step is skipped.

For HYPSO-1, there is a system architecture that provides
mechanisms for fault tolerance and resilience, such that soft-
ware can be tested in-orbit without risk for permanent damage
to the satellite [17].

3. RESULTS

The methods described in Section 2.3 have been applied
while operating the HYPSO-1. The operational goals (see
Section 2.1) have remained the same for HYPSO-1 since
launch. However, the tools used to achieve the goals have
changed drastically.

In this section, we present how agile software devel-
opment and overlapping developer and operator roles have
improved the operational workflows with respect to these
three parts, and increased the data quality of HYPSO-1 since
launch. Possible improvements to operational procedures
were identified by qualitatively assessing the proportion of
time required to perform a certain task out of the total time
spend by a team member on operations related tasks.

3.1. Planning and Scheduling Software

The tasks performed during the planning stage for imaging
are 1) selection of imaging targets, 2) checking suitability of
targets with respect to overpass opportunities, pointing angles
within acceptable range, and predicted cloud cover, and 3)
generation of an imaging schedule in the form of a command
script to be uploaded to the satellite.

At launch, the ground software for planning was consist-
ing of the Ansys Systems Tool Kit (STK) and a MATLAB
script for computing the attitude parameters for pointing
HYPSO-1 to targets at specific times. Targets were checked
manually for passes using STK and cloud cover. STK was te-
dious to use, as simple actions like determining future passes
over targets took minutes per target, and overpasses were
shown in comparatively hard to read text files. The number of
targets to be imaged were few, as checking each target took
time. Schedules were written and uploaded manually. This
was the main reason for limited capture capacity in the initial
months of operation, see Figure 2.

Python based tools were made to automate these steps. A
map-based Graphical User Inteface (GUI) was made to check
and visualize overpasses to aid target selection, requiring less
than a minute to check a target. A minimal set of parame-
ters required to write a imaging schedule script was identi-
fied. Thus, it was possible to generate the imaging schedule



scripts automatically. Upload of the schedule was automated
using a satellite overpass tool delivered by the satellite bus
manufacturer.

By the beginning of 2023, also overpass and cloud cover
checking was automated using self-developed tools. These
tools relies on open-source software and Application Pro-
gramming Interfaces (APIs), such as cloud cover provided by
met.no. The downlink capacity of HYPSO-1 was saturated,
resulting in consistent performance of more than 100 images
per month, see Figure 2. The imaging capacity of HYPSO-1
was found to be 5-6 images per day. Due to automation,
the list of potential targets has reached ca. 150. The 5-6
prioritized image captures per day are automatically selected
depending on pass availability and cloud cover forecasts.

Fig. 2. Lifetime histogram of images from HYPSO-1 per
week and per month.

Fig. 3. Average amount of overexposed pixels in an image
per week.

3.2. Ground Processing Software

Data handling on ground was found to be equally time con-
suming as planning due to the manual work required. Ini-
tially, data was downlinked manually, requiring time inten-
sive operator presence during a pass. The data was stored
in a raw format in a location for internal data sharing. Au-
tomatic data downlinking using software from the satellite
bus provider was one of the earliest improvements for oper-
ations. The downlinked data is stored in a satellite bus pro-
vided database, from which the data need to be extracted to
perform processing. Further improvements are association of
the hyperspectral data with Attitude Determination and Con-
trol System (ADCS) telemetry for direct georeferencing, stan-

dardized data formats and a metadata database. Moreover,
the team is currently developing an automated calibration and
correction pipeline to disseminate data at levels L1 and L2.

3.3. On-board software

Initially, on-board processing included binning and compres-
sion. Recently, on-board processing has been expanded with
semantic segmentation. It is also possible to generate over and
underexposure masks, generate RGB thumbnails on-board,
and perform direct georeferencing. However, this is not in-
cluded in nominal operations yet.

3.4. Data Quality

Due to the map-based satellite overpass tool, more time was
available for more detailed cloud cover checking, resulting in
an improvement of data quality in terms of overexposed pixel
content, see Figure 3.

3.5. Discussion

In one way, the HYPSO team was forced to work in an ag-
ile, self-organizing way. Every member had duties in addi-
tion to tasks relating to operating and developing software for
HYPSO-1. For example, students typically also conducted
research that are related to the use of HYPSO-1 data and de-
velop its data processing algorithms. Thus it is natural to op-
timize for time and data quality. In another way, the proposed
method may be tended towards naturally for new small satel-
lite operators, if operations are not planned in depth, and the
operators will need to learn a lot in a short period of time,
while the remaining lifetime of the small satellite decreases
day by day. However, it may be just as likely that operations
are neglected considering the time investment. In addition,
initially after launch, a degree of manual work is accepted
due to the novelty of operating one’s own satellite.

Fast software development cycles cause workflows to
quickly become outdated. This puts a strain on documenta-
tion and maintaining the knowledge of how to operate the
satellite within the team. It is imperative that a core part of
the team stays active and involved with operations to stay up
to date, and engage in knowledge transfer via peer-to-peer
training.

4. CONCLUSION

The toolchain for small satellite operations was steadily im-
proved over time, as operations learned various details about
the platform and adjusted to different conditions. The im-
proved toolchain has caused a significant reduction in the
overall time required to operate the HYPSO-1 satellite, as
well as an increase in data quality. Development based on
agile principles with integrated software development and
operations has been shown to be beneficial.

met.no


It is found to be acceptable for inexperienced teams to
not have an exhaustive operational design concept ready by
launch. Inexperienced teams most likely struggle to identify
the most pressing tasks needing automation prior to launch,
so some efforts can prove worthless once the satellite is in or-
bit. It is therefore valuable to focus on a minimum operation
at start, and then develop according to emerging needs, as out-
lined Section 2.3. Agile software development methods using
powerful modern open source tools make it possible to de-
velop ground software tools for planning and data processing
as part of satellite operations.

First, operators were being busy scheduling a few images
over a time weeks time window, which took many working
hours each time. Now, a single operator can schedule im-
ages at saturated downlink capacity over a time window of
3-4 days, as well as running the ground processing pipeline to
store the images into an archival format. All taking about an
hour of operator time.

As of 2023, open source programming tools have become
easy enough to use such that integrated software development
and satellite operations are more efficient for small satellite
operations.

5. REFERENCES

[1] E. Kulu, “Nanosatellite launch forecasts - track record
and latest prediction,” in 36th Annual Small Satellite
Conference, 2022.

[2] M. N. Sweeting, “Modern small satellites-changing the
economics of space,” Proceedings of the IEEE, vol. 106,
no. 3, pp. 343–361, March 2018.

[3] T. Gathmann and L. Raslavicius, “Systems approach to
the satellite operations problem,” IEEE Aerospace and
Electronic Systems Magazine, vol. 5, no. 12, pp. 20–24,
Dec 1990.

[4] J. L. Anderson, F. J. Kurfess, and J. Puig-Suari, “A
Framework for Developing Artificial Intelligence for
Autonomous Satellite Operations,” in ESA Special Pub-
lication, H. Lacoste, Ed., Sept. 2009, vol. 673 of ESA
Special Publication, p. 4.

[5] M. E. Grøtte, R. Birkeland, et al., “Ocean color hy-
perspectral remote sensing with high resolution and low
latency–the hypso-1 cubesat mission,” IEEE Trans-
actions on Geoscience and Remote Sensing, pp. 1–19,
2021.

[6] S. Bakken, M. B. Henriksen, et al., “Hypso-1 cube-
sat: First images and in-orbit characterization,” Remote
Sensing, vol. 15, no. 3, 2023.

[7] A. Dallolio, G. Quintana-Diaz, et al., “A satellite-usv
system for persistent observation of mesoscale oceano-

graphic phenomena,” Remote Sensing, vol. 13, no. 16,
2021.

[8] A. Oudijk, O. Hasler, et al., “Campaign for hyper-
spectral data validation in north atlantic coastal waters,”
in 12th Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS),
Rome, 2022.

[9] Ambysoft Inc, “The Criteria for Determining Whether
a Team is Agile,” https://agilemodeling.com/

essays/agilecriteria.htm, accessed on 03 July
2023.

[10] Agile Alliance, “Agile 101,” https://www.

agilealliance.org/agile101/, accessed on 03
July 2023.

[11] K. Foo, M. Tissera, R. Tan, and K. Low, “Agile de-
velopment of small satellite’s attitude determination and
control system,” in 2023 IEEE Aerospace Conference,
Mar. 2023, pp. 1–11.

[12] K. Beck, J. Grenning, et al., “Manifesto
for Agile Software Development,” https:

//agilemanifesto.org/, 2001, accessed on
03 July 2023.

[13] C. Drumond, “Is the Agile Manifesto still a
thing?,” https://www.atlassian.com/agile/

manifesto, accessed on 03 July 2023.

[14] Planet Labs PBC, “What Is Agile Aerospace? Learn
Planet’s Approach,” https://www.planet.com/pulse/

what-is-agile-aerospace-learn-planets-approach,
2019, accessed on 03 July 2023.

[15] S. Bakken, A. Danielsen, et al., “A modular hyperspec-
tral image processing pipeline for cubesats,” in 2022
12th Workshop on Hyperspectral Imaging and Signal
Processing: Evolution in Remote Sensing (WHISPERS),
Sep. 2022, pp. 1–5.

[16] S. Bakken, R. Birkeland, et al., “Testing of software-
intensive hyperspectral imaging payload for the hypso-1
cubesat,” in 2022 IEEE/SICE International Symposium
on System Integration (SII), Jan 2022, pp. 258–264.

[17] S. Bakken, E. Honoré-Livermore, et al., “Software de-
velopment and integration of a hyperspectral imaging
payload for hypso-1,” in 2022 IEEE/SICE International
Symposium on System Integration (SII), Jan 2022, pp.
183–189.

https://agilemodeling.com/essays/agilecriteria.htm
https://agilemodeling.com/essays/agilecriteria.htm
https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://www.atlassian.com/agile/manifesto
https://www.atlassian.com/agile/manifesto
https://www.planet.com/pulse/what-is-agile-aerospace-learn-planets-approach
https://www.planet.com/pulse/what-is-agile-aerospace-learn-planets-approach

	 Introduction
	 Method
	 Design Principles and Operational Goals
	 Development of Satellite Operations
	 Methodology

	 Results
	 Planning and Scheduling Software
	 Ground Processing Software
	 On-board software
	 Data Quality
	 Discussion

	 Conclusion
	 References

