

This work is licensed under a <u>Creative Commons Attribution-</u> <u>NonCommercial-NoDerivatives 4.0 International License</u>.

2nd Ice Prediction Workshop Welcome and Introduction

Organizing Committee

Sponsored by the AIAA Atmospheric and Space Environments Technical Committee (ASE TC)

AIAA IPW-2

Vienna, Austria

22-23 June 2023

Outline

- Yesterday's session
- Participants and Codes
- Test Case Summary
- AIAA Aviation Forum 2024
- IPW Permanent Archive
- Workshop Guidelines & Housekeeping
- Workshop Agenda

Thursday Afternoon Session

13:00	13:10	Ice Prediction Workshop—Background and Motivation Andy Broeren - NASA Glenn, Éric Laurendeau – Polytechnique Montréal
13:10	13:25	Summary of IPW-1
		Éric Laurendeau – Polytechnique Montréal
13:25	13:45	IPW-2 Test Cases
	13.45	Isik Ozcer – ANSYS Canada
13:45	14:10	Code-to-code Comparisons – Case 1
		Maxime Blanchet – Polytechnique Montréal
		Questions / Discussion (5 minutes)
14:10	14:35	Code-to-code Comparisons – Case 2
		Maxime Blanchet – Polytechnique Montréal
		Questions / Discussion (5 minutes)
14:35		Code-to-code Comparisons – Case 3
	15:00	Maxime Blanchet – Polytechnique Montréal
		Questions / Discussion (5 minutes)

IPW-2 Participants and Codes

ID	Organization	Code
02	Politechnico Di Milano	PoliMIce
03	Seoul National University	ICEPAC, 2023
04	JAXA	FaSTAR/In-house code
05	Gulfstream	NASA USM3D/LEWICE3D
06	ANSYS Canada	FENSAP-ICE v23R2
08	NTNU	FENSAP-ICE v22R2
09	Kingston University London	FENSAP-ICE v22R1
10	Polytechnique Montréal	CHAMPS-ICE
11	CIRA	SIMBA
12	TUBS	DICEPS 2D V3/FLUENT
13	ONERA	IGLOO3D v1.3.0.0
14	Bombardier	Dragon Ice Suite Version 1.2
15	Boeing	CFD++ Version 17.1/LEWICE3D
16	NRC	FLUENT / NRC morphogenetic model
17	NASA Glenn	GlennICE v3.1.0

IPW-2 Test Case Summary

Case 1: CRM65 Midspan Hybrid (3D)

Case 2: CRM65 Inboard Hybrid (3D)

Case 3: RG-15 Low Speed Icing

IPW-2 Test Case Summary

IPW-2 Case no.	Configuration	ΑοΑ	Speed	T _{static} (°C)	T _{total} (°C)	LWC (g/m ³)	MVD (μm)	lcing Time (minutes)
1.1	CRM65 Mid-span	3.7	130 kts	-3.6	-1.4	1.0	25	29
1.2	CRM65 Mid-span	3.7	130 kts	-8.5	-6.3	1.0	25	29
1.3	CRM65 Mid-span	3.7	130 kts	-26.0	-23.8	1.0	25	29
2.1	CRM65 Inboard	3.7	130 kts	-3.6	-1.4	1.0	25	29
2.2	CRM65 Inboard	3.7	130 kts	-8.5	-6.3	1.0	25	29
2.3	CRM65 Inboard	3.7	130 kts	-26.0	-23.8	1.0	25	29
3.1	RG-15 Small wing	4	25 m/s	-2.0	-1.7	0.44	24	20
3.2	RG-15 Small wing	4	25 m/s	-4.0	-3.7	0.44	24	20
3.3	RG-15 Small wing	4	25 m/s	-10.0	-9.7	0.44	24	20

AIAA Aviation Forum 2024

- The AIAA Atmospheric and Space Environments Technical Committee will sponsor special sessions at Aviation 2024 dedicated to IPW-2 results.
- > Please consider submitting an abstract for this conference.
- > Abstract Deadline: early November 2023.
- Dates: 24-28 June 2024
- Location: Reno, Nevada.
- URL: <u>https://www.aiaa.org/aviation/utility/about/future-aviation-dates</u>

IPW Permanent Archive

- The IPW organizing committee is seeking to create a permanent archive for IPW-1 and IPW-2:
 - Test case data (CAD, grids, experimental results)
 - Participant results (such as final ice shapes)
 - Participant presentations (PDF)
- The current website location is hosted by NTNU and is not a permanent solution.
- Consent from each presenter/organization is required to submit data/presentations to a permanent repository.
- NASA is looking at a long-term repository for date generated by all AIAA workshops.

Workshop Guidelines/Housekeeping

- Everyone please sign attendance sheet.
- Please hold questions until the end of each presentation.
- \succ Presenters should allow 3 to 5 minutes for questions.
- If presentations finish before allotted time, we will continue and use additional time for more Q&A, lunch or breaks.
- We will collect all final presentations and post to IPW website (www.icepredictionworkshop.com).
- Please do not take pictures or record video/audio.
- Lunch is provided by SAE in hotel restaurant.

Workshop Agenda

00.00	00-00		Welcome and Introduction				
08:00 08:30			Andy Broeren - NASA Glenn, Éric Laurendeau – Polytechnique Montréal				
			Public Database Development Op	portunity			
08:30	08:40		Richard Moser – AeroTex				
Break							
08.50	09-10		Politechnico Di Milano	SI 12 7 5 1			
08.50	05.10		Alessandro Donizetti	302 7.3.1			
09:10	00.00		Seoul National University				
	09:30		Soonho Shon	ICEPAC, 2023			
09:30			JAXA				
	09:50		Kei Shimura & Yuki Ide	FaSTAR/In-house code			
			ANSYS Canada				
09:50	10:10		lsik Ozcer	FENSAP-ICE v23R2			
Break							
10:30	10:50		Gulfstream Gregory Gathy	NASA USM3D/LEWICE3D			
10:50	11:10		Polytechnique Montréal Maxime Blanchet	CHAMPS-ICE			
			CIRA				
11:10	11:30		Francesco Capizzano	SIMBA			
11:30	11:50		ONERA Adèle Veilleux	IGLOO3D v1.3.0.0			

Lunch						
12:50	13:10	Bombardier Guy Fortin Dragon Ice Suite Version 1.2				
13:10	13:30	Boeing Adam Malone CFD++ Version 17.1/LEWICE3D				
13:30	13:50	NRC Pete Forsyth FLUENT / NRC morphogenetic model				
Break						
14:10	14:25	NTNU FENSAP-ICE v22R2				
14:25	14:40	Kingston University London FENSAP-ICE v22R1				
14:40	14:55	TUBS Denis Sotomayor-Zakharov DICEPS 2D V3/FLUENT				
14:55	15:10	NASA Glenn Thomas A. Ozoroski GlennICE v3.1.0				
Break						
15:30	16:00	Summary and Wrap-up Andy Broeren - NASA Glenn, Éric Laurendeau – Polytechnique Montréal				

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

Motivation and Background

Motivation

- Assess the current capabilities of 3D icing simulation tools.
- > Bring together code developers and user communities.
- Identify areas that need additional research and development.

Background

- > SAE AC-9C Meeting, Reno, October 16, 2018
 - Pitched the idea of an Ice Prediction Workshop
 - Reviewed NATO RTO Comparison Workshop conducted in 2000.
- SAE AC-9C Meeting, Minneapolis, June 17, 2019
 - Decided to go forward and began assembling a committee of volunteers.
 - Kick-off meeting held on November 20, 2019 with goal of 1st IPW in June of 2021 in conjunction with the AIAA Aviation Forum.

IPW-1 Summary

- Conducted virtually 26-29 July 2021prior to AIAA Aviation Forum.
- Featured 8 baseline test cases and 8 optional cases
 - Included: 2D geometry, multi-element airfoil, axisymmetric inlet, swept wing and large drop cases.
- Main objective was to baseline tool capability for a range of icing problems.
- Outstanding participation
 - 79 registered attendees (11 countries, 4 continents)
 - 21 presentations
 - 19 participants submitted data for comparison
- More details in presentation to follow

Workshop Principles

- This is a community effort to share knowledge, information, and head towards a common understanding of best practices for icing modeling and simulation. It should not be perceived as a competition of codes and groups.
- The goal is to focus on 3D icing simulation tools. This is not to diminish the importance, value and need for 2D tools. Past work on 2D tools and have provided the necessary groundwork for current 3D tools.
- Icing simulation tools have many common components such as airflow, particle trajectories (collection efficiency), mass and energy balances (surface water, heat transfer) and ice growth. The workshop is structured to evaluate compare the results of such components.
- We envision a series of workshops to address the wide-ranging problems in icing simulation.

Workshop Objectives (IPW-2)

- Focus on assessment of current 3D icing simulation capability for ice shapes on large swept wings and low-speed straight wing.
 - Define test cases and geometries based upon existing, known and publicly available geometries and data.
- Compare results for airflow (surface pressure distribution), collection efficiency, freezing fraction, surface temperature, heat transfer coefficient ice shape cross section, etc.
- Use the results of this workshop to identify cases for future workshops including how to gather experimental data from different facilities, "blind" comparisons and expansion into other problems such as engine icing, rotorcraft, ice protection systems, probes, iced aerodynamics, etc.

Organizing Committee*

Adam Malone	Boeing	Eric Laurendeau	Ecole Polytechnique,	
Alberto Pueyo	Bombardier	Maxime Blanchet	Montreal	
Alessandro Donizetti	Deliteeniee di Milene	Eric Stewart	NAVAIR	
Tommaso Bellosta	Politecnico di Miliano	Ezgi Oztekin	FAA	
Andy Broeren	NASA	Guilherme A. Lima da Silva	Aerothermal Solutions	
Bryan Hinson	Textron Aviation	Ifrah Mussa	Kingston Univ. London	
Chris Nelson	Siemens	Isik Ozcer	Ansys	
Don Cook	Independent	Karthik Narayanasamy	Honeywell	
Guy Fortin	Bombardier	Peter Forsyth	National Research Council	
Richard Hann	Norwegian Univ. of Science	Richard Moser	AeroTex	
Markus Linder	and Technology	William Wright	HX5, LLC	
Emmanuel Radenac	ONERA	Xin Yang	University of Oxford	

*Regular contributors

Acknowledgements

- Many volunteers on the organizing committee dedicated countless hours to preparing the test cases, developing meshes, manipulating CAD geometry, collecting experimental data, post-processing data, comparison plots, website hosting, etc., etc.
- > SAE International for including IPW-2 into conference program.
- Tecplot for providing access to software for post processing.

Supporting Information

- SAE AC-9C Aircraft Icing Technology Committee
 - AC-9C Information: <u>https://standardsworks.sae.org/standards-committees/ac-9c-aircraft-icing-technology-committee</u>
- > AIAA Atmospheric and Space Environments Technical Committee
 - ASE TC Information: https://www.aiaa.org/get-involved/committees-groups/technical-committees
- Ice Prediction Workshop: <u>www.icepredictionworkshop.com</u>

