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ABSTRACT  
One of the major problems of academic research is the un-
availability of appropriate tools where researchers can de-
velop and evaluate their ideas. Research groups tend to 
spend a significant amount of time in developing tools 
which results in an abundance of incomplete tools which do 
not provide sufficient features for other groups to use. Of-
ten these tools are never made public which makes the re-
producibility of the results difficult and time consuming. 

This paper presents DARCO, an enabler infrastructure for 
research in the field of HW/SW co-designed virtual ma-
chines. DARCO models a HW/SW co-designed system 
with different guest and host ISAs. Its Emulation Software 
Layer (ESL) translates and optimizes x86 binaries to run on 
a PowerPC processor. The ESL provides staged compila-
tion including an interpreter, a translator, and an optimizer.  
In addition to the functional models, DARCO provides tim-
ing simulators and a powerful debugging toolchain. 
DARCO has a clean interface for including new optimiza-
tions in the ESL and allows easy implementation of new 
hardware features. DARCO has a functional emulation 
speed of 8 million x86 instructions per second and timing 
evaluation speed of 400k x86 instructions per second. 
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1. INTRODUCTION 
Hardware/Software co-designed processors gained a great 
momentum during last years. These architectures have im-
portant advantages over traditional hardware-only systems 
like the exploitation of dynamic information, the ability to 
provide Front-Ends of different ISAs and the segment-
specific optimizations. Recently academia and industry 
focused on software layers running on top of off-the-shelf 
processors with the Java runtime [14] and managed systems 
like the Microsoft .NET being the main examples. Efforts 
based on HW/SW co-design however have been sporadic 
and the field has not yet reached a critical mass. 

Although Transmeta delivered two products based on the 
HW/SW co-design paradigm, Crusoe [1,4] and Efficeon 
[8], academia has not invested much effort on such archi-
tectures. The few projects that we are aware of, like DAISY 
and BOA [6,11], are limited to either studying specific 
components of the HW/SW co-design or to adding minimal 
SW support to existing HW systems. We strongly believe 
that the reason academia has not dedicated a critical mass 
to this paradigm is not the lack of trust into the technology 
but the lack of tools. 

Such a toolchain needs to provide functional emulators of 
the host and guest ISAs (in case they are not the same), 
cycle-accurate timing simulation for the host processor and 
a software layer that is able to interpret, translate and dy-
namically optimize the guest binaries. Developing from 
scratch and debugging all these components has a multiple 
man-years cost. Using existing components to build such 
an infrastructure is an alternative. The need to deeply un-
derstand, adapt and glue these components together would 
however lead to a similar cost. 

This paper presents DARCO, an effort of multiple man-
years that led to a powerful infrastructure for research on 
the HW/SW co-designed paradigm. To enable a broader 
research spectrum DARCO has a different host and guest 
ISA. In particular, it provides a full-system x86 guest 
Front-End that is translated, optimized and executed on a 
Power PC (PPC) processor. The key components of 
DARCO are the x86 and PPC functional models, the Emu-
lation Software Layer (ESL), the timing simulators and the 
accompanying debugging and monitoring tools. Except for 
the functional models for which we used heavily modified 
versions of QEMU [10], all other components are in-house 
developments. 

DARCO is not an early version of an envisioned infrastruc-
ture but a mature and debugged tool. It has a pass rate of 
100% for all the SPEC CPU 2006 [13] benchmarks. Its SW 
layer, the ESL, is equipped with an interpreter, a translator, 
a profiler and a dynamic optimizer that applies a plethora of 
optimizations to the translated regions. DARCO is a re-
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During the execution phase, the ESL begins by executing 
code from the initial %eip it received during the initializa-
tion phase. All changes made to the x86 register state from 
the emulation of the x86 instructions are stored in the “Em-
ulated x86 register state” which resides in the memory 
space of the ESL. Changes made to the memory space of 
the x86 application are stored in the “Emulated application 
x86 memory space” which also resides in the memory 
space of the ESL. While the x86 application is making for-
ward progress under the ESL, the x86 component remains 
idle and its memory state untouched. 

The synchronization phase is initiated by the PPC compo-
nent when any of following three events occur during the 
execution phase; (1) data request, (2) system call or (3) end 
of application. The data request event is raised when the 
PPC component encounters a load or store instruction that 
accesses an x86 memory location for the first time. The 
subsequent actions from the other different components are 
depicted in Figure 2. The PPC component sends a request 
to the Controller for the particular data page along with the 
total number of dynamic x86 basic blocks that were exe-
cuted until this point. Then, it remains idle until the request 
is satisfied. The Controller forwards the request to the x86 
component, which in turn continues the execution of the 
application until it reaches the same execution point as the 
PPC component (remember that the x86 component re-
mained idle after the initial launch of the application). 
When the correct execution point is reached, the data page 
is sent to the Controller and forwarded to the PPC compo-
nent. This process guarantees that after every synchroniza-
tion phase, the x86 application state, register and memory, 
is identical between the x86 component and the ESL. Oth-
erwise the system complains and execution is aborted. This 
is also a useful technique to debug DARCO. The exact 
same process is followed for the other two events, system 
calls and end of application. 

System calls raise the synchronization event because the 
ESL only models user-level code. The synchronization 
phase will fetch the modifications done by a system call 
from the x86 component. As for the end-of-application, the 
synchronization phase is necessary in order to verify that 
the execution of the application on the PPC component was 
correct.  

2.3 Emulation Software Layer (ESL) 
The ESL is the software layer that executes on-top of the 
PPC processor. It is responsible for translating the target 
x86 code to the host PPC ISA. In a nutshell, the ESL has 
four different execution modes; interpretation mode (IM), 
basic block translation mode (BBM), superblock and opti-
mization mode (SBM) and code cache execution mode 
(CCExec).  

The ESL starts by interpreting the x86 instructions. When a 
basic block (BB) executes more times than a predefined 
threshold the ESL switches to BBM for this BB which is 
translated and stored in the code cache. The subsequent 
execution of this BB is done in CCExec and profiling in-
formation is gathered regarding the direction of the branch 
and its target. When a BB reaches another repetition 
threshold, it triggers SBM. During this mode, the control 
flow profiling information that was collected during the 
CCExec mode is used by the translator in order to create a 
superblock (SB) with starting point the BB that triggered 
SBM. The SB passes through several optimizations (Sec-
tion 2.3.2) and is stored in the code cache. Subsequent exe-
cutions of the SB are done in CCExec mode. The high level 
view of the execution flow of ESL is shown in Figure 3. 

Figure 2: Data page request from the PPC component, 
enforcing the synchronization phase. 

Figure 3: Emulation Software Layer execution flow. The 
left path is followed in IM, the middle in BBM and the 
right in SBM. 
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In the following sections we provide a more detailed de-
scription of the different modes of ESL but due to space 
limitations we only discuss the most important scenarios. 

2.3.1 Interpretation and basic block translation 
The ESL begins the execution of the application in IM. 
While in IM mode, x86 instructions are interpreted one by 
one and the x86 state is updated accordingly. The IM guar-
antees forward progress of the application and also is used 
as a safety-net in case instructions cannot be included in 
basic block translations and superblocks. 

There is one caveat concerning the interpretation method 
employed in DARCO. Due to the complex and time con-
suming nature of building an interpreter, we decided to use 
the translator provided by QEMU but instead of translating 
one basic block at a time, it was modified to translate one 
instruction at a time. Since QEMU’s translator was de-
signed with portability in mind (it supports translation from 
various guest to host ISAs), using it to translate just one 
instruction introduces high overhead. In order to accommo-
date the high cost of such interpretation method, an inter-
pretation cache is used to store the interpretations. 
Subsequent executions of the same x86 instruction are ex-
tracted from the interpretation cache. This modification 
reduced the cost of interpreting an x86 instruction to some 
thousands of PPC instructions instead of tens of thousands. 
Also note that no chaining is done between interpretations. 

During IM, profiling information is being collected for the 
targets of branches which is based on a repetition counter. 
When the repetition counter reaches the 
BB_translation_threshold, the ESL switches to BBM in 
order to translate the corresponding BB.  

Note that since we use a modified version of the QEMU 
translator and code generator, we also inherit some of the 
nomenclature. The intermediate representation of the in-
structions in DARCO is called qOps. 

Figure 4 shows an abstract version of a typical translation 
of an x86 BB. The original code is being translated into an 
equivalent set of qOps. ESL translates all x86 memory op-

erations in a special way. We introduced new qOps and 
PPC instructions for all load and store instructions in order 
to be able to distinguish during the execution whether a 
memory access corresponds to the application itself or the 
ESL. There are two reasons for doing this. The first regards 
to functionality. The PPC component needs to know if 
there is an access to the x86 memory space and in the un-
common case that the data page was not communicated 
before, request the page from the Controller as explained 
before. The second reason regards to evaluation, since we 
would like to be aware of the performance characteristics 
of each translation. 

At the end of the translation, two exit stubs are attached and 
the BB branch target is modified to point to the taken exit 
stub. Each exit stub consists of an empty position where the 
chaining will be patched later during the execution, an up-
date of the %eip and branch to the ESL where the BB start-
ing at the new %eip will be interpreted or translated. When 
the chain position is patched, the execution will not return 
to the ESL, but instead the next BB will be executed direct-
ly from the code cache. Finally, a new PPC instruction, 
eob_x86, is introduced. The purpose of this instruction is 
strictly for synchronization. In terms of timing, this instruc-
tion has no effect. 

The qOps are forwarded to the code generator. There, they 
undergo some basic optimizations like dead code elimina-
tion and constant propagation which contribute towards 
reducing the number of generated instructions. Finally, the 
qOps are translated to PPC instructions and stored in the 
code cache from where they are dispatched for execution. 

2.3.2 Superblocks and optimizations 
During Basic-Block translation Mode (BBM), profiling 
information is gathered for all BBs. This information con-
sists of repetition and edge counters. When the repetition 
counter reaches a predefined threshold, an event denoting 
the SB creation is raised. Execution is then transferred to 
ESL with SBM. 

Figure 4: Abstract translation of an x86 BB to PPC. The eob_x86 instruction is used by DARCO for 
execution synchronization and special ld_x86 instructions to point out accesses to x86 memory space. 



In Superblock/optimization Mode (SBM), the ESL gener-
ates a new SB starting from the denoted BB. The SB gener-
ation algorithm uses the control flow information gathered 
throughout the execution in BBM for decision making.  
Specifically, there are several ending conditions for a SB: 

1. Probability to exit the SB before the end has to be 
less than a threshold 

2. The outcome of  the branch is not biased accord-
ing to the bias threshold 

3. The biased direction is the beginning of a new SB 
4. The last BB in the SB has a backward branch 

The translator prepares the SB in qOps and then forwards it 
to the optimizer. 

The optimizer applies several transformations on the SB. 
First, the qOps are transformed into a pseudo Static Single 
Assignment format. This transformation significantly re-
duces the complexity of subsequent optimizations. Second, 
the forward pass applies a set of conventional single pass 
optimizations (copy propagation, constant propagation, 
common subexpression elimination and constant folding). 
Third, the backward pass applies dead code elimination.  

After the basic optimizations, the Data Dependence Graph 
(DDG) is prepared. The DDG contains all the real depend-
encies between the instructions along with instruction la-
tency information. The DDG is then fed to the instruction 
scheduler that uses a conventional list scheduling algo-
rithm. DARCO implements an in-order processor where 
instruction scheduling can improve the performance signif-
icantly. Finally, the determined schedule is used by the 
register allocator that implements linear scan allocation 
algorithm. 

Finally, the qOps are translated to PPC instructions and the 
code is stored in the code cache. The previous entry in the 
code cache that corresponds to the first BB of current SB is 
invalidated and freed for use by subsequent translations. 

2.3.3 On the work 
As mentioned in the introduction, the ESL was an in house 
development. For some other parts we reused QEMU com-
ponents after heavy modification. The gluing of these com-
ponents introduces unnecessary overhead that is noticeable 
during the execution. For example, for short applications or 
applications where the interpreter is used often, the code 
cache look up introduces high overhead since it is done for 
every instruction. 

Furthermore, indirect branches and return instructions are 
known to be one of the sources of high overhead in dynam-
ic binary translators, since they imply re-entering the 
runtime system and performing a look-up for the target 
address. Techniques like Indirect Branch Target Cache and 
Sieve, proposed by [5], can be employed to reduce the 
number of times execution is returned to the runtime. 

Currently we are working on including control and data 
speculation which are techniques commonly used by co-
designed virtual machines to generate better optimized 
code. 

3. EXPERIMENTAL RESULTS 
In this section we present a high level evaluation of the 
infrastructure and a characterization of the ESL using 
SPEC CPU 2006 benchmarks. Specifically, we are present-
ing information about the speed of the infra  structure and 
some performance characteristics regarding ESL.   

Here the results are reported in terms of number of PPC 
instructions, except figure 5 which is in terms of x86 in-
structions. Timing results are beyond the scope of this pa-
per. The results regard the execution of the first 200 billion 
instructions due to simulation time constraints. 

3.1 DARCO speed 
The speed of the infrastructure is shown in Figure 5. We 
measure the speed in millions of emulated x86 instructions 
per second. This shows the rate of how many x86 instruc-
tions pass throughout the execution flow of DARCO which 
includes all the components of the infrastructure. On aver-
age the execution rate of DARCO is approximately 2 mil-
lion x86 instructions per second. 

The execution rate is directly affected by several parame-
ters. For example, the performance of DARCO for 
462.libquantum is the highest because it has a small static 
instruction footprint and small data footprint which incurs 
minimal communication between the various components. 
As another example, consider 998.specrand. The execution 
rate is low since the original x86 application is very small. 
As an effect, DARCO does not have enough time to amor-
tize the overhead of communication between the compo-
nents. Finally, consider 433.milc. The execution speed is 
low since a lot of data pages are communicated between the 
components, enforcing several synchronization points. Un-
fortunately, due to space limitations we cannot go into de-
tail for all the benchmarks.  

A parameter that has a definitive impact on the execution 
speed is the host processor. The results reported are on a 

Figure 5: DARCO execution speed 
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cluster where only one core is devoted per execution task. 
All the three processes of DARCO (x86/PPC component 
and controller) have to share this one only core which de-
grades the performance significantly. On typical dual core 
machines, the execution rate averages on 8 million instruc-
tions per second. 

3.2 ESL and SPEC characterization 
Figure 6 shows the distribution of the static x86 BB in the 
various modes of ESL. The threshold for promoting a BB 
from interpretation to BBM is 5 executions and for  pro-
moting the same BB to SBM is another 50 executions. The 
conclusion we can extract from this graph is that on aver-
age 18-20% of the static code is promoted to the highest 
optimization level which is in par with the common 
knowledge that ~10% of the static code of the application is 
responsible for 90% of the dynamic execution.  

The number of PPC instructions generated for 1 x86 in-
struction is depicted in Figure 7. There are several things 
that can be observed from this Figure. First, let’s concen-
trate on the cost of an x86 instruction in BBM. Around 10 
PPC instructions are required to emulate a single x86 in-
struction. The cost is rather high since in the current ver-
sion of ESL, the  x86 EFLAGS are handled purely through 

software which introduces a relatively large number of PPC 
instruction for their emulation.  

The cost of emulation is reduced by 30% in SBM with re-
spect to BBM. The basic optimizations that are applied in 
the forward and backward pass of the optimizer are effec-
tive in reducing the amount of qOps and PPC instructions 
required for the emulation of x86 instructions.  

In the future, we plan to improve the intermediate represen-
tation of instructions. The qOps are very generic since 
QEMU uses the same intermediate representation to gener-
ate code for different host ISAs. In the case of DARCO, the 
host architecture is specific which provides the opportunity 
for a targeted intermediate representation. Modifying the 
qOps of ESL into instructions that look closer to what the 
PPC ISA offers will significantly reduce the cost of emula-
tion. Furthermore, we plan to emulate the x86 EFLAGS 
using hardware and provide specific hardware support for 
handling certain opcodes in a more efficient manner (such 
as calls and returns).  

The dynamic instruction distribution of the ESL is shown 
in Figure 8. The red bar represents the amount of dynamic 
instruction corresponding to the emulation of the x86 appli-
cation. The blue bar corresponds to the overhead intro-

Figure 6: Distribution of static x86 basic blocks in the three 
modes of ESL 
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Figure 8: ESL dynamic instruction distribution 
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Figure 7: PPC instructions generated per x86 instructions in 
BBM and SBM 
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Figure 9: ESL overhead breakdown 
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duced by the various tasks of the runtime. The introduced 
overhead is significantly higher for the integer applications. 
This is due to the extensive use of indirect branches and 
return instructions.  

As mentioned earlier, currently the ESL does not offer any 
special mechanics to handle indirection. Whenever an indi-
rect branch is encountered, execution exits the code cache 
and a look-up is performed to find the target BB. This is 
also reflected in the overhead breakdown depicted by Fig-
ure 9. The code cache lookup is the main source of over-
head as it happens every time the runtime is entered. 

The chaining overhead is misleadingly high (20%). The 
actual cost of chaining is negligible, since only a small 
piece of code is executed to patch the exit stubs. Most of 
this overhead is introduced by a non-taken branch which is 
there to prevent chaining during interpretation. We are con-
sidering alternatives in order to eliminate this overhead. 

Furthermore, the prologue corresponds to the instructions 
executed to perform a “context switch” between the ESL 
and the application. “Context switch” refers to the neces-
sary actions for the transition of the execution from the 
runtime to the application. A “context switch” takes place 
every time we interpret one instruction, or whenever we 
enter the code cache from BBM or SBM. This should also 
be reduced when special handling of indirect branches is 
introduced. 

Finally, the actual overhead of interpretation, translation 
and optimization seems negligible when compared to the 
aforementioned sources of overhead. 

4. RELATED WORK 
Some of the most characteristic examples of process level 
VMs are Dynamo [15], DynamoRIO [3], IA-32 execution 
layer [9] and Strata [7]. All of them employ different tech-
niques to reduce the overall overheads and guarantee that 
the application will reach the steady state as fast as possi-
ble. For example DynamoRIO and IA-32 EL start with 
basic block translation, while Dynamo starts with interpre-
tation. Different heuristics are used to construct larger re-
gions as early as they can afford. The common ground 
among the three though, is that they apply only simple, 
low-cost optimizations in order to minimize the overhead 
impacts. 

In the field of co-designed VMs, where the DBO is part of 
the hardware platform, the most representative example is 
Transmeta’s Crusoe [1,4] where the Code Morphing Soft-
ware [4] is translating x86 instructions to a VLIW instruc-
tion set. Other examples are the DAISY/BOA [6,11] 
projects from IBM.  

In the field of hardware-only dynamic optimizers the most 
characteristic examples are RePlay [12,2] and PARROT 
[16]. Both proposed an off-the-critical path hardware only 
dynamic optimizer for x86 architectures. The goal was to 

optimize the μops generated during the execution of the 
x86 application and reuse the optimized version for subse-
quent executions of the same piece of code. 

5. CONCLUSIONS 
This paper presented DARCO, a complete infrastructure 
that enables research on HW/SW co-designed processors. 
DARCO is not an early version of an envisioned infrastruc-
ture but a mature ready-to-use and debugged tool. 

DARCO interprets, translates and dynamically optimizes 
x86 binaries in PPC instructions which execute on top of a 
functional PPC emulator. Its Emulation Software Layer 
includes an interpreter, a translator, a scheduler, a register 
allocator and a staged optimizer. The other key components 
are the controller that the user interacts with and the timing 
simulators. 

In addition to the infrastructure, in this paper we character-
ize the SPEC CPU 2006 benchmarks with respect to their 
dynamic binary optimization behavior. We show the related 
overheads and analyze the optimization stages each piece 
of code reaches to. 
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