Icing Calculation of a UAV Propeller

Universität Stuttgart

Nicolas Müller, Richard Hann, Thorsten Lutz

Why is icing on UAVs important?

3

Why is icing on UAVs important?

Ice shapes

Rime

Glaze

Mixed

Hann, R. (2020). Atmospheric Ice Accretions, Aerodynamic Icing Penalties, and Ice Protection Systems on Unmanned Aerial Vehicles. PhD Thesis NTNU2020:200, Norwegian University of Science and Technology

Icing Hazards

Previous Works

\rightarrow Focussed on manned aircraft

Hann, R. (2020). Atmospheric Ice Accretions, Aerodynamic Icing Penalties, and Ice Protection Systems on Unmanned Aerial Vehicles. PhD Thesis NTNU2020:200, Norwegian University of Science and Technology Yang Liu, Linkai Li, Zhe Ning, Wei Tian and Hui Hu; An Experimental Study on the Transient Ice Accretion Process

over the Blade Surfaces of a Rotating UAS Propeller; Department of Aerospace Engineering, Iowa State University; 2017

→ No numerical analysis of icing on UAV propellers

Computational Region Inlet Periodic Interfaces Outlet No slip Walls

Icing Calculations

Initial Mesh

- Pointwise
- 9 mio. Cells
- Thethrahedal Cells
- 25 Prisim Layers
- y+ < 1

DNTNU

Remeshing

- Fluent Meshing
- 9-12 mio. Cells
- Thethrahedal Cells
- 25 Prisim Layers
- y+ < 1

Numerical Setup

- CFD Solver: ANSYS Fensap
- Turbulence Model: Spalart Allmaras
- Droplet Solver: DROP3D
- Ice Accretion Solver: ICE3D

Ice Shape

- Icing duration 120s
- Remeshing every 10 s
- → Rime ice
- →Linear ice growth over time

Performance Results No Ice

ShearStress 25

120 s icing

→ Reduction of the Thrust by 23.8%
→ Reduction of the Efficiency by 24.6%

Outlook

Future Investigations:

- -Glaze Ice
- -Ice shedding
- -Wind tunnel testing

Appendix

Impingement

\rightarrow Highest impingemnt on the Leading edge

 \rightarrow Increase from center to tip

https://www.aeroexpo.online/prod/maritime-

Test Case

Performance Results No Ice

→ Reduction of the Thrust by 23.8%
→ Reduction of the Efficiency by 24.6%

120 s icing

The Influence of Meteorological Conditions on the Icing Performance Penalties on a UAV Propeller

Nicolas Müller Richard Hann, Thorsten Lutz

SLD

