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Abstract: In-flight icing remains a significant challenge for the aviation industry. While mature
solutions for conventional aircraft exist, the options for small fixed-wing uncrewed aerial vehicles
(UAVs) are limited, with the current solution being to postpone the flight until icing conditions
have passed. Consequently, the challenges related to aircraft icing continue to be highly relevant,
but now with a stronger emphasis on size, cost, and efficiency to better fit the smaller UAV
platforms, which are currently experiencing high commercial interest. A crucial prerequisite
for efficient ice protection solutions is the availability of real-time ice detection systems. This
survey aims to provide an overview of recent developments in research on in-flight icing detection
solutions suitable for UAVs. The survey covers atmospheric icing detection, direct ice detection,
and indirect ice detection methods. Among these, the indirect methods, which are based on
monitoring the aircraft performance degradation due to in-flight icing, are emphasized. The
performance-based methods rely on flight data analysis, estimation, and detection algorithms,
making them ideal for UAVs as they require only minimal aircraft modification and can be
implemented retrospectively.
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NOMENCLATURE

h Altitude
u, v, w Body frame velocities
p, q, r Roll, Pitch, Yaw angle rates
ϕ, θ, ψ Roll, Pitch, Yaw angles
α Angle of attack
β Sideslip
ψw Horizontal wind direction
Va Horizontal airspeed
Vg Ground speed
Vw Wind speed
Vsw, Vdw Static and dynamic wind components
ω Motor shaft speed
i Motor current
T Motor thrust
Q Motor torque
λ Pitote tube measurement scale factor
q̄ Trim dynamic pressure
ηice Icing factor
KC∗ Coefficient specific icing factor
C∗ Nominal coefficients and derivatives
C⋆

∗ Iced coefficients and derivatives
X,Y, Z Body frame forces
l,m, n Body frame moments
L,D,N Lift, drag and normal forces
δa, δe, δth Aleron, elevator and throttle control inputs

⋆ The work is partly sponsored by the Research Council of Norway
through the Center of Excellence funding scheme, project number
223254, AMOS, and IKTPLUSS project number 316425.

Ixx, Iyy, Izz Diagonal moments of inertia
g Gravitational acceleration
P Vector of parameters to be estimated
m Mass of the aircraft
S Wing surface area
µ∗ Aircraft specific factor
γ Hypothesis test threshold
t Time

k Discrete time index

0 Trim condition subscript
∗ Variable placeholder
ˆ Indicator for estimated variable or parameter

1. INTRODUCTION

One of the significant challenges in the aviation indus-
try is the operation of uncrewed aerial vehicles (UAVs)
in adverse weather conditions, where icing is considered
especially problematic (Hann and Johansen, 2020).

On conventional aircraft, the challenges related to icing
have been addressed by deploying relatively expensive ice
detection sensors and ice protection systems, which often
require significant amounts of energy to operate (Deiler
and Fezans, 2020). The same approach cannot be readily
applied to UAVs, which operate under different opera-
tional and logistical constraints. The limiting factors for
implementing conventional aircraft solutions on UAVs are
the cost, weight, and efficiency constraints. However, due
to the rapid adoption of UAVs, finding solutions that re-
spect these constraints has become highly relevant, leading



to a substantial increase in ice detection research, which is
surveyed in this paper. The increased interest in UAVs can
be observed in market analysis reports as well. According
to Markets and Markets (2018) report, the commercial
UAV market was projected to increase sixfold from 2018
to 2025, and according to Federal Aviation Administration
(2022) report, the current commercial UAV fleet in the
United States will increase by 38% by 2026. The increased
academic and commercial interest in UAVs has enabled a
new wave of UAV-related research, including research on
in-flight icing detection, clearly visualized by Fig. 1.

Fig. 1. Number of published papers per year on the topic
of in-flight icing detection in the period 2000-2022.
Data is based on articles surveyed in this paper.

In conventional aviation, there are several methods to
tackle in-flight icing. Popular approaches in conventional
aviation include chemical solutions — freezing point de-
pressant fluids applied to the airframe before takeoff, deic-
ing boots — a pneumatic system that inflates the boot
to break off accreted ice — and continuous heating of
aircraft lifting surfaces by bleed air systems during icing
conditions. However, these solutions have some drawbacks.
They are costly, non-scalable, or increase the aircraft’s
weight, making them unsuitable for most UAVs.

The effectiveness of any active ice protection system de-
pends on the system’s ability to detect ice. Therefore, in-
flight icing detection is a critical stepping stone in address-
ing UAV icing. Based on the survey’s results, there are
mainly three approaches that researchers have taken:

• Atmospheric icing detection — detection of ic-
ing conditions, i.e., the presence of supercooled liquid
droplets in the atmosphere.

• Direct ice detection — detection of ice accretion on
the body of the aircraft.

• Indirect ice detection — inference of ice accretion
based on the change in performance of the aircraft.

In theory, the detection methods for in-flight icing that
were developed for conventional aviation can also be
utilized for smaller fixed-wing UAVs. This is because the
physical process of ice accretion and its effects on the
aircraft are similar in both cases (Hann and Johansen,
2021). As a result, it has been deemed pertinent to survey
the methods used for both aircraft types. Based on similar
reasoning, the research on rotorcraft is excluded from this
survey, as solutions developed for rotorcraft are often not
applicable to fixed-wing UAVs.

During the preparation work for this survey, it was reg-
istered that there are only two major reviews on in-flight
icing detection. A review by Jackson and Goldberg (2007),
and a review by Caliskan and Hajiyev (2013), both written

prior to the recent upsurge in UAV-based research. As
such, this survey aims to highlight the recent develop-
ments in in-flight icing detection methods developed for
UAVs. The main focus of this survey is on performance-
based methods as they require minimal modification to the
aircraft and can be implemented retrospectively, making
them especially suitable for small fixed-wing UAVs.

2. REVIEW METHODOLOGY

This survey is based on 81 articles from 2000-2022 on the
topic of aircraft icing detection, 57 of the articles concern
aircraft in general, while the remaining 24 focus specifically
on UAVs.

The databases that were used to find the articles are
Scopus and Google Scholar. According to Mart́ın-Mart́ın
et al. (2021), the combined results of these two databases
should cover most of the published research work.

As stated in the introduction, this survey focuses on ice
detection solutions applicable to conventional aircraft and
smaller fixed-wing UAVs. Thus, detection techniques for
jet engine icing and solutions designed for rotorcraft were
excluded. To achieve the specified topic selection, specific
keywords were utilized to narrow down the search space
for the survey. The search included phrases ”in-flight”
AND (”ice detection” OR ”icing detection”), along with
at least one of the words from the list ”aircraft,” ”UAV,”
”UAS,” ”VTOL,” ”drone,” where the terms (UAS) and
(VTOL) refer to unmanned aerial systems and vertical
take-off and landing, respectively. Keywords such as ”wind
turbine,” ”multirotor,” ”rotorcraft,” ”turbofan,” ”ground-
based,” and ”certification” were excluded from the search
results. Additionally, to focus on recent developments, only
articles published after 1999 were considered.

This survey has a limitation in that it only includes
English-written articles. While English is the dominant
language for research, some relevant research may have
been published in other languages. To provide more con-
text, a visualization of the distribution of papers by coun-
try of origin is presented in Fig. 2. It is worth noting that
this limitation may result in an underrepresentation of
research from certain countries, such as China, where a
significant amount of research is published in Chinese.

Fig. 2. Number of published papers by country of origin on
in-flight icing detection in the period 2000-2022. The
bar chart is based on data included in this survey.



3. DIRECT ICE DETECTION

In this section, the direct ice detection methods, which try
to solve the problem by sensing the presence of ice on the
wings and the body of the aircraft, are presented.

Many of the methods presented here are described in
greater detail in (Jackson and Goldberg, 2007). Never-
theless, several newer articles demonstrating direct ice
detection solutions are included in the present article.

3.1 Impedance and Capacitance Sensor

The primary ice detection method used in conventional
aircraft is based on impedance and capacitance sensors.
These methods work based on the following principle —
when two electrodes are placed near each other and excited
with alternating current, an impedance can be measured
depending on the material between the electrodes. If, for
instance, such electrodes are mounted on the surface of
an aircraft, the measured impedance will vary if there is
ice, water, or just air between the electrodes, thus making
it possible to detect ice. A production-ready ice sensing
solution based on impedance measurement is presented in
(Botura and Fahrner, 2003). More recently, Schlegl et al.
(2019) tested a similar impedance-based solution originally
designed for wind turbines. Their results indicate that the
solution has the potential to be useful. However, current
thresholds tuned for wind turbines are unsuitable for air-
craft applications. Several articles presenting impedance-
and the closely related capacitance-based ice detection
sensors are listed here (Roy et al., 2000; Jarvinen, 2007;
Schlegl et al., 2015; Xie et al., 2022b; Zheng et al., 2022).

3.2 Vibration Probe Sensor

Similarly to impedance sensors, vibrations probe sensors
are also a standard solution used in conventional aircraft.
The idea of using a vibration probe as an ice detection
sensor is based on the change in the neutral frequency of
the vibration as ice mass accretes on the probe. In practice,
this can be achieved by using magneto-restrictive coils and
a probe made of ferromagnetic materials. Through excita-
tion by alternating current, the magneto-restrictive coils
can make the ferromagnetic probe expand and contract at
its natural frequency. As the mass of the probe changes,
so does the natural frequency of its vibration, making
it possible to detect ice (Jackson and Goldberg, 2007).
Similar ice-detection solutions based on high-frequency
vibration measurements can be found in the following
articles (Fuleki et al., 2017; Mäder et al., 2018; Xie et al.,
2022a; Sohail et al., 2022).

3.3 Heat of Fusion Sensor

The rate of temperature change in a thin wire subjected
to electric pulses can be used to detect the presence of ice
around the wire. The idea relies on the fact that when an
electric pulse is sent through a wire surrounded by ice, the
generated heat will be used in the fusion process, changing
the state of ice from solid to liquid instead of increasing the
temperature of the ice. The lack of temperature increase
during an electric pulse can therefore be interpreted as a
build-up of ice around the wire (Jackson and Goldberg,

2007). A similar method is also investigated in the context
of UAV icing by Hann et al. (2019) and by Sørensen and
Johansen (2017), where an electrothermal ice detection
system is tested in UAV flight tests.

3.4 Rotating Wheel Torque Sensor

A rotating wheel can be used in an ice detection system
by fulfilling two functions — torque measurement and ice
collection. When ice accretes on the rotating wheel, it
widens its diameter. Thus mounting a scraper tool against
the side of the wheel will produce an additional friction
force during icing conditions. As the friction increases, so
does the required torque to keep the wheel spinning, and
ice can be detected (Jackson and Goldberg, 2007).

3.5 Ultrasonic Guided Waves Sensor

Ultrasonic waves can be used to analyze material proper-
ties by sending acoustic waves through the material and
recording the resulting ultrasonic response. In the context
of aircraft, ultrasonic guided waves can be used to detect
changes in an airframe mass and stiffness as a result of ice
accretion. This is possible because the recorded response
waves have different amplitude and transmission times
depending on the presence of ice on the airframe. An
implementation of ultrasonic guided waves can be found
in (Mendig et al., 2018), where the method is used to
detect ice layer thickness and the type of ice accreted on
an airfoil. Other ice detection methods based on ultrasonic
measurements in the airframe can be found in the following
literature (Hongerholt et al., 2001; Liu et al., 2008; Gao
and Rose, 2009; Liu et al., 2014; Zhao and Rose, 2016).

3.6 Time Domain Reflectometry Sensors

Time domain reflectometry (TDR) is a technique used to
detect changes in the material surrounding an arbitrary
surface. The fundamental principle behind TDR is based
on the correlation between the propagation velocity of an
electromagnetic pulse in a transmission line and the di-
electric constant of the surrounding material or substance.
Specifically, the dielectric constant of the substance is
highly dependent on its water content, which can be used
to infer the presence of water and ice. A TDR-based ice
detection method developed for aircraft can be found in
(Yankielun et al., 2002; Bassey and Simpson, 2007).

3.7 Pitot Tube Based Ice Detection

Pitot tubes are primarily used as airspeed sensors. How-
ever, as several research articles show, this pitot tube can
also be used for in-flight icing detection. For instance,
Hansen and Blanke (2014) use a hypothesis test based on
an airspeed observer residual to detect pitot tube clogging.
Jackson (2015) proposes to use temperature sensors to
monitor and detect ice build-up on the pitot tube, whereas,
in (Lv et al., 2020), the change in measured atmospheric
pressure is used for ice detection.

3.8 Fiber-optic Ice Detection

An optical ice-detection sensor may use an optical source
and a series of optical receivers placed on either side of



the source. In this type of sensor, the amount of light
scattering can be analyzed to determine the presence
of ice in the path between the optical source and the
receivers. Further analysis of the scattered light can be
used to determine the thickness and type of ice build-
up. Several articles presenting optical-based ice-detection
solutions developed for aircraft are listed here (Armstrong
et al., 2003; Ikiades, 2007; Ikiades et al., 2007; Li et al.,
2009; Braid et al., 2011; Ikiades et al., 2013; Zou et al.,
2013; Strobl et al., 2015; Mart́ınez et al., 2017; Prasad
et al., 2019; Musci et al., 2020; Gonzalez and Frövel, 2022).

4. ATMOSPHERIC ICING DETECTION

In this section, methods that focus on detecting at-
mospheric icing conditions, such as supercooled liquid
droplets, are presented.

4.1 Weather-radar Based Icing Detection

Weather and cloud monitoring is commonly performed
using airborne radar-based techniques, which involve scan-
ning the sky in front of the aircraft to classify the type of
clouds that are present. Recent advances in radar tech-
nology, coupled with the use of sophisticated data-based
classification algorithms, have significantly improved the
accuracy and efficacy of this approach. Several papers
have been published on weather monitoring ice avoidance
techniques, including (Bannister, 2000; Ray et al., 2009;
Harrah et al., 2019). The most recent paper on this topic,
(Dudek et al., 2021), presents a novel approach that com-
bines weather radar with a visual camera to predict and
avoid icing conditions. Specifically, the camera is used
to estimate the size and distance of the clouds in the
aircraft’s path, while weather radar is used to analyze the
contents of the clouds and determine the probability of
icing conditions.

4.2 Flight Risk Assessment Using Extreme Value Theory

Although not strictly an atmospheric icing detection
method, flight risk assessment can be considered an at-
mospheric sensing method that quantifies risks associated
with icing conditions. An example of flight risk assessment
can be found in (Pei et al., 2018). The presented method
employs an aerodynamic model and an icing effect model
to calculate the extreme values of critical flight param-
eters, such as stall angle, which then serve as stability
thresholds for the aircraft. The probabilities of these flight
parameters exceeding the maximum value thresholds are
subsequently used to estimate the accident probability in
various icing scenarios based on atmospheric conditions.

5. INDIRECT PERFORMANCE DEGRADATION
DETECTION

A considerable number of methods for in-flight icing de-
tection have been developed using aircraft dynamics mod-
eling. The detection process involves observing aircraft
performance degradation and analyzing the performance
estimation residuals. The models used in estimation can
be categorized into two main groups: motion models and
performance models. Motion models describe the aircraft’s

trajectory, while performance models define the relation-
ship between input throttle and generated acceleration.
Furthermore, these models can be augmented with wind
models and icing effect models to capture the impact of
ice accretion on the aircraft. This section presents all the
relevant aircraft motion, performance, and icing models.

5.1 Motion Models

The base case for most aerodynamic motion models is a
nonlinear coupled 6-DoF model. However, this base case
model is often reduced and simplified to optimize estima-
tion efficiency and convergence. There are two common
simplification techniques, one is decoupling into longitudi-
nal and lateral dynamics, and the other one is lineariza-
tion. Decoupled and linearized models require fewer states,
are easier to implement, and can produce good results if
the assumptions used to justify the simplification are not
violated. Additional simplification can be done by reducing
the degrees of freedom, resulting in 2-DoF and 1-DoF
models. Most of the aerodynamic models covered in this
survey are based on decoupled longitudinal equations of
motion given by the following relation: u̇ = rv − qw + 1

m (−mg sin θ −D cosα+ L sinα+T)

ẇ = qu− pv + 1
m (mg cos θ −D sinα− L cosα)

q̇ = 1
Iyy

(
pr (Izz − Ixx)−

(
p2 − r2

)
Ixz +mA +mT

)(1)
where mA is used as a collective term for aerodynamic
pitch moments. An example of a linearized longitudinal 2-
DoF model, based on (1), can be found in (Cristofaro and
Johansen, 2015), which is also shown below:

V̇a
α̇
q̇

θ̇

 =


XVa

Xαcα Xq −g cos θ0
ZVa

V0cα
Zα

Zq

V0cα
− g sin θ0

V0cα
mVa

mαcα mq 0
0 0 1 0


 Vaαq
θ



+


Xδth Xδe

0
Zδe

V0cα
mδth mδe
0 0

[
δth
δe

]
= Ax+Bu

(2)

where cα := cos(α0) is defined for conciseness. The states
in this linearized state-space formulation are the horizontal
airspeed Va, the angle of attack α, the pitch rate q, and
the pitch angle θ. Parameters with subscript 0 indicate
chosen trim values for the angle states and the airspeed.
The system matrices A,B, used in many of the estimation
methods, are formulated using the coefficients in (3),

Xℓ = µXℓ
q̄CXℓ

, Zℓ = µZℓ
q̄CZℓ

, mℓ =
µmℓ

q̄Cmℓ

Iyy
(3)

where C∗ℓ
with ℓ ∈ {Va, α, q, δth, δe} are nondimensional-

ized aerodynamic coefficients, q̄ is the trimmed dynamic
pressure, and µ∗ are aircraft specific coefficients based on
aircraft geometry.

The nondimensionalized aerodynamic coefficients C∗ are
generally referred to as static stability and control deriva-
tives, where the ”derivate” part comes from the fact that
the coefficients originate as partial derivatives in the Tay-
lor series linearization, e.g., CLα ≜ ∂CL

∂α . Identifying and
detecting the change in these coefficients is at the root of



many aerodynamic-performance-based ice detection meth-
ods. Moreover, identifying stability and control derivatives
is essential for calculating the aircraft’s stall conditions and
other safety margins.

5.2 Icing Effect Models

Most of the reviewed papers in this survey use the icing
effect model proposed by Bragg et al. (2000). The idea of
the method is to define a model with a base coefficient
representing the nominal state and an additive term that
incorporates the changes due to icing. For any aerody-
namic model coefficient or derivative C∗, the following
icing degradation effect model is proposed,

C⋆
∗ = (1 + ηiceKC∗)C∗ (4)

where ηice(t) is an icing severity coefficient that depends on
the icing exposure time t and atmospheric conditions, KC∗
is a constant icing factor that is specific to the coefficient
being modified, and C⋆

∗ is an arbitrary aerodynamic coeffi-
cient affected by ice accretion. Identifying the nominal and
iced coefficients and extracting the icing severity ηice is at
the base of many of the performance-based icing detection
methods. The subsequent sections present different ways
of achieving these tasks.

Besides the Bragg model, other icing effect modeling
approaches are:

• The multiplicative method employed by Caliskan,

C⋆
∗ = ηiceC∗

• Icing CFD-based methods that track the liquid droplets
and model ice accretion on the particle level, as used
by McKillip et al. (2002, 2022).

• A general performance degradation approach, based on
energy consideration, where the assumption is that ice
leads to decreased aircraft efficiency through increased
drag and decreased lift.

5.3 Aircraft Performance Models

In recent papers, a new type of methodology has been pre-
sented as a way to detect in-flight icing. The methodology
uses a performance reference model to detect degradation
and infer ice accretion on the aircraft.

An example is (Coates et al., 2019) and the extended work
(Løw-Hansen et al., 2023), where the electric propulsion
system of a UAV is modeled such that the difference
between the known nominal propeller power and the real-
time estimated power can be compared to detect propeller
performance degradation and, thereby, ice accretion.

A more comprehensive study using performance monitor-
ing is presented in (Deiler and Fezans, 2020), where an
extensive aircraft propulsion model is used for in-flight
icing detection. This method is described in greater detail
in the following paragraphs.

According to Deiler and Fezans (2020), the aircraft flight
performance can be split into the following components:

Flight Performance = Nominal Aircraft Performance

+ Nominal Engine Influence

+ Variation

where the ”Variation” component includes various per-
formance degrading effects, including in-flight icing. The
ice-related degradation can be identified by acquiring the
following knowledge. First, it is necessary to know both the
nominal and the most extreme variations in flight perfor-
mance. Then, for the remaining variations in performance,
an icing effect model is required.

The aircraft performance is derived based on the time
derivative of the total energy of the airplane,

Etot =
1

2
mV 2

a +mgh

Ėtot = mVaV̇a +
1

2
ṁV 2

a + ṁgh+mgḣ

which combines the aerodynamic influences of wind and
potential energy.

The reference power Ėtot,ref is calculated through a
comprehensive performance model, identified using large
amounts of real flight data. According to Deiler and Fezans
(2020), the high accuracy of the performance model is
crucial for the success of their detection method. The
performance model is identified by a system identification
process where the vector of optimal model parameter val-
ues, Popt, is found by minimizing the following error,

Popt = argminP

(
Ėtot,ref(P) − Ėtot

)2

The difference between the reference power Ėtot,ref , found
through offline system identification, and the measured
power Ėtot, is used online to find the equivalent change
in the drag coefficient,

∆CD ≈ Ėtot,ref − Ėtot

Va · q̄ · S
(5)

The in-flight icing detection is then made by thresholding
the computed drag coefficient delta in (5), where the
optimal detection threshold is chosen based on empirical
data analysis and is computed as follows:

(∆CD)crit = 30%CD0

An advantage of the performance-based methods, such
as the one described here, is that they do not require
additional sensor measurements except for the standard
sensor suite, including Global Navigation Satellite Sys-
tem (GNSS), Inertial Measurement Unit (IMU), airspeed,
and propulsion system data. Another advantage of these
methods is that they do not require dynamic excitation
of the aircraft to detect ice accretion on the aircraft.
Most observer-based parameter identification algorithms
presented in section 6 require excitation of different dy-
namic modes, which can be unsafe to perform in icing
conditions. A drawback of the performance-based methods
is their reliance on models that can accurately describe
the aircraft dynamics in nominal conditions, which can
be challenging to identify without large amounts of data
(Deiler and Fezans, 2020).

5.4 Wind Models

In most cases, aircraft have instruments to measure the
airspeed Va, but not the body frame velocity in three
dimensions, needed to model the aerodynamic forces ex-
perienced by the aircraft. When the wind speed is small



relative to the airspeed, the full velocity vector is not re-
quired. However, in many cases, especially involving small
fixed-wing UAVs, the wind effect is significant and cannot
be overlooked. In such cases, wind models can be used to
estimate and decouple wind and aircraft velocities, making
it possible to estimate the body frame velocity, angle of
attack, and sideslip — states often required to identify
aerodynamic coefficients.

Several researchers have used wind models to augment
aircraft dynamics in the context of in-flight icing detection.
These include simplified wind triangle models and more
complex models such as the Dryden wind model (Beard
and McLain, 2012, p. 55) that models the unsteady wind
components. The use of wind models as part of in-flight
icing detection solutions can be found in (Hansen and
Blanke, 2014; Wenz and Johansen, 2016, 2019; Deiler and
Fezans, 2020).

5.5 Measurement Requirements

Models-based methods rely on sensor data to provide
model state information. Moreover, the complexity of the
model dictates the quality and type of measurements
required to produce accurate prediction results.

When it comes to implementing estimation and detection
algorithms, the cost of sensors becomes an issue to be
handled. Often inexpensive UAVs do not fly with multihole
air probes or vanes, which complicates the parameter
identification in icing conditions. The possibility of air
data estimation for fixed-wing UAVs without expensive
multihole air probes and vanes has been researched by,
e.g., Johansen et al. (2015), resulting in the development of
methods for estimating wind velocity, angle-of-attack, and
sideslip using a standard UAV sensors suite comprising
GNSS, IMU, pitot-static tube and barometric altimeter.

To provide an overview of the necessary measurements
for the models outlined in this survey, the measurement
requirements have been divided into three categories:

• Full-state information, where all system states are as-
sumed available as noisy measurements,

• Standard flight control sensor suite including GNSS,
IMU, pitot-static tube, and barometric altimeter.

• Prupolsion system measurements, including data like
throttle, motor current, motor shaft speed, and motor
temperature.

6. ESTIMATION AND DETECTION METHODS

Since the 1960s, the automatic control research community
has developed and refined several model-based estimation
methods. Some of these methods have been applied to in-
flight icing detection and are therefore briefly explained
here. Furthermore, an overview of the models and methods
used in each reviewed article on indirect ice detection is
presented in Tables 1 and 2.

6.1 Linear Model Estimators

Kalman Filter (KF) is a state estimation algorithm
(Brown and Hwang, 2012), which utilizes system dynamics
and measurements to make optimal state estimates. In

the most simplistic form, the optimality is assured by
an adaptive gain referred to as the Kalman gain, which
sets the optimal information source ratio for the system’s
update. If the signal-to-noise is high, measurements are
prioritized; otherwise, the system dynamics are prioritized.

The standard KF framework requires a state-space repre-
sentation of the system, which in the discretized form is
given as follows:

xk =Akxk−1 +Bkuk + ωk

yk =Ckxk + υk
(6)

where ωk and υk are the process and measurement noise,
respectively. Both ωk and υk are zero mean white Gaussian
noise processes with covariance matrices (Q , R):

E

[(
ωk

υk

)
(ωT

k , υ
T
k )

]
=

[
Qk 0
0 Rk

]
Given the system model in (6), the KF algorithm can be
formulated as shown in (7), where the subscripts indicating
the time dependence of the state-space and covariance
matrices were dropped for simplicity.

x̂k|k−1 = Ax̂k−1 +Buk

Pk|k−1 = APk−1A
T +Q

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

Pk = (I −KkC)Pk|k−1

x̂k = x̂k|k−1︸ ︷︷ ︸
prediction

+ Kk(yk − Cx̂k|k−1)︸ ︷︷ ︸
update

(7)

where x̂k is the state estimate, Kk is the Kalman gain and
Pk is the error covariance matrix.

The algorithm in (7) has to be initialized with tuning
parameters K0 and P0. The process noises covariance ma-
trix Q can be based on domain knowledge. Similarly, the
measurement noise covariance matrix R can be obtained
from the datasheet of the corresponding sensor. If the
necessary information is unavailable, the Q and Rmatrices
can be used as tuning parameters.

The use of KF for indirect ice detection can be found
in (Johnson and Rokhsaz, 2001; Aykan et al., 2005b),
where KF is used for aircraft state estimation to remove
measurement noise from the states, which are later fed
into a neural network (NN) for detection. Another use
case is presented in (Ding et al., 2021), where aerodynamic
coefficients are formulated as states in an augmented KF,
and the presence of ice is detected based on estimation
residuals.

Real-time Parameter Identification (RTPID) is a fre-
quency domain, least squares (LS) regression-based identi-
fication algorithm that has been used to estimate aerody-
namic coefficients with the goal of detecting ice accretion
in (Gingras et al., 2009, 2010). The RTPID algorithm uses
state measurements and a deterministic linearized model
of the type shown in (6), but with no process noise, in
an LS formulation to estimate aerodynamic coefficients.



The estimates are then compared to the nominal a priori
coefficients to determine the icing state.

6.2 Nonlinear Filters

Extended Kalman Filter (EKF) is an extension of KF
to nonlinear models. This is done through linearization
at each iteration of the EKF loop, where the linearization
point is based on the previous EKF estimate. Even though
EKF works in many situations, the estimated linearization
point can be far off during certain scenarios, making other
nonlinear methods preferable in those cases. The EKF is
used for indirect ice detection in (Aykan et al., 2005a;
Caliskan and Hajiyev, 2012; Hajiyev et al., 2005; Hansen
and Blanke, 2014; Wenz and Johansen, 2016).

Unscented Kalman Filter (UKF) works by running the
prediction and update steps of a regular KF on a group
of sample points. Weighted averaging of the sample points
allows the UKF to calculate the statistical distribution of
the filter states as they undergo nonlinear transformations
and measurement updates (Wan and Van Der Merwe,
2000). The UKF has the advantage of allowing nonlinear
dynamics in the update step at the cost of an increase in
required computational resources. The use of UKF for ice
detection is presented in (Wenz and Johansen, 2019).

Fault Detection Filter (FDF), similarly to a KF, is based
on estimation residuals. In an FDF, these residuals are
fed back through the process model as a weighted sum
structured so that it is susceptible to detecting specific
pre-defined system faults, e.g., an increase in drag due to
ice accretion on the aircraft. In practice, these faults can be
caused by sensor offsets, signal drift, or scaling errors, all
influencing the observed dynamics of the modeled system.

Implementation of generic FDF can be found in several
papers. For example, in (McKillip et al., 2002, 2022), FDF
was used for indirect ice detection first on a V-22 Osprey
and, more recently, on an eVTOL aircraft.

Bayes Filter (BF) can be viewed as a generalized KF
that does not require model states and measurements to
have Gaussian distribution. Given the required distribu-
tion, the BF can be used to calculate the likelihood of
icing state, as it is done by Haaland et al. (2021).

6.3 Unknown Input Observer

Unknown input observer (UIO) is a type of FDF that
can be applied to a class of linear time-invariant dynamic
systems where the process uncertainty can be modeled
as an additive disturbance term d(t), and the other dis-
turbances can be attenuated. If applicable, this allows
for the formulation of residuals sensitive to user-defined
model uncertainties, such as model-parameter change due
to icing. The state space formulation for an UIO can be
set up as follows:

ẋ(t) = Ax(t) +Bu(t) + Ed(t)

y(t) = Cx(t)
(8)

where x(t) is the state vector, y(t) is the output vector
and u(t), d(t) are known and unknown input vectors
respectively. The UIO framework allows one to model

parametric uncertainties, nonlinearities, and input noise
using the unknown input term Ed(t) and estimate system
states despite this unknown input. As described in (Nazari,
2015), when using the UIO, the estimation problem is
solved such that the estimation error e(t) = x(t) − x̂(t)
asymptotically approaches zero for all d(t). The dynamics
of an UIO for the system in (8) are as follows:

ż(t) = Fz(t) + TBu(t) +Ky(t)

x̂(t) = z(t) +Hy(t)

where x̂ is the state estimate, z is the full-order dynamic
observer state, and F, T,K,H are design matrices used to
decouple state estimation dynamics from the disturbance
term and produce the necessary conditions for an UIO.
Expansion of the error dynamics term ė(t) shows how such
decoupling is possible to achieve.

ė(t) = (A−HCA−K1C) e(t)

+ [(A−HCA−K1C)− F )] z(t)

+ [(A−HCA−K1C)H −K2] y(t)

+ [(I −HC)− T ]Bu(t)− (HC − I)Ed(t)

where I is the identity matrix andK = K1+K2. To remove
the dependencies of ė(t) on d(t), the design matrices can
be chosen as follows,

F = A−HCA−K1C

K2 = FH

T = I −HC

0 = (HC − I)E

resulting in the following decoupled estimation error dy-
namics necessary for an UIO,

ė(t) = Fe(t)

In practice, this means that the estimation error is sensi-
tive only to the change in the system matrices A and B and
not to changes in the d(t) signal, thus allowing for residual-
based fault detection. Application of UIOs for indirect ice
detection can be found in (Tousi and Khorasani, 2009,
2011; Seron et al., 2015; Cristofaro and Johansen, 2015;
Rotondo et al., 2018, 2019).

Linear Parameter Varying Estimation (LPV) is a tech-
nique that makes it possible to formulate nonlinear dy-
namics in a linear-like model by incorporating the model’s
nonlinearities into varying parameters. This way, LPV can
enhance estimation methods developed for linear systems,
such as UIO, resulting in an estimation method consistent
for a larger range of operational modes and trim conditions
(Rotondo et al., 2015).

6.4 H∞ Observer

The H∞ method augments the standard state-space model
in (2) such that the system dynamics become linear in the
parameters to be identified, in the following way,

ẋ = A(x, u)χ+ b(x, u) + dp
χ̇ = Hχ+Kdχ
y = x+ dm

(9)

where x is the system state vector, y is the measured
output vector, u is the input vector, χ is the parameter



vector, dp, dm are the process and measurement noises,
dχ is the model bias, and H, K are constant weights. The
particular state-space formulation in (9) is linear in the pa-
rameter χ but might include nonlinear terms of x and u in
A(x, u) and b(x, u). The advantage of the H∞ formulation
is that it makes it possible to accurately identify time-
variant parameters despite unmodeled dynamics, process
noise, and measurement noise.

When applying the H∞ method to indirect ice detection,
the parameters to be identified are the stability and control
derivatives C∗. Using the nominal and iced parameter
definition from (4), such that χ0 = C∗ and χ = C⋆

∗ , gives
the following χ,

χ = (1 + ηiceKC∗)χ0

Dynamics of the parameters χ can be defined in several
ways depending on the icing scenario. A model used in
(Dong and Ai, 2014) is presented here,

χ̇ = χ0KC∗N1 (1 + ηiceN2)×
{
1

2

[
1− cos

(
2πt

Tcld

)]
+ dη

}
where the dη term represents the bias and uncertainty
of the model, and N1, N2 are constants based on the
expected icing severity profile, given by the duration time
of the icing encounter Tcld and the final and middle values
of the icing severity ηice during the icing encounter.

The goal of the H∞ identification algorithm is to achieve a
guaranteed disturbance attenuation level γ∗ ≤ γ between

the parameter estimation error and the unknown model
terms as shown in (10), while also producing converging
parameter estimates χ̂. The following inequality describes
the disturbance attenuation objective:

∥χ− χ̂∥2Q ≤ γ2
[ (

∥dp∥I
)2

+ (∥dm∥I)
2
+

(
∥dχ∥I

)2
+
(
∥dη∥I

)2
+

(
|x0 − x̂0|P0

)2
+

(
|χ− χ̂0|Q0

)2 ] (10)

where ∥∗∥Q is a weighted L2 norm, |∗|Q0
is a weighted Eu-

clidean norm and x̂0, χ̂0 are a priori state and parameter
estimates. Since the system states are seldom available, the
practical formulation requires estimating the states as part
of the problem. Recent applications of H∞ identification
algorithm for in-flight icing detection can be found in
(Schuchard et al., 2000; Melody et al., 2000, 2001; Ying
et al., 2013; Dong and Ai, 2013).

6.5 Moving Horizon Estimation

A moving horizon estimator (MHE) is a flexible state
estimation framework that combines model equations with
sensor measurements from a fixed time window. The esti-
mation problem is solved as an optimization problem by
minimizing the model prediction error in the specified time
window. The MHE framework is highly flexible regarding
model size and complexity. However, the increased com-
putational complexity associated with large and nonlinear
models might reduce the applicability of the MHE in

Table 1. Part 1. Overview of articles on indirect ice detection.

Estimation Method (sections 6.1.1 and 6.2 to 6.6) Model and States (section 5.1)

Paper KF UIO H∞ FDF Linear Nonlinear
Propulsion

System

1 Johnson and Rokhsaz (2001) KF u,α,q,θ

2 Aykan et al. (2005b) KF u,α,β,p,q,r,ϕ,θ,ψ

3 Caliskan and Hajiyev (2012) EKF u,α,β,p,q,r,ϕ,θ,ψ

4 Cristofaro et al. (2017) MME (KF) u,v,w,p,q,r,ϕ,θ,ψ

5 Cristofaro et al. (2015) MME (KF) Va, α,q,θ

6 Haaland et al. (2021) MME (KF) Va, ω, i

7 Rotondo et al. (2017) MME LPV u,w,q, θ

8 Aykan et al. (2005a) EKF u,α,β,p,q,r,ϕ,θ,ψ

9 Caliskan et al. (2008) EKF u,α,β,p,q,r,ϕ,θ,ψ

10 Hajiyev et al. (2005) EKF u,α,β,p,q,r,ϕ,θ,ψ

11 Rotondo et al. (2015) LPV UIO u,w,q, θ

12 Rotondo et al. (2018) LPV UIO u,v,w,p,q,r,ϕ,θ,ψ,h

13 Rotondo et al. (2019) LPV integral UIO u,w,q, θ

14 Seron et al. (2015) MME UIO u,w,q,θ

15 Tousi and Khorasani (2011) UIO v,β,p,r,ϕ,ψ

16 Tousi and Khorasani (2009) UIO v,β,p,r,ϕ,ψ

17 Cristofaro and Johansen (2015) UIO Va, α,q,θ

18 Melody et al. (2000, 2001) H∞ u,w,α,q,θ,C∗{9} ∗

19 Dong and Ai (2013, 2014) H∞ u,v,w,p,q,r,ϕ,θ,ψ,C∗{6}
20 Schuchard et al. (2000) H∞ u,α,q,θ,C∗{9}
21 Ying et al. (2013) H∞ u,α,q,θ,C∗{9}
22 Miller and Larsen (2003) FDF u,α,q,θ

23 McKillip et al. (2002) FDF T,Q,ω

24 McKillip et al. (2022) FDF T,Q,ω

25 Ding et al. (2021) UKF Va,α,q,θ,h,C∗(5)

26 Deiler and Fezans (2020) ×××
27 Hansen and Blanke (2014) EKF Velocity observer Vw,ψw,λ Va,CX0 , CXα

28 Wenz and Johansen (2016) EKF Vsw,Vdw,CL0
,CLα ,λ

29 Wenz and Johansen (2019) MSE (UKF) ∗∗ Vsw,Vdw,CL0
,CLα ,λ

30 Ding et al. (2020) Va, α,q,θ,h

31 Gingras et al. (2009, 2010) u,α,β,p,q,r,h

32 Coates et al. (2019) T,Q,ω

33 Baskaya et al. (2017)

34 Dong (2018, 2019) u,v,w,p,q,r,ϕ,θ,ψ

35 Sørensen et al. (2015) u,v,w,p,q,r,ϕ,θ,ψ

∗ 9 aerodynamic coefficients
∗∗ Nonlinear optimization method where UKF is used to provide the state covariance matrix
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certain applications. An in-depth explanation of the MHE
method can be found in (Robertson et al., 1996) and
(Wenz and Johansen, 2019), where it is used for in-flight
icing detection on UAVs.

6.6 Multiple Model Estimation and Detection

Multiple model estimation (MME) is a framework used for
state estimation in the presence of parametric uncertainty
by running several estimation filters based on different
models and in real-time comparing their likelihood given
the measured data. This approach allows one to cover
a large set of admissible model parameter values at the
expense of computational power. Furthermore, the MME
can be easily used in a detection scheme that relies on
identifying the model closest to the true system among
all concurrently run models, thereby identifying the most
likely model. The use of MME for indirect ice detection
can be found in the following papers (Cristofaro et al.,
2015, 2017; Rotondo et al., 2017; Haaland et al., 2021).

6.7 Neural Networks

The methods for detecting in-flight icing that have been
described so far rely on aerodynamic models that are
based on physics-based first principles. While this ap-
proach can produce reliable results, it is limited by the
complexity of the modeled dynamics and the aircraft’s
operating conditions. In addition, if too many assumptions
and simplifications are made, the predictive ability of these
models can decrease significantly. To address this limita-
tion, an alternative approach is to use machine learning
and artificial neural networks (ANNs) to estimate the
states of a dynamical system. The idea behind NNs is
to leverage the information hidden in large quantities of
sensor and actuator data to learn the system dynamics
directly instead of modeling them. NN-based solutions are
also highly flexible, allowing the construction of models
that can, for example, take IMU measurements as input
and output the icing state of the aircraft. The use of ANNs
for indirect ice detection on aircraft can be found in the
following papers: (Baskaya et al., 2017; Dong, 2018, 2019).
An in-depth explanation of ANNs, including deep, recur-
rent, and probabilistic NNs, (DNN),(RNN), and (PNN),
respectively, can be found in (Goodfellow et al., 2017).

6.8 Generalized Likelihood Ratio Test

Hypothesis testing is a method of statistical inference used
to decide whether available measurements from a system
are sufficiently likely to agree with a particular model
describing the system, for instance, whether it operates
nominally or experiences performance degradation due to
ice accretion on the aircraft. In the hypothesis testing
approach, the likelihood of measured data is used to deter-
mine if the reference system complies with the proposed
hypothesis. Specific applications of hypothesis testing for
in-flight icing detection can be found in the following
papers: (Miller and Larsen, 2003; Sørensen et al., 2015;
Ding et al., 2020).

7. SUMMARY AND CONCLUSION

For conventional aircraft, the challenges associated with
in-flight icing are, in general, considered to be solved.

However, for smaller fixed-wing UAVs, the available so-
lutions are not directly applicable due to cost, efficiency,
and weight limitations.

Several performance-degradation-based ice detection meth-
ods have been surveyed and presented in this paper; their
strengths and weaknesses can be summarized as follows.
Performance-degradation-based methods require precise
propulsion systems models; if such models are available,
estimation filters and observers can be used to accurately
detect ice without the need for additional sensors, except
for the standard flight controller sensor suite expected
to be present on a UAV. Neural-network-based methods
can yield good results and are very flexible in terms
of detection problem formulation. However, they require
large amounts of labeled data, which can be challenging
to acquire. On the other hand, methods such as UKF,
MHE, and MME use additional computational resources
to compute estimates, making them a suitable option for
ice detection if sufficient computation power is available.

Nevertheless, a common limitation of the surveyed pa-
pers is that practically none of the performance-based
detection methods have been validated in actual flight
experiments. In most papers, the methods are validated
in simulation, either using simulated data or, in many
cases, using NASA’s dataset collected with the DHC-6
Twin Otter research aircraft, where (Hansen and Blanke,
2014) stands out as one of the papers presenting flight
experiment results. Comparison and validation of the var-
ious performance-based ice detection methods in flight
experiments is therefore identified as highly beneficial for
the further development of ice detection systems.

Furthermore, the research on atmospheric icing and direct
ice detection indicates that performance-based methods
are not the only solution, and research on ice sensors with
a small footprint and low energy requirements shouldn’t be
overlooked. The same can be said for weather-radar-based
solutions, which can be especially relevant for highly traf-
ficked locations with dense traffic, such as urban airports
and landing pads where the number of users could justify
investment in expensive radar equipment.
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Mart́ınez, J., Ródenas, A., Stake, A., Traveria, M., Aguiló,
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