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CHAMPS Icing Workflow - Code Summary
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Figure 1: CHAMPS Icing Workflow

Code CHAMPS (Chapel)
Grid types Unstructured 2D(2.5D)/3D

Flow
RANS
- Roe 2nd order

Turb SA-noft2

Droplets
Eulerian
- Upwind 2nd order

Thermo.
Iterative Messinger [1]
- Runback with shear strength

Surf. deform.
Lagrangian at nodes
Hyperbolic at nodes (PDE) [2]

Multi-layer
2D/2.5D only: Full volume
grid regeneration with
hyperbolic grid method
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What is Chapel and why use it?

Challenges of multi-physics simulations

We have to balance

• Fidelity of multiple solvers;

• Performances → computational costs;

• Productivity → addition of multiple
physical models.

Figure 2: CLBG Cross-Language Summary.

Benefits from Chapel’s features [6]

• Productivity → fast prototyping with high level syntax;

• Natively distributed → Overcome the barrier of entry of parallel distributed programming in
an academic context (2 years);

• Modularity → Generic classes and records to reuse structures;

• Memory management strategies.
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CHAMPS Case 1 Case 2 Case 3

Stochastic Ice Accretion Model

Figure 3: Advancing Front Technique [3].

Advancing Front Technique

• Droplets are released randomly from a seeding plane using a Pseudo-Random Number;

• Droplet’s trajectory is extracted from the eulerian droplets velocity field;

• Upon impact, if n= 1, the droplet freezes and a new element is generated;

• If not, the remaining mass moves downstream (runback);

• These steps are repeated until the specified criterion is met (ice mass)a

a
Helene Papillon Laroche, Emmanuel Radenac, and Eric Laurendeau. Stochastic ice accretion model using an unstructured

advancing front technique.International Journal of Multiphase Flow, 163:104420, 2023
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2.5D Model versus 3D Model

Table 1: Differences between CHAMPS’ 2.5D and 3D Models.

2.5D 3D
Mesh Type 2D Tunnel Mesh (editable) 3D Tunnel Mesh (IPW2)
Multi-Layer Yes No
Feature (s) Sweep - No sweep Gap - No Gap
Layer Time

6000 it. w bins
≈ 1 h ≈ 10 h
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Case 1 2 - Information

• Case are computed with 2D, 2.5D and 3D grids;

• Homemade tunnel meshes are used for 2.5D and 2D cases;

• AoA of 2D and 2.5D cases are modified to match the attachment line;

• An equivalent roughness value of ks/c = 0.1% is used for all the cases;

• Single-shot in 3D, multi-shot for 2D/2.5D cases;

• Ice density of 450kg/m3.
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Case 1 - Pressure Coefficient - Collection Efficiency - HTC
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Case 1 - Thermodynamic Variables
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Case 1 - Ice Shapes
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Case 1 - Overview

• Glaze ice limits are well predicted with 2D and 2.5D approaches;

• Mixed ice is poorly predicted (practically to no film);

• Rime ice matches on the upper surface but not on the lower surface.
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Case 2 - Pressure Coefficient - Collection Efficiency - HTC
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Case 2 - Thermodynamic Variables
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Case 2 - Ice Shapes

X [m]

Y
 [

m
]

­0.1 0 0.1 0.2 0.3 0.4
­0.3

­0.2

­0.1

0

0.1

0.2

CHAMPS ­ 2.5D ­ AOA 2.3
o
 ­ 5 Layers

CHAMPS ­ 3D ­ AOA 3.7
o
 ­ 1 Layer

CHAMPS ­ 2D ­ AOA 2.3
o
 ­ 4 Layers

TG2409
TG2418

GLAZE

X [m]

Y
 [

m
]

­0.1 0 0.1 0.2 0.3 0.4
­0.3

­0.2

­0.1

0

0.1

0.2

CHAMPS ­ 2.5D ­ AOA 2.3
o
 ­ 5 Layers

CHAMPS ­ 3D ­ AOA 3.7
o
 ­ 1 Layer

CHAMPS ­ 2D ­ AOA 2.3
o
 ­ 4 Layers

TG2404
TH2411

MIXED

X [m]

Y
 [

m
]

­0.1 0 0.1 0.2 0.3 0.4
­0.3

­0.2

­0.1

0

0.1

0.2

CHAMPS ­ 2.5D ­ AOA 2.3
o
 ­ 5 Layers

CHAMPS ­ 2D ­ AOA 2.3
o
 ­ 5 Layers

CHAMPS ­ 3D ­ AOA 3.7
o
 ­ 1 Layer

TG2412
TH2415

RIME

Ice Prediction Workshop 2, Polytechnique Montreal Results – M. Blanchet 14/23



POLYTECHNIQUE MONTRÉAL
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Case 2 - Overview

• Glaze ice limits are well predicted with 3D and 2.5D approaches;

• Height of the horns of the mixed ice are poorly predicted;

• Rime ice matches on the upper surface but not on the lower surface.
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Case 3 - Information

• Homemade farfield meshes;

• Deterministic results are multi-shot (10 layers);

• Ice density of 450kg/m3;

• An equivalent roughness value of ks/c = 0.1% is used;

• Non-deterministic approach uses an ice density of 917kg/m3;

• The stopping criterion for the non-deterministic approach is when the
total ice mass reaches the value of the integrated impinging mass.
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Case 3 - Pressure Coefficient - Collection Efficiency - HTC
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Case 3 - Thermodynamic variables
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Case 3 - Ice Shapes - Multi-Layer
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Case 3 - Ice Shapes - Stochastic Model

Glaze Case Mixed Case

Rime Case
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Conclusion

Overview of the work

• CRM cases were executed in 2D, 2.5D and 3D. Variables from the flow,
droplet, and thermodynamic solvers were analyzed;

• 2.5D approach is a good compromise from the computation of the ice
shapes since it allows a robust multi-layer as well as an easier match
with the attachment line (change of AoA);

• Stochastic approach for the 2D case allows to capture the lower region
but the upper part was not captured.
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CHAMPS Case 1 Case 2 Case 3

References I

[1] Tim G. Myers.
Extension to the Messinger Model for Aircraft Icing.
AIAA Journal, 39(2):211–218, February 2001.

[2] William M. Chan and Joseph L. Steger.
Enhancements of a three-dimensional hyperbolic grid generation scheme.
Applied Mathematics and Computation, 51(2-3):181–205, October 1992.

[3] Helene Papillon Laroche, Emmanuel Radenac, and Eric Laurendeau.
Stochastic ice accretion model using an unstructured advancing front technique.
International Journal of Multiphase Flow, 163:104420, 2023.

Ice Prediction Workshop 2, Polytechnique Montreal Results – M. Blanchet 22/23



POLYTECHNIQUE MONTRÉAL
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