Suggestions for simulation cases

Overall Organization

- Recall that we decided to organize the cases along the following categories:
- 1. Ice shapes on 3D geometries
 - Includes swept wings, rotors, fans, propellers.
- 2. Ice shapes on 2D geometries
 - Includes low-Re ice shapes, high-Re ice shapes and different icing tunnels.
- 3. Collection efficiency on 2D and 3D geometries

- 3D Scanned ice shapes on 36-in swept NACA0012 from NASA IRT
- AIAA 2014-2613

	Table 3 Ice shapes tested for swept wing												
Ice Shape	Run Number	Λ (°)	α (°)	V (kts)	LWC (g/m ³)	MVD (µm)	T ₀ (°C)	Spray (min)					
Complete Scallop	AF2037	45	0	200	0.54	32.6	-6.7	19					
Incomplete Scallop	AF2032	30	4	200	0.6	15	-6.7	15					
Roughness	AF2029	30	4	200	0.45	32	-7.2	3					
Rime	AF2028	30	4	200	0.6	15	-17.8	15					

• Ice shapes on swept GLC305 wing from NASA IRT (no scan data, only tracings)

-2.5

• AIAA 2003-730; DOT/FAA/AR-05/39

Icing Condition	Description	Angle of Attack (degrees)	Velocity (mph)	Total Temperature (°F)	LWC (g/m ³)	MVD (μm)	Ice Accretion Time (min)
1	Complete Scallop	4	250	25	0.68	20	10
2	Incomplete Scallop	4	150	25	0.65	20	10
3	Scaled to 2D test results	6	201.3	11.7	0.51	14.5	5
4	Complete Scallop – short duration	4	250	25	0.68	20	2
5	Complete Scallop - long duration	4	250	25	0.68	20	22.5
6	22.5 minute failed IP – App. C	4	150	27	0.46	20	22.5

(a) Promes at station A (50 micnes from root)

AIAA-2014-2200, Bidwell, C. S., "Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48"

Experiment Details:

- NASA Glenn IRT
- NACA 0012 wing
 - chord length approx. 3 ft (0.9 m)
 - span length approx. 40 inches (1 m)
 - 30° sweep
 - 45° sweep
- Conditions ranging from Rime to Glaze for two different inertia values

Data Available:

- ice mass
- ice density (calculated from tracings)
- ice shape tracings (2 locations)
- surface pressure
- ice shape photos

Concerns:

- tracings must be extracted from plots
- Colin has retired from NASA, so not sure how easy it is to get additional data

Airspeed	Dron	11110					
	Diop	LWC	Static	Experimental Ice	Corrected Experimental	LEWICE3D Ice Mass	Experimental
	Size		Temperature	Mass per Unit Length	Ice Mass per Unit Length	per Unit Length	Void Density
m/s	microns	g/m³	к	g/m	g/m	g/m	Kg/m ³
45	15	1.50	257	380	454	536	325
45	15	1.50	259	376	483	546	323
45	15	1.50	262	416	491	560	407
45	15	1.50	265	536	557	581	380
45	15	1.50	265	526	594	581	351
45	15	1.50	267	702	706	582	374
45	15	1.50	269	534	538	579	380
103	32	0.45	257	1476	1582	1440	437
103	32	0.45	261	1467	1576	1475	328
103	32	0.45	263	1339	1432	1497	283
103	32	0.45	265	1340	1438	1539	367
103	32	0.45	266	1449	1599	1548	402
	m/s 45 45 45 45 45 45 103 103 103 103 103 103	mis microns 45 15 45 15 45 15 45 15 45 15 45 15 45 15 45 15 45 15 103 32 103 32 103 32 103 32 103 32 103 32	microns g/m³ Microns g/m³ 45 15 1.50 45 15 1.50 45 15 1.50 45 15 1.50 45 15 1.50 45 15 1.50 45 15 1.50 45 15 1.50 45 15 1.50 45 15 1.50 103 32 0.45 103 32 0.45 103 32 0.45 103 32 0.45 103 32 0.45 103 32 0.45 103 32 0.45	microns g/m³ K 45 15 1.50 257 45 15 1.50 259 45 15 1.50 262 45 15 1.50 265 45 15 1.50 265 45 15 1.50 265 45 15 1.50 266 45 15 1.50 267 45 15 1.50 269 103 32 0.45 257 103 32 0.45 261 103 32 0.45 263 103 32 0.45 265 103 32 0.45 265 103 32 0.45 265 103 32 0.45 265 103 32 0.45 265	m/s microns g/m ³ K g/m 45 15 1.50 257 380 45 15 1.50 259 376 45 15 1.50 262 416 45 15 1.50 265 536 45 15 1.50 265 526 45 15 1.50 265 526 45 15 1.50 267 702 45 15 1.50 267 702 45 15 1.50 269 534 103 32 0.45 257 1476 103 32 0.45 263 1339 103 32 0.45 265 1340 103 32 0.45 265 1340 103 32 0.45 266 1449	microns g/m ³ K g/m g/m 45 15 1.50 257 380 454 45 15 1.50 259 376 483 45 15 1.50 262 416 491 45 15 1.50 265 536 557 45 15 1.50 265 526 594 45 15 1.50 267 702 706 45 15 1.50 267 702 706 45 15 1.50 267 702 706 45 15 1.50 269 534 538 103 32 0.45 257 1476 1582 103 32 0.45 263 1339 1432 103 32 0.45 265 1340 1438 103 32 0.45 265 1340 1438 103	micronsg/m³Kg/mg/mg/m45151.5025738045453645151.5025937648354645151.5026241649156045151.5026553655758145151.5026552659458145151.5026770270658245151.50269534538579103320.45261146715761475103320.45265134014381539103320.45265134014381539103320.45266144915991548

- Ice shapes on a helicopter tail rotor from NASA IRT
- AIAA 2014-2612
- Need to verify availability of geometry and test data

Table 1 Summary	of Run Cor	nditions						
Run Condition	Run Number	Airspeed (knots)	RPM	MVD (µm)	LWC (g/m ³)	Collective. (deg.)	Static Temp. (°F)	Spray Time (min.)
Cold blade	29	60	1200	15	0.50	2	14	3:00
Cold blade	47	60	2100	15	0.50	2	14	1:00
Cold blade	53	60	1200	15	0.50	2	14.2	3:00
Cold blade	54	60	2100	15	0.50	8	15	1:00
Self shed	55	150	2100	15	0.50	2	16.9	1:30
Chordwise de-ice	65	60	2100	15	0.50	5	-4	5:18
SLD Cold Blade	68	150	2100	110	0.50	5	-4	1:00
Spanwise de-ice	76	150	2100	15	0.50	5	-4	5:22
SLD Cold Blade	81	150	2100	110	0.50	2	-4	1:00
Self shed	82	60	2100	15	0.50	2	14	2:30
Self shed	83	60	2100	15	0.50	2	9	3:00

- Icing on small scale fan from Iowa State University
- AIAA 2018-3013
- Need to verify availability of geometry and test data

Case	T∞ (°C)	LWC (g/m ³)	Icing Time (s)	MVD (µm)	n (rpm)	U ∞ (m/s)
1	-5°C	0.5	360	•		
2	-5°C	1.0	180			
3	- 5 °C	2.0	90			
4	-10°C	0.5	360	-		
5	-10°C	1.0	180	20~100	2500	15
6	-10°C	2.0	90	_		
7	-15°C	0.5	360	=		
8	-15°C	1.0	180			
9	-15°C	2.0	90	_	_	_

- 3D Scanned ice shapes on 36-in swept NACA0012 from NASA IRT
- AIAA-2020-2814

					Test F	Result	s (Ref	erence	e AF21	73)					
Run	v	MVD	LWC	Ts	Tt	Time			Mod-1	Mod-1	Std	Std	Mass	Volume	$ ho_{ m eff}$
Number	(kts)	(µm)	(g/m ³)	(°C)	(°C)	(min)	β ₀ Ac	n _o	P _{air}	delP	P _{air}	delP	g	in ³	(g/cm ³
									(psig)	(psid)	(psig)	(psid)			
AF2881	224.0	20.00	0.50	-10.0	-3.4	17.7	1.33	0.40	19.4	49.9			365.5	36.1	0.62
AF2882	224.0	21.40	1.12	-15.2	-8.5	7.7	1.33	0.40			15.6	11.6	322.1	28.1	0.70
AF2883	224.0	21.40	1.12	-15.2	-8.5	7.7	1.33	0.40	10.0	30.0	10.0	5.0	340.8	29.0	0.72
AF2884	224.0	21.30	1.54	-17.5	-10.9	5.6	1.33	0.40	15.0	80.0	15.0	7.0	366.7	30.2	0.74
AF2885	224.0	25.00	1.85	-19.4	-12.8	4.4	1.33	0.40	15.0	100.0	15.0	10.0	366.5	29.8	0.75
AF2893	224.0	21.30	1.54	-17.5	-10.9	5.6	1.33	0.40	15.0	80.0	15.0	7.0	346.4	29.7	0.71

					Test F	Result	s (Ref	erence	e AF21	75)					
Run	V	MVD	LWC	Ts	Tt	Time			Mod-1	Mod-1	Std	Std	Mass	Volume	$ ho_{ m eff}$
Number	(kts)	(μm)	(g/m ³)	(°C)	(°C)	(min)	β ₀ Ac	n _o	Pair	delP	Pair	delP	g	in ³	(g/cm ³)
									(psig)	(psid)	(psig)	(psid)			
AF2886	150.0	20.00	0.64	-7.5	-4.5	22.5	1.33	0.40	19.5	50.5			368.3	34.4	0.65
AF2887	150.0	21.40	1.43	-12.7	-9.7	9.7	1.33	0.40			15.7	11.7	329.9	29.6	0.68
AF2888	150.0	21.40	1.43	-12.7	-9.7	9.7	1.33	0.40	10.0	30.0	10.0	5.0	351.0	31.4	0.68
AF2889	150.0	21.30	1.96	-15.1	-12.1	7.1	1.33	0.40	15.0	80.0	15.0	7.0	359.3	31.2	0.70
AF2890	150.0	25.00	2.36	-17.3	-14.3	5.4	1.33	0.40	15.0	100.0	15.0	10.0	373.4	31.9	0.71
AF2891	150.0	21.30	1.96	-15.1	-12.1	7.1	1.33	0.40	15.0	80.0	15.0	7.0	384.7	31.9	0.74
AF2894	150.0	21.30	1.96	-15.1	-12.1	7.1	1.33	0.40	15.0	80.0	15.0	7.0	362.1	31.7	0.70

	Test Results (Reference AF2178)														
Run	v	MVD	LWC	Ts	Tt	Time			Mod-1	Mod-1	Std	Std	Mass	Volume	$ ho_{ m eff}$
Number	(kts)	(µm)	(g/m ³)	(°C)	(°C)	(min)	β ₀ Ac	n _o	Pair	delP	Pair	delP	g	in ³	(g/cm ³)
									(psig)	(psid)	(psig)	(psid)			
AF2892	224.0	20.00	0.50	-13.4	-6.8	17.7	1.33	0.60	19.4	49.9			291.2	26.8	0.66
AF2895	224.0	21.40	1.12	-21.7	-15.1	7.7	1.33	0.60			15.6	11.6	307.2	26.1	0.72
AF2896	224.0	21.30	1.54	-25.5	-18.8	5.6	1.33	0.60	15.0	80.0	15.0	7.0	367.0	29.9	0.75
AF2897	224.0	21.30	1.54	-25.5	-18.8	5.6	1.33	0.60	15.0	80.0	15.0	7.0	361.1	29.4	0.75
AF2898	224.0	21.40	1.12	-21.7	-15.1	7.7	1.33	0.60	10.0	30.0	10.0	5.0	323.5	27.6	0.72

- 3D Scanned ice shapes on 15-in swept NACA0012 from NASA IRT
- AIAA-2020-2814

					Test F	Result	s (Ref	erence	e AD27	787)					
Run	v	MVD	LWC	Ts	Tt	Time			Mod-1	Mod-1	Std	Std	Mass	Volume	$ ho_{ m eff}$
Number	(kts)	(µm)	(g/m ³)	(°C)	(°C)	(min)	β ₀ Ac	n ₀	p _{air}	Dp	p _{air}	Dp	g	in ³	(g/cm ³
									(psig)	(psid)	(psig)	(psid)			
AD2899	217.4	20.00	0.75	-10.1	-3.9	10.0	3.17	0.38	34.3	121.4			142.4	11.9	0.73
AD2900	217.4	21.40	1.14	-12.6	-6.4	6.4	3.16	0.38			15.6	11.6	140.0	12.4	0.69
AD2901	217.4	21.40	1.14	-12.6	-6.4	6.4	3.16	0.38	10.0	30.0	10.0	5.0	149.7	13.2	0.69
AD2902	217.4	21.30	1.56	-14.7	-8.4	4.7	3.16	0.38	15.0	80.0	15.0	7.0	142.2	11.9	0.73
AD2903	217.4	25.00	1.88	-16.3	-10.0	3.8	3.16	0.38	15.0	100.0	15.0	10.0	145.5	12.3	0.72
AD2904	217.4	21.30	1.56	-14.7	-8.4	4.7	3.16	0.38	15.0	80.0	15.0	7.0	142.1	11.8	0.73
AD2912	217.4	21.40	1.14	-12.6	-6.4	6.4	3.16	0.38	10.0	30.0	10.0	5.0	152.7	13.4	0.70

y, in.

					Test F	Result	s (Ref	erence	e AD27	(89					
Run	v	MVD	LWC	Ts	Tt	Time			Mod-1	Mod-1	Std	Std	Mass	Volume	$ ho_{ m eff}$
Number	(kts)	(µm)	(g/m ³)	(°C)	(°C)	(min)	β ₀ Ac	n _o	p _{air}	Dp	p _{air}	Dp	g	in ³	(g/cm ³)
									(psig)	(psid)	(psig)	(psid)			
AD2905	217.4	20.00	0.75	-14.3	-8.1	10.0	3.16	0.60	34.3	121.4			144.8	13.0	0.68
AD2906	217.4	21.40	1.14	-18.6	-12.3	6.4	3.16	0.60			15.6	11.6	135.3	11.2	0.74
AD2907	217.4	21.40	1.14	-18.6	-12.3	6.4	3.16	0.60	10.0	30.0	10.0	5.0	145.3	11.9	0.75
AD2908	217.4	21.30	1.56	-22.1	-15.8	4.7	3.16	0.60	15.0	80.0	15.0	7.0	140.2	11.8	0.73
AD2909	217.4	25.00	1.88	-24.7	-18.5	3.8	3.16	0.60	15.0	100.0	15.0	10.0	143.0	11.1	0.79
AD2910	217.4	21.30	1.56	-22.1	-15.8	4.7	3.16	0.60	15.0	80.0	15.0	7.0	144.6	12.0	0.74
AD2911	217.4	21.40	1.14	-18.6	-12.3	6.4	3.16	0.60	10.0	30.0	10.0	5.0	148.7	12.3	0.74

Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models

- CRM Inboard Hybrid Model
- CRM Midspan Hybrid Model
- 3D ice shape scans
- Re= 10 20 10^6 / Ma=0.2
- TG2418 (-3.7C)
- TG2408 (-17.3C)
- TH2464 (-3.6C)
- TH2431 (-17.5C)

Yadlin, Monnig, Malone, Paul; NASA/CR—2018-219781 Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models; 2018

		TABLE 4.2	.—ICING	CONDI	TIONS I	FOR CR	M65 WB CON	FIGURATION			
Case	Flight	Weight	AoA,	Static	Mach	TAS,	Total	Static	MVD,	LWC,	Exposure
	phase		degree	pres.,		knots	temperature,	temperature,	μm	g/m ³	time,
				kPa			°C	°C			minute
WB33 T-4	Hold	LGW	3.7	69.7	0.36	232	3.2	-4.0	20	0.55	45.0
WB33 T-6	Hold	LGW	3.7	69.7	0.36	231	1.1	-6.0	20	0.51	45.0
WB33 T-13	Hold	LGW	3.7	69.7	0.36	228	-6.1	-13.0	20	0.36	45.0
WB33 T-25	Hold	LGW	3.7	69.7	0.36	223	-18.4	-25.0	20	0.17	45.0
WB41 T-6	Hold	HGW	4.4	84.3	0.35	225	0.6	-6.0	20	0.51	45.0
WB41 T-13	Hold	HGW	4.4	84.3	0.35	222	-6.6	-13.0	20	0.36	45.0
WB41 T-25	Hold	HGW	4.4	84.3	0.35	217	-18.9	-25.0	20	0.17	45.0
WB52 T-6	Descent	Nominal	2.1	84.3	0.41	263	3.1	-6.0	20	0.51	4.0
WB52 T-13	Descent	Nominal	2.1	84.3	0.41	259	-4.1	-13.0	20	0.36	4.0
WB52 T-25	Descent	Nominal	2.1	84.3	0.41	253	-16.5	-25.0	20	0.17	4.1

TABLE 4.3.—ICING CONDITIONS FOR CRM65 WB CONFIGURATION

			1.5. 10.		51110.101	oncorri	105 112 0	0.4.1001				
Ice type	Run no.	Repeat	AoA,	Flap,	Speed,	Ps,	Ts,	MVD,	LWC,	Spray	Mach	Alt.,
		run no.	degree	degree	knots	psia	°C	μm	g/m ³	time,	number	feet
										minute		
					Inboard	Model						
Temperature	TG2418	TG2409	3.7	13.8	129	13.77	-3.7	25.0	1.00	29.0	0.20	1767
sweep	TG2408		3.7	14.1	129	14.01	-17.3	25.0	1.00	29.0	0.21	1316
	TG2415	TG2412	3.7	14.1	130	14.08	-26.2	25.0	1.00	29.0	0.21	1168
Higher AoA	TG2417		4.4	13.8	129	13.75	-3.7	28.0	1.00	25.5	0.20	1808
	TG2416		4.4	13.8	129	13.73	-8.6	25.0	1.00	25.5	0.20	1839
Lower AoA	TG2420		2.1	14.0	130	13.91	-6.1	25.0	1.00	29.0	0.20	1501
	TG2419		2.1	13.9	130	13.89	-8.6	25.0	1.00	29.0	0.20	1542
WB52 T-13 ^a	TG2430		2.1	14.1	130	14.05	-3.0	34.0	1.23	4.0	0.20	1229
					Midspan	Model						
Temperature	TH2464	TH2446	3.7	24.9	129	13.93	-3.6	25.0	1.00	29.0	0.20	1458
sweep	TH2431		3.7	25.0	129	14.05	-17.5	25.0	1.00	29.0	0.21	1229
	TH2459	TH2447	3.7	25.0	129	13.80	-26.2	25.0	1.00	29.0	0.21	1708
Lower AoA	TH2457		2.1	14.0	130	13.80	-6.1	25.0	1.00	29.0	0.20	1714
	TH2448		2.1	14.1	128	13.65	-8.6	25.0	1.00	29.0	0.20	2012
Higher speed	TH2461		3.7	25.0	181	13.50	-18.0	22.0	0.40	25.6	0.29	2308
	TH2444		3.7	24.8	179	13.57	-6.3	24.0	0.65	32.2	0.28	2161
Beak ice	TH2443		2.1	15.9	257	12.82	-7.4	21.0	0.37	40.3	0.41	3674
WB52 T-13 ^b	TH2437		2.1	15.9	257	12.82	-14.7	21.0	0.36	4.0	0.41	3663
WB52 T-13°	TH2436		2.1	14.1	129	13.99	-12.5	27.0	0.71	4.0	0.20	1352
					Outboard	Model						
Temperature	TI2487	TI2463	3.7	14.0	130	14.02	-3.7	25.2	1.00	29.0	0.20	1291
sweep	TI2464		3.7	13.9	130	13.97	-17.4	25.2	1.00	29.0	0.21	1375
	TI2480	TI2467	3.7	14.2	129	13.87	-26.2	25.2	1.00	29.0	0.21	1582
Lower AoA	TI2483		2.1	9.1	130	13.93	-6.2	25.2	0.99	29.0	0.20	1457
	TI2481	TI2473	2.1	9.1	130	13.91	-8.7	25.2	1.00	29.0	0.20	1497
Higher speed	TI2489		3.7	14.2	231	13.10	-8.0	20.0	0.55	18.0	0.36	3099
	TI2494		3.7	14.1	232	13.09	-18.4	19.9	0.30	25.3	0.37	3118
Beak ice	TI2475		2.1	8.9	248	13.00	-7.0	21.9	0.38	30.0	0.39	3305
WB52 T-13 ^b	TI2474		2.0	9.0	247	12.97	-14.4	20.9	0.38	4.0	0.39	3357
WB52 T-13°	TI2472		2.1	9.0	131	13.90	-12.5	26.9	0.71	4.0	0.21	1519

- 3D Scanned ice shapes on 72-in NACA23012 airfoil from NASA IRT
- SAE Technical Paper 2019-01-2022, 2019, doi:10.4271/2019-01-2022

NACA23012 Airfoil Test Results

		Mass	Mass			Volume	Volume					
F	Run Numbers	bimodal	monomodal	∆m	∆m	bimodal	monomodal	∆Vol.	∆Vol.	$ ho_{ ext{eff,b}}$	$ ho_{ ext{eff},m}$	$\Delta ho_{ m eff}$
		(g)	(g)	(g)	(%)	(in ³)	(in ³)	(in ³)	(%)	(g/cm ³)	(g/cm ³)	(%)
E	EG2814/EG2815	476.8	385.0	91.8	23.8%	34.09	30.28	3.81	12.6%	0.854	0.776	10.0%
E	EG2816/EG2817	58.3	50.2	8.1	16.1%	3.64	3.12	0.52	16.7%	0.977	0.982	-0.5%
E	EG2818/EG2822	478.5	381.0	97.5	25.6%	42.57	31.09	11.48	36.9%	0.686	0.748	-8.3%
E	EG2819/EG2820	667.0	549.6	117.4	21.4%	52.47	43.07	9.40	21.8%	0.776	0.779	-0.4%
E	EG2821/EG2823	467.4	361.7	105.7	29.2%	32.65	25.29	7.36	29.1%	0.874	0.873	0.1%
E	EG2824/EG2825	320.6	320.0	0.6	0.2%	23.67	24.93	-1.26	-5.1%	0.827	0.783	5.5%

		Cond 3 Mod1+Std even	
		Standard Nozzles	
ve Volume	0.7	-F2DZ, MYD-40	
lati	0.6		
Cumu	0.5		
ized			
ma	0.4		
Ň	0.7		
	0.0		
	0.2		
	0.1		
	0.0		
	1	10 100	1000
		Drop Diameter (µm)	

Cond1 Mod

NACA23012 Airfoil Repeatability Test Results											
Run Numbers	Mass 1	Mass 2	∆m (m)	∆m	Volume 1	Volume 2	∆Vol.	∆Vol.	$\rho_{\text{eff,b}}$	$\rho_{\text{eff},m}$	$\Delta \rho$
	(g)	(g)	(g)	(%)	(inč)	(inč)	(inš)	(%)	(g/cm˘)	(g/cm˘)	(%
EG2814/EG2818	476.8	478.5	-1.7	-0.4%	34.09	42.56	-8.47	-19.9%	0.854	0.686	24.4
EG2815/EG2822	385.0	381.0	4.0	1.0%	30.28	31.09	-0.81	-2.6%	0.776	0.748	3.8
EG2819/EG2826	667.0	665.4	1.6	0.2%	52.47	51.61	0.86	1.7%	0.776	0.787	-1.4

- Ice shapes on 6-foot chord NACA 23012 from NASA IRT
- Clean model pressure data; ice shape pictures and tracings
- NASA/TP-2016-218348

- Ice shapes on 1.5-foot chord NACA 23012 from NASA IRT
- NASA/TP-2016-218348--Clean model pressure data; ice shape pictures and tracings
- AIAA 2014-2613—Ice shape pictures, tracings and 3D scans

Ice Shape	Run Number	α (°)	V (kts)	LWC (g/m ³)	MVD (µm)	T ₀ (°C)	Spray (min)
Glaze (Horn)	ED1978	2	200	0.75	15	-2.2	5
Roughness	ED1974	2	200	0.75	15	-2.2	0.5
Roughness	ED1983	2	200	0.4	30	-17.8	1
Rime (Streamwise)	ED1977	2	200	0.4	30	-17.8	5
Rime (Streamwise)	ED1966	5	175	0.3	15	-17.8	5
Runback (Spanwise Ridge)	ED1967	1	175	0.64	15	-4.4	9.5

Ice shapes at low Reynolds numbers

- Icing at low Renyolds number (1×10⁶) with rime, glaze, and mixed ice conditions on RG-15
- Low-speed icing wind tunnel in Finland (VTT)
- Manual hand tracings, photographs, multiple runs
- Aerodynamic performance data planned for Q4 2020

Test conditions							
Airspeed v	25 m/s						
Chord c	0.45m						
Temperature	[-2, -5, -10]°C						
MVD	16, 26 μm						
LWC	0.44 g/m³						
AOA	[0, 4, 8]°						

Collection efficiency

NASA/TM—2011-216945 (AIAA-2010-7675), Bidwell, C. S., "Super Cooled Large Droplet Analysis of Several Geometries Using LEWICE3D Version 3"

Experiment Details:

%LWC

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.0475

0.01

0.01

0.01

0.005

0.005

0.005

0.005

Pressu -1.5

nt of

-2.0

-1.0

0.0

0.5

0.0

0.1

0.2

0.3

- MS-317 airfoil (chord 0.9 m) ٠
- NLF(1)-0414 airfoil (chord • 1.2 m)
- NACA 64A008 swept wing ٠
- 3-element IRT airfoil model •
- custom spray rig in IRT ٠
- MVD 92 µm -- droplet ٠ distribution provided

Data Available:

- surface pressure
- collection efficiency

x/c

- USM3D (AOA=-2.0)

USM3D (AOA=6.15)

LEWICE (AOA=6.15)

LEWICE (AOA=-1.85)

Advantages:

- cases include simple airfoil, multi-element airfoil, and swept wing
- surface pressures can be used • to check air flow result quality

Concerns:

- splashing model was important for matching results
- Colin has retired from NASA data availability?

Aiaa-95-0755

NACA0012 swept-wing

C.S. Bidwell and S.R. Mohler, Jr , "Collection Efficiency and Ice Accretion Calculations for a Sphere, a Swept MS(1)-317 Wing, a Swept NACA-0012 Wing Tip, an Axisymmetric Inlet, and a Boeing 737-300 Inlet", AIAA-95-0755, 1995

Chord length : 0,4399m

Sweep-angle : 0,15,30 or 45°. Unclear which value was used for the paper.

Test-matrix :

Model Description*	AOA (Degrees)	Engine Suction Flow (kg/s)	MVD (µm)		
15.04 cm Sphere**	-	-	11.5, 16.7, 18.6		
45.72 cm Sphere**	-	-	11.5, 14.7, 16.7, 18.6		
Swept MS(1)-317 Wing ‡	0, 8	-	16.4, 20.4		
Swept NACA-0012 Wing Tip ‡	0, 8	-	16.4, 20.4		
Axisymmetric Engine Inlet †	0, 15	7.8, 10.4	16.4, 20.4		
Boeing 737-300 Engine Inlet †, ‡	0, 15	7.8, 10.4	16.4, 20.4		

* All tests were performed at a tunnel air temperature of approximately 10° C, and at an indicated airspeed of approximately 73-78 m/s.

** Models tested in 1957.

† Models tested in September 1985

‡ Models tested in April 1989

gure 21. - Comparison of experimental and theoretical collection efficiency for the swept NACA-0012 wing tip. Airspeed, 75 m/s; static temperature, 7° C; static pressure 95840

Experimental data available: collection efficiency

Link to be drawn with the AIAA 2014-2613 swept-wing test-case for which there are ice shapes but no collection efficiency measurements?

Impingement (and accretion) on a sphere

C.S. Bidwell and S.R. Mohler, Jr , "Collection Efficiency and Ice Accretion Calculations for a Sphere, a Swept MS(1)-317 Wing, a Swept NACA-0012 Wing Tip, an Axisymmetric Inlet, and a Boeing 737-300 Inlet", AIAA-95-0755, 1995

NACA 64A008 swept tail, at $\alpha = 6^{\circ}$

MVD = 21 microns Speed = 176 mph Mach = 0.23 Reynolds = 5.03 Static Temperature* = 291.2 K Static Pressure* = 83025 Pa

Cylindrical End Cap

NASA TM 2002-211700 / NASA-TM-2005-213653

25%-scale business jet empennage horizontal tail, at $\alpha = -6^{\circ}$

NASA TM 2002-211700 / NASA-TM-2005-213653

Axisymmetric inlet at $\alpha = 15^{\circ}$

MVD = 20.36 microns Speed = 168.9 mph Mach = 0.2328

(POSITIVE S VALUES ON INNER SURFACE)

(A4) MVD = 20.36 MICRONS, MASS FLOW = 22.96 LBM/SEC, θ = 135°

MMETRIC INLET = 76.98 m/s = 10.4 C = 95.44 kPa 0.65 0.89

(172.19 mph) (50.7 F) (13.85 psia)

E TEST DATA

17E

FIGURE 3.22 BLOTTER STRIP LOCATIONS ON AXISYMMETRIC INLET FOR $a = 15^{\circ}$.

NASA CR 4257

Three-element airfoil at $\alpha = 0^{\circ}$

Three-Element Airfoil

Analysis (A.O.A. = 0.0 deg.)

Experiment (A.O.A. = 0.0 deg.)

-5.0

-3.0

-2.0

-1.0

0.0

1.0

0.15 0.00

•

0.20

SLAT

Fig. 81 Comparison of experimental and INS2D pressure distributions for the three-element high lift system; $\alpha = 0^{\circ}$, M = 0.23, Re = 4.9 million, landing configuration, slat deflection 30 deg., flap deflection 30 deg.

0.05 X/C 0.10

0.00

-6.0

-5.0

g -4.0

-3.0

-2.0

-1.0

0.0

1.0

-0.05

.

IPW Standard for Results

Plot Lists for Results Template

14 May 2020

Rev 1

Plot List for Each Experimental Case

Code-to-Experiment

- CP vs. X/C plot
 - From clean geometry (no ice)
 - Along row of pressure taps
 - Whole chord
 - (pressures from artificial ice shapes out of scope)
- Ice Geometry and Clean Geometry plot
 - Cut normal to leading edge (usually)
 - Tracing or cut through MCCS from scan
 - Plot CPmax point from experiment and stagnation point from ice code on Clean Geometry
 - Plot line showing max thickness and location with thickness value and angle value callout from experiment and code
- Ice Mass/span value from experiment (if measured)
- Collection Efficiency vs. Arc Length from code and experiment (if measured from dye strips)

Code-to-Code

Multi-iteration codes must plot first/last iteration as appropriate but have option to include other iterations.

Parameters plotted vs. arc length on cut normal to leading edge:

- CP
- Convective Heat Transfer Coefficient
- Freezing Fraction (agree on definition for this workshop)
- Film/Ice Temperature (surface temperature)
- Roughness (k)
- Ice Density (code input setting or code output)
- Ice Thickness
- Ice Mass/span value at cut from code

An Idea for Template Structure

