

This work is licensed under a <u>Creative Commons Attribution-</u> <u>NonCommercial-NoDerivatives 4.0 International License</u>.

Ice Protection Workshop 2

Guy Fortin Advanced Aerodynamics

2023-06-23

DRAGON ICE SUITE

Flow: Reynolds Averaged Navier Stokes Solver (RANS) k-w Turbulence Model

Heat Transfer Coefficient by Convection: Newton's law of cooling and Fourier's law Semi-Empiric Equivalent Sand Grand Roughness Correlation for 1 layer ice shape prediction

Drop (Collection Efficiency): Euleurian Solver

Thermo (Mass and Heat Transfers): Iterative Messinger Solver Multi-stagnation point Runback is based on wall shears stress

Geometry: Lagrangian Node Displacement Method

SAT	Surface (m ²)	Ice Mass (kg/m)	Ice Density
(°)	Ехр	Ехр	kg/m³
-3.6	0.013851	4.920	355
-8.5	0.019920	8.220	413
-26.0	0.019404	7.900	407

Hingewise cut

Observation: Ice Mass Numerical Clean Catch Rate versus Experimental Average Catch Rate

AoA	3.7		deg		
TAS	66.9		m/s		
MVD	MVD 2		μm		
LWC		1	g/m³		
time	29		min		
SAT	-3.6		°C		
SAT	-8.5		°C		
SAT	-26		°C		
NIASA IDT Draplat					
			Diopiet		
Volume		Diameter			
0.05		7.3			
0.1		9.9			
0.2		13.7			
0.3		24.9			
0.2		44.9			
0.1		74.9			
0.05		127.6			

SAT	Surface (m ²)	Ice Mass (kg/m)	Ice Density
(°)	Ехр	Ехр	kg/m³
-3.6	0.011466	4.170	364
-8.5	0.013216	6.420	486
-26.0	0.014025	6.500	463

Hingewise cut

• TH2447 • TH2459

CRM-65

Conclusion: 3D Ice Shape Simulation

- 1 layer ice simulation
- Need an equivalent ice density to match the Maximum Combined Cross Section
- If evaporation is under estimated that is due to Test Section Relative Humidity or to the evaporation model
- Artificial Ice Density based on MCCS volume to match ice shape

Multi-Layer Simulation

- Need Catch Rate or Collection Efficiency on
 - clean surface
 - intermediary iced surface
- Need Ice mass
 - few minute after ice accretion start
 - at intermediary time
 - at final time
- Local Ice Roughness Coefficient
- Local Ice Density

	AoA	4	deg
	TAS	25	m/s
\int	MVD	23	μm
	LWC	0.44	g/m³
	time	20	min
	SAT	-2	°C
	SAT	-4	°C
	SAT	-10	°C
	VTT Icing Wind Tunnel		
	Volun	ne Di	ameter
	0.05	5	6.5
	0.1		11.2
	0.2		15.7
	0.3		22.7
	0.2		32.9
	0.1		59.5
	0.05	5	96.7

RG-15

RG-15

