

This work is licensed under a <u>Creative Commons Attribution-</u> <u>NonCommercial-NoDerivatives 4.0 International License</u>.

Politecnico di Milano icing group contribution to the 2nd Ice Prediction Workshop

<u>Alessandro Donizetti</u> Tommaso Bellosta Andrea Rausa Alberto Guardone

24-06-2023

PoliMIce Simulation Framework

M_∞ T∞ P MVD LWC β нтс PoliDrop **PoliMice** PINTWISE" upgrade Ice Thickness Final Ice Shape t = t Distribution Twall ParticleTracking Solver Droplet trajectories and impinging points Ice Accretion Engine **Re-Meshing Process** CFD Solver Flow field variables τ_{wall} Automatic Mesh Update Initial Mesh $t_{ice} = t_{ice} + \Delta t$

G. Gori, M. Zocca, M. Garabelli, A. Guardone, and G. Quaranta. Polimice: A simulation framework for three-dimensional ice accretion. Appl. Math. Comput.

SUZ code

- Finite Volume solver
- Unstructured grids
- Node centered
- RANS solver
- SA turbulence model
- Convective flux discretization schemes:
 2 order upwind Roe scheme

PoliDrop

- In-house Lagrangian particle tracking code.
- Wall interaction models are used to take into account droplet rebound, splash and spread at the walls.
- Automatic mesh refinement.

Bellosta, T., Baldan, G., Sirianni, G., & Guardone, A. (2023). Lagrangian and Eulerian algorithms for water droplets in in-flight ice accretion. Journal of Computational and Applied Mathematics, 429, 115230.

Meshing Update

Meshing Update

Local curvature indicator, based on the computation of the normalized angle deficit at each surface vertex.

Final surface discretization.

[1] Donizetti, Alessandro, Tommaso Bellosta, Andrea Rausa, Barbara Re, and Alberto Guardone. "Level-set mass-conservative front-tracking technique for multistep simulations of in-flight ice accretion." Journal of Aircraft (2023): 1-11.

[2] Donizetti, Alessandro, Andrea Rausa, Tommaso Bellosta, Barbara Re, and Alberto Guardone. "A three dimensional Level-Set front tracking technique for automatic multi-step simulations of in-flight ice accretion." SAE Technical Paper, 2023.

PoliMIce Capabilities

Ice shedding analysis Morphogenetic approach Ice accretion on rotating components Roughness characterization of simulated ice shapes Aerodynamic 1.5 ×10 0.04 Force Shear Adhesion —PoliMIce -Exp. Scan 0.03 Force 0.02 Cohesio [重]約 [新 PoliMIce Data -PoliMIce SOM Force Scan SOM Centrifugal -0.01Force -0.02-0.02-0.050.05 0.1 0.04 -0.1

[1] A. Rausa, F. Caccia, A. Guardone. *Multi-physics simulations of ice shedding from wind turbines*. International Conference on Icing of Aircraft, Engines, and Structures, SAE Tech. Paper 2023-01-1479, 2023.

[2] A. Rausa, A.Donizetti, and A. Guardone. "Multi-physics simulation of 3D in-flight ice-shedding." Journal of Computational and Applied Mathematics (2023): 115226.

[3] A. Rausa, M. Morelli, and A. Guardone. "A novel method for robust and efficient prediction of ice shedding from rotorcraft blades." Journal of Computational and Applied Mathematics 391 (2021).

[4] Gallia M., Bellosta, T. and Guardone, A., 2023. Automatic roughness characterization of simulated ice shapes. Journal of Computational and Applied Mathematics, 427, p.115114.

PoliMIce Capabilities

Gallia M., Gori G., Guardone A. "Numerical Optimization of Electrothermal Ice Protection Systems." Book Chapter in: Handbook of Numerical Simulation of In-Flight Icing
 Gallia M., Carnemolla A., Premazzi M., Guardone A. "Optimization of a nacelle electro-thermal ice protection system for icing wind tunnel testing" Transactions on Aerospace Research (2021)
 Arizmendi Gutiérrez B., Della Noce A., Gallia M., Guardone A. "Optimization of a Thermal Ice Protection System by Means of a Genetic Algorithm." In International Conference on Bioinspired Methods and Their Applications, pp. 189-200. Springer, Cham, 2020.

[4] Gallia, M., Arizmendi Gutiérrez, B., Gori, G., Guardone, A. and Congedo, P.M., 2023. Robust Optimization of a Thermal Anti-Ice Protection System in Uncertain Cloud Conditions. *Journal of Aircraft*, pp.1-15. [4] Gori, G., Congedo, P.M., Le Maître, O., Bellosta, T. and Guardone, A., 2022. Modeling in-flight ice accretion under uncertain conditions. *Journal of Aircraft*, 59(3), pp.799-813.

[5] Gori, G., B ellosta, T., Guardone, A. (2023). Numerical Simulation of In-Flight Icing Under Uncertain Conditions. In: Habashi, W.G. (eds) Handbook of Numerical Simulation of In-Flight Icing. Springer, Cham.

Inboard Model

Case 2.1 Glaze

Case 2.2 Mixed

Case 2.3 Rime

Midboard Model

Case 1.1 Glaze: single-shot

Case 1.1 Glaze multi-step (5 steps)

Case 1.2 Mixed: single-step

Case 1.2 Mixed: multi-step (10 steps)

Case 1.2 Mixed Zoom

Collection Efficiency 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Case 1.3 Rime single-step

Case 1.3 Rime: multi-steps (5 steps)

Case 1.3 Rime: multi-steps

Case 1.3 Rime: multi-steps

Cases 3.1 - 3.3

Sensitivity analysis

Time step duration.

Turbulence model.

Sensitivity analysis

Sensitivity analysis

Conclusions and future work

- Multi-step simulations are essential for correctly capturing complex 3D ice shape.
- Robust multi-step procedures permit to test different turbulence and roughness models and assess their influence on the ice shape evolotion.

- Improve our thermodynamic models to investigate the formation of scallops.
- 4D Scans would be extremelly usefull when comparing experimental ice shapes to numerical simulations in multi-step simulations.

DAER

Thank you for your attention! Questions?

Contact information:

• alessandro.donizetti@polimi.it

Zoom scallops

POLITECNICO MILANO 1863