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Simulation Process

Computational Method

Mesh

• Cases 1.X (Midspan) and 2.X (Inboard) 

→ Structured mesh with gap from the IPW2

• Cases 3.X (RG15)

→ Structured mesh tunnel from the IPW2
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Simulation Process

Aerodynamics – CEDRE/CHARME

• Navier-Stokes equations solver

• RANS turbulence model: k-ω SST model, Boussinesq closing

• 2nd order of accuracy in space

• Heat Transfert Coefficient (HTC) on rough-wall

ℎ𝑡𝑐 = Ф𝑤/(𝑇𝑤 − 𝑇𝑟)
→ Equivalent sand grain roughness height: 𝑘𝑠 = 𝑐/1000

• Boundary conditions

→Airfoil: imposed temperature 𝑇𝑤𝑎𝑙𝑙 = 𝑇𝑟 + 10 where

𝑇𝑟 = 𝑇𝑒 1 + 𝑃𝑟1/3
𝛾 − 1

2
𝑀𝑒

2

• → Walls: slip conditions
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Simulation Process

Trajectography – CEDRE/SPIREE

• Eulerian droplet-trajectory solver

• 2nd order of accuracy in space

• Particle distribution: provided droplet size distributions

• Full deposition

• Schiller and Naumann model for the droplet drag

Ice Accretion – IGLOO3D/MESSINGER3D

• Messinger balance for ice accretion

• Ice density given by model of Makkonen and Stallabras or 

constant

• Predictor computations (1-step, no re-meshing)
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Aerodynamics & Trajectography Outputs 

Impact of the wall roughness on the pressure coefficient
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For both the Misdpan and the Inboard:

• The pressure coefficient obtained on a smooth wall are in good agreements 

with the experiments

• Considering a rough-wall leads to a poorer 𝐶𝑝
→ Why is that ? 
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→ The whole flow structure is modified

→ The rough-wall model is a priori not the (only) cause of the problem

(past simulations with elsA showed no visible effect of the rough-wall model, cf E. 

Radenac presentation at SAE 2023). 

Friction Friction

Smooth

wall

Rough 

wall

Aerodynamics & Trajectography Outputs 

Impact of the wall roughness – Midspan
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Impact of the wall roughness – Cases 1.X (MIDSPAN) 
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→ Choice is made to adopt an ‘hybrid’ approach

• Heat Transfer Coefficient is extracted from the rough wall simulation

• The smooth wall simulation is imposed as the aerodynamics field for the trajectory

simulation

Aerodynamics & Trajectography Outputs 

Smooth airfoil leads to 

• a higher 𝛽 on the lower surface  

• a smaller one on the upper surface and at the 

attachment line

• A higher HTC is obtained considering a rough 

airfoil (as expected)
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HTC and collection efficiency – Cases 2.X (INBOARD)
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Aerodynamics & Trajectography Outputs 

Smooth airfoil leads to 

• a higher 𝛽 on the lower surface  

• a smaller one on the upper surface and at the 

attachment line

A higher HTC is obtained:

• Considering rough airfoil

Given the discrepancy between cases, results on 

the inboard seem to be more dependant on the 

icing conditions 
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Impact of the wall roughness – Cases 3.X (RG15)
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• All conditions lead to the very

same pressure coefficient

• Small difference are observed

between the rough and smooth

pressure coefficients but they

remain very close and the flow

structure is not modified

→ For the RG15 simulations, both

the aerodynamics and trajectory

simulations are carried out 

considering a rough airfoil

Aerodynamics & Trajectography Outputs 
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HTC and collection efficiency
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Aerodynamics & Trajectography Outputs 

• Same HTC is obtained for the three test case conditions except on the 

upper surface where the mixed condition leads to a slighlty lower HTC

• No influence of the test case conditions on the collection efficiency
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Ice shapes

Warmer cases
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• Proper levels, shapes and ice limits

• MCCS is best predicted for a fixed density 

• Mean shape is best predicted with the Makkonen and Stallabras model (MS model) for 

the ice density
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Ice shapes

Maximum scallop cases
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• Levels obtained with a fixed density are closer to the (MCCS or mean) experiments than

with a modelled density. 

• Compared to the MCCS, shapes are not so good…

• Ice limits are rather well predicted

• The ice shape produced with bulk 𝜌𝑖𝑐𝑒=450 kg/m3 (resp. 300 kg/m3) is more representative 

of the mean ice shape for the midspan (resp. the inboard).
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Ice shapes

Rime cases
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• Ice limits are rather good

• For the midspan, the shape and level obtained when modelling the density are okay at 

the attachment line but lower elsewhere

• The ice shape obtained with a fixed ice density of 300 kg/m3 for the inboard is better. 
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Ice shapes

RG15 (3.1, 3.2, 3.3)
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All ice shapes were obtained using a modelled density

• Rime: the ice thickness level at the leading edge matches the experiment

but the conical shape is not captured

• Glaze: shape and levels are not well represented

• Mixed: levels and shapes are rather good

→ Comparison with results from IGLOO2D must be conducted in the future
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Conclusion
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• IGLOO3D was run on all the cases of the IPW2 

database.

• Only 1-step simulations were conducted.

• The impact of the ice density modelling was studied. 

Depending on the conditions, the MS model or the use 

of a constant ice density can be more representative of 

the mean or the MCCS, as detailed in the 

presentation.

• The next step would be to run multi-step simulations

Thank you for your attention! Any questions?
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Aerodynamics – Pressure Coefficient

Comparison with experimental data – Cases 1.X (MIDSPAN)
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Aerodynamics – Pressure Coefficient

Comparison with experimental data – Cases 2.X (INBOARD)
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Presentation of the simulations
Numerical strategy for the CRM65 database
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• Effects of our rough-wall modelling on the simulations: rough-wall vs. 

smooth-wall

– The rough-wall model is a priori not the cause of the problem

E. Radenac and H. Gaible and H. Bézard and P. Reulet, IGLOO3D Computations of the Ice Accretion on 

Swept-Wings of the SUNSET2 Database, International Conference on Icing of Aircraft, Engines, and 

Structures

Past

simulations 

with elsA on 

the Midspan

geometry:

No visible 

effect of the 

rough-wall

model
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Effect of the distribution
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