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Abstract

In-flight atmospheric icing is a severe hazard for propeller-driven
unmanned aerial vehicles (UAVs) that can lead to issues ranging from
reduced flight performance to unacceptable loss of lift and control. To
address this challenge, a physics-based first principles model of an
electric UAV propulsion system is developed and identified in varying
icing conditions. Specifically, a brushless direct current motor
(BLDC) based propeller system, typical for UAVs with a wing span of
1-3 meters, is tested in an icing wind tunnel with three accreted ice
shapes of increasing size. The results are analyzed to identify the
dynamics of the electrical, mechanical, and aerodynamic subsystems
of the propulsion system. Moreover, the parameters of the identified
models are presented, making it possible to analyze their sensitivity to
ice accretion on the propeller blades. The experiment data analysis
shows that the propeller power efficiency is highly sensitive to icing,
with a 40% reduction in thrust and a 16% increase in torque observed
on average across the tested motor speeds and airspeeds. The
resulting reduction in propeller efficiency can be as high as 70% in the
worst-case scenario. These findings provide valuable insights into the
impact of ice accretion on electric propeller systems and contribute to
the development of effective ice protection systems for safer UAV
operation in cold environments.

Nomenclature

v phase voltage V
vl-l line-to-line voltage V
vn neutral point voltage V
n circuit neutral point
v0 ESC voltage drop V
vb supply DC voltage V
ib supply DC current A
i0 zero-load current A
v1, v2, v3 armature coil voltage V
i1, i2, i3 armature coil current A
R equivalent circuit resistance Ω
L equivalent circuit inductance H
kE equivalent circuit back-emf constnat V/(rad/s)
kV electric motor speed constant RPM / V
Rl-l line-to-line resistance Ω
R1, R2, R3 armature coil resistance Ω
L1, L2, L3 armature coil inductance H
kE,1, kE,2, kE,3 armature coil back-emf constant V/(rad/s)
δt normalized PWM input ∈ [0, 1] (-)

FESC(δt) ESC voltage transmission function ∈ [0, 1] (-)
p0, p1, p2 FESC model parameters (-)
t time s
ω motor shaft velocity rad/s
ω̇ motor shaft acceleration rad/s2

I motor intertia kgm2

ρ air density kg/m3

D propeller diameter m
Sp area swept by the propeller m2

Va airspeed m/s
Ve propeller air exit speed m/s
km throttle-based thrust constant m/s
kmq throttle-based torque constant kgm2/rad2

kω throttle-based motor speed constant rad/s
kQ electric torque constant Nm/A
T propeller thrust N
Q propeller torque Nm
J advance ratio (-)
ep model parameter for propeller efficiency (-)
ηp computed propeller efficiency factor (-)
CQ nondimensionalized torque (-)
CT nondimensionalized thrust (-)
Cq0 , Cq1 , Cq2 nondimensionalized torque coefficients
Ct0 , Ct1 , Ct2 nondimensionalized thrust coefficients
y model response variable
z measured response variable
ν measurement error
z̄ averaged response variable
θ model parameter
ξ regressor vector
X regressor matrix
N number of measured samples
np number of estimated model parameters
j parameter index
s(θ̂) standard error
R2 model fit analysis metric
SSR, SSE , SST sum of squared errors
BM subscript for Beard & McLain thrust model
clean subscript for ice-free model parameter
measured subscript for measured data
ˆ symbol for estimated variable or parameter
bold symbol vector form
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Introduction

Application of small electrically-propelled fixed-wing unmanned
aerial vehicles (UAVs) has increased rapidly in the last decade,
covering a range of use cases such as mapping, surveillance, package
delivery, and warfare [1]. The main factors that have enabled such
rapid adoption are access to relatively cheap, lightweight, and efficient
subsystems, including autopilot hardware based on
micro-electromechanical system (MEMS) sensors [2], improved
communication technology, and electric propulsion systems.

The increased commercial and military utilization of UAVs has
resulted in higher expectations towards the operability of such aircraft
in all weather conditions [1], including heavy wind, rain, snow, and
icing [3]. Among the harsh weather conditions, icing is considered the
most challenging and hazardous [4].

One approach to enabling the use of UAVs in icing conditions is to
use modeling and system identification to develop an understanding
of the effect ice accretion has on the UAV’s performance. Given a
performance degradation model, it is possible to develop
performance-based icing detection algorithms and implement control
strategies to mitigate the adverse effects of icing on vehicle
dynamics [5, 6]. In addition, having access to a model that can
describe the impact of icing on the UAV’s dynamics allows the UAV
to be operated closer to its maximal potential and enables safer
autonomous flights.

Several studies on the general modeling of electric UAV propulsion
systems in nominal conditions, i.e., not icing conditions, can be found
in recent literature. For instance, Coates et al. [7] performed system
identification using wind tunnel tests and compared a physics-based
propulsion system model with two throttle-based thrust models.
Similarly, a multi-physical model of a brushless direct current
(BLDC) motor is identified by Michel et al. [8] to analyze the energy
dynamics of a multirotor UAV in nominal operating conditions.

In literature from the early 2000s, modeling, and identification of
three-phase BLDC motors, not necessarily used for UAV propulsion,
can be found. For instance, Moseler and Isermann [9] develop a
model-based fault detection algorithm for a three-phase BLDC motor.
Their paper discusses assumptions and simplifications necessary for
developing a linear BLDC motor model. Some of their notation is
adopted in this paper. More recently, a frequency domain approach to
the system identification of a BLDC motor has been presented by
Xiang et al. [10].

Analysis of propeller system degradation has recently gained attention
due to the increased commercial interest in battery-powered UAVs.
Early experimental analysis of UAV propeller and performance
degradation due to icing was conducted by Liu et al. [11, 12] in 2018,
and several newer publications on propeller performance analysis in
icing conditions can be found in [13, 14, 15, 16, 17]. In addition to
experimental studies, some simulation-based analysis using icing
CFD tools has been presented by Ozcer et al. [18] and by Müller et
al. [19], where the first article describes ice accretion on aircraft in
general, while the latter focuses on UAV propeller icing.

Although there is a growing amount of literature analyzing the
penalties related to the operation of UAV propeller systems in icing
conditions, only a few researchers have attempted to identify a model
capable of predicting propeller performance at different icing severity
levels. Such a model can potentially allow for the development of an
icing severity detection algorithm based on, for example, fault
detection filters (FDF) [20] — a model-based approach to fault
detection that has been developed and improved by the automatic
control research community since the 1960s.

Some relevant work on the development of ice detection algorithms
for propeller-based systems is presented by Haaland et al. in [21]
where a multiple model estimation (MME) is used to predict the icing
severity of a propeller system. A more comprehensive work is
presented by McKillip et al. in [6], where the authors use icing
computational fluid dynamics (CFD) results and icing wind tunnel
(IWT) experiments to analyze the propulsion system of an electric
vertical take-off and landing vehicle in icing conditions and develop
an FDF algorithm for in-flight icing detection. The results in [21, 6]
show the importance of having a model of the propulsion system
when developing an algorithm for the detection of in-flight icing.

Having a model of the propulsion system and understanding how it
changes due to icing can lead to several important benefits. These
benefits include the possibility of implementing FDFs, simulating the
propulsion system, and for instance, determining the effect of an iced
propeller on the overall flight mission. Additionally, it allows
quantifying the cost of flying with degraded performance versus using
a de-icing system — information that can greatly benefit the work
similar to Wallisch et al. [22]. Motivated by the aforementioned
benefits of having a propulsion system model, this paper presents the
results of UAV propeller system modeling in nominal and iced
conditions. In particular, the modeling results were achieved using
experimental data gathered at four icing severity conditions based on
the icing exposure time, namely: 0, 20, 40, and 60 seconds. The
exposure times were limited by the substantial ice shedding observed
for ice shapes accreted for more than 60 s and the fact that significant
performance degradation could be observed already after 20 seconds
of in-flight icing.

The experiments in this study are documented by a comprehensive set
of measurements, including power supply voltage and current, the
motor phase voltage, motor shaft velocity, and propeller torque and
thrust forces. Access to these measurements has allowed the
identification of a multi-system model comprising the electric,
mechanical, and aerodynamic subsystems of a UAV propulsion
system at three different icing severity levels — a result that has not
been observed in the available literature. The goal of modeling the
UAV propulsion system in this way is to highlight the sensitivity of
various model parameters and variables to icing severity, thus making
it easier to develop model-based ice detection algorithms for UAVs.

Prior to the experiment design, a hypothesis was made to describe the
expected outcome of this study. The hypothesis relates to which parts
of an electric propulsion system change due to ice accretion on the
propeller blades. Specifically, it was theorized that the accreted ice
mainly affects the aerodynamic properties of the propeller by
changing its geometrical shape. In terms of performance, this
translates to increased drag and torque and reduced lift and thrust
produced by the propulsion system. In contrast, the
electro-mechanical subsystems that describe the conversion of power
from electric to mechanical are expected to stay unaffected. The
findings of this study are analyzed and compared to the stated
hypothesis in section Results.

Methods

This section presents the theory for modeling and identification of an
electric propeller-based system in nominal and iced conditions.

Electrical System

In the studied propulsion system, when a throttle command is sent in
the form of a pulse-width modulated (PWM) signal, the first
components it reaches are the electronic speed controller (ESC) and
the BLDC motor. The task of the ESC in this set-up is to convert the
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DC voltage from a power supply into a PWM-modulated voltage that
can generate torque by timely switching the current flow in the
armature coils of the motor. The electric switches are usually
connected in a bridge structure as shown in Fig. 1, where vb and ib are
the power supply voltage and current, v1, v2, v3 and i1, i2, i3 are the
three motor armature coil voltages and currents, and PWM is the
throttle signal.

Figure 1: ESC and BLDC motor circuit. Electric switches are labeled SW. The
red lines show the voltmeter connection points necessary to measure the line-
to-line voltage vl-l, the armature voltage v1, and the neutral point voltage vn.
The yellow line indicates where the PWM signal enters the switches.

The bridge circuits of the type shown in Fig. 1 are nonlinear, complex,
and non-trivial to analyze. It is, therefore, common to work with
equivalent circuits when analyzing and modeling the combined ESC
and BLDC motor dynamics [7, 9]. Following [7, 9], the equivalent
circuit is set up according to Fig. 2, where i and v are the average
phase current and phase voltage supplied to the motor.

Figure 2: Equivalent circuit showing the propulsion system from PWM throttle
input to propeller thrust T and torque Q.

According to [9], the voltage balance over the equivalent circuit can
be formulated as follows,

v (t) = Ri (t) + L
d

dt
i (t) + kEω (t) (1)

where t is time, and the current i, voltage v, and motor shaft speed ω
are related through the coupled resistance R, inductance L, and
back-EMF constant kE , which are calculated based on the individual

armature coil coefficients, shown in Fig. 1:

R =
2

3
(R1 +R2 +R3) (2)

L =
2

3
(L1 + L2 + L3) (3)

kE =
2

3
(kE,1 + kE,2 + kE,3) (4)

In Eqs. 2–4, the factor of two is related to the fact that the power
balance is calculated over two of the armature coils at each instance.

The BLDC Motor Model

Equation 1 describes a model that relates the motor’s average phase
voltage, phase current, and angular velocity. Usually, the
measurements of the motor phase voltage and current are unavailable;
therefore, it is useful to describe these values in terms of the PWM
throttle signal and the supply voltage vb and current ib. This can be
achieved through the ESC power balance in Eq. 5, which states that
the power on the input and output sides of the ESC must be equal.

vb(t) · ib (t) = v(t) · i(t) (5)

Following [8, Eq. 22], the phase voltage in Eq. 5 can be described as a
function of the supply voltage, and the normalized PWM throttle
signal δt(t) ∈ [0, 1] as follows,

v(t) = FESC(δt(t)) · vb(t) (6)

or

FESC(δt(t)) =
v(t)

vb(t)
(7)

where FESC(δt(t)), referred to as the ESC transmission function, is
the function that relates the throttle input δt to the fraction of the
supplied voltage vb transmitted to the motor. In [7, 8], the ESC
transmission function is a linear function of δt; however, in this paper,
based on power supply voltage and phase voltage measurements,
FESC was determined to be a second-order function of δt of the
following form,

FESC(δt) = p0 + p1 · δt + p2 · δ2t (8)

Similarly to voltage, the average phase current i(t) can be described
as a function of the supply current and the normalized PWM throttle
signal. Starting by rearranging, Eq. 5 gives:

i (t) =
ib(t)

v(t)/vb(t)
(9)

then by using v(t) from Eq. 6 the following expression is obtained,

i (t) =
ib(t)

FESC(δt(t))
when FESC(δt(t)) ̸= 0 (10)

resulting in two expressions for the phase current i(t). Although the
parameters of the FESC function in Eq. 8 are identified in this study,
since the measurements of both the supply voltage vb(t) and phase
voltage v(t) are available for all experiments, the phase current is
always calculated using Eq. 9. The same information is not normally
available during the flight. Thus identifying the FESC function is
important for the prediction of the phase voltage when it is not
measured, i.e., during flight.

When modeling electromechanical processes, it is common to ignore
the dynamics of the electrical system as they are much faster
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compared to the mechanical system. For instance, this is true when
considering the dynamics of current and angular velocity in a BLDC
motor. As such, the electric model is simplified by assuming that time
derivatives are zero. In Eq. 1, setting d

dt
i = 0 gives the following

steady state voltage balance,

v (t) = Ri (t) + kEω (t) (11)

Furthermore, when analyzing the combined ESC and motor system, it
might be relevant to include a voltage drop v0 over the ESC,

v (t) = Ri (t) + kEω (t) + v0 (12)

When working with real-world systems, one should be aware that the
simplified first-order model in Eq. 12 will not be able to capture the
system’s full complexity. For instance, many ESCs designed for
propeller systems use feedback to achieve an exponential
throttle-to-motor-shaft-speed relation, which results in a linear
throttle-to-thrust relation and makes the throttle input more intuitive
for the pilot. However, this unmodelled feedback may introduce
significant changes to the system’s dynamics, making it nonlinear.

BLDC Motor Parameter Measurements

Measuring the circuit parameters and the signals going through a
BLDC motor is not trivial. In a star-connected motor, the measured
resistance between two armature wires is the line-to-line resistance,
and the phase resistance is then the measured line-to-line resistance
divided by two. Given that all three armature resistances are equal, the
average resistance in the equivalent circuit is then calculated as,

R =
2

3
· 3 ·R1 = 2 ·R1 = Rl-l

when R1 = R2 = R3

(13)

Voltage measurement can be done using an AC voltmeter using the
true-RMS setting. The true RMS setting is essential as the measured
value is a noisy PWM-modulated signal far from an ideal sinusoid. In
a star-connected motor, the voltage measurement between any two of
the three armatures gives the line-to-line voltage vl-l. Furthermore, the
line-to-line voltages lead the phase voltages by 30◦ and thereby are
larger by a factor of

√
3,

v(t)
√
3 = vl-l(t) =⇒ v(t) =

1√
3
vl-l(t) (14)

Mechanical System

BLDC motors use permanent magnets and switching of the current in
the armature coils, i.e., current commutation, to generate torque and
drive the mechanical part of the propulsion system. Therefore, in a
BLDC motor, the produced torque is directly proportional to the input
current, i.e., the average phase current i(t).

The torque balance equation for a BLDC motor can describe in the
following way,

Iω̇(t) = kQ(i(t)− i0)−Q(t) (15)

where I is the rotor and propeller inertia, Q is the load torque, kQ is
the torque constant, and i0 is the zero load current, which can be
viewed as additional internal load caused by friction and other losses.
Some articles include viscous friction cvω(t) as part of the torque
model; however, based on findings in [7], and initial analysis of
experimental data, it has been determined that due to its small size,
the viscous friction can be discarded. When analyzing the torque in
steady state, i.e., with ω̇ = 0, the torque balance can be simplified to
the following form,

Q(t) = kQ(i(t)− i0) (16)

Torque and Back-EMF Constants

In a BLDC motor, the stator windings and permanent magnets on the
rotor generate a nearly uniform flux density in the air gap between
them [23]. The torque constant kQ (Nm/A) and the back-EMF
constant kE (V/(rad/s)) are both directly related to this magnetic
flux density in the motor and represent the conversion rate between
electrical and mechanical energy. In theory, both constants should be
equal when using SI units, and it is often assumed that kQ = kE .
However, losses associated with converting energy from electrical to
mechanical and mechanical to electrical can differ, and slight
deviations can be expected.

Aerodynamic System

The aerodynamic subsystem models the thrust T and torque Q
produced by the propeller as a function of the propeller’s angular
velocity, blade geometry, and atmospheric conditions. For easier
comparison and analysis of propeller performance, the torque and
thrust coefficients are typically nondimensionalized [7]:

CT =
4π2T

ρD4ω2
(17)

CQ =
4π2Q

ρD5ω2
(18)

where ρ is the air density, and D is the propeller diameter.

At low speeds typical for a fixed-wing UAV, the CT , and CQ

coefficients mainly depend on the advance ratio:

J =
2πVa

ωD
(19)

where Va is the airspeed. Using dimensional analysis, it has been
demonstrated that the thrust and torque coefficients mainly depend on
three variables: advance ratio, propeller blade Reynolds number, and
propeller tip Mach number [24]. Among these variables, the advance
ratio J is the most important term for the thrust and torque models, as
also noted in [7, 24]. Therefore, based on initial identification results
and to prevent over-parametrization and overfitting of the model, a
second-order advance ratio-based polynomial is used to approximate
the forces:

CT (J) = Ct0 + Ct1J + Ct2J
2 (20)

CQ(J) = Cq0 + Cq1J + Cq2J
2 (21)

giving the following polynomial thrust and torque equations:

T =
ρD4

4π2

(
Ct0 + Ct1J + Ct2J

2)ω2 (22)

Q =
ρD5

4π2

(
Cq0 + Cq1J + Cq2J

2)ω2 (23)

Throttle-based Thrust and Torque Models

In addition to the physical models described in the previous chapters,
several simplified models for calculating thrust based on throttle input
have been proposed in the literature. These models are useful since
they are easy to implement and do not require extensive modeling of
electromechanical propulsion subsystems. Similarly to Coates et
al. [7], a throttle-based thrust model is compared to the physics-based
model to establish the usefulness and applicability of such models for
modeling ice-induced performance degradation. The throttle-based
model examined in this study is the Beard & McLain model found
in [25, Ch. 4.3] labeled here with the subscript BM .

TBM =
1

2
ρSpep((kmδt)

2 − V 2
a ) (24)
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In this throttle-based model, the thrust is calculated based on the
throttle input δt, the airspeed Va, the propeller efficiency factor ep, the
motor constant km, the air density ρ, and the area swept by the
propeller Sp = 1

4
πD2 given by the propeller diameter D.

An equivalent throttle-based torque model is proposed in [25]. The
proposed model describes the motor shaft speed as a function of the
throttle input times a motor speed constant, ω̂ = kωδt, and then
models the throttle-based torque as a second-order function of ω̂(δt),
as shown in Eq. 25, where kmq is a model-specific torque constant.

QBM = kmqω̂
2 (25)

An analysis of Eq. 25 shows that it is equivalent to Eq. 23 if the terms
related to airspeed are removed. Due to this reason, and the fact that
the motor shaft speed is assumed to be known in most cases, this
throttle-based torque model is not further investigated in this study.

System Identification

System identification in this study is performed using the
rank-deficient least squares (LS) algorithm. The general LS regression
equation can be formulated in the following way,

y = Xθ

z = Xθ + ν
(26)

where
y = [y(1) y(2) ... y(N)]T = N × 1 vector of model response
variables,
z = [z(1) z(2) ... z(N)]T = N × 1 vector of measured response
variables,
θ = [θ0 θ1 ... θj ]

T = np × 1 vector of unknown parameters,
np = j + 1
X =

[
1 ξ1 ... ξj

]
= N × np matrix given by a column of ones and

regressor vectors ξ, and
ν = [ν(1) ν(2) ... ν(N)]T = N × 1 vector of measurement errors.

For an LS problem stated above, the solution that returns the
parameter estimate θ̂ is given by the normal equation,

θ̂ = (XTX)
−1

XT z (27)

which can then be used to predict the model response,

ŷ = Xθ̂ (28)

In Eq. 27 if the regressor vectors ξk , k ∈ (1, .., j) in X are linearly
independent, then XTX is positive definite, and (XTX)

−1
exists.

However, in many regression problems, due to model
over-parametrization and insufficient excitation in the dataset, the
regressors are often dependent and colinear, leading to sensitivity
when using (XTX)

−1
. Several methods have been developed to

deal with this problem. One such method is the rank-deficient LS
algorithm described in [26, Ch. 6.3.2]. This particular LS method uses
singular value decomposition (SVD) and an elimination step to
remove near singular values from the SVD decomposition to perform
robust matrix inverse operations. The elimination step is essential to
computing a robust inverse when the information matrix has
near-singular eigenvalues caused by near-linear dependencies among
the regressors. In this study, the rank-deficient SVD-based LS
regression has been used for some of the identification problems. The
use of the rank-deficient LS algorithm is stated where applicable. This
is important as using the reduced SVD solution in regression results in
invalid parameter uncertainties, and thus the metrics such as the stand
error in Eq. 32 cannot be used to describe the true uncertainty of the
identified parameters.

Error Analysis Metrics

Comparing system identification results can be challenging; it is,
therefore, beneficial to use several metrics to assess the fitness of a
model and its parameters. Based on [26, 24], the following metrics
have been chosen: the R2, the root mean square error (RMSE), and
the standard error.

R2

The R2 metric is based on partitioning the model prediction error into
the regression sum of squares SSR and the residual sum of squares
SSE . This partitioning makes it possible to characterize the variation
of the response variable about its mean,

SSR ≡
N∑
i=1

(ŷ(i)− z̄)2 , z̄ =
1

N

N∑
i=1

z(i)

SSE ≡
N∑
i=1

(z(i)− ŷ(i))2

SST = SSR + SSE

(29)

Using the definitions in Eq. 29, the R2 metric can be defined as
function of the unexplained error SSE and the total error SST ,

R2 = 1− SSE

SST
(30)

Root Mean Square Error

The RMSE is given by the square root of the normalized residual sum
of squares,

RMSE =

√√√√ 1

N

N∑
i=1

(z(i)− ŷ(i))2 =

√
SSE

N
(31)

Standard Error

The standard error is a useful metric for analyzing the fitness of each
individual parameter estimate. It is important to note that the standard
error calculation assumes uncorrelated measurement errors and a
sufficiently correct model structure. Thus, this metric is less useful
when the modeling error is large. The vector of standard errors s(θ̂)
corresponding to the estimated parameters θ̂ is given as

s(θ̂) =

√[
SSE

N − np

]
· diag[(XTX)

−1
] (32)

The standard error can also be expressed as a percentage of the
estimated parameter, making it easier to compare the standard errors
for estimates of different magnitudes.

Err % =
s(θ̂j)

θ̂j
(33)

Although the percentage measure can become inconvenient when |θ̂|
is very small, it is therefore recommended to use several metrics when
analyzing system identification results.

Experimental Setup

This section describes the experimental setup and the experiments
conducted to investigate the effects of icing on the performance of an
electric UAV propeller system.
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Data Acquisition

The experiments presented in this paper were conducted in an icing
wind tunnel (IWT) at the VTT Technical Research Centre of Finland
in Helsinki [27]. The test section of the IWT has a square shape with
a 0.7m × 0.7m opening. The IWT facility allows for testing at
temperatures ranging from −40 ◦C to 25 ◦C at wind speeds of up to
50m/s and liquid water content (LWC) between 0 and 1.0 g/m3. The
liquid water content is calibrated at the beginning of the test campaign
with the ice accretion on a rotating cylinder [28]. A diagram showing
the setup of the IWT is shown in figure Fig. 3.

Figure 3: An illustration of the wind tunnel at the VTT in Helsinki. Source [17].

A series 1780 test stand from Tyto Robotics [29] was used to perform
the propeller experiment and log data. The test stand allowed for
logging at 40 Hz of the following data: input PWM signal, supply
current and voltage, optical motor velocity, propeller torque, and
propeller thrust forces. The test stand uses the standard 50Hz PWM
protocol to generate the input signal to the ESC [30], where the
possible input PWM values are in the range [1000,2000]µs, where
1000 µs is equivalent to no power, and 2000 µs is full throttle. The
propeller used in the experiments is the ”Propeller 21x13 CCW 2B E”
manufactured by Mejzlik Propellers s.r.o., which has a radius of
D = 0.53m and, accordingly, sweeps an area of Sp = 0.22m2.

The motor selected for the experiments is the Axi 5345 HD 3D
Extreme V2 — a star-connected 3-phase BLDC motor. The motor
was controlled using a Kontronik JIVE Pro 80+ HV Brushless ESC,
operated in mode 3, which doesn’t auto-calibrate the throttle range on
start-up and uses a pre-selected setup, i.e. [1000,2000]µs.

The phase voltage generated by the ESC was logged separately from
the supply voltage using the Analog Discovery 2, a digital
oscilloscope capable of logging true RMS AC voltage data at a 10 Hz
sampling rate. Furthermore, based on Eq. 9, the phase voltage
measurement also makes it possible to compute the phase current.

JavaScript was used to generate various input signals through the Tyto
Robotics software. In particular — multistep, sawtooth, and chirp
signals were generated to drive the motor in an open loop
configuration while the sensor data was recorded.

Experiment Design

The experiments were conducted on two separate occasions. The first
set of experiments involved no-load calibration tests and was
conducted in a workshop environment. The second set of experiments
dedicated to system identification was performed in the icing wind
tunnel at VTT.

No-load Experiments

Prior to IWT tests, no-load experiments were performed to test the
scripts used to generate input PWM throttle commands and to test the
logging equipment.

During the no-load experiments, it was discovered that based on the
motor datasheet and the power supply, the measured voltage vl-l was
much lower than expected. Therefore, a voltage measurement
calibration was performed to solve this discrepancy using the motor
speed constant kV = 195 (RPM/V) acquired from the motor
datasheet [31]. The constant kV relates the input phase voltage to the
motor shaft speed of the motor in no-load conditions, i.e., i ≈ 0,

ω(t) = kV · v(t) , assuming zero load. (34)

Based on the motor shaft speed, the measured line-to-line voltage, and
the known kV constant, the phase voltage was calibrated such that
Eq. 34 was satisfied. Leading to the following corrected definition
based on Eq. 14,

v(t) = 3.073
vl-l,measured(t)√

3
(35)

Post-experiment analysis of the equipment suggests that the digital
oscilloscope might require active differential voltage probes to
measure PWM-modulated AC voltage accurately. Nonetheless, the
measured data has been deemed useful as the goal of this paper is
primarily to identify the effect of icing on the identified model
parameters and not to find the exact value of each parameter. The
described kV -calibration is therefore deemed an acceptable
pre-processing of the measured voltage data in the context of this
paper. The calibration result is presented in Figs. 4 and 5. In addition,
Figure 4 shows the alignment of the calibrated voltage measurement
with the motor shaft speeds measurements in a no-load experiment,
according to Eq. 34, and Fig. 5 demonstrates the non-linear relation
between the PWM command and the input phase voltage.

Figure 4: kV -calibrated phase voltage plotted against motor shaft speed ob-
tained from a no-load multistep experiment.

Figure 5: PWM command and the kV -calibrated phase voltage obtained from
a no-load multistep experiment.

Although the kV -calibration is not significant for analyzing the
change of electric model parameters due to icing, it does affect the
uncertainty in phase current, which is calculated based on the voltage
as shown in Eq. 9. This is especially important for the analysis of the
identified motor-based torque model in the Results section.
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IWT Experiments

A total of 22 system identification experiments were carried out at the
IWT, comprising 18 steady-state multistep tests. Additionally, 11 ice
accretion runs were performed to accrete the desired propeller ice
shapes for each iced experiment. The ice accretion runs were
performed at identical conditions, where the duration of the
experiment, in the range {0,20,40,60}s, was the only variable used to
influence the severity of the tested ice shapes. More about ice
accretion runs is presented in section IWT Experiments — Ice
Accretion. While the temperature significantly impacts the accreted
ice and the resulting aerodynamic penalties, the primary objective of
this paper is not to describe the penalties associated with a specific ice
shape. Instead, the purpose is to evaluate the sensitivity of various
model parameters in an electric propulsion system model to icing.
Thus, the results are deemed valid even when only one temperature is
considered. The complete experiment plan is presented in Table 1.

Table 1: Experiments performed at the IWT

Test PWM input Airspeed Ice accretion Repeated
1-2 Multistep 20m/s no ice x2
3-6 Multistep 25m/s no ice x4
7-9 Multistep 30m/s no ice x3
10 Multistep 20m/s 20 s x1
11 Multistep 25m/s 20 s x1
12 Multistep 30m/s 20 s x1
13 Multistep 20m/s 40 s x1
14 Multistep 25m/s 40 s x1
15 Multistep 30m/s 40 s x1
16 Multistep 20m/s 60 s x1
17 Multistep 25m/s 60 s x1
18 Multistep 30m/s 60 s x1

23 a Constant PWM 25m/s {20,40,60} s x11

aIce accretion runs. See flowchart in Fig. 9 for further explanation.

The multistep test was designed to cover the available PWM range
[1000,2000]µs and allow all measured states to reach a steady state
before each new step. In practice, this resulted in six equal PWM
steps of 10 seconds each, from 1230 µs to 1530 µs as shown in Fig. 6.
Although 1530 µs is far from full throttle, testing with higher values
was difficult due to RPM saturation caused by power supply
limitations. Nonetheless, the tests cover a wide range around the
typical UAV trim speed of 4200 RPM.

Figure 6: The figure shows the multistep input signal used to drive the motor in
system identification experiments. The PWM signals are generated through a
script in Tyto Robotics software and sent to ESC which drives the motor.

Selected data showing torque and thrust measurements from the
multistep experiments is presented in Figs. 7 and 8. The data
demonstrates a clear correlation between ice accretion and propeller
performance. Specifically, as the ice exposure time increases, the
torque of the propeller also increases while the thrust decreases.

Furthermore, the effect of airspeed, which increases both torque and
thrust, can also be observed.

Figure 7: Torque measured during the performed multistep experiments.

Figure 8: Thrust measured during the performed multistep experiments. The
negative thrust values indicate the sections where the propeller is windmilling
due to low RPM and non-zero airspeed.

IWT Experiments — Ice Accretion

The experiments conducted in this study varied in two parameters,
namely airspeed Va and ice accretion time. The airspeed was tested in
the range of 20m/s to 30m/s, which is a typical cruise speed range
for small fixed-wing UAVs, while the ice accretion time was tested in
the range of 0 to 60 s. The decision to limit the largest ice shapes to an
accretion time of 60 s was based on the observation that in the tested
conditions, ice shapes accreted for longer periods, e.g., 80 s, are prone
to shedding during the multistep experiment. Although larger ice
shapes can be accreted on the slower parts of the propeller, uneven ice
shedding from the blade tips exacerbates the problem causing
significant imbalance and propeller vibrations, which are highly
undesirable [17]. Moreover, the air temperature has a significant
impact on ice shedding time, with lower temperatures leading to more
shedding. Based on ice shedding times and performance degradation
results presented in [17], where the same propeller has been used, the
test temperature of −10 ◦C was found to be optimal, i.e., resulting in
the least ice shedding and highest performance degradation. The
values of LWC and median volume diameter (MVD), shown in
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Table 2, were selected based on the continuous maximum icing
envelope defined in CFR 14, Part 25, Appendix C [32] within the
capabilities of the IWT.

Table 2: Overview of the tested atmospheric icing conditions.

LWC MVD Air Temperature

0.44 g/m3 22.7 µm −10 ◦C

The propeller was cleaned, and new ice was accreted before each iced
experiment to ensure the consistency of the accreted ice shapes.
Furthermore, to test the ice shape integrity, the iced propeller was
commanded to 5700 RPM for 10 seconds to shed loose ice. If that
happened, the propeller was cleaned, and the ice accretion process
was repeated as indicated in the experiment flow chart in Fig. 9. In
these ice-accretion runs, the accretion occurred at a constant
atmospheric setting specified in Table 2, with the airspeed of 25m/s
and the propeller rotation rate of 4200 RPM. The only parameter that
was changed to create the different ice shapes is the duration of the ice
accretion, varying from 20 s to 40 s and 60 s. Furthermore, the wind
tunnel was switched on 30 s prior to the propeller experiments to
enable the airflow to settle.

Figure 9: Flowchart for the IWT experiments.

To correctly identify the performance degradation of a propeller due
to icing, the tested ice shapes had to be consistent throughout each
experiment. Therefore, the ice accretion times were based on typical
ice shedding times. In initial calibration runs, it was discovered that at
−10 ◦C, ice shedding was highly likely for ice shapes accreted for
80 s or more — a result consistent with findings in [17].

Figs. 10–12 show the accreted ice shapes before and after the
multistep experiments. As shown in Table 1, three different ice shapes
are accreted by varying exposure time to icing conditions, from 20 to
40 and 60 s. The side-by-side comparison of the propeller blades with
ice shapes highlights the degradation the ice shape experiences during
a multistep test. Ideally, the ice should have the same shape
throughout the whole experiment. However, as seen in the figures,
some degradation can be observed near the tip of the blades and on
the forward-facing surface of the blades, although the accreted ice on
the leading edge is visually consistent.

The performance degradation due to the accreted ice shapes can be
assessed by calculating the propeller efficiency throughout the
experiments. Here the propeller efficiency is based on the measured
thrust, torque, and motor shaft speed similar to Tyto Robotics
calculation in [33]. In this paper, the calculated efficiency is also
normalized by the ice-free efficiency to compare the effect of different
ice shapes, resulting in the following formula,

ηp =
T

Q · ω ·
(

Tclean

Qclean · ωclean

)−1

, Va ≡ Vaclean (36)

where the airspeed Va is accounted for by calculating ηp based on
clean and ice experiments performed at the same airspeed.

Figure 10: 20 s ice shape before (left) and after (right) the multistep experiment.

Figure 11: 40 s ice shape before (left) and after (right) the multistep experiment.

Figure 12: 60 s ice shape before (left) and after (right) the multistep experiment.
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Figure 13 presents calculated propeller efficiencies using Eq. 36,
indicating the reduction in efficiency for the tested ice shapes. It
should be noted that the calculated efficiencies are not valid during the
windmilling sections when the propeller does not produce propulsion
force and a negative thrust is measured, as shown in Fig. 8. The valid
efficiency results can therefore be observed from approximately 23
seconds onwards. The efficiency results clearly demonstrate an
efficiency reduction of approximately 20%, 40%, and 50% for ice
shapes accreted for 20, 40, and 60 s, respectively. Furthermore, in the
context of multistep experiments, analyzing propeller efficiency is a
useful method to investigate ice shape consistency. For instance, the
sharp increase in efficiency observed after 33 seconds and 2 seconds
before the end of the experiment with a 60 s ice shape is most likely
due to ice shedding. Additionally, smaller ice-shedding events and
gradual degradation of the ice shapes during the experiment could
explain the gradual increase in propeller efficiency throughout the
experiment. Some of the spikes in the calculated efficiencies can be
explained by the misalignment of the time-series data in the clean and
iced experiments, which is relevant because of the normalization
performed in Eq. 36.

Figure 13: Propeller efficiency calculated using Eq. 36. The figure shows results
for experiments performed at Va = 25m/s

Results

This section presents the identification results for each modeled UAV
propulsion subsystem. The results are visualized using bar plots for
parameter values and estimation confidence intervals, tables for
estimation error metrics, and graphs displaying modeling results. The
model for each subsystem is identified at four different icing severity
levels, defined by ice accretion time from 0 to 60 s. The modeling and
identification results are presented in the following order:

• Electrical Subsystem

• Mechanical Subsystem

• Aerodynamic Subsystem

Electrical Subsystem Identification

The initial input that enters the modeled propulsion system is the
PWM throttle input. The PWM signal enters the ESC and controls
how much of the available power supply voltage is made available to
the phase voltage at the armature coils of the motor. The function that
describes this relationship is the ESC transmission function
FESC(δ(t)), which in this paper has been identified to be a 2nd-order
function of the normalized PWM signal δt ∈ [0, 1], as shown in Eq. 8.
The nonlinear relation between FESC and the input δt over the range
covered by the multistep experiment is highlighted in Fig. 14. The
prediction result based on the identified F̂ESC(δt) polynomial is
shown in the figure as well, demonstrating a good fit in the tested
range. The coefficients of the identified polynomial are given in
Table 3 and visualized in Fig. 15.

Table 3: Identified ESC transmission function parameters.

FESC(δt) = p0 + p1 · δt + p2 · δ2t
Model θ̂ s(θ̂) Err % RMSE R2

0 s ice
p0 (-) 1.27e-05 1.39e-07 1.1 %

.0106 .989p1 (-) 0.00235 2.58e-05 1.1 %
p2 (-) −1.80e-06 6.19e-08 3.5 %

20 s ice
p0 (-) 1.35e-05 2.12e-07 1.6 %

.0097 .990p1 (-) 0.00249 3.91e-05 1.6 %
p2 (-) −2.08e-06 9.30e-08 4.5 %

40 s ice
p0 (-) 1.36e-05 2.47e-07 1.8 %

.0104 .988p1 (-) 0.00250 4.57e-05 1.8 %
p2 (-) −2.07e-06 1.09e-07 5.3 %

60 s ice
p0 (-) 1.35e-05 2.80e-07 2.1 %

.0117 .985p1 (-) 0.00250 5.19e-05 2.1 %
p2 (-) −2.06e-06 1.24e-07 6.0 %

Figure 14: Relation between FESC and δt during a multistep experiment per-
formed at Va = 25m/s with a 20 s ice shape. The FESC(v,vb)

is calculated
using Eq. 7, while the F̂ESC(δt) is given by the identified 2nd-order polynomial
from Table 3.

As seen in Fig. 15, the identified FESC(δt) parameters do not change
significantly as a function of icing severity. This makes sense as the
change of load on the motor, caused by accreted ice, should not
change the behavior of the voltage transmitted through the ESC. One
can, however, notice a slight difference between the parameters
obtained for the clean case compared to the iced cases. This
sensitivity can be noticed in several of the identified models.

Figure 15: FESC(δt) polynomial identified at four icing levels.

One of the hypotheses to explain the observed deviation in the ice-free
case is related to the fact that ice-free experiments were performed at
the start of the testing day and before the IWT chamber was humified,
although all other conditions were maintained throughout the testing
day. Mixing experiment types throughout the day could have
mitigated this problem.

Figures 16 and 17 show FESC-based prediction results for phase
voltage and phase current.
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Figure 16: Phase voltage from a multistep experiment performed at Va =

25m/s with a 20 s ice shape. The FESC based prediction is given by Eq. 6.

Figure 17: Phase current obtained from a multistep experiment performed at
Va = 25m/s with a 20 s ice shape. The reference phase current is calculated
as shown in Eq. 9, while the FESC based prediction is given by Eq. 10.

Motor Shaft Velocity Model

Having identified the ESC transmission function, the next model in
the line is given by voltage balance in the equivalent circuit, which
relates phase current i and voltage v to the motor shaft speed ω as
shown in Eq. 11.

As discussed in the theory and experiment setup sections, identifying
a voltage balance model for the equivalent ESC and BLDC motor
circuit has been challenging. The modeling challenges can, in part, be
related to the kV -compensation performed for the phase voltage
resulting in increased uncertainty in the calculated phase current, as
well as to the nonlinear dynamics introduced by the ESC.
Nonetheless, given the available data, the identification attempts of a
linear 1st-order model show that model parameters are time-varying
and change with system states. It was therefore decided that the
data-sheet value of the electrical motor resistance R in [31] should be
used to simplify the identification process.

Figure 18 shows identification attempts of the model in Eq. 12 using
different partitions of the test data. In the upper subplot, the whole
experiment is used, while in the lower subplot, one model is identified
based on the first half of the experiment, and a second model is
identified based on the last half.

The model identified using the first half of the experiment, presented
in Fig. 19, has a comparably small bias, v0, and a back-EMF constant
kE consistent with the motor data-sheet value of kV = 195 (RPM/V),
as shown in Eq. 37.

kV =
1

kE
, kE = 0.046

V

rad s
⇒ kV = 208

RPM
V

(37)

Furthermore, the difference between the smallest and largest kE
values is 3% of its magnitude which is smaller than the computed
standard error, as seen in Table 4. In contrast, the models identified
based on the last half and the whole experiment have larger biases and

are inconsistent with the data-sheet value for kV . Nonetheless, the
most useful outcome of voltage balance modeling is that according to
the experiment data, the rate of conversion of mechanical energy to
electrical through the back-EMF constant does not change
significantly as a function of icing, except for the slight deviation in
the ice-free case, which has been mentioned earlier.

Figure 18: Motor shaft speed prediction based on Eq. 12 where phase voltage is
computed using F̂ESC(δt) as in Eq. 6. The upper subplot shows the result of a
model identified based on the whole experiment, while the lower subplot shows
the results of models identified using the first and last halves of the experiment.

Table 4: Voltage balance model identified based on the first half of the multistep
experiments with a predetermined R.

v (t) = Ri (t) + kEω (t) + v0

Model θ̂ s(θ̂) Err % RMSE R2

0 s ice
v0 (V) 8.39 1.75 20.9 %

1.32 .782R (Ω) .0340 N/A N/A
kE ( V

rad/s
) .0464 .00472 10.2 %

20 s ice
v0 (V) 9.20 1.64 17.9 %

1.10 .891R (Ω) .0340 N/A N/A
kE ( V

rad/s
) .0462 .00427 9.2 %

40 s ice
v0 (V) 9.29 1.40 15.1 %

0.92 .925R (Ω) .0340 N/A N/A
kE ( V

rad/s
) .0471 .00370 7.9 %

60 s ice
v0 (V) 9.20 1.24 13.4 %

0.72 .954R (Ω) .0340 N/A N/A
kE ( V

rad/s
) .0478 .00330 6.9 %

Figure 19: Voltage balance model parameters identified based on the first half
of the multistep experiments at four icing levels, as presented in Table 4.
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Mechanical Subsystem Identification

In steady-state operation, the mechanical subsystem given by Eq. 16
describes the relationship between the phase current i and the torque
Q generated by the motor. During initial calibration tests, it has been
discovered that the zero-load current i0, which described the friction
and losses in the no-load operation of the motor, is not constant and
changes with the speed of the motor as shown in Fig. 20.
Furthermore, the fact that the i0 has a response curve similar to the
phase current leads to collinear regressors in the formulation of an LS
regression problem, complicating the identification process. As
expected, direct use of the LS algorithm for system identification
results in negative i0 values, while the MATLAB’s constrained solver
fmincon [34] returns near-zero values of i0 < 1× 10−4. Due to this
sensitivity, a decision was made to utilize the measurements from the
zero-load experiments and set the i0 to a constant value of 2.54A,
corresponding to the average value over the tested range; this value is
also consistent with modeling results in [7]. The identified parameters
with predetermined i0 can be viewed in Fig. 21 and Table 5.

Figure 20: Zero-load current i0 compared to loaded experiment current i, in a
multistep experiment. The current values are calculated using Eq. 9.

Table 5: Mechanical torque model identified with predetermined i0.

Q(t) = bias + kQ · (i(t)− i0)

Model θ̂ s(θ̂) Err % RMSE R2

0 s ice
bias (Nm) .258 .0654 25.3%

.153 .985i0 (A) 2.54 N/A N/A
kQ (Nm

A
) .0466 .00209 4.5%

20 s ice
bias (Nm) .172 .0669 39.0%

.120 .990i0 (A) 2.54 N/A N/A
kQ (Nm

A
) .0490 .00217 4.4%

40 s ice
bias (Nm) .341 .0846 24.8%

.151 .988i0 (A) 2.54 N/A N/A
kQ (Nm

A
) .0568 .00256 4.5%

60 s ice
bias (Nm) .279 .1133 40.6%

.242 .972i0 (A) 2.54 N/A N/A
kQ (Nm

A
) .0571 .00240 4.2%

Figure 21: Visualization of the motor-based torque model parameters presented
in Table 5.

The second parameter in the motor-based model is the torque
parameter kQ, which increases by 23% from the ice-free case to the
most severely iced case according to the model identification results.
This is, however, not consistent with the identified back-EMF, which
in theory should be equal to kQ but was determined to be constant for
all tested ice shapes. The average magnitude of both kE and kQ is
very similar, 0.0469 vs. 0.0523; however, their sensitivity to ice
accretion is not. This can be related to the previously discussed
uncertainty in the phase current data, calculated using the
kV -calibrated phase voltage measurements as shown in Eq. 9.
Moreover, it should be noted that the model presented in Table 5 may
be incomplete since it neglects any dynamic losses that occur during
the conversion of electrical energy to mechanical energy. To account
for this, an attempt was made to incorporate the viscous friction term
cvω into the regression process. However, as mentioned in the
Methods section, the resulting value of cv was less than 10−7. The
identified bias in Table 5, which accounts for about 3% to 6% of the
model output, might be explained by the uncertainty in the phase
current data, the unmodeled losses, and measurement noise.

Aerodynamic Subsystem Identification

In this section, propeller torque and thrust are modeled and analyzed.

Propeller Torque Model

When studying the torque from the motor’s perspective, as in the
previous section, the produced torque is directly related to the current
drawn by the motor. However, this approach does not consider what
kind of load is present on the motor shaft. Another way of modeling
torque in propeller systems is to use the airspeed, motor shaft speed,
and propeller characteristics, including diameter and swept area, as
described in section Aerodynamic System. The equation describing
this relationship is presented in Eq. 23, and the identified coefficients
are presented here in Fig. 22 and Table 6. As shown in Table 6 the
model does not have a constant bias term. Identification of a
polynomial with a near-zero bias was achieved by applying the
SVD-based LS algorithm described in section System Identification,
where the reduced SVD solution was used in the regression process.
Although the parameters fit the model better, the use of the reduced
SVD solutions renders the parameter uncertainties provided by the
standard error invalid in the propeller torque model.

Figure 22: Visualization of the aerodynamic torque model presented in Table 6.

Analysis of the aerodynamic torque coefficients shows an interesting
relation between ice accretion and the identified torque models. The
torque coefficients exhibit a change that follows a trend from the
ice-free to the most severely iced case. The torque curves in Fig. 23
provide a visualization of the change in torque coefficient as a
function of ice accretion duration where an increase in CQ of
approximately 16% can be observed from the ice-free case to the most
severely iced case.
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Table 6: Identified aerodynamic torque model coefficients. The standard errors
presented in this table should be analyzed cautiously as model identification
results were obtained using the reduced SVD solution in the regression process,
which impacts the calculated parameter uncertainties.

Q(t) = 4π2

ρD5 (Cq0 + Cq1 · J(t) + Cq2 · J2(t)) · ω2(t)

Model θ̂ s(θ̂) Err % RMSE R2

0 s ice
Cq0 .0051 .0013 25.3 %

0.107 .973Cq1 .0127 .0039 30.8 %
Cq2 −.0181 .0028 15.6 %

20 s ice
Cq0 .0075 .0005 6.6 %

0.036 .997Cq1 .0023 .0015 64.5 %
Cq2 −.0098 .0010 10.3 %

40 s ice
Cq0 .0103 .0006 5.5 %

0.041 0.996Cq1 −.0005 .0016 290.5 %
Cq2 −.0077 .0010 13.2 %

60 s ice
Cq0 .0128 .0015 11.9 %

0.119 .974Cq1 −.0064 .0041 63.6 %
Cq2 −.0042 .0026 62.2 %

Figure 23: Nondimensionalized torque predictions based on the aerodynamic
torque polynomial Eq. 21 identified at four icing severity levels. Each curve
in the figure is obtained from an average of three experiments, each performed
with ice shapes of the same severity but at three different airspeeds: Va ∈
{20, 25, 30}m/s.

Overall, the torque curves in Fig. 23 demonstrate a clear pattern of
increasing torque with longer ice accretion times. However, one can
also see that the curves for the ice-free experiments and those with ice
shapes accreted for 20 s stand out as outliers. A closer examination of
the motor shaft speed and torque measured during these experiments,
shown in Fig. 24, reveals that the motor shaft speed in the ice-free
case is lower compared to the iced case, while the torque remains
relatively constant. The torque data is as expected since the amount of
ice accreted after 20 s is very small, as shown in Fig. 10. However, the
comparably low motor speed measured in the ice-free case is
physically inconsistent as, typically, the increased drag due to ice
would slow down the propeller, and the clean propeller should be
faster than the iced propeller given the same throttle input. Further
analysis of the propeller efficiency for these two cases reveals that the
clean propeller is more efficient, as shown in Fig. 25. This means that
the measured clean propeller thrust is significantly higher compared to
the iced propeller thrust and that the measured motor speed in the
clean case could be incorrect. It is suspected that this discrepancy in
motor shaft speed measurements is due to the fact that the ice-free

experiments were performed at the start of the testing day and before
the IWT chamber was humidified, while the other experiments were
conducted later in the day. Nonetheless, more validation data is
required to confirm this hypothesis. Furthermore, since the
experiments were grouped based on ice accretion times, there may be
measurement bias between the grouped experiments, a fact that will
be considered in future experiments. Despite this discrepancy, a
holistic analysis of the torque curves in Fig. 23 reveals a clear
increasing trend in torque as a function of ice accretion time, which is
consistent with similar findings reported in [17].

Figure 24: Motor shaft speed and torque measurements from the ice-free and
20 s ice shape experiments. The motor shaft speed in the ice-free case is lower
compared to the iced case, while the torque remains relatively constant.
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Figure 25: The figure shows propeller efficiencies for the 20 s ice shape exper-
iments normalized by the propeller efficiencies from the ice-free experiments,
calculated using Eq. 36. The efficiency of the iced propeller is clearly lower in
the iced case by around 25%.

Torque predictions based on the nondimensionalized torque
coefficient CQ and the current-based model are presented in Fig. 26.

Figure 26: Torque during a multistep experiment performed at Va = 25m/s

with 20 s ice shape. The prediction results are based on two models. The
motor-based model is given in Table 5 with the phase current computed us-
ing F̂ESC(δt) as in Eq. 10. The aerodynamic torque model is based on the
advance ratio polynomial in Table 6.
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As prediction results in Fig. 26 indicate, both models can produce
meaningful predictions across the whole range of the experiment.
However, a closer comparison of prediction error metrics in Tables 5
and 6 shows that the aerodynamic torque model outperforms the
motor-based model, with an RMSE ratio of approximately 1:2 on
average. The relatively poor fit of the motor-based model can be
attributed to the issues with the zero-load current, the unmodeled
losses, and the fact that the phase current is obtained indirectly
through voltage measurements as shown in Eq. 9. Nonetheless, both
models can be encoded in a simulation framework to simulate the
effect of icing on a UAV propeller system, both from the motor side
and the aerodynamic side.

Propeller Thrust Model

Similarly to torque, thrust can be modeled as a function of advance
ratio, motor shaft speed, and propeller geometry. The identification
results are presented in Fig. 27 and Table 7. The curves can be seen in
Fig. 28. Similarly to the torque curves, the thrust curves change due to
icing. Visually comparing the change in CQ curves and CT curves
might indicate that the change in CT curves is less significant;
however, a percent-wise comparison reveals a reduction by 40% on
average from the ice-free case to the most severely iced case, which is
much larger than the 16% change observed in the CQ curves.
Furthermore, similarly to the aerodynamic torque model, the
aerodynamic thrust model was identified using the reduced SVD
solution in the regression algorithm to get near-zero bias terms.
Consequently, this invalidated the parameter uncertainties provided by
the standard errors in Table 7.

Table 7: Identified aerodynamic thrust model coefficients. The standard errors
presented in this table should be analyzed cautiously as model identification
results were obtained using the reduced SVD solution in the regression process,
which impacts the calculated parameter uncertainties.

T (t) = 4π2

ρD4 (Ct0 + Ct1 · J(t) + Ct2 · J2(t)) · ω2(t)

Model θ̂ s(θ̂) Err % RMSE R2

0 s ice
Ct0 .1170 .0035 3.0%

0.806 .998Ct1 −.0516 .0104 20.1%
Ct2 −.1020 .0072 7.1%

20 s ice
Ct0 .1070 .0095 8.9%

1.219 .995Ct1 −.0860 .0274 31.9%
Ct2 −.0590 .0187 31.8%

40 s ice
Ct0 .1160 .0189 16.4%

2.675 .977Ct1 −.1240 .0523 42.2%
Ct2 −.0302 .0342 13.2%

60 s ice
Ct0 .0990 .0067 6.7%

1.013 .996Ct1 −.0903 .0186 20.6%
Ct2 −.0448 .0121 27.0%

Figure 27: Visualization of the aerodynamic thrust model presented in Table 7.

Figure 28: Nondimensionalized thrust predictions based on the aerodynamic
thrust polynomial Eq. 20 identified at four icing severity levels. Each curve in
the figure is obtained from an average of three experiments, each performed
with ice shapes of the same severity but at three different airspeeds: Va ∈
{20, 25, 30}m/s.

Analysis of the torque and thrust curves in Figs. 23 and 28 reveals that
ice accretion on the propeller impacts both torque and thrust.
However, when comparing the percentage change of CQ and CT

caused by icing, it becomes evident that the thrust is significantly
more affected than the torque. Thus, in terms of the propeller’s
efficiency given by Eq. 36, it can be concluded that, in the tested
conditions, the decrease in thrust caused by icing is more detrimental
than the increase in torque. This finding is useful for designing an
icing detection system, as it sheds light on the sensitivity of torque
and thrust to icing. Based on the presented results, an icing FDF
based on thrust estimation is, therefore, more likely to generate
accurate detection results than an icing FDF based on torque.

Throttle-based Thrust Model

A throttle-based thrust model allows for modeling the thrust as a
function of throttle input, e.g., given by the normalized PWM input
δt. As presented in section Throttle-based Thrust and Torque Models,
the Beard & McLain model Eq. 24 has been tested. The identified
model parameters are presented in Fig. 29 and Table 8. Figure 30
highlights the change of the motor coefficient km, which reduces by
12% from the ice-free case to the most severely iced case.

Table 8: Identified throttle-based thrust model parameters.

TBM = 1
2
ρSpep((kmδt)

2 − V 2
a )

Model θ̂ s(θ̂) Err % RMSE R2

0 s ice km (m
s

) 91.152 2.845 3.1% 3.949 .977
ep (-) 0.2635 .0144 5.5%

20 s ice km (m
s

) 86.813 2.473 2.9% 2.681 .986
ep (-) 0.2477 .0122 4.9%

40 s ice km (m
s

) 83.372 2.664 3.2% 2.722 .985
ep (-) 0.2554 .0142 5.6%

60 s ice km (m
s

) 80.943 1.022 1.3% 1.473 .994
ep (-) 0.2462 .0053 2.1%

Thrust predictions based on the aerodynamic and the throttle-based
thrust models are presented in Fig. 31. Comparison of prediction error
metrics in Tables 7 and 8 shows that the aerodynamic thrust model
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outperforms the throttle-based model, with an RMSE ratio of
approximately 1:2 on average. In particular, the Beard & McLain
model struggles at the start and end points of the experiment,
indicating the possibility of unmodeled higher-order dependencies,
which is expected for a simplified throttle-based model. The thrust
models, much like the torque models, can prove valuable in
simulating the impact of icing on the performance of UAV propeller
systems. Furthermore, having torque and thrust models makes it
possible to isolate the changes arising from alterations in motor shaft
speed and UAV airspeed from icing-induced changes, which is highly
relevant in the context of icing detection.

Figure 29: Visualization of the throttle-based thrust model presented in Table 8.

Figure 30: Thrust constant km in Eq. 24 identified at four icing levels.

Figure 31: Thrust during a multistep experiment performed at Va = 25m/s

with 20 s ice shape. The prediction results are based on two models. The aero-
dynamic thrust model is based on the advance ratio polynomial in Table 7, while
the throttle-based model is presented in Table 8.

Discussion

Several important findings and nuances related to identifying
propulsion system models have been uncovered in the previous
section. These are further commented on here.

The presented results make it clear that the kV -compensation of the
measured phase voltage, performed in the data pre-processing step,
has affected the uncertainty related to the phase current data, making

it challenging to analyze the validity of the identified motor-based
torque model. Despite this, the identification results of the electric
subsystem are considered valid, as the scaling of the voltage does not
affect the identified change with respect to icing. Furthermore, the
correctness of the identified voltage balance and the motor-based
torque models is validated by the fact that the identified back-EMF
constant kE and torque constant kQ are of similar magnitude.

Concerning propeller performance, the study shows that propeller
efficiency is significantly reduced by icing through an increase in
torque and a reduction in thrust. The results also indicate that several
ways of modeling both torque and thrust can be used to achieve
comparable prediction results. This includes the motor-based torque,
throttle-based thrust, and aerodynamic torque and thrust models.
However, the aerodynamic models outperform the other model by a
ratio of 1:2 based on the prediction RMSE values as seen
in Tables 5–8. Overall, these findings emphasize the importance of
considering the impact of icing on the performance of electric UAV
propulsion systems, particularly the effect on propeller torque and
thrust, which change significantly and can therefore be used to
develop ice detection algorithms.

The limitations of this study are mostly related to the small number of
icing conditions that were taken into account. As a result, identifying
an icing effect model for the aerodynamic coefficients, such as the
Bragg model [35], has been challenging. Therefore, more data is
needed to better understand how atmospheric icing impacts the
aerodynamic coefficients and, ultimately, the propeller’s performance.
Furthermore, although the primary goal of determining the parameter
and subsystem sensitivities to icing has been achieved, the
generalizability of the results may be limited due to the small number
of tested icing conditions. Future research would therefore benefit
from considering a broader range of icing conditions.

Conclusion

Modeling and performance analysis of an electric propeller system
suitable for fixed-wing UAVs has been performed with the help of an
icing wind tunnel. In particular, performance degradation due to ice
accretion on the propeller blades has been studied. The tested icing
conditions include three different ice shapes accumulated for 20, 40,
and 60 seconds in otherwise identical atmospheric conditions. In
addition, ice-free experiments have been conducted to establish the
nominal propulsion system performance.

The propulsion system’s electrical, mechanical, and aerodynamic
subsystems have been identified through LS regression, using the
reduced SVD solution in some cases. In addition, the comprehensive
set of model parameters identified for varying ice shape sizes makes it
possible to study the parameter sensitivity to icing severity and
thereby deduce how each of the identified subsystems is affected.

In conclusion, this study has provided valuable insights into the
impact of icing on propeller efficiency in the tested conditions of
−10 ◦C, with LWC of 0.44 g/m3, MVD of 22.7 µm and airspeed of
25m/s. In particular, the results show that, on average, the thrust is
reduced by 40%, while the torque is increased by 16%, in total,
resulting in a propeller power efficiency reduction of 50% and up to
70% in the worst case. Furthermore, a substantial reduction of
propeller power efficiency by 20% occurs after just 20 seconds of ice
accretion. These findings suggest that a detection system based on
propeller efficiency monitoring could be a good starting point for an
icing detection algorithm. Furthermore, these modeling results can
also be incorporated into simulation frameworks and help the rapid
development and testing of realistic icing detection systems.
Additionally, having torque and thrust models enables the isolation of
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icing-induced changes from other changes arising from alterations in
power supply, motor shaft speed, and UAV airspeed, which can be
relevant for ice detection systems.

In the context of ice protection systems (IPS), the study’s results can
help design requirements for IPS by quantifying the energy cost of not
activating an IPS. Moreover, the documented propeller power
efficiency reduction due to icing can help optimize the use of
anti-icing and de-icing IPS modes. Overall, this study contributes to
the development of IPS for electric UAV propulsion systems and thus
enhances the safety and performance of UAVs in cold environments.
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Definitions/Abbreviations

BLDC brushless direct current

CFD computational fluid dynamics

DC direct current

EMF electromotive force

ESC electronic speed controller

FDF fault detection filter

IPS ice protection systems

IWT icing wind tunnel

LS least squares

LWC liquid water content

MEMS micro-electromechanical system

MVD median volume diameter

PWM pulse-width modulation

RMSE root-mean-square error

RPM revolutions per minute

SVD singular value decomposition

UAV unmanned aerial vehicle
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APPENDIX A: Additional model prediction results and experiment data

Figure 32: Torque during multistep experiments. The prediction results are based on two models. The motor-based model is given in Table 5 with the phase current
computed using F̂ESC(δt) as in Eq. 10. The aerodynamic torque model is based on the advance ratio polynomial in Table 6.
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Figure 33: Thrust during multistep experiments. The prediction results are based on two models. The aerodynamic thrust model is based on the advance ratio polynomial
in Table 7, while the throttle-based model is presented in Table 8.
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Figure 34: Phase current obtained from the performed multistep experiments. The
phase current values were calculated as shown in Eq. 9.

Figure 35: Motor speed measured during the performed multistep experiments.

Figure 36: Mesured FESC(v, vb) obtained from the performed multistep exper-
iments. The FESC(v, vb) values were calculated as shown in Eq. 7

Figure 37: Phase voltage measured during the performed multistep experiments.

Figure 38: Power supply voltage obtained from the performed multistep experiments.
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