

This work is licensed under a <u>Creative Commons Attribution-</u> <u>NonCommercial-NoDerivatives 4.0 International License</u>.

Soonho Shon* Yonghwan Kim Yu-Eop Kang Younghyo Kim Hansol Lee Advisor : Prof. Kwanjung Yee

ABROSFRACE VEHICLE DESIGN LABORATORY Seoul National University Department of aerospace engineering Aerospace Vehicle Design Laboratory **IPW**

ABLISHED 203

I SIMULATION CODE DESCRIPTION

SIMULATION CODE DESCRIPTION

Icing simulation code

- ICEPAC (Ice Contour Evaluation and Performance Analysis Code) developed by Seoul National University [1]
 - ✓ Consisting of four sequential modules based on Eulerian method

Quasai-steady assumption n times iteration

SIMULATION CODE DESCRIPTION

[2] Park, J.-S., "Optimal Latin-Hypercube Designs for Computer Experiments," Journal of Statistical Planning and Inference, Vol. 39, No. 1, 1994, pp. 95–111.
[3] Hong, Yoonpyo, Soo Hyung Park, and Kwanjung Yee. "Comparative Assessment of Local Accuracy of High-Order Spatial Schemes for Rotorcraft Aeroacoustics." AIAA Journal 61.1 (2023): 355-377.
[4] Fortin G., "Equivalent Sand Grain Roughness Correlation for Aircraft Ice Shape Predictions," SAE Technical Paper; 2019 Jun 10.

Icing simulation code

- ICEPAC (Ice Contour Evaluation and Performance Analysis Code) developed by Seoul National University
 - $\checkmark\,$ Based on both structured and unstructured mesh
 - OpenFOAM (Unstructured) and KFLOW ^[2, 3] (Structured)

Codes	OpenFOAM	KFLOW
Grid types	Unstructured 2D/3D	Structured 2D/3D
Flow	 RANS Upwind 2nd order SA, γ − Re_θ transition, etc. Roughness model Fortin's ESGR model^[4] 	 RANS → Roe's FDS / HLLE+ / AUSMPW+ → SA, γ - Re_θ transition, etc. Roughness model → Fortin's ESGR model
Droplet	• 2D/3D Eulerian \rightarrow Upwind 1 st order	• 2D/3D Eulerian \rightarrow HLLC 2 nd order
Thermo.	• SWIM	• SWIM
Application	Icing on complex geometryAnti-icing	Rotor icingOscillating airfoil

Simulation analysis approach

Case 1 & 2 : CRM-65 hybrid (3D)

Case 1: CRM-65 Mid-span Hybrid (3D)

Case 2: CRM-65 Inboard Hybrid (3D)

- Case 1 & 2 : CRM-65 hybrid (3D)
 - Outline of simulation analysis

Case 1 & 2 : CRM-65 hybrid (3D)

- Computational grid and numerical setup
 - \checkmark Computational grid
 - Using no-gap configuration
 - Unstructured mesh
 - Composed of 12 million volume cells
 - y+=1 at wall
 - ✓ Numerical setup
 - Spatial Discretization
 - Upwind 2nd order
 - Temporal Integration
 - PIMPLE algorithm
 - Turbulence model
 - Modified SA model
 - Roughness model
 - Fortin's ESGR model

Grid configuration of Mid-span hybrid wing

▲ Grid configuration of Inboard hybrid wing

Case 1 & 2 : CRM-65 hybrid (3D)

• Aerodynamic results of Mid-span case

- $\checkmark\,$ Pressure coefficient comparison between experiment and simulation
 - Good agreement with experimental results

▲ Surface pressure contours

• Especially on the centerline (y = 0.9144m), the main region of interest of the model

Speed	T _{static}	MVD	LWC	Time
(m/s)	(°C)	(μm)	(<i>g/m</i> ³)	(min.)
66.9	-3.6	25	1.0	

▲ Pressure coefficient comparison between experiment and simulation

Case 1 & 2 : CRM-65 hybrid (3D)

• Aerodynamic results of Inboard case

- $\checkmark\,$ Pressure coefficient comparison between experiment and simulation
 - Good agreement with experimental results
 - Especially on the centerline (y = 0.9144m), the main region of interest of the model

Speed	T _{static}	MVD	LWC (g/m^3)	Time
(m/s)	(°C)	(μm)		(min.)
66.9	-3.6	25	1.0	29.0

▲ Surface pressure contours

▲ Pressure coefficient comparison between experiment and simulation

Case 1 & 2 : CRM-65 hybrid (3D)

• Icing results

- Comparison of ice density for Mid-span cases
 - Ordinary ice density
 - 917 kg/m³
 - Void ice density
 - Constant density was adopted
 - $\rho_{ice} = 300 \text{ and } 450 \text{ kg/m}^3$ (Density range is refer to paper ^[4])

> 300 kg/m^3 of ice density is set for the largest scallop case, and 450 kg/m^3 for the rest

▲ Ice shape comparison between experiment and simulation (Mid-span chord length = 1.894 m)

Case 1 & 2 : CRM-65 hybrid (3D)

• Icing results

- Comparison of ice density for Inboard cases
 - Ordinary ice density
 - 917 kg/m³
 - Void ice density
 - Constant density was adopted
 - $\rho_{ice} = 300 \text{ and } 450 \text{ kg/m}^3$ (Density range is refer to paper ^[4])
 - > 300 kg/m^3 of ice density is set for the largest scallop case, and 450 kg/m^3 for the rest

Case 2.1 Case 2.2 Case 2.3 0.1 0.10.1 Exp. $\rho_{ice} = 917 \ kg/m^3$ $\rho_{ice} = 917 \ kg/m^3$ $\rho_{ice} = 917 \ kg/m^3$ $\rho_{ice} = 450 \ kg/m^3$ 0 0 $\rho_{ice} = 450 \ kg/m^3$ 0 • – $\rho_{ice} = 450 \ kg/m^3$ $\rho_{ice} = 300 \ kg/m^3$ $\rho_{ice} = 300 \ kg/m^3$ ----- $\rho_{ice} = 300 \ kg/m^3$ <u>F</u>0.1 <u>F</u>_0.1 <u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u> Ж \succ The second secon trades and a second sec -0.2 -0.2 -0.2 -0.3 -0.3 -0.3 0.1 0.2 0.3 0.4 -0.1 0 0.1 0.2 0.3 0.4 ______ 0.1 0.2 0.3 -0.1 0 0 0.4 X [m] X [m] X [m]

▲ Ice shape comparison between experiment and simulation (Inboard chord length = 4.11 m)

Case 1 & 2 : CRM-65 hybrid (3D)

• Icing results

- Comparison of MVD approach for Mid-span cases
 - Single MVD
 - 25 µm
 - Multi-MVD based on IRT droplet distribution
 - 7.3, 9.9, 13.7, 24.9, 44.9, 74.9, and 127.6 μm
 - Multi-MVD has much better agreement of impingement limit

	Multi MVD / 2D roughness value									
Case No.	Speed (m/s)	T _{static} (°C)	MVD (μm)	LWC (g/m^3)	Time (min.)	Void density (kg/m^3)				
1.1	66.9	-3.6	25	1.0	29.0	450				
1.2	66.9	-8.5	25	1.0	29.0	300				
1.3	66.9	-26.0	25	1.0	29.0	450				

▲ Ice shape comparison between experiment and simulation (Mid-span chord length = 1.894 m)

Case 1 & 2 : CRM-65 hybrid (3D)

• Icing results

- Comparison of MVD approach for Inboard cases
 - Single MVD
 - 25 µm
 - Multi-MVD based on IRT droplet distribution
 - 7.3, 9.9, 13.7, 24.9, 44.9, 74.9, and 127.6 μm
 - Multi-MVD has much better agreement of impingement limit
 - Multi-MVD approach will be used

	Multi MVD / 2D roughness value									
Case No.	Speed (m/s)	<i>T_{static}</i> (℃)	MVD (µm)	LWC (g/m^3)	Time (min.)	Void density (kg/m^3)				
2.1	66.9	-3.6	25	1.0	29.0	450				
2.2	66.9	-8.5	25	1.0	29.0	300				
2.3	66.9	-26.0	25	1.0	29.0	450				

▲ Ice shape comparison between experiment and simulation (Inboard chord length = 4.11 m)

Case 1 & 2 : CRM-65 hybrid (3D)

- Icing results
 - ✓ Necessity of **different roughness value for scallop cases**
 - Different physical mechanism between scallops and water film model
 - Not describing feather formation and scallop in simulation → lower ice horn angle
 - Larger calibrated roughness values to 2D cases than experimental values [5]
 - ✓ Three different roughness values are compared
 - Roughness value calibrated to 2D cases (*Calibrated* k_s (2D))
 - *Calibrated* k_s (2*D*) × 0.1 → Usually used for 3D scallop cases in ICEPAC
 - Calibrated $k_s(2D) \times 0.01$

Need to use lower roughness value

to describe ice horn angle of the scallop cases

Calibrated value experimental roughness value of Mid-span case (Case 1)^[5] A Calibrated value experimental roughness value of Mid-span (Case 2)^[5]

Case 1 & 2 : CRM-65 hybrid (3D)

• Icing results

- ✓ Comparison of varied roughness value for Mid-span cases
 - Roughness value calibrated to 2D cases
 - Calibrated $k_s(2D)$

SEOUL NATIONAL UNIVERSITY

EROSPACE VEHICLE DESIGN LABORATORY

- Roughness value for 3D scallop cases
 - Calibrated $k_s(2D) \times 0.1$
 - *Calibrated* $k_s(2D) \times 0.01 \rightarrow$ Best agreement in hybrid wing case
- Roughness values smaller than calibrated values has better agreement

	Multi MVD / Varied roughness value									
Case No.	Speed (m/s)	<i>T_{static}</i> (℃)	MVD (μm)	LWC (g/m^3)	Time (min.)	Void density (kg/m^3)				
1.1	66.9	-3.6	25	1.0	29.0	450				
1.2	66.9	-8.5	25	1.0	29.0	300				
1.3	66.9	-26.0	25	1.0	29.0	450				

Case 1 & 2 : CRM-65 hybrid (3D)

• Icing results

- Comparison of varied roughness value for Inboard cases
 - Roughness value calibrated to 2D cases
 - Calibrated $k_s(2D)$
 - Roughness value for 3D scallop cases
 - Calibrated $k_s(2D) \times 0.1$
 - Calibrated $k_s(2D) \times 0.01 \rightarrow$ Best agreement in hybrid wing case
 - Roughness values smaller than calibrated values has better agreement

	Multi MVD / Varied roughness value									
Case No.	Speed (m/s)	T _{static} (°C)	MVD (µm)	LWC (g/m^3)	Time (min.)	Void density (kg/m^3)				
2.1	66.9	-3.6	25	1.0	29.0	450				
2.2	66.9	-8.5	25	1.0	29.0	300				
2.3	66.9	-26.0	25	1.0	29.0	450				

Case 2.1 Case 2.2 Case 2.3 0.1 0. 0.1Exp. Exp. Exp. (ks = 6.9 mm)Fortin Fortin (ks = 0.79 mm)Fortin (ks = 1.0 E-06 m)0 Fortin*0.1 (ks = 0.69 mm) 0 Fortin*0.1 (ks = 0.079 mm) 0 Fortin*0.1 (ks = 1.0 E-07 m) Fortin*0.01 (ks = 0.0079 mm) Fortin*0.01 (ks = 0.069 mm) Fortin*0.01 (ks = 1.0 E-08 m) **Smooth surface Smooth surface** <u>∎</u> -0.1 <u>∎</u> -0.1 <u></u>**E**_{-0.1} \succ -0.2 -0.2 -0.2 6,000 -0.3 -0.3-0.3 0.2 -0.1 0.1 0.2 0.3 0.4 0.1 0.3 0.4 0 -0.10 0.2 -0.1 0 0.1 0.3 0.4 X [m] X [m] X [m]

▲ Ice shape comparison between experiment and simulation (Inboard chord length = 4.11 m)

Case 3 : RG-15 low speed Icing

Case 3: RG-15 Low Speed Icing

- Case 3 : RG-15 low speed Icing
 - Outline of simulation analysis

SEOUL NATIONAL UNIVERSITY

LEROSPACE VEHICLE DESIGN LABORATORY

- Case 3 : RG-15 low speed Icing
 - Computational grid and numerical setup
 - \checkmark Computational grid
 - O-type grid
 - Composed of 53,416 volume cells
 - y+=1 at wall
 - ✓ Numerical setup
 - Spatial Discretization
 - Upwind 2nd order
 - Temporal Integration
 - PIMPLE algorithm
 - Turbulence model
 - $Re_{\theta} \gamma$ turbulence model
 - Roughness model
 - Fortin's ESGR model

▲ O-type grid of RG-15

Domain boundary	Aerodynamic boundary condition	Droplet boundary condition
Inlet	Velocity inlet, 25 m/s	Velocity inlet, 25 m/s
Outlet	ZeroGradient	ZeroGradient
Model walls	No-slip wall (Isothermal)	ZeroGradient

Case 3 : RG-15 low speed Icing

- Icing results
 - Ice shapes of presented LWC (from workshop)
 - **Smaller ice shapes** than ice shape of experiment
 - Large mass difference \rightarrow No mass conservation

Case	Speed (m/s)	AoA (deg.)	<i>T_{static}</i> (℃)	MVD (µm)	LWC (g/m^3)	Time (min.)
3.1	25	4	-4	23	0.44	20
3.2	25	4	-4	23	0.44	20
3.3	25	4	-10	23	0.44	20

Case 3.1 **Case 3.2** Case 3.3 0.015 0.015 0.015 0.01 0.01 0.01 0.005 0.005 0.005 Exp. Exp. Exp. Y [m] Y [m] Y [m] **Presented LWC Presented LWC Presented LWC** 0 0 -0.005 -0.005 -0.005 -0.01 -0.01 -0.01 -0.015 -0.015 -0.015 0.01 X [m] 0.01 X [m] 0.01 X [m] -0.01 0.02 0.03 0.04 -0.01 0.02 0.03 0.04 -0.01 0.02 0.03 -0.02 0 -0.02 0 -0.02 0 0.04

▲ Ice shape comparison between experiment and simulation

Case 3 : RG-15 low speed Icing

- Icing results
 - Considering uncertainty of LWC
 - The measured LWC by instruments differ by almost a factor of two
 - ICEMET : 0.42 ~0.48 / CDP (DTU & FMI) : 0.74 ~ 0.84
 - New LWC are estimated considering the uncertainty in LWC
 - Using the LWC calibrated to rime ice thickness
 - 0.761 g/ m^3 will be used for LWC

	Case 1.	Case 2.	Case 3.	Case 4.	Case 5.
VTT IWT LWC _{Theoretical} [g/m3]	0,25	0,44	0,44	0,25	0,44
ICEMET					
MVD [µm]	25,5±0,7	24,3±0,4	25,7±0,5	16,1±0,3	16,6±0,2
LWC [g/m ³]	0,27±0,03	0,42±0,03	0,48±0,02	0,22±0,03	0,46±0,05
CDP FMI					
MVD [µm]	18,5±1,7	17,8±1,4	-	13,5±0,4	14,1±1,0
LWC [g/m ³]	0,45±0,06	0,81±0,12	-	0,56±0,14	0,84±0,33
CDP DTU					
MVD [µm]	18,5±1,6	18,8±1,7	-	13,8±0,8	-
LWC [g/m ³]	0,34±0,05	0,74±0,13	-	0,52±0,10	-

▲ Results of validation measurement ^[6]

▲ VTT icing wind tunnel validation material ^[6]

▲ Calibrated LWC to match the ice thickness

Case 3 : RG-15 low speed Icing

• Icing results

- Comparison of MVD approach
 - Single MVD
 - 23 μm
 - Multi-MVD based on IRT droplet distribution
 - 6.5, 11.2, 15.7, 22.7, 32.9, 59.5, and 96.7 μm
 - Multi-MVD has much better agreement of impingement limit

Multi MVD / Single shot / 2D roughness value									
Case No.	Speed (m/s)	<i>T_{static}</i> (℃)	MVD (μm)	LWC (g/m^3)	Time (min.)				
3.1	25	-2	23	0.761	20				
3.2	25	-4	23	0.761	20				
3.3	25	-10	23	0.761	20				

▲ Ice shape comparison between experiment and simulation

Case 3 : RG-15 low speed Icing

- Icing results
 - Comparison of Single & Multi-shot approach
 - Single-shot approach
 - Multi-shot approach
 - 4 step was applied
 - Multi-shot has much better agreement of ice thickness

Multi MVD / Multi shot / 2D roughness value									
Case No.	Speed (m/s)	<i>T_{static}</i> (℃)	MVD (μm)	LWC (g/m^3)	Time (min.)				
3.1	25	-2	23	0.761	20				
3.2	25	-4	23	0.761	20				
3.3	25	-10	23	0.761	20				

▲ Ice shape comparison between experiment and simulation

CONCLUSIONS

CONCLUSION

- Case 1 & 2 : CRM-65 hybrid (3D)
 - Multi-MVD has much better agreement of impingement limit
 - Roughness values smaller than calibrated values to 2D cases show better ice horn angle
 - \checkmark Especially, roughness value calibrated to 2D multiplied by 0.01 shows best agreement
 - \checkmark However, it is necessary to calibrate the roughness value to numerous data for scallop cases
- Case 3 : RG-15 low speed Icing
 - Calibrated LWC are used considering the possibility of uncertainty in LWC
 - $\checkmark\,$ LWC value was set to match the rime ice thickness
 - $\checkmark\,$ Simulation results show good agreement with ice thickness in all case
 - ✓ Especially in case 3.1, ice horn angle are accurately predicted

THANK YOU FOR YOUR ATTENTION

Contact information

Soonho Shon : <u>hho6023@snu.ac.kr</u>

Prof. Kwanjung Yee : <u>kjyee@snu.ac.kr</u>

Lab. homepage : <u>http://avdl.snu.ac.kr</u>

Appendix

Roughness model

- Fortin's ESGR model calibrated for ICEPAC
 - \checkmark Generalizable roughness model based on icing scaling parameters

$$- \left(\frac{\kappa_s}{c}\right)^n \propto \beta \frac{LWC}{\rho_{air}} \frac{L_f}{c_{p,air}(T_f - T_{rec})} \rightarrow \left(\frac{\kappa_s}{c}\right)^{0.3} = \mathbf{a} \ln \left[\beta \frac{LWC}{\rho_{air}} \frac{L_f}{c_{p,air}(T_f - T_{rec})}\right] + \mathbf{b}$$

✓ Wide range of icing conditions were included for calibration (NASA validation cases)

Case	LWC	MVD	Т	V	AoA	τ	Case	LWC	MVD	Т	V	AoA	τ	0.04 -	0.04 -	0.04	- 0.04 -	0.04 -	0.04 -	
1	0.55	20	265.37	102.8	4	420	13	1	20	253.4	67.1	4	360	0.02 -	· Exp. 0.02 - Airfoil 0.00 -	· Exp. 0.02 Airfoil 0.00	- Exp. 0.02 - Airfoil 0.00 -	• Exp. 0.02 - Airfoil 0.00 -	• Exp. 0.02 - Airfoil 0.00 -	· Exp. — Airfoil
2	0.55	20	263.71	102.8	4	420	14	1	20	244.51	67.1	4	360	-0.02 -	CFD -0.02 -0.04 -	CFD 0.02	CFD -0.02 -	CFD -0.02 -	CFD 0.02	— CFD
3	0.55	20	262.04	102.8	4	420	15	0.55	20	262.04	102.8	4	840		0.00 0.05 0.10	0.00 0.05 0.10	0.00 0.05 0.10	0.00 0.05 0.10	0.00 0.05 0.10	0.00 0.05 0.10
4	0.55	20	259.82	102.8	4	420	16	1.6	30	265.07	67.1	4	360	0.04 -	• Exp. 0.02	Exp. 0.02	- Exp. 0.02 -	Exp. 0.02	• Exp. 0.02	· Exp.
5	0.55	20	256.49	102.8	4	420	17	1.3	20	266.19	58.1	4	480	-0.02 -	CFD -0.02 -	CFD 0.02	Airfoil 0.00 - CFD -0.02 -	Airfoil 0.00 - CFD -0.02 -	CFD -0.02 -	Airfoil CFD
6	0.55	20	250.37	102.8	4	420	18	1.3	20	269.19	58.1	4	480	-0.04 -	0.00 0.05 0.10	0.04	0.00 0.05 0.10	0.00 0.05 0.10	0.00 0.05 0.10	0.00 0.05 0.10
7	0.55	20	241.49	102.8	4	420	19	1.3	20	270.19	58.1	4	480	0.04 - 0.02 -	0.04 - Exp. 0.02 -	0.04 • Exp. 0.02	- 0.04 - - Exp. 0.02 -	0.04 - 0.02 -	• Exp. 0.02 -	Exp.
8	1	20	268.4	67.1	4	360	20	1.3	20	263.19	58.1	4	480	0.00 - -0.02 -	Airfoil 0.00 - CFD -0.02 -	Airfoil CFD 0.00 0.02	Airfoil 0.00 - CFD -0.02 -	Airfoil 0.00 - CFD -0.02 -	Airfoil CFD 0.02	— Airfoil — CFD
9	1	20	266.74	67.1	4	360	21	1	30	262.04	102.8	4	360	-0.04 -	0.04 -	0.04	0.04 -	0.04	0.04	0.00 0.05 0.10
10	1	20	265.07	67.1	4	360	22	1.3	30	262.04	102.8	4	360	0.04 - 0.02 -	0.04 - 0.02 -	0.04 • Exp. 0.02	- 0.04 - 0.02 - 0.02 -	0.04 - 0.02 -	0.04 - 0.02 -	Exp.
11	1	20	262.85	67.1	4	360	23	1.6	30	262.04	102.8	4	360	0.00 - -0.02 -	Airfoil 0.00 CFD 0.02	Airfoil CFD 0.02	Airfoil 0.00 - CFD -0.02 -	Airfoil 0.00 - CFD 0.02 -	Airfoil CFD 0.02	Airfoil CFD
12	1	20	259.51	67.1	4	360	24	1.8	30	262.04	102.8	4	360	-0.04 -	0.04	0.04	0.04 -	0.00 0.05 0.10	0.00 0.05 0.10	0.00 0.05 0.10

▲ Validation cases used for roughness calibration

A Roughness calibration result (a = 0.068, b = 0.4)

Appendix

Case 3 : RG-15 low speed Icing

- Icing results
 - ✓ Effect of heat convection according to transition
 - Change of the heat convection with different roughness value
 - Calibrated roughness value
 - Calibrated roughness value multiplied by 0.5
 - Calibrated roughness value multiplied by **0.1** -> Flow transition exists

	Multi MVD / Multi shot / Varied roughness value										
Case No.	Speed (m/s)	<i>T_{static}</i> (℃)	MVD (μm)	LWC (g/m^3)	Time (min.)						
3.1	25	-2	24	0.761	20						
3.2	25	-4	24	0.761	20						
3.3	25	-10	24	0.761	20						

Appendix

Case 3 : RG-15 low speed Icing

- Icing results
 - ✓ Effect of heat convection according to transition
 - Change of the heat convection with different roughness value
 - Calibrated roughness value
 - Calibrated roughness value multiplied by 0.5
 - Calibrated roughness value multiplied by **0.1** -> Flow transition exists

Multi MVD / Multi shot / Varied roughness value										
Case No.	Speed (m/s)	<i>T_{static}</i> (℃)	MVD (μm)	LWC (g/m^3)	Time (min.)					
3.1	25	-2	24	0.761	20					
3.2	25	-4	24	0.761	20					
3.3	25	-10	24	0.761	20					

▲ Comparison of heat convection and ice shape in Case 3.1

