
DARCO: Infrastructure for Research on HW/SW co-designed
Virtual Machines

Demos Pavlou‡,1, Aleksandar Brankovic,
Rakesh Kumar, Maria Gregori

†Universitat Politécnica de Catalunya
{abrankov, rkumar, mgregori}@ac.upc.edu

Kyriakos Stavrou, Enric Gibert,
Antonio Gonzalez†,‡

‡Intel Barcelona Research Center (IBRC) – Intel Labs
{demos.pavlou, kyriakos.stavrou, enric.gibert.codina,

antonio.gonzalez}@intel.com

ABSTRACT
One of the major problems of academic research is the un-
availability of appropriate tools where researchers can de-
velop and evaluate their ideas. Research groups tend to
spend a significant amount of time in developing tools
which results in an abundance of incomplete tools which do
not provide sufficient features for other groups to use. Of-
ten these tools are never made public which makes the re-
producibility of the results difficult and time consuming.

This paper presents DARCO, an enabler infrastructure for
research in the field of HW/SW co-designed virtual ma-
chines. DARCO models a HW/SW co-designed system
with different guest and host ISAs. Its Emulation Software
Layer (ESL) translates and optimizes x86 binaries to run on
a PowerPC processor. The ESL provides staged compila-
tion including an interpreter, a translator, and an optimizer.
In addition to the functional models, DARCO provides tim-
ing simulators and a powerful debugging toolchain.
DARCO has a clean interface for including new optimiza-
tions in the ESL and allows easy implementation of new
hardware features. DARCO has a functional emulation
speed of 8 million x86 instructions per second and timing
evaluation speed of 400k x86 instructions per second.

Keywords
Co-designed virtual machines, dynamic binary translation

1. INTRODUCTION
Hardware/Software co-designed processors gained a great
momentum during last years. These architectures have im-
portant advantages over traditional hardware-only systems
like the exploitation of dynamic information, the ability to
provide Front-Ends of different ISAs and the segment-
specific optimizations. Recently academia and industry
focused on software layers running on top of off-the-shelf
processors with the Java runtime [14] and managed systems
like the Microsoft .NET being the main examples. Efforts
based on HW/SW co-design however have been sporadic
and the field has not yet reached a critical mass.

Although Transmeta delivered two products based on the
HW/SW co-design paradigm, Crusoe [1,4] and Efficeon
[8], academia has not invested much effort on such archi-
tectures. The few projects that we are aware of, like DAISY
and BOA [6,11], are limited to either studying specific
components of the HW/SW co-design or to adding minimal
SW support to existing HW systems. We strongly believe
that the reason academia has not dedicated a critical mass
to this paradigm is not the lack of trust into the technology
but the lack of tools.

Such a toolchain needs to provide functional emulators of
the host and guest ISAs (in case they are not the same),
cycle-accurate timing simulation for the host processor and
a software layer that is able to interpret, translate and dy-
namically optimize the guest binaries. Developing from
scratch and debugging all these components has a multiple
man-years cost. Using existing components to build such
an infrastructure is an alternative. The need to deeply un-
derstand, adapt and glue these components together would
however lead to a similar cost.

This paper presents DARCO, an effort of multiple man-
years that led to a powerful infrastructure for research on
the HW/SW co-designed paradigm. To enable a broader
research spectrum DARCO has a different host and guest
ISA. In particular, it provides a full-system x86 guest
Front-End that is translated, optimized and executed on a
Power PC (PPC) processor. The key components of
DARCO are the x86 and PPC functional models, the Emu-
lation Software Layer (ESL), the timing simulators and the
accompanying debugging and monitoring tools. Except for
the functional models for which we used heavily modified
versions of QEMU [10], all other components are in-house
developments.

DARCO is not an early version of an envisioned infrastruc-
ture but a mature and debugged tool. It has a pass rate of
100% for all the SPEC CPU 2006 [13] benchmarks. Its SW
layer, the ESL, is equipped with an interpreter, a translator,
a profiler and a dynamic optimizer that applies a plethora of
optimizations to the translated regions. DARCO is a re-

1. The presented work was completed while Demos Pavlou was a Research
assistant at Universitat Politecnica de Catalunya.

search enabler that allows exploration of all the comp
nents of a H

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize
SPEC CPU 2006
ESL. In sec
of DARCO and
2006 applications. Some related work is discussed in se
tion
5

2.
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

DARCO
which implements the layer of abstraction between the ta
get x86 ISA
behind selecting x86 as the target ISA is
for t
it
which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o
techniques.
study of

Th
instructions.
lation

2.1
DARCO
as
PPC component

The
emulator on top of which an unmodified operating system
is executing.
tural state and is the only component that interacts with the
Operating System.

The
model
ing the ESL which translat
tion stream
been updated to support additional instructions used by the
ESL as

The
core. It receives the dynamic instruction stream from the
PPC component and
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
nents of a H

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize
SPEC CPU 2006
ESL. In sec
of DARCO and
2006 applications. Some related work is discussed in se
tion
5.

2.
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

DARCO
which implements the layer of abstraction between the ta
get x86 ISA
behind selecting x86 as the target ISA is
for t
its wide usage and its support for
which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o
techniques.
study of

The current
instructions.
lation

2.1
DARCO
as depicted
PPC component

The
emulator on top of which an unmodified operating system
is executing.
tural state and is the only component that interacts with the
Operating System.

The
model
ing the ESL which translat
tion stream
been updated to support additional instructions used by the
ESL as

The
core. It receives the dynamic instruction stream from the
PPC component and
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
nents of a H

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize
SPEC CPU 2006
ESL. In sec
of DARCO and
2006 applications. Some related work is discussed in se
tion 4 and our concluding remarks

 DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

DARCO
which implements the layer of abstraction between the ta
get x86 ISA
behind selecting x86 as the target ISA is
for the selection o

wide usage and its support for
which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o
techniques.
study of

e current
instructions.
lation.

2.1 Main
DARCO

depicted
PPC component

The x86 component
emulator on top of which an unmodified operating system
is executing.
tural state and is the only component that interacts with the
Operating System.

The PPC component
model for DARCO.
ing the ESL which translat
tion stream
been updated to support additional instructions used by the
ESL as

The timing simulator
core. It receives the dynamic instruction stream from the
PPC component and
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
nents of a H

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize
SPEC CPU 2006
ESL. In sec
of DARCO and
2006 applications. Some related work is discussed in se

and our concluding remarks

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

DARCO provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta
get x86 ISA
behind selecting x86 as the target ISA is

he selection o
wide usage and its support for

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o
techniques.
study of new hardware features and host ISA extensions.

e current
instructions.

Main
DARCO consists of

depicted
PPC component

x86 component
emulator on top of which an unmodified operating system
is executing.
tural state and is the only component that interacts with the
Operating System.

PPC component
for DARCO.

ing the ESL which translat
tion stream
been updated to support additional instructions used by the
ESL as described in section

timing simulator
core. It receives the dynamic instruction stream from the
PPC component and
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
nents of a HW/SW co

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize
SPEC CPU 2006
ESL. In section
of DARCO and
2006 applications. Some related work is discussed in se

and our concluding remarks

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta
get x86 ISA
behind selecting x86 as the target ISA is

he selection o
wide usage and its support for

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o
techniques. DARCO

new hardware features and host ISA extensions.

e current version of
instructions. Future versions will

Main co
consists of

depicted by Figure
PPC component

x86 component
emulator on top of which an unmodified operating system
is executing. The
tural state and is the only component that interacts with the
Operating System.

PPC component
for DARCO.

ing the ESL which translat
tion stream to PPC instructions.
been updated to support additional instructions used by the

described in section

timing simulator
core. It receives the dynamic instruction stream from the
PPC component and
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
W/SW co

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize
SPEC CPU 2006

tion 3
of DARCO and
2006 applications. Some related work is discussed in se

and our concluding remarks

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

 and the host PPC hardware.
behind selecting x86 as the target ISA is

he selection o
wide usage and its support for

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

DARCO
new hardware features and host ISA extensions.

version of
Future versions will

components
consists of

by Figure
PPC component, the

x86 component
emulator on top of which an unmodified operating system

The
tural state and is the only component that interacts with the
Operating System.

PPC component
for DARCO.

ing the ESL which translat
to PPC instructions.

been updated to support additional instructions used by the
described in section

timing simulator
core. It receives the dynamic instruction stream from the
PPC component and
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
W/SW co

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize
SPEC CPU 2006. In

3 we present statistics reg
of DARCO and characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

and our concluding remarks

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware.
behind selecting x86 as the target ISA is

he selection of PPC as the host ISA
wide usage and its support for

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

DARCO
new hardware features and host ISA extensions.

version of
Future versions will

mponents
consists of

by Figure
, the

x86 component
emulator on top of which an unmodified operating system

The x86
tural state and is the only component that interacts with the
Operating System.

PPC component
for DARCO. The PPC functional emulator is execu

ing the ESL which translat
to PPC instructions.

been updated to support additional instructions used by the
described in section

timing simulator
core. It receives the dynamic instruction stream from the
PPC component and
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
W/SW co-designed architecture.

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize

. In section
we present statistics reg

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

and our concluding remarks

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware.
behind selecting x86 as the target ISA is

f PPC as the host ISA
wide usage and its support for

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

 is also designed in
new hardware features and host ISA extensions.

version of DARCO
Future versions will

mponents
consists of four

by Figure 1. These are:
, the Timing simulator

 provides an x86
emulator on top of which an unmodified operating system

x86 component
tural state and is the only component that interacts with the

PPC component
The PPC functional emulator is execu

ing the ESL which translat
to PPC instructions.

been updated to support additional instructions used by the
described in section

timing simulator models
core. It receives the dynamic instruction stream from the
PPC component and provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
designed architecture.

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize

ection
we present statistics reg

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

and our concluding remarks

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware.
behind selecting x86 as the target ISA is

f PPC as the host ISA
wide usage and its support for

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

is also designed in
new hardware features and host ISA extensions.

DARCO
Future versions will

mponents
four main components which

. These are:
Timing simulator

provides an x86
emulator on top of which an unmodified operating system

component
tural state and is the only component that interacts with the

 provides the processor functional
The PPC functional emulator is execu

ing the ESL which translates
to PPC instructions.

been updated to support additional instructions used by the
described in section

models
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
designed architecture.

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize

ection 2
we present statistics reg

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

and our concluding remarks

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware.
behind selecting x86 as the target ISA is

f PPC as the host ISA
wide usage and its support for

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

is also designed in
new hardware features and host ISA extensions.

DARCO
Future versions will

mponents
main components which

. These are:
Timing simulator

provides an x86
emulator on top of which an unmodified operating system

component
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

es and optimiz
to PPC instructions.

been updated to support additional instructions used by the
described in section 2.3

models a
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
designed architecture.

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize

 we present
we present statistics reg

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

and our concluding remarks

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation a

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware.
behind selecting x86 as the target ISA is

f PPC as the host ISA
wide usage and its support for

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

is also designed in
new hardware features and host ISA extensions.

DARCO models
Future versions will

main components which
. These are:

Timing simulator

provides an x86
emulator on top of which an unmodified operating system

component keeps the
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

and optimiz
to PPC instructions. The PPC component has

been updated to support additional instructions used by the
2.3

a parameterized
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
designed architecture.

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize

we present
we present statistics reg

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

and our concluding remarks are presented

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co
which is executing x86 applications on a PPC processor
through dynamic binary translation and optimization.

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware.
behind selecting x86 as the target ISA is

f PPC as the host ISA
wide usage and its support for vector instructions on

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

is also designed in
new hardware features and host ISA extensions.

models
Future versions will support full

main components which
. These are: the

Timing simulator

provides an x86
emulator on top of which an unmodified operating system

keeps the
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

and optimiz
The PPC component has

been updated to support additional instructions used by the

parameterized
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
designed architecture.

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize

we present
we present statistics reg

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

are presented

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co
virtual machines. It emulates a co-designed processor
which is executing x86 applications on a PPC processor

nd optimization.

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware.
behind selecting x86 as the target ISA is

f PPC as the host ISA, it
vector instructions on

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

is also designed in a
new hardware features and host ISA extensions.

models only
support full

main components which
the x86 compon

Timing simulator and the

provides an x86 full
emulator on top of which an unmodified operating system

keeps the
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

and optimiz
The PPC component has

been updated to support additional instructions used by the

parameterized
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
designed architecture.

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize

we present DARCO
we present statistics regarding the speed

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

are presented

DARCO INFRASTRUCTURE
DARCO is an infrastructure for research on co

designed processor
which is executing x86 applications on a PPC processor

nd optimization.

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware.
behind selecting x86 as the target ISA is its wide usage. As

, it is
vector instructions on

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

a way
new hardware features and host ISA extensions.

only
support full

main components which
x86 compon

and the

full-system functi
emulator on top of which an unmodified operating system

keeps the correct
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

and optimizes the x86
The PPC component has

been updated to support additional instructions used by the

parameterized
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp
designed architecture.

In this paper, we do not limit the discussion to presenting
the infrastructure but we also characterize the ESL using

DARCO
arding the speed

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

are presented

DARCO is an infrastructure for research on co

designed processor
which is executing x86 applications on a PPC processor

nd optimization.

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

and the host PPC hardware. The reasoning
its wide usage. As

is also
vector instructions on

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new o

way that eases the
new hardware features and host ISA extensions.

only user
support full-system

main components which
x86 compon

and the C

system functi
emulator on top of which an unmodified operating system

correct
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

the x86
The PPC component has

been updated to support additional instructions used by the

parameterized PPC in
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp

In this paper, we do not limit the discussion to presenting
the ESL using

DARCO
arding the speed

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

are presented in secti

DARCO is an infrastructure for research on co-designed
designed processor

which is executing x86 applications on a PPC processor
nd optimization.

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

The reasoning
its wide usage. As

also based on
vector instructions on

which we can map several of the x86 SSE instructions

The ESL is implemented in a modular way in order to si
plify the addition of new features, e.g. new optimization

that eases the
new hardware features and host ISA extensions.

user-level x86
system

main components which
x86 compon

Controller

system functi
emulator on top of which an unmodified operating system

correct archite
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

the x86
The PPC component has

been updated to support additional instructions used by the

PPC in
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the comp

In this paper, we do not limit the discussion to presenting
the ESL using

DARCO and the
arding the speed

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in se

in secti

designed
designed processor

which is executing x86 applications on a PPC processor
nd optimization.

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

The reasoning
its wide usage. As

based on
vector instructions on

which we can map several of the x86 SSE instructions.

The ESL is implemented in a modular way in order to si
ptimization

that eases the
new hardware features and host ISA extensions.

level x86
system

main components which interact
x86 component

ontroller

system functi
emulator on top of which an unmodified operating system

archite
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

the x86 instru
The PPC component has

been updated to support additional instructions used by the

PPC in-order
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t
fect the functionality of the rest of the components.

search enabler that allows exploration of all the compo-

In this paper, we do not limit the discussion to presenting
the ESL using

and the
arding the speed

characterization of ESL and SPEC CPU
2006 applications. Some related work is discussed in sec-

in section

designed
designed processor

which is executing x86 applications on a PPC processor

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the ta

The reasoning
its wide usage. As

based on
vector instructions on

.

The ESL is implemented in a modular way in order to sim-
ptimization

that eases the
new hardware features and host ISA extensions.

level x86
 emu-

interact
ent, the

ontroller.

system functional
emulator on top of which an unmodified operating system

architec-
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execu

instruc-
The PPC component has

been updated to support additional instructions used by the

order
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
The use of the timing simulator is optional and doesn’t a

o-

In this paper, we do not limit the discussion to presenting
the ESL using

and the
arding the speed

characterization of ESL and SPEC CPU
c-
on

designed
designed processor

which is executing x86 applications on a PPC processor

provides an Emulation Software Layer (ESL)
which implements the layer of abstraction between the tar-

The reasoning
its wide usage. As

based on
vector instructions on

m-
ptimization

that eases the

level x86
u-

interact
, the

.

onal
emulator on top of which an unmodified operating system

c-
tural state and is the only component that interacts with the

provides the processor functional
The PPC functional emulator is execut-

c-
The PPC component has

been updated to support additional instructions used by the

order
core. It receives the dynamic instruction stream from the

provides detailed execution statistics.
af-

The
user
plication as well as debugging utilities. The main task of
the controller is the sync
other components and
from the PPC compo

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a
lows
time. Moreover, the high execution speed
significant factor, since it helps
more efficient.
ESL, the controller and the timing simulator they are in
house developments.

2.2
The execution flow of an appl
distinct phases;
tion
starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86
cation to be executed

As for the
execution of the application defined by the user
reaches
place at the beginning of an application)
pauses
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on
top of the operating
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i
component
cation
pleted when the Controller sends this state to the PPC
component. At this point in time, the x86
the s

Figure

The Controller
user. It provides
plication as well as debugging utilities. The main task of
the controller is the sync
other components and
from the PPC compo

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a
lows
time. Moreover, the high execution speed
significant factor, since it helps
more efficient.
ESL, the controller and the timing simulator they are in
house developments.

2.2 Execution Flow
The execution flow of an appl
distinct phases;
tion. During the
starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86
cation to be executed

As for the
execution of the application defined by the user
reaches
place at the beginning of an application)
pauses
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on
top of the operating
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i
component
cation
pleted when the Controller sends this state to the PPC
component. At this point in time, the x86
the same in both components.

Figure

Controller
It provides

plication as well as debugging utilities. The main task of
the controller is the sync
other components and
from the PPC compo

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a
lows DARCO to benefit from
time. Moreover, the high execution speed
significant factor, since it helps
more efficient.
ESL, the controller and the timing simulator they are in
house developments.

Execution Flow
The execution flow of an appl
distinct phases;

. During the
starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86
cation to be executed

As for the
execution of the application defined by the user
reaches the system call EXECVE (which always
place at the beginning of an application)
pauses. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on
top of the operating
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i
component
cation to the Controller
pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

ame in both components.

Figure 1

Controller
It provides

plication as well as debugging utilities. The main task of
the controller is the sync
other components and
from the PPC compo

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a

DARCO to benefit from
time. Moreover, the high execution speed
significant factor, since it helps
more efficient.
ESL, the controller and the timing simulator they are in
house developments.

Execution Flow
The execution flow of an appl
distinct phases;

. During the
starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86
cation to be executed

As for the x86 component
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on
top of the operating
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i
component sends the initial x86

to the Controller
pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

ame in both components.

1: DARCO main components

Controller
It provides

plication as well as debugging utilities. The main task of
the controller is the sync
other components and
from the PPC compo

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a

DARCO to benefit from
time. Moreover, the high execution speed
significant factor, since it helps
more efficient. As for the rest of the components, i.e. the
ESL, the controller and the timing simulator they are in
house developments.

Execution Flow
The execution flow of an appl
distinct phases;

. During the
starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86
cation to be executed

x86 component
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on
top of the operating
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i

sends the initial x86
to the Controller

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

ame in both components.

DARCO main components

 is the
It provides full control over the

plication as well as debugging utilities. The main task of
the controller is the sync
other components and
from the PPC compo

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a

DARCO to benefit from
time. Moreover, the high execution speed
significant factor, since it helps

As for the rest of the components, i.e. the
ESL, the controller and the timing simulator they are in
house developments.

Execution Flow
The execution flow of an appl
distinct phases; initialization

. During the initialization
starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86
cation to be executed

x86 component
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on
top of the operating
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i

sends the initial x86
to the Controller

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

ame in both components.

DARCO main components

the
full control over the

plication as well as debugging utilities. The main task of
the controller is the sync
other components and
from the PPC component

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a

DARCO to benefit from
time. Moreover, the high execution speed
significant factor, since it helps

As for the rest of the components, i.e. the
ESL, the controller and the timing simulator they are in
house developments.

Execution Flow
The execution flow of an appl

initialization
initialization

starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86
cation to be executed to it

x86 component
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on
top of the operating system.
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i

sends the initial x86
to the Controller

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

ame in both components.

DARCO main components

the main interface
full control over the

plication as well as debugging utilities. The main task of
the controller is the synchronization o
other components and the resolution of the

nent (Section

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a

DARCO to benefit from
time. Moreover, the high execution speed
significant factor, since it helps

As for the rest of the components, i.e. the
ESL, the controller and the timing simulator they are in

Execution Flow
The execution flow of an appl

initialization
initialization

starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86

to it.

x86 component
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

system.
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i

sends the initial x86
to the Controller. The initialization phase is co

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

ame in both components.

DARCO main components

main interface
full control over the

plication as well as debugging utilities. The main task of
hronization o

the resolution of the
(Section

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a

DARCO to benefit from
time. Moreover, the high execution speed
significant factor, since it helps

As for the rest of the components, i.e. the
ESL, the controller and the timing simulator they are in

The execution flow of an appl

initialization
initialization

starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86

.

x86 component, when launched, it initiates the
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

system.
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i

sends the initial x86
. The initialization phase is co

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

ame in both components.

DARCO main components

main interface
full control over the

plication as well as debugging utilities. The main task of
hronization o

the resolution of the
(Section

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU
that it is a constantly updated and improving tool. This a

DARCO to benefit from
time. Moreover, the high execution speed
significant factor, since it helps

As for the rest of the components, i.e. the
ESL, the controller and the timing simulator they are in

The execution flow of an application
initialization, execution

initialization phase, the controller
starts the PPC component which i
tion of the ESL. The PPC component then remains id
until the Controller sends the x86

, when launched, it initiates the
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

system. The process tracker is used
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i

sends the initial x86
. The initialization phase is co

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

ame in both components.

DARCO main components

main interface
full control over the

plication as well as debugging utilities. The main task of
hronization o

the resolution of the
(Section 2.2

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation
rationale behind selecting QEMU as
that it is a constantly updated and improving tool. This a

DARCO to benefit from improvements done over
time. Moreover, the high execution speed
significant factor, since it helps the infrastructure to

As for the rest of the components, i.e. the
ESL, the controller and the timing simulator they are in

ication
execution
phase, the controller

starts the PPC component which in turn, initiates the exec
tion of the ESL. The PPC component then remains id
until the Controller sends the x86 register

, when launched, it initiates the
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

The process tracker is used
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i

sends the initial x86 register
. The initialization phase is co

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

DARCO main components

main interface of DARCO with the
full control over the execution of the a

plication as well as debugging utilities. The main task of
hronization of the execution of the

the resolution of the
2.2).

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation

as functional emulator is
that it is a constantly updated and improving tool. This a

improvements done over
time. Moreover, the high execution speed

the infrastructure to
As for the rest of the components, i.e. the

ESL, the controller and the timing simulator they are in

ication passes through
execution

phase, the controller
turn, initiates the exec

tion of the ESL. The PPC component then remains id
register

, when launched, it initiates the
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

The process tracker is used
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is i

register
. The initialization phase is co

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

DARCO main components.

of DARCO with the
execution of the a

plication as well as debugging utilities. The main task of
f the execution of the

the resolution of the

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation

functional emulator is
that it is a constantly updated and improving tool. This a

improvements done over
time. Moreover, the high execution speed

the infrastructure to
As for the rest of the components, i.e. the

ESL, the controller and the timing simulator they are in

passes through
execution and

phase, the controller
turn, initiates the exec

tion of the ESL. The PPC component then remains id
register state of the appl

, when launched, it initiates the
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application)

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

The process tracker is used
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the
application. After the process tracker is initialized

register state of the appl
. The initialization phase is co

pleted when the Controller sends this state to the PPC
component. At this point in time, the x86

of DARCO with the
execution of the a

plication as well as debugging utilities. The main task of
f the execution of the

 various requests

The x86 and PPC functional emulators are heavily mod
fied versions of QEMU (Quick EMUlation tool)

functional emulator is
that it is a constantly updated and improving tool. This a

improvements done over
time. Moreover, the high execution speed of QEMU is a

the infrastructure to
As for the rest of the components, i.e. the

ESL, the controller and the timing simulator they are in

passes through
and

phase, the controller
turn, initiates the exec

tion of the ESL. The PPC component then remains id
state of the appl

, when launched, it initiates the
execution of the application defined by the user

the system call EXECVE (which always
place at the beginning of an application) the execution

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

The process tracker is used
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the

nitialized
state of the appl

. The initialization phase is co
pleted when the Controller sends this state to the PPC
component. At this point in time, the x86 register

of DARCO with the
execution of the a

plication as well as debugging utilities. The main task of
f the execution of the

various requests

The x86 and PPC functional emulators are heavily mod
tool)

functional emulator is
that it is a constantly updated and improving tool. This a

improvements done over
of QEMU is a

the infrastructure to
As for the rest of the components, i.e. the

ESL, the controller and the timing simulator they are in

passes through
and synchroniz

phase, the controller
turn, initiates the exec

tion of the ESL. The PPC component then remains id
state of the appl

, when launched, it initiates the
execution of the application defined by the user.

the system call EXECVE (which always
the execution

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

The process tracker is used
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the

nitialized
state of the appl

. The initialization phase is co
pleted when the Controller sends this state to the PPC

register

of DARCO with the
execution of the a

plication as well as debugging utilities. The main task of
f the execution of the

various requests

The x86 and PPC functional emulators are heavily mod
 [10

functional emulator is
that it is a constantly updated and improving tool. This a

improvements done over
of QEMU is a

the infrastructure to
As for the rest of the components, i.e. the

ESL, the controller and the timing simulator they are in

passes through
synchroniz

phase, the controller
turn, initiates the exec

tion of the ESL. The PPC component then remains id
state of the appl

, when launched, it initiates the
. When it

the system call EXECVE (which always
the execution

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

The process tracker is used
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the

nitialized, the x86
state of the appl

. The initialization phase is co
pleted when the Controller sends this state to the PPC

register state is

of DARCO with the
execution of the a

plication as well as debugging utilities. The main task of
f the execution of the

various requests

The x86 and PPC functional emulators are heavily mod
10]. The

functional emulator is
that it is a constantly updated and improving tool. This a

improvements done over
of QEMU is a

the infrastructure to
As for the rest of the components, i.e. the

ESL, the controller and the timing simulator they are in

passes through three
synchroniz

phase, the controller first
turn, initiates the exec

tion of the ESL. The PPC component then remains id
state of the appl

, when launched, it initiates the
When it

the system call EXECVE (which always takes
the execution

. A process tracker is initialized with the applic
tion’s CR3 value, which can be used to distinguish the sp
cific process from the rest of the applications running on

The process tracker is used
throughout the execution of the application in the x86 co
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the

, the x86
state of the appl

. The initialization phase is co
pleted when the Controller sends this state to the PPC

state is

of DARCO with the
execution of the ap-

plication as well as debugging utilities. The main task of
f the execution of the

various requests

The x86 and PPC functional emulators are heavily modi-
The

functional emulator is
that it is a constantly updated and improving tool. This al-

improvements done over
of QEMU is a

the infrastructure to be
As for the rest of the components, i.e. the

ESL, the controller and the timing simulator they are in-

three
synchroniza-

first
turn, initiates the execu-

tion of the ESL. The PPC component then remains idle
state of the appli-

, when launched, it initiates the
When it

takes
the execution

. A process tracker is initialized with the applica-
tion’s CR3 value, which can be used to distinguish the spe-
cific process from the rest of the applications running on

The process tracker is used
throughout the execution of the application in the x86 com-
ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the

, the x86
state of the appli-

. The initialization phase is com-
pleted when the Controller sends this state to the PPC

state is

of DARCO with the

plication as well as debugging utilities. The main task of
f the execution of the

various requests

The
functional emulator is

improvements done over
of QEMU is a

be
As for the rest of the components, i.e. the

three

first

le

, when launched, it initiates the
When it

takes
the execution

The process tracker is used

ponent in order to ease synchronization and tracking of the
changes made to the x86 state, register and memory of the

, the x86

pleted when the Controller sends this state to the PPC
state is

During the execution phase, the ESL begins by executing
code from the initial %eip it received during the initializa-
tion phase. All changes made to the x86 register state from
the emulation of the x86 instructions are stored in the “Em-
ulated x86 register state” which resides in the memory
space of the ESL. Changes made to the memory space of
the x86 application are stored in the “Emulated application
x86 memory space” which also resides in the memory
space of the ESL. While the x86 application is making for-
ward progress under the ESL, the x86 component remains
idle and its memory state untouched.

The synchronization phase is initiated by the PPC compo-
nent when any of following three events occur during the
execution phase; (1) data request, (2) system call or (3) end
of application. The data request event is raised when the
PPC component encounters a load or store instruction that
accesses an x86 memory location for the first time. The
subsequent actions from the other different components are
depicted in Figure 2. The PPC component sends a request
to the Controller for the particular data page along with the
total number of dynamic x86 basic blocks that were exe-
cuted until this point. Then, it remains idle until the request
is satisfied. The Controller forwards the request to the x86
component, which in turn continues the execution of the
application until it reaches the same execution point as the
PPC component (remember that the x86 component re-
mained idle after the initial launch of the application).
When the correct execution point is reached, the data page
is sent to the Controller and forwarded to the PPC compo-
nent. This process guarantees that after every synchroniza-
tion phase, the x86 application state, register and memory,
is identical between the x86 component and the ESL. Oth-
erwise the system complains and execution is aborted. This
is also a useful technique to debug DARCO. The exact
same process is followed for the other two events, system
calls and end of application.

System calls raise the synchronization event because the
ESL only models user-level code. The synchronization
phase will fetch the modifications done by a system call
from the x86 component. As for the end-of-application, the
synchronization phase is necessary in order to verify that
the execution of the application on the PPC component was
correct.

2.3 Emulation Software Layer (ESL)
The ESL is the software layer that executes on-top of the
PPC processor. It is responsible for translating the target
x86 code to the host PPC ISA. In a nutshell, the ESL has
four different execution modes; interpretation mode (IM),
basic block translation mode (BBM), superblock and opti-
mization mode (SBM) and code cache execution mode
(CCExec).

The ESL starts by interpreting the x86 instructions. When a
basic block (BB) executes more times than a predefined
threshold the ESL switches to BBM for this BB which is
translated and stored in the code cache. The subsequent
execution of this BB is done in CCExec and profiling in-
formation is gathered regarding the direction of the branch
and its target. When a BB reaches another repetition
threshold, it triggers SBM. During this mode, the control
flow profiling information that was collected during the
CCExec mode is used by the translator in order to create a
superblock (SB) with starting point the BB that triggered
SBM. The SB passes through several optimizations (Sec-
tion 2.3.2) and is stored in the code cache. Subsequent exe-
cutions of the SB are done in CCExec mode. The high level
view of the execution flow of ESL is shown in Figure 3.

Figure 2: Data page request from the PPC component,
enforcing the synchronization phase.

Figure 3: Emulation Software Layer execution flow. The
left path is followed in IM, the middle in BBM and the
right in SBM.

In Code$?

> BB threshold?

In Interp$?

Interpret

Store in Interp$

Prologue

Interp$ exec

Epilogue

BB translate

Store in Code$

Chain

Prologue

Code$ exec

Epilogue

Create SB

SSA
Forward Pass

Backward Pass
DDG

Instruction Scheduling
Register Allocation

Code Gen

N

Y

N
Y

N
Y

Current %eip

From CCExec

In the following sections we provide a more detailed de-
scription of the different modes of ESL but due to space
limitations we only discuss the most important scenarios.

2.3.1 Interpretation and basic block translation
The ESL begins the execution of the application in IM.
While in IM mode, x86 instructions are interpreted one by
one and the x86 state is updated accordingly. The IM guar-
antees forward progress of the application and also is used
as a safety-net in case instructions cannot be included in
basic block translations and superblocks.

There is one caveat concerning the interpretation method
employed in DARCO. Due to the complex and time con-
suming nature of building an interpreter, we decided to use
the translator provided by QEMU but instead of translating
one basic block at a time, it was modified to translate one
instruction at a time. Since QEMU’s translator was de-
signed with portability in mind (it supports translation from
various guest to host ISAs), using it to translate just one
instruction introduces high overhead. In order to accommo-
date the high cost of such interpretation method, an inter-
pretation cache is used to store the interpretations.
Subsequent executions of the same x86 instruction are ex-
tracted from the interpretation cache. This modification
reduced the cost of interpreting an x86 instruction to some
thousands of PPC instructions instead of tens of thousands.
Also note that no chaining is done between interpretations.

During IM, profiling information is being collected for the
targets of branches which is based on a repetition counter.
When the repetition counter reaches the
BB_translation_threshold, the ESL switches to BBM in
order to translate the corresponding BB.

Note that since we use a modified version of the QEMU
translator and code generator, we also inherit some of the
nomenclature. The intermediate representation of the in-
structions in DARCO is called qOps.

Figure 4 shows an abstract version of a typical translation
of an x86 BB. The original code is being translated into an
equivalent set of qOps. ESL translates all x86 memory op-

erations in a special way. We introduced new qOps and
PPC instructions for all load and store instructions in order
to be able to distinguish during the execution whether a
memory access corresponds to the application itself or the
ESL. There are two reasons for doing this. The first regards
to functionality. The PPC component needs to know if
there is an access to the x86 memory space and in the un-
common case that the data page was not communicated
before, request the page from the Controller as explained
before. The second reason regards to evaluation, since we
would like to be aware of the performance characteristics
of each translation.

At the end of the translation, two exit stubs are attached and
the BB branch target is modified to point to the taken exit
stub. Each exit stub consists of an empty position where the
chaining will be patched later during the execution, an up-
date of the %eip and branch to the ESL where the BB start-
ing at the new %eip will be interpreted or translated. When
the chain position is patched, the execution will not return
to the ESL, but instead the next BB will be executed direct-
ly from the code cache. Finally, a new PPC instruction,
eob_x86, is introduced. The purpose of this instruction is
strictly for synchronization. In terms of timing, this instruc-
tion has no effect.

The qOps are forwarded to the code generator. There, they
undergo some basic optimizations like dead code elimina-
tion and constant propagation which contribute towards
reducing the number of generated instructions. Finally, the
qOps are translated to PPC instructions and stored in the
code cache from where they are dispatched for execution.

2.3.2 Superblocks and optimizations
During Basic-Block translation Mode (BBM), profiling
information is gathered for all BBs. This information con-
sists of repetition and edge counters. When the repetition
counter reaches a predefined threshold, an event denoting
the SB creation is raised. Execution is then transferred to
ESL with SBM.

Figure 4: Abstract translation of an x86 BB to PPC. The eob_x86 instruction is used by DARCO for
execution synchronization and special ld_x86 instructions to point out accesses to x86 memory space.

In Superblock/optimization Mode (SBM), the ESL gener-
ates a new SB starting from the denoted BB. The SB gener-
ation algorithm uses the control flow information gathered
throughout the execution in BBM for decision making.
Specifically, there are several ending conditions for a SB:

1. Probability to exit the SB before the end has to be
less than a threshold

2. The outcome of the branch is not biased accord-
ing to the bias threshold

3. The biased direction is the beginning of a new SB
4. The last BB in the SB has a backward branch

The translator prepares the SB in qOps and then forwards it
to the optimizer.

The optimizer applies several transformations on the SB.
First, the qOps are transformed into a pseudo Static Single
Assignment format. This transformation significantly re-
duces the complexity of subsequent optimizations. Second,
the forward pass applies a set of conventional single pass
optimizations (copy propagation, constant propagation,
common subexpression elimination and constant folding).
Third, the backward pass applies dead code elimination.

After the basic optimizations, the Data Dependence Graph
(DDG) is prepared. The DDG contains all the real depend-
encies between the instructions along with instruction la-
tency information. The DDG is then fed to the instruction
scheduler that uses a conventional list scheduling algo-
rithm. DARCO implements an in-order processor where
instruction scheduling can improve the performance signif-
icantly. Finally, the determined schedule is used by the
register allocator that implements linear scan allocation
algorithm.

Finally, the qOps are translated to PPC instructions and the
code is stored in the code cache. The previous entry in the
code cache that corresponds to the first BB of current SB is
invalidated and freed for use by subsequent translations.

2.3.3 On the work
As mentioned in the introduction, the ESL was an in house
development. For some other parts we reused QEMU com-
ponents after heavy modification. The gluing of these com-
ponents introduces unnecessary overhead that is noticeable
during the execution. For example, for short applications or
applications where the interpreter is used often, the code
cache look up introduces high overhead since it is done for
every instruction.

Furthermore, indirect branches and return instructions are
known to be one of the sources of high overhead in dynam-
ic binary translators, since they imply re-entering the
runtime system and performing a look-up for the target
address. Techniques like Indirect Branch Target Cache and
Sieve, proposed by [5], can be employed to reduce the
number of times execution is returned to the runtime.

Currently we are working on including control and data
speculation which are techniques commonly used by co-
designed virtual machines to generate better optimized
code.

3. EXPERIMENTAL RESULTS
In this section we present a high level evaluation of the
infrastructure and a characterization of the ESL using
SPEC CPU 2006 benchmarks. Specifically, we are present-
ing information about the speed of the infra structure and
some performance characteristics regarding ESL.

Here the results are reported in terms of number of PPC
instructions, except figure 5 which is in terms of x86 in-
structions. Timing results are beyond the scope of this pa-
per. The results regard the execution of the first 200 billion
instructions due to simulation time constraints.

3.1 DARCO speed
The speed of the infrastructure is shown in Figure 5. We
measure the speed in millions of emulated x86 instructions
per second. This shows the rate of how many x86 instruc-
tions pass throughout the execution flow of DARCO which
includes all the components of the infrastructure. On aver-
age the execution rate of DARCO is approximately 2 mil-
lion x86 instructions per second.

The execution rate is directly affected by several parame-
ters. For example, the performance of DARCO for
462.libquantum is the highest because it has a small static
instruction footprint and small data footprint which incurs
minimal communication between the various components.
As another example, consider 998.specrand. The execution
rate is low since the original x86 application is very small.
As an effect, DARCO does not have enough time to amor-
tize the overhead of communication between the compo-
nents. Finally, consider 433.milc. The execution speed is
low since a lot of data pages are communicated between the
components, enforcing several synchronization points. Un-
fortunately, due to space limitations we cannot go into de-
tail for all the benchmarks.

A parameter that has a definitive impact on the execution
speed is the host processor. The results reported are on a

Figure 5: DARCO execution speed

0

1

2

3

4

5

6

7

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
8.

sje
ng

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k
99

8.
sp

ec
ra

nd
41

0.
bw

av
es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M
43

7.
le

sli
e3

d
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
47

0.
lb

m
48

2.
sp

hi
nx

3
99

9.
sp

ec
ra

nd In
t

FP Al
l

Int FP Averages

M
ill

io
n

x8
6

in
st

ru
ct

io
ns

 p
er

 se
co

nd

cluster where only one core is devoted per execution task.
All the three processes of DARCO (x86/PPC component
and controller) have to share this one only core which de-
grades the performance significantly. On typical dual core
machines, the execution rate averages on 8 million instruc-
tions per second.

3.2 ESL and SPEC characterization
Figure 6 shows the distribution of the static x86 BB in the
various modes of ESL. The threshold for promoting a BB
from interpretation to BBM is 5 executions and for pro-
moting the same BB to SBM is another 50 executions. The
conclusion we can extract from this graph is that on aver-
age 18-20% of the static code is promoted to the highest
optimization level which is in par with the common
knowledge that ~10% of the static code of the application is
responsible for 90% of the dynamic execution.

The number of PPC instructions generated for 1 x86 in-
struction is depicted in Figure 7. There are several things
that can be observed from this Figure. First, let’s concen-
trate on the cost of an x86 instruction in BBM. Around 10
PPC instructions are required to emulate a single x86 in-
struction. The cost is rather high since in the current ver-
sion of ESL, the x86 EFLAGS are handled purely through

software which introduces a relatively large number of PPC
instruction for their emulation.

The cost of emulation is reduced by 30% in SBM with re-
spect to BBM. The basic optimizations that are applied in
the forward and backward pass of the optimizer are effec-
tive in reducing the amount of qOps and PPC instructions
required for the emulation of x86 instructions.

In the future, we plan to improve the intermediate represen-
tation of instructions. The qOps are very generic since
QEMU uses the same intermediate representation to gener-
ate code for different host ISAs. In the case of DARCO, the
host architecture is specific which provides the opportunity
for a targeted intermediate representation. Modifying the
qOps of ESL into instructions that look closer to what the
PPC ISA offers will significantly reduce the cost of emula-
tion. Furthermore, we plan to emulate the x86 EFLAGS
using hardware and provide specific hardware support for
handling certain opcodes in a more efficient manner (such
as calls and returns).

The dynamic instruction distribution of the ESL is shown
in Figure 8. The red bar represents the amount of dynamic
instruction corresponding to the emulation of the x86 appli-
cation. The blue bar corresponds to the overhead intro-

Figure 6: Distribution of static x86 basic blocks in the three
modes of ESL

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
8.

sje
ng

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k
99

8.
sp

ec
ra

nd
41

0.
bw

av
es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M
43

7.
le

sli
e3

d
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
47

0.
lb

m
48

2.
sp

hi
nx

3
99

9.
sp

ec
ra

nd In
t

FP Al
l

Int FP Averages

Pe
rc

en
ta

ge
 o

f s
ta

tic
 b

as
ic

 b
lo

ck
s

Interpreter Mode Basic Block Mode Superblock Mode

Figure 8: ESL dynamic instruction distribution

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
8.

sje
ng

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k
99

8.
sp

ec
ra

nd
41

0.
bw

av
es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M
43

7.
le

sli
e3

d
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
47

0.
lb

m
48

2.
sp

hi
nx

3
99

9.
sp

ec
ra

nd In
t

FP Al
l

Int FP Averages

Dy
na

m
ic

 P
PC

 in
st

ru
ct

io
ns

PPC Insn Overhead PPC Insn Application

Figure 7: PPC instructions generated per x86 instructions in
BBM and SBM

0

2

4

6

8

10

12

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
8.

sje
ng

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k
99

8.
sp

ec
ra

nd
41

0.
bw

av
es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M
43

7.
le

sli
e3

d
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
47

0.
lb

m
48

2.
sp

hi
nx

3
99

9.
sp

ec
ra

nd In
t

FP Al
l

Int FP Averages

PP
C

in
st

ru
ct

io
ns

BBM PPC/x86 SMB PPC/x86

Figure 9: ESL overhead breakdown

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
8.

sje
ng

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
3.

xa
la

nc
bm

k
99

8.
sp

ec
ra

nd
41

0.
bw

av
es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M
43

7.
le

sli
e3

d
44

4.
na

m
d

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
47

0.
lb

m
48

2.
sp

hi
nx

3
99

9.
sp

ec
ra

nd In
t

FP Al
l

Int FP Averages

Dy
na

m
ic

 P
PC

 in
st

ru
ct

io
ns

Interpreter Overhead BB Translator Overhead SB Translator Overhead

Prologue Chaining Code$ lookup

duced by the various tasks of the runtime. The introduced
overhead is significantly higher for the integer applications.
This is due to the extensive use of indirect branches and
return instructions.

As mentioned earlier, currently the ESL does not offer any
special mechanics to handle indirection. Whenever an indi-
rect branch is encountered, execution exits the code cache
and a look-up is performed to find the target BB. This is
also reflected in the overhead breakdown depicted by Fig-
ure 9. The code cache lookup is the main source of over-
head as it happens every time the runtime is entered.

The chaining overhead is misleadingly high (20%). The
actual cost of chaining is negligible, since only a small
piece of code is executed to patch the exit stubs. Most of
this overhead is introduced by a non-taken branch which is
there to prevent chaining during interpretation. We are con-
sidering alternatives in order to eliminate this overhead.

Furthermore, the prologue corresponds to the instructions
executed to perform a “context switch” between the ESL
and the application. “Context switch” refers to the neces-
sary actions for the transition of the execution from the
runtime to the application. A “context switch” takes place
every time we interpret one instruction, or whenever we
enter the code cache from BBM or SBM. This should also
be reduced when special handling of indirect branches is
introduced.

Finally, the actual overhead of interpretation, translation
and optimization seems negligible when compared to the
aforementioned sources of overhead.

4. RELATED WORK
Some of the most characteristic examples of process level
VMs are Dynamo [15], DynamoRIO [3], IA-32 execution
layer [9] and Strata [7]. All of them employ different tech-
niques to reduce the overall overheads and guarantee that
the application will reach the steady state as fast as possi-
ble. For example DynamoRIO and IA-32 EL start with
basic block translation, while Dynamo starts with interpre-
tation. Different heuristics are used to construct larger re-
gions as early as they can afford. The common ground
among the three though, is that they apply only simple,
low-cost optimizations in order to minimize the overhead
impacts.

In the field of co-designed VMs, where the DBO is part of
the hardware platform, the most representative example is
Transmeta’s Crusoe [1,4] where the Code Morphing Soft-
ware [4] is translating x86 instructions to a VLIW instruc-
tion set. Other examples are the DAISY/BOA [6,11]
projects from IBM.

In the field of hardware-only dynamic optimizers the most
characteristic examples are RePlay [12,2] and PARROT
[16]. Both proposed an off-the-critical path hardware only
dynamic optimizer for x86 architectures. The goal was to

optimize the μops generated during the execution of the
x86 application and reuse the optimized version for subse-
quent executions of the same piece of code.

5. CONCLUSIONS
This paper presented DARCO, a complete infrastructure
that enables research on HW/SW co-designed processors.
DARCO is not an early version of an envisioned infrastruc-
ture but a mature ready-to-use and debugged tool.

DARCO interprets, translates and dynamically optimizes
x86 binaries in PPC instructions which execute on top of a
functional PPC emulator. Its Emulation Software Layer
includes an interpreter, a translator, a scheduler, a register
allocator and a staged optimizer. The other key components
are the controller that the user interacts with and the timing
simulators.

In addition to the infrastructure, in this paper we character-
ize the SPEC CPU 2006 benchmarks with respect to their
dynamic binary optimization behavior. We show the related
overheads and analyze the optimization stages each piece
of code reaches to.

ACKNOWLEDGMENTS
This work is partially supported by the Generalitat de Cata-
lunya under grant 2009SGR1250, the Spanish Ministry of
Education and Science under contracts TIN2007-61763 and
TIN2010-18368, and Intel Corporation. Demos Pavlou and
Aleksandar Brankovic were partially funded by the Gener-
alitat de Catalunya with an FI-AGAUR grant. Rakesh Ku-
mar is funded by a UPC-Research grant.

REFERENCES
[1] A. Klaiber. “The technology behind the crusoe proces-

sors”. White paper, January 2000.
[2] B. Slechta et al. “Dynamic optimization of micro-

operations”. In High-Performance Computer Architec-
ture, 2003. HPCA-9 2003. pages 165–176, Feb. 2003

[3] D. Bruening, T. Garnett, S. Amarasinghe. “An infra-
structure for adaptive dynamic optimization”. In Pro-
ceedings of the international symposium on Code
generation and optimization (CGO’03), pages 265–
275, 2003.

[4] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson,
T. Kistler, A. Klaiber, J. Mattson. “The transmeta code
morphing™ software: using speculation, recovery, and
adaptive retranslation to address real-life challenges”.
In Proceedings of the international symposium on
Code generation and optimization (CGO ’03), pages
15–24, 2003.

[5] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J.
Mars, B. R. Childers. “Evaluating Indirect Branch
Handling Mechanisms in Software Dynamic Transla-
tion Systems”. In Proceedings of the International
Symposium on Code Generation and Optimization
(CGO '07).

[6] K. Ebcioglu, E. R. Altman. “Daisy: dynamic compila-
tion for 100% architectural compatibility”. SIGARCH
Comput. Archit. News, 25(2):26–37, 1997.

[7] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.
Davidson, and M. L. Soffa. “Retargetable and recon-
figura-ble software dynamic translation”. In Proc. of
the int. symp. on Code generation and optimization
(CGO), 2003.

[8] Krewell, K., "Transmeta Gets More Efficeon", Micro-
processor Report, Vol. 17, No. 10, October 2003.

[9] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A.
Skaletsky, Y. Wang, Y. Zemach. “IA-32 execution
layer: a two-phase dynamic translator designed to sup-
port IA-32 applications on Itanium®-based systems”.
In Proceedings of the 36th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 36),
page 191, 2003.

[10] Quick EMUlation tool. http://www.qemu.org/
[11] S. Sathaye et al. “BOA: Targeting multi-gigahertz with

binary translation”. In In Proc. of the 1999 Workshop
on Binary Translation, IEEE Computer Society Tech-

nical Committee on Computer Architecture Newsletter,
pages 2–11, 1999.

[12] S.J. Patel and S.S. Lumetta. “rePLay: A hardware
framework for dynamic optimization”. IEEE Transac-
tions on Computers, 50(6):590–608, Jun 2001.

[13] Standard Performance Evaluation Corporation. SPEC
CPU2006 Benchmarks. http://www.spec.org/cpu2006/.

[14] T. Lindholm, F. Yellin. “Java Virtual Machine Specifi-
cation”. Addison Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[15] V. Bala, E. Duesterwald, S. Banerjia. “Dynamo: a
transparent dynamic optimization system”. In Proceed-
ings of the ACM SIGPLAN 2000 conference on Pro-
gramming language design and implementation (PLDI
’00), pages 1–12, 2000.

[16] Y. Almog, R. Rosner, N. Schwartz, A. Schmorak.
“Specialized Dynamic Optimizations for High-
Performance Energy-Efficient Microarchitecture”. In
Proceedings of the international Symposium on Code
Generation and Optimization (CGO’04), March 2004.

