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Rationale

Challenge: the numerical prediction of in-flight ice accretion is becoming a valid
mean to demonstrate the compliance with certification rules.

Physics: 3D ice-accretion on wings, fuselages, instruments, efc. :

= Performance loss due to 3D accreted walls

= Liquid-film / rivulets run-back

= A time-dependent and highly stochastic phenomena

= Long spray-times imply mixed-ice conditions (e.g. 3D scallops)

Goal: coupling two different methodologies to exploit their respective benefits
= Eulerian approach for water droplet impingement - easy catch efficiency computation

= Immersed Boundary solution - easy geometry handling and mesh generation
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Simulation system based on an IMmersed Boundary Approach (SIMBA)

Comput. Domain
Unstructured 2D/3D Cartesian with adaptive mesh
refinement (AMR). SIMBA_MESH

Air-phase s
RANS/URANS or hybrid RANS-LES, FV IB- e
method, 2nd order skew-symmetric CDS, wall-
modelling, static and dynamic multi-component
surfaces.

Water-phase

Eulerian droplet mass momentum and energy
balances, FV IB-method, 2nd order CDS. Wright @
and ONERA SLD modelling available.

Air-phase by SIMBA_FLOW  Water-phase by SIMBA_ICE

Thermodynamics (...on going)

New module fully integrated into the SIMBA
system for solving surface balances eqns.
(Messinger and SWIM) .

( Capizzano et al., ATAAJ 2011 and 2016, JFE 2014, ITNME 2017, JCP 2019, C&F 2023)
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SIMBA ice-accretion chain

-~ o
Multi-step

ice-accr. water-phase

_——

Alpha: 01 0325 055 0775 1

Alpha: 0.119994 0753459 1.38692 =
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CRM65 Mid-span Hybrid: CASE 1, main and flap distinct components

Numerical WT arrangement with GAP
Mesh Ncells = Cartesian AMR mesh ( ~5.8M cells )
Air-phase = FV, IB-RANS with k-omega TNT furb. model
Water-phase = FV, IB-Eulerian approach ( no SLD modelling )
Therm. model = Messinger 3D model
Surf. ice-accr. = Lagrangian one-shot

Gap, S-A, FENSAP

Tauw_mag: 0 2 4 6 5 012141616 20 2224 26 255305254 5655 40
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CRM65 Mid-span: CASE 1
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CRM65 Mid-span: CASE 1.1
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CRM65 Mid-span: CASE 1.1
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CRM65 Mid-span: CASE 1.2
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CRM65 Mid-span: CASE 1.3
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CRMG65 Inboard Hybrid: CASE 2

Numerical WT arrangement with GAP
Mesh Ncells = Cartesian AMR mesh ( ~9.8M cells )
Air-phase = FV, IB-RANS with k-omega TNT furb. model
Water-phase = FV, IB-Eulerian approach ( no SLD modelling )
Therm. model = Messinger 3D model
Surf. ice-accr. = Lagrangian one-shot
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CRMG65 Inboard Hybrid: CASE 2.1
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CRMG65 Inboard Hybrid: CASE 2.2
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CRM65 Inboard Hybrid: CASE 2.3
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RG-15 small wing: CASE 3

Numerical WT arrangement with periodic BCs

Mesh Ncells = Cartesian AMR mesh ( ~4M cells )
Air-phase = FV, IB-RANS with k-omega TNT furb. model
Water-phase = FV, IB-Eulerian approach ( no SLD modelling )

Therm. model Messinger 3D model
Surf. ice-accr. = Lagrangian one-shot
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RG-15 small wing: CASE 3.1
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Convective Heat Transfert [W/m?K]

RG-15 small wing: CASE 3.2
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Convective Heat Transfert [W/m?K]
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RG-15 small wing: CASE 3.3
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Encountered difficulties

Issues related to the benchamrks themselves

= Major:

Issues related to the numerical method itself

= Major:

CRM65 Midspan-model: separation at the top-section

Few info on the inlet-outlet pressure jump Ap into the
WT test-section (..useful for a proper numerical

setting)

Some ice-density measures would be appreciated

= Minor:

Numerical ice-accretions suffer from a constant
density assumption.

The Lagrangian accretion is not conservative and
prone to geometric failures.

Roughness and ice-density models can help.

= Minor:

Unified post-processing by PyTecplot is welcome but
possible failures due to different versions as well as

compiled libraries (... Tecplot macros?).

RG-15 cases: ambiguity between WT and FF numerical

setting

SAE International®
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HTC estimate

Multi-bin analyses can improve the RG-15 rime
accretions
Run-back

work/check

Local surface mesh-refinement by ad-hoc flow-based
sensors (e.g. the collection efficiency).

water may hneed some additional
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Overall considerations

= The IPW-2 is a unique opportunity to exchange new ideas and data on the icing-topic (..and
meeting in person many colleagues known in virtual Projects' meetings) .

= The IPW-2 cases themselves result very challenging and I regard the present ones as
preliminary results, due to the short fime-range between the exp. data release and the TWP-2
meeting.

= Besides, the obtained results need more fime to be analysed also w.r.t. experimental data in
order to summing-up clear findings.

= Most of the present IPW-2 analyses are carried-out in few weeks and outside office-hours (i.e.
in the night!) ..For my personal health, next time, please release the benchmarks one year
before!
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CRM65 Mid-span: CASE 1
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CRM65 Mid-span: CASE 2
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Background

Liquid-film and 3D ice-accretion: models and methods.

Surface models based on mass, momentum and energy balances

3D geometry modification based on Lagrangian, Eulerian and
stochastic approaches

= One-shot analyses proven accurate/robust only for simple and
mono-component geometries

= Multi-step analyses are more consistent but present many issues
related to the modification of multi-connected surfaces as well
as surface re-meshing

SAE International®
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NACA0012 airfoil: NASA-RUN401 (Glaze)

Validation: Messinger, Multi-Step (MS)

SIMBA-ICE: Nstep =10
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Swept-wing: IPW-1 case-362

3D benchmark, App-C. (optional)
= 30° swept NACAOO12

= Cartesian-IB

= Case 362

= Glaze-ice

MULTISTEP, NsTEPS

SAE International®
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..cont’d

3D ice-accretion status

= Volume mesh displacement - grid quality issues

= Iced-surface deform. - mesh entanglement & ice-front collision

= Lack of volume conservation = - not guaranteed for Lagrangian displacements Aea:_01 022 038 07I8
= Tce-density - significant variation in 3D accr. (e.g. swept wings

Potential remedies

= Global or local volume remeshing = to improve mesh quality

= Remeshing of iced surface - not trivial due to non-smooth surfaces
= Tce-density models - to improve volume conservation

= Lagran. PC and MS approaches - ice-volume error reduces with N steps
= Eulerian ice-accretion methods -> to reduce ice-volume error
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Iterative Messinger 3D model on unstructure meshes

« Iterative Messinger model distributes runback-out based on the
surface local shear-stress

« HTC accepted as input or computed internally by Reynolds analogy

* Lagrangian ice-accretion

Mass balance Mimp + Mpbi = Mpbo + Mes + Mice

Ener'gy balance Qice + Q*r'bi — Qim'p -+ tho + Qes -+ Qc

pu—

* running-wet : Mmice = 0 and Teq > Thy.

Compatib. conds. = ¢ rime-ice: 1irpo = 0and Toq < Thn.

» glaze-ice : yppe > 0and Teg = Thy,.

—
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Iterative Messinger 3D model on unstructure meshes

 Iterative Messinger model distributes runback-out based on the

surface local shear-stress

« HTC accepted as input or computed internally by Reynolds analogy

* Lagrangian ice-accretion

Mass balance
Timp = B LWC Us

l'é (Twu.H : n'é)

Foo if (Twau . lli) >0

3
Myrbo — — E Mybo,i, Mybo,i — Mout
1=1

3
FTbD = Z (l’iT’lﬂﬂ,” : ni) s Trf (Twall . n'i) >0
i=1
3 i
Mrbi = Z Mipbi iy Mlrbig = ﬁlrbo,ij
i=1

he (PUS)wau - (va)Oo

Cp,q 5 (pwa.’..’. + poo)

m'.‘.ce == f (7’himp + m’rbi - 7hres)

1hes = —0.696

DAL Internatuonaily
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Energy balance

. U?
Qimp — ﬁlimp [Cp,w (Td - Tm) + Td

Qi = 1rbi [Cpww (Trti — Ton)]

Qrbo = (1trbo + 1i1es) [Cpw (T — Teq)]
Qes = tites [(1 — f) Lev + fLs]

Qice = MiceLf + (Mice + Mes) Cp w

Qc = he (Taa — Teq)

31



Pressure Coefficient [-]

CRM65 Mid-span: CASE 1
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Encountered difficulties and issues for 3D MS

static pressure [Pa]

96000
94000
92000
90000
88000
86000

= As expected, slight deviations of mass and energy surf. balances from two-
dimensionality generate an irregular 3D iced-surface.

84000
82000

= No particular process-issues encountered for MS 3D analyses on case252
80000

(SLD+glaze) and case361 (rime)

= Strict automation obtained for MS on case362 (glaze) at the cost of local surface
smoothing (especially at the wing-tip).

= In general, need of expert/skilled users for monitoring the correctness of the
multi-step process due to potential failures (skewed facets, spikes, concavities,
restarts, codes' alignment, etc.).
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Lessons learned and suggestions

= Ice density modelling is crucial: indeed, the impinging mass is converted into ice-volume via ice-
density.

= Re-meshing/refining the iced-surface is definitely a very challenging task. Not prone to
automation due to complex shapes (potential meshing errors).

= The more the grid is refined, the smaller the ice structures: this is an issue for meshes and
CFD in general.

= The physics of 3D ice-accretion results in non-negligible numerical difficulties

= Models (e.g. density, htc, run-back) are still not satisfactory
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Presenter Notes
Presentation Notes
Good afternoon everybody.
The aim of the talk is to give evidence of the work carried out by me and my colleague Dr. de Rosa in the framework of the ICE-GENESIS Project (…and H2020 funded Research) towards the development and assessment of “3D numerical methods for liquid SLD conditions”.



Improvements occurred post-IPW2

= New water-film solver fully integrated intfo the SIMBA framework.
= Some implementation bugs have been found and fixed.

= We have re-run all the IPW benchmarks and substantial differences were observed with
respect to the preliminary results shown during the IPW2 workshop.

= Remark on the case3: we have re-run the cases by considering an LWC=0.55g/m"3 as pointed
out during the IPW2 meeting day.
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Presenter Notes
Presentation Notes
Free-stream
M = 0.23
Re = 4.9*106 
= 4°
T = 278 °K
Pstatic = 95630 Pa



CRM65 Mid-span: CASE 1
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CRMG65 Inboard Hybrid: CASE 2
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RG-15 small wing: CASE 3
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