
Optimization Software: Dakota and Pyomo

Julie Berge Ims

Haakon Eng Holck

Fall 2017

Advanced Process Simulation

Department of Chemical Engineering

Norwegian University of Science and Technology

Contents

1 Introduction 2

2 Motivation 3

2.1 Modelling . 3

2.2 Optimization . 3

3 Technology 5

3.1 Pyomo . 5

3.1.1 Mathematical Model Design . 7

3.2 PySP . 8

3.2.1 Data Files . 11

3.3 Dakota . 11

3.3.1 Solvers . 12

3.3.2 An Illustration of Convergence Times . 14

3.3.3 The Dakota/Model Interface . 15

3.3.4 The Structure of the Dakota Input File . 16

4 Example Problems 17

4.1 Maximum Flow Problem – LP . 17

4.2 Rosenbrock Function – NLP . 21

4.3 Birge and Louveaux’s Farmer Problem – SP . 22

5 Discussion and Recommendations 27

i

CONTENTS 1

A Download and Installation of Software 31

A.1 Pyomo . 31

A.2 Dakota . 32

B Pyomo code 33

B.1 Command Line Arguments . 33

B.2 Rosebrock Function . 34

B.3 Maximum flow problem . 37

C PySP code 42

C.1 Command Line Arguments . 42

C.2 Farmer problem . 42

D Dakota code 51

D.1 Dakota . 51

D.2 Rosenbrock Function in Python . 51

D.3 Rosenbrock Function in MATLAB . 55

Chapter 1

Introduction

Optimization has been a fundamental concept in human history long before mathematical

models and computers were developed. For instance, finding the best path down a mountain

can be to follow the river stream. The river is a simulation of an old but gold solution for finding

the optimal path. There is no single "best" solution method for optimization problems. De-

pending on the objective and the limitations, different methods are prefered. Today, can we

use mathematical models to formulate such real-world phenomena in order to try to find the

optimal path. Optimization softwares today try utilize these models to simulate and generate

an optimal solution, subject to some constraints. This makes optimization software a useful

tool. There are many applications and software libraries with implementations of optimization

methods, some of which have a wide range of problem applications and some of which are spe-

cialized in one kind of optimization problem.

This report will examine two softwares used for optimization purposes, The Python Optimiza-

tion Modeling Objects (Pyomo) and Dakota. These libraries are made for mathematical mod-

elling and optimization, and they contain methods to solve most kinds of optimization prob-

lems. The technology behind the softwares will be explained as well as the construction and

implementation of mathematical models. Examples of optimization problems will be inves-

tigated to better grasp the design and functionality of the two softwares. Dakota and Pyomo

will be compared in order to make some recommendations for future applications. Code and

installation guide is provided in the end.

2

Chapter 2

Motivation

2.1 Modelling

Modelling is an essential part in many aspects of engineering and scientific research. Modeling

deals with how real-world phenomena can be formulated and simplified through mathematical

equations. This is a way of structuring knowledge about real-world objects that can facilitate

the analysis of the model. The structure also provides information about the communication of

the knowledge about a mathematical model[1]. Models can be represented with a mathematical

syntax and language in order to be analyzed using computational algorithms and mathematical

theory.

2.2 Optimization

In principle, optimization consists of finding a minimum or maximum of a particular objective

function, often while the input values are constrained within some domain. Optimization of

mathematical models will utilize functions that represent objectives and constraints in order to

design the system problem[1]. A generalized representation of an optimization problem can be

the following:

3

CHAPTER 2. MOTIVATION 4

min (φ(x, y))

s.t. x ∈ X

y ∈ Y

f (x, y) ≤ ε

(2.1)

where φ(x, y) is the objective function which is to be minimized/maximized. x and y are vari-

ables and states, respectively. f (x, y) ≤ ε denotes the constraints. Note that the objective func-

tion is minimized using optimization algorithms. Whenφ(x, y) is to be maximized, the objective

function is simply reformulated to −φ(x, y).

Chapter 3

Technology

3.1 Pyomo

The Python Optimization Modeling Objects (Pyomo) software package is an open-source soft-

ware package for formulating and analysis of mathematical models for optimization applica-

tions. Pyomo is an Algebraic Modeling Language (AML), which is a high level programming

language used to construct and solve mathematical problems, optimization problems in par-

ticular. The clean syntax of high level languages is more similar to how humans would develop

and understand the structure of mathematical problems in comparison to low-level languages.

AML software provides interfaces to external solver packages which is used to solve and analyze

optimization problems[1].

Solver algorithms are often written in low-level language which offer sufficient performance

to solve large numerical problems. However, low-level languages have complex syntax which

makes it challenging to develop various applications. Pyomo has a new approach where the

main objective is to provide a software package that enables the user to construct mathematical

problems in a high-level language, Python, as well as providing interfaces for solvers for op-

timization problems. Python also supports objective oriented programming which allows the

user to formulate both simple and complex mathematical problems in a concise manner. In

this way Pyomo make use of the the flexibility and the supporting applications of the high-level

language and the performance of the low-level language for numerical computations[1]. Pyomo

5

CHAPTER 3. TECHNOLOGY 6

supports a wide range of problems and some of them are[2]:

• Linear programming (LP)

• Quadratic programming (QP)

• Nonlinear programming (NLP)

• Mixed-integer linear programming (MILP)

• Mixed-integer quadratic programming (MIQP)

• Mixed-integer nonlinear programming (MINLP)

• Stochastic programming (SP)

• Generalized disjunctive programming (GDP)

• Differential algebraic equations (DAE)

• Bilevel programming (BP)

• Mathematical programs with equilibrium constraints

Pyomo is open source which means that the source code for the particular software is avail-

able to use or modify as a developer or user. Performance limitations and other bugs can be

identified and solved by computer nerds world wide and the reliability of the software can be

improved. Pyomo was previously called Coopr and is now a software package contained in

Common Optimization Python Repository (Coopr)[1]. Pyomo supports many of solvers, both

commercial and open source and some of them are listed below[1]:

GLPK, IPOPT and CBC are open-source solvers. CPLEX and Gurobi are commercial solvers.

CHAPTER 3. TECHNOLOGY 7

Table 3.1: Solvers supported by Pyomo[3]

Mathematical problem

Solver LP QP NLP MILP MIQP MINLP SP

GLPK x x x
IPOPT x x x x
CPLEX x x x x x
Gurobi x x x x x
CBC x x x x

3.1.1 Mathematical Model Design

Pyomo supports abstract and concrete model designs. Abstract models separates the declara-

tion from the data that generates a model instance. Data may be stored in an external database

or spreadsheet. These data files would typically contain values for different variables declared in

the model file. Abstract models are useful for more complex problems that require a large num-

ber of data. Concrete models will have the data and the model instance together. The examples

later on in the report will illustrate the design for abstract and concrete models. However, there

are some basic steps for the modelling process for both abstract and concrete models[1]:

1. Create model and declare components

2. Instantiate the model

3. Apply solver

4. Interrogate solver results

A mathematical model in Pyomo requires certain components that define different aspects of

the model. [1]The components are defined in Pyomo through Python classes:

• Set set data that is used to define a model instance

• Param parameter data that is used to define a model instance

• Var decision variables in a model

• Objective expressions that are minimized or maximized in a model

CHAPTER 3. TECHNOLOGY 8

• Constraint constraint expressions in a model

The Maximum flow problem is a mathematical optimization problem and the implementation

of the model is discussed later in the report.

3.2 PySP

It is evident that data may be uncertain in the real world. Stochastic programming is a math-

ematical framework used to express and solve problems where parameter uncertainty is inde-

pendent of decisions and that these parameters may be identified on a later stage[4]. PySP is an

extension to Pyomo which provides generic inferfaces for solvers for stochastic programming[1].

This means that the original mathematical model design for pyomo is also available in PySP.

Modelling packages that aim to solve stochastic problems will require a translation of the prob-

lem into its extensive form[1]. Extensive form is a deterministic mathematical programming

formulation of the stochastic problem where all possible uncertain parameter outcomes are

represented and solved simultaneously. A deterministic formulation is when the parameter

values fully define the output. Standard solvers are able to solve and optimize this extensive

form of the stochastic program. By utilizing the high-level programming language (Python)

and the incorporation of the mathematical programming formulation in that language (Pyomo),

PySP provides highly configurable and completely generic solver implementations for stochas-

tic programs[1].

Stochastic optimization problems will contain uncertain parameters and corresponding prob-

ability distributions. These probability distributions can be converted into discrete values by

having a finite number of outcomes for each variable, high, medium or low for instance. A sce-

nario tree is then generated as a way to structure all the possible combinations of parameter

realizations. Each node will be a parameter realization for a particular random variable. A sce-

nario is a combination of random parameter realization with associated probability of occur-

rence and will act as a path from the root node of the tree to one of the leaves[1]. The illustration

below indicates how a scenario tree is constructed with only one uncertain parameter.

CHAPTER 3. TECHNOLOGY 9

Figure 3.1: Illustration of scenario tree with two stages and one uncertain parameter which is
results in three scenarios

The first stage is an initial stage before accessing any random variable parameter realization.

The second stage introduces new information which in this case is the three possible outcomes

for the random variable[4]. Since this problem only has one uncertain parameter, each of the

possible outcomes represent a scenario. Some variables are introduced to illustrate how the

stochastic problem is translated into its extensive form:

• x regular parameters and decision variables

• f (x) function which is not affected by the uncertain parameter outcome

• z uncertain parameter

• g (x, z) function which is affected by the uncertain parameter outcome

This means that an objective function could be translated into the following expression:

Objective func. = f (x)+ g (x, z)︸ ︷︷ ︸
original formulation

= f (x)+0.25 g (x, zH)+0.5 g (x, zM)+0.25 g (x, zL)︸ ︷︷ ︸
extensive formulation

Here the different scenarios are presented and solved simultaneously. Standard solvers are able

to solve and optimize this deterministic formulation of the stochastic program. Constraints will

CHAPTER 3. TECHNOLOGY 10

also be affected by the uncertainty, however, an example will presented later to illustrate this.

The next illustration is an example of a scenario tree with four stages and three uncertain pa-

rameters. Each scenario is a complete set of random variable realizations and an associated

probability of occurrence.

Figure 3.2: Illustration of scenario tree with four stages and three uncertain parameters which is
results in 12 scenarios

For simplicity, lets assume that each stage after the initialization in the first stage corresponds

to a new random variable. It is possible to have two or more random variables in one stage,

but we will consider only one per stage. That means that illustration is a four stage model with

three random variables. In last three stages, new information is revealed that was not available

in previous stages. This is how nonanticipativity is enforced, random variable outcomes are

not affected by information about the past to make future decisions. The deterministic model

is generated through this scenario tree[1]. The random variables in the different scenarios can

also indicate the development of the uncertain parameters over time.

CHAPTER 3. TECHNOLOGY 11

3.2.1 Data Files

PySP require that the data files for the stochastic optimization contain particular code and have

specific names[1]. The data files listed below are required by PySP in order to compile and run

properly.

• ReferenceModel.py deterministic reference Pyomo model

• ReferenceModel.dat reference model data

• ScenarioStructure.py PySP model to specify the structure of the scenario tree

• ScenarioStructure.dat data to instantiate the parameters/sets of the scenario tree

• AboveAverageScenario.dat data for above average scenario

• AvearageScenario.dat data for average scenario

• BelowAverageScenario.dat data for below average scenario

The names of the last three data files are not specific to AboveAverageScenario.dat, AverageScenario.dat

or BelowAverageScenario.dat. However, you must call the data files the same as you call each

scenario in ScenarioStructure.dat. Examples of these data files are attached in Appendix.

3.3 Dakota

Dakota is an open-source simulation and optimization software developed by Sandia National

Laboratories. Its purpose is to “provide engineers and other disciplinary scientists with a system-

atic and rapid means to obtain improved or optimal designs or understand sensitivity or uncer-

tainty using simulation based models.”[5] Dakota was originally meant to interface simulation

data with an archive of optimization algorithms (for use in structural analysis and design prob-

lems), but its capabilities has been expanded to include other kinds of analyses:

• Parameter studies: Exploring the effects of changes to the parameters of a simulation

model. This can provide information on smoothness, multi-modality, robustness and

nonlinearity of the simulation.

CHAPTER 3. TECHNOLOGY 12

• Design of experiments: Design and analysis of computer experiments (DACE) methods.

Meant to provide a good range for input parameters for experiments.

• Uncertainty quantification: Calculating the uncertainty propagation from inputs to out-

puts.

• Optimization: Optimization of a simulation model. Different optimization algorithms are

available: Gradient based and derivative free, local and global optimization algorithms.

Multi-objective optimization and optimization of surrogate models is also available.

• Calibration: Estimating the parameters of a simulation model to fit an experimental data

set (also known as the inverse problem). This is simply a twist on regular optimization

problems, as it minimizes the squared error between simulation data and experimental

data as a function of the model parameters. Dakota uses specialized optimization meth-

ods that are well suited to exploit the structure of these kinds of problems

These are all iterative analysis methods, which work by treating the simulation model like a black

box; Dakota knows nothing about the model apart from its outputs as a response to inputs (an

illustration is shown in figure 3.3). The algorithms implemented in Dakota are also designed to

allow for parallel computing.

3.3.1 Solvers

Dakota has a collection of different optimization solvers:

• Local gradient-based methods: These methods are the best methods to use on a smooth,

unimodal (only one minimum) system. The gradients (and preferably, hessian matrixes)

can be provided as an output from the system (analytic gradients), or be estimated using

a finite difference method. Analytic gradients are faster and more reliable, as the finite

difference method requires additional function evaluations and only returns an estimated

gradient.

• Local derivative-free methods: These methods are (as the name suggests) not reliant on

gradients, and are therefore more robust than the gradient-based methods. These can

CHAPTER 3. TECHNOLOGY 13

Figure 3.3: An illustration of the interface between Dakota and the simulation model. The figure
is taken from the user manual.[5]

be used on nonsmooth and “poorly behaved” problems. The convergence rates for the

derivative-free methods are slower than the gradient-based methods, however. Nonlinear

constraints are also a bigger difficulty in derivative-free methods; the best way to handle

nonlinear constraints is still an area of research.

• Global methods: Global methods are (excepting multistart methods) derivative-free. They

contain stochastic elements, which means that the program will behave differently (and

may produce different results) if you run it multiple times. Global methods can provide

good (but not necessarily optimal) answers on noisy, multimodal problems. As with the

local derivative free methods, nonlinear constraints makes the problem more complex.

In each of these cases, there are different solvers that are more fitting for some problem

types (constrained/unconstrained, with and without equality constraints and so on). Most of

the solvers are third-party solvers, but the majority of these are still included in the Dakota in-

stallation.

CHAPTER 3. TECHNOLOGY 14

3.3.2 An Illustration of Convergence Times

In figure 3.4, the convergence rate for a set of different solvers is shown. All methods were used

on the Rosenbrock function (see section 4.2) with initial values x1 = 1,2, x2 = 2.

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

optpp_newton

optpp_newton with numerical gradients

conmin_frcg

conmin_frcg with numerical gradients

coliny_pattern_search

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

optpp_newton

optpp_newton with numerical gradients

conmin_frcg

conmin_frcg with numerical gradients

coliny_pattern_search

Figure 3.4: The objective function value as a function of the iterations for a collection of op-
timization methods. Both plots are of the same values, with different scales on the axes (the
lower plot has a smaller scale in the y-axis but a larger scale on the x-axis). In the cases where
the same solver is used with and without numerical gradients, the function values are almost
identical and only one of the lines are visible.

The fastest to converge is the optpp_newton method, which uses both gradients and hessians.

CHAPTER 3. TECHNOLOGY 15

The conmin_frcgmethod (a conjugate gradient method), which only uses gradients, converged

slower. The derivative-free pattern search method, coliny_pattern_search, timed out after

reaching the maximum amount of iterations. It was slowly trending towards the optimum, but

would require a (comparatively) huge amount of time to converge.

The iterations shown in figure 3.4 does not tell the whole story, however. The methods that

estimated the gradients numerically needed additional computation, which is not reflected in

the iterations that are counted in the data files. The runtime for each method is given in table

3.2.

Table 3.2: The runtimes for the different methods.

Method Runtime (s)
optpp_newton 2.259
optpp_newton with numerical gradients 7.994
conmin_frcg 10.263
conmin_frcg with numerical gradients 18.406
coliny_pattern_search N/A

3.3.3 The Dakota/Model Interface

As shown in figure 3.3, some work is required to bridge the gap in the interface between the

simulation model and Dakota. Dakota reads the model outputs from a results file, and writes the

inputs into a parameter file. This means, conversely, that the interface needs to be constructed

to read the input values from the parameter file and write the outputs into the results file (pre-

processing and post-processing respectively). The default Dakota installation does not have this

functionality integrated or automated in any way, which means that there is some work required

in writing the wrapper function (the function that “wraps” around the actual model function,

handling the interfacing with Dakota) for any given problem. On the plus side, this wrapper (as

well as the simulation model) can be written in any kind of programming language that is able

to read and write to the parameter- and results file. This makes Dakota flexible and minimizes

the work required to make the model compatible with the optimization/analysis program.

If installed manually from source files, Dakota can be configured to interface directly with

Python, Matlab or Scilab. This removes the need for the wrapper function.

CHAPTER 3. TECHNOLOGY 16

3.3.4 The Structure of the Dakota Input File

An example of an input file is shown in appendix D.2. It shows the six “specification blocks”:

environment, method, model, variables, interface and responses.

• In the environment block, you can specify if you want graphical- or tabular data output

and some other advanced options for some methods. This block is optional, as these out-

put files are not required.

• The method block contains the information about the analysis method you want to use

on the simulation model. Here you specify what method you want to use, as well as the

options associated with the method. For advanced studies, multiple method blocks may

be used in one input file.

• The model block tells Dakota about what to expect from the simulation model. In simple

models, this block is unnecessary, as it will default to the single option, which means

that Dakota will expect a single set of variables and responses, as well as an interface.

• The variables of the model are specified in the variables block, where the type (for ex-

ample continuous_design/discrete_design_range/normal_uncertain or so on) is

specified, as well as other relevant options. For continuous variables, the options would be

things like initial values (although no information is strictly required for continuous_design)

while for normally distributed variables, the mean and standard deviation must be speci-

fied.

• The interface block is where Dakota is linked to the specific simulation model. The fork

keyword tells Dakota that the model considered is external from Dakota, which means it

needs to create a results- and a parameters-file. It also calls the wrapper function specified

in the analysis_driver.

• In the responses block, Dakota is told what it can expect as the outputs from the simula-

tion model. The response_function specifies the amount of responses, while keywords

like no_gradients vs. analytic_gradients vs. numerical_gradients specify whether

the model will calculate and return the gradients or not.

Chapter 4

Example Problems

Three different optimization problems are introduced, and the problem formulation and solu-

tion method (in Pyomo) is shown. The maximum flow problem is an example of linear program-

ming, the Rosenbrock function is a non-linear program and the Birge and Louveaux’s farmer

problem is chosen to demonstrate the functionality of PySP on a stochastic optimization prob-

lem. Dakota will also be used to minimize the Rosenbrock function.

4.1 Maximum Flow Problem – LP

Maximum flow problems are used to find feasible flow through a single-source, single-sink flow

network. The problem consists of nodes and edges which are linking the nodes together. The

edges have capacity and direction. The capacity is the maximum flow through a particular edge.

The objective is to maximize the total flow into the sink from the source[6]:

max
(∑

(Flow into Sink
)

(4.1)

This means that the capacity of the edges into the sink is maximized, but the flow out of the

source is not necessary at its maximum. The combination of flow through the edges between

the source and the sink will yield the optimal solution.

17

CHAPTER 4. EXAMPLE PROBLEMS 18

Figure 4.1: Illustration of a network with source ans sink . The numbers denote capacity of the
flow and the arrows denote direction of the flow.

The objective is subject to two constraints[6]:

• Capacity constraints:

The flow f through an edge e cannot exceed its capacity c

∀ e : f (e) ≤ c(e)

• Flow conservation:

Total flow into a node n is equal to the flow flowing out of the node. For all nodes except

the Source and the Sink

∀ n(n 6= Source and n 6= Sink) :
∑

finto n − ∑
fout of n = 0

The illustration above is the numerical example that is coded in the end of this report. The

problem can be formulated into a linear optimization problem (LP). fi , j denotes flow from node

i to node j. The objective is formulated as:

max
(∑

(fD,Sink + fE ,Sink
)

(4.2)

CHAPTER 4. EXAMPLE PROBLEMS 19

The objective is subject to constraints, flow capacity and flow conservation constraints. Flow

capacity constraints are defined as:

fSource,B ≤ 8 (4.3)

fSource,A ≤ 11 (4.4)

fB ,A ≤ 4 (4.5)

f A,C ≤ 5 (4.6)

fB ,C ≤ 3 (4.7)

f A,D ≤ 8 (4.8)

fC ,D ≤ 2 (4.9)

fC ,E ≤ 4 (4.10)

fD,E ≤ 5 (4.11)

fE ,Sink ≤ 6 (4.12)

fD,Sink ≤ 8 (4.13)

(4.14)

Flow conservation constraints are defined as:

Node A: f A,C + f A,D − fSource,A − fB ,A = 0 (4.15)

Node B: fSource,B − fB ,A − fB ,C = 0 (4.16)

Node C: f A,C + fB ,C − fC ,D − fC ,E = 0 (4.17)

Node D: f A,D + fC ,D − fD,E − fD,Sink = 0 (4.18)

Node E: fC ,E + fD,E − fE ,Sink = 0 (4.19)

(4.20)

The model data is in the file maxflow.dat and the mathematical problem is formulated in code

in the file maxflow.py. The implementation of maxflow.py requires certain components that

define different aspects of the model, Set, Param, Var, Objective and Constraint. This

CHAPTER 4. EXAMPLE PROBLEMS 20

first line of code is necessary to create a model object in the maxflow.py file.

Creating the model object

model = AbstractModel()

The next lines are creating different sets, parameters and variables using suitable components

such as Set, Param and Var to define the model.

Nodes in the network

model.N = Set()

Network arcs

model.A = Set(within=model.N*model.N)

Source node

model.s = Param(within=model.N)

Sink node

model.t = Param(within=model.N)

Flow capacity limits

model.c = Param(model.A)

The flow over each arc

model.f = Var(model.A, within=NonNegativeReals)

The next lines will construct the objective using the Objective component.

Maximize the flow into the sink nodes

def total_rule(model):

return sum(model.f[i,j] for (i, j) in model.A if j == value(model.t))

model.total = Objective(rule=total_rule, sense=maximize)

The very last section of the code will enforce constraints on the mathematical problem. The

Constraint component is used to define an upper limit on the flow across each edge and en-

force flow through each node.

Enforce an upper limit on the flow across each arc

def limit_rule(model, i, j):

CHAPTER 4. EXAMPLE PROBLEMS 21

return model.f[i,j] <= model.c[i, j]

model.limit = Constraint(model.A, rule=limit_rule)

Enforce flow through each node

def flow_rule(model, k):

if k == value(model.s) or k == value(model.t):

return Constraint.Skip

inFlow = sum(model.f[i,j] for (i,j) in model.A if j == k)

outFlow = sum(model.f[i,j] for (i,j) in model.A if i == k)

return inFlow == outFlow

model.flow = Constraint(model.N, rule=flow_rule)

The same components are used to construct models in Pyomo and PySP in the next examples.

This code make out the maxflow.py file and the corresponding data file and results are added

later in the report.

4.2 Rosenbrock Function – NLP

The Rosenbrock function is a mathematical optimization problem often used for performance

testing for optimization solvers and algorithms. This problem is also known as Rosenbrock’s ba-

nana function or Rosenbrock’s valley. The reason for this is because it is a non-convex function

with a global minimum in a long, narrow, parabolic shaped valley. It is easy to find the valley, but

to converge to the global minimum is rather difficult. The objective function is defined by[7]:

f (x, y) = (a −x)2 +b(y −x2)2 (4.21)

The main objective is to minimize this function an find the global minimum which is at (x, y) =
(a, a2) where f (x, y) = 0. a and b are most often set to be 1 and 100 respectively. This is a non-

linear problem, so non-linear solvers must be applied. The figure below is a plot of the Rosen-

brock function of two variables. The same components used in the implementation of the pre-

vious Maximum flow problem are used to construct this mathematical optimization problem.

CHAPTER 4. EXAMPLE PROBLEMS 22

Figure 4.2: Plot of the Rosenbrock funciton were a = 1 and b= 100. The global miniumum is at
(1,1)[7]

4.3 Birge and Louveaux’s Farmer Problem – SP

Birge and Louveaux have created a problem to illustrate how one can create and solve a stochas-

tic optimization problem. This stochastic optimization problem will be solved using PySP. Farmer

Ted has 500 acres where he can grow wheat, corn, or beans. The cost per acre is $150, $230 and

$260, respectively. Ted requires 200 tons of wheat and 240 tons of corn to feed his cattle. Pro-

duction in excess of these amounts can be sold for $170/ton wheat and $150/ton corn. If any

shortfall, additional products must be bought from the wholesaler at a cost of $238/ton wheat

and $210/ton corn. Farmer Ted can also grow beans which are sold at $36/ton for the first 6000

tons. The remaining tons will only be sold at $10/ton beans, due to economic quotas on bean

production. The average expected yield is 2.5, 3 and 20 tons per acre for wheat, corn and beans,

respectively[8]. This information can be used to introduce necessary decision variables:

• xw , xc and xb are acres of Wheat, Corn, Beans planted, respectively

• ww , wc and wb are tons of Wheat, Corn, Beans sold, respectively (at favorable price)

• eb is tons of beans sold at lower price

• yw and yc are tons of Wheat, Corn purchased

CHAPTER 4. EXAMPLE PROBLEMS 23

Decision variables are the variables which we can decide, and they can be parameters, vectors,

a function etc. The main objective of this problem is to maximize the expected profit for Ted

which is done by finding the best suitable values for the decision variables. Based on the in-

formation introduced earlier and the decision variables, the objective function for this problem

can be defined as follows:

Exp.profit =−150xw −230xc −260xb

}
Fixed cost of total acres planted

−238yw +170ww

}
Total profit from production of wheat

−210yc +150wc

}
Total profit from production of corn

+36wb +10eb

}
Total profit from production of beans

The objective function is subject to constraints according to earlier information. The constraints

can be defined as:

xw +xc +xb ≤ 500 (4.22)

2.5xw + yw −ww = 200 (4.23)

3xc + yc −wc = 240 (4.24)

20xb −wb −eb = 0 (4.25)

wb ≤ 6000 (4.26)

xw , xc , xb , yw , yc ,eb , ww , wc , wb ≥ 0 (4.27)

At this stage, this is a deterministic problem as we assume that all data are known. The determin-

istic problem is defined in ReferenceModel.py. PySP requires that the reference model is in a

file named ReferenceModel.py. The the corresponding model data is in the file ReferenceModel.dat.

In equations 4.23-25, there are constants in front of the x-values, 2.5xw , 3xc and 20xb . These

constants denote yield of the particular substance planted. Yield is considered an uncertain pa-

rameter as it may vary through time. Hence, we consider the possibility that the yield per acre

could be lower or higher than average. Lets assume equal probability for each case. That means

CHAPTER 4. EXAMPLE PROBLEMS 24

that there is is a probability of 1/3 that the the yields will be the average values that were pro-

vided (i.e., wheat 2.5; corn 3; and beans 20). It is equal probability that the yields will be lower

than average (2, 2.4, 16) and that the yields will be higher than average (3, 3.6, 24). It is assumed

that above average has 20% higher yield and below average has 20% lower yield than the average.

Each of these cases make out a set of data which we call a scenario and together they give rise to

a scenario tree. This scenario tree is rather simple as there is only one uncertain parameter. The

scenario tree for this particular problem would look something like this:

Figure 4.3: Caption

The root node with three leaf nodes which corresponds to each scenario. The cost of acre for

each substance will not be affected by the yield. The other decision variables will depend on the

scenario realization and are called second stage decisions. In order to make a systematic ap-

proach , attach a scenario subscript s = 1(above average), 2(average), 3(below average) to each

CHAPTER 4. EXAMPLE PROBLEMS 25

of the purchase and sale variables in to create a new objective function for the expected profit:

Exp.profit =−150xw −230xc −260xb

+1/3(−238yw1 +170ww1 −210yc1 +150wc1 +36wb1 +10eb1)

+1/3(−238yw2 +170ww2 −210yc2 +150wc2 +36wb2 +10eb2)

+1/3(−238yw3 +170ww3 −210yc3 +150wc3 +36wb3 +10eb3)

The new constraints can then be defined as:

xw +xc +xb ≤ 500 (4.28)

3xw + yw1 −ww1 = 200 (4.29)

2.5xw + yw2 −ww2 = 200 (4.30)

2xw + yw3 −ww3 = 200 (4.31)

3.6xc + yc1 −wc1 = 240 (4.32)

3xc + yc2 −wc2 = 240 (4.33)

2.4xc + yc3 −wc3 = 240 (4.34)

24xb −wb1 −eb1 = 0 (4.35)

20xb −wb2 −eb2 = 0 (4.36)

16xb −wb3 −eb3 = 0 (4.37)

wb1, wb2, wb3 ≤ 6000 (4.38)

All variables ≥ 0 (4.39)

The original stochastic problem is translated into this extensive form where all the different sce-

narios are represented and solved simultaneously.

Recall that data for each scenario is contained in particular .dat files. The data in the Scenario-

based data files in this case are identical, except for the very last line where the yield is spec-

ified. Repetitive code is not convenient for more complex problems, and can it be simplified

for that matter. Node-based data-files can be used instead of AboveAverageScenario.dat,

CHAPTER 4. EXAMPLE PROBLEMS 26

AverageScenario.dat and BelowAverageScenario.dat. A data file called RootNode.dat will

replace ReferenceModel.dat except it will not contain the very last line with the yield spec-

ification. BelowAverageNode.dat, AverageNode.dat, and AboveAverageNode.dat will only

contain the line which specifies the yield. The data file ScenarioStructure.dat must con-

tain the following line param ScenarioBasedData := False ; , because this is set to true by

default[1]. The same components used in the implementation of the Maximum flow problem

are used to construct this mathematical optimization problem.

Chapter 5

Discussion and Recommendations

While Dakota and Pyomo both have capabilities for optimization, the areas of use are quite

different. For simply solving optimization problems, Pyomo has a lower entry barrier, as well as

available solvers for multiple complex problem types, some of which are not included in Dakota.

Dakota includes no methods for the stochastic programming discussed in this report, nor any

LP solvers like the one used for the maximum flow problem. The lack of any simple LP solvers

(like the easily implemented Simplex method) indicates that these kinds of methods are not typ-

ically applied on the types of models that Dakota is used for.

Pyomo is an excellent tool for developing a mathematical model from scratch and applying

suitable solvers. The process of designing the mathematical model is quite straightforward as

specific model components are defined in Pyomo through Python classes. These same compo-

nents are used in PySP as this is an extension of Pyomo.

In comparison to Pyomo, Dakota requires more work to start using, as input files and wrap-

per functions have to be made before doing the analysis on the mathematical model. Therefore,

it is a waste of time to use Dakota for solving an optimization problem that can quickly be set

up and solved in Pyomo, MATLAB or similar. It is designed to be used as an auxiliary tool to

evaluate a model that is already implemented. Dakota’s interfacing means that no changes is

needed on the model itself when performing an analysis. However, this interfacing adds quite a

bit of computational overhead which affects the runtime. This can be seen when comparing the

27

CHAPTER 5. DISCUSSION AND RECOMMENDATIONS 28

times in table 3.2 (for Dakota) with the runtime for the same problem in Pyomo in section B.2.

Pyomo uses one hundredth of the time to find a solution (which is more exact than the solution

in any of the Dakota methods)! The computational cost of interfacing can be reduced (or maybe

eliminated completely) by using Dakota’s direct interface (which requires a custom installation)

but there is probably not that much to gain when using Dakota on the types of problems it’s built

for: The effect of this overhead is greatly reduced when the simulation model is more complex

than a simple polynomial function, as a larger proportion of the time is spent actually evaluat-

ing the model.

The problems tested in Pyomo or PySP can also be developed and analyzed in MATLAB. Solv-

ing LP, NLP and stochastic programs would however require additional packages to MATLAB

like CASADi or similar. For experienced MATLAB users, MATLAB would work just fine for solv-

ing such mathematical optimization problems. However, based on research and results docu-

mented in this report, Pyomo is an excellent open source substitute to MATLAB.

The CPLEX solver that is used to solve the stochastic program in PySP has to be bought and

downloaded from IBM’s website. The license is free for students but not publicly available to

other users. Even though Pyomo is an open-source software package, this restriction will how-

ever limit which solvers the user has access to and what kind of problems can be solved.

Bibliography

[1] Hart, William E., Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A. Hackebeil,

Bethany L. Nicholson, and John D. Siirola.

Pyomo – Optimization Modeling in Python. Second Edition. Vol. 67. Springer, 2017.

[2] Pyomo website

http://www.pyomo.org/about/

[3] List of Optimization software

https://en.wikipedia.org/wiki/List_of_optimization_software

[4] Watson, Jean-Paul, David L. Woodruff, and William E. Hart. PySP: modeling and solving

stochastic programs in Python. Mathematical Programming Computation 4, no. 2 (2012):

109-149.

[5] Adams, Brian M., et al. DAKOTA, a multilevel parallel object-oriented framework for design

optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: ver-

sion 6.7 user’s manual Sandia National Laboratories, Tech. Rep. SAND2014-4633 (2014 [up-

dated 2017]).

[6] Ford, L. R.; Fulkerson, D. R. (1956). Maximal flow through a network. Canadian Journal of

Mathematics. doi:10.4153/CJM-1956-045-5.

[7] Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a

function. The Computer Journal. 3 (3): 175–184. doi:10.1093/comjnl/3.3.175. ISSN 0010-

4620.

29

BIBLIOGRAPHY 30

[8] Jeff Linderoth. Stochastic Programming Modeling

http://homepages.cae.wisc.edu/ linderot/classes/ie495/lecture3.pdf Univer-

sity of Wisconsin-Madison. Published 20.01.2003

Appendix A

Download and Installation of Software

A.1 Pyomo

There are multiple ways to install Pyomo and its optimizing solvers. Homebrew and Anaconda

are both package mangers aimed to install objects into /usr/local/. This downloading tuto-

rial will be using Anaconda. Anaconda works for Linux, Mac OS/X and other Unix variants.Linux,

Mac OS/X and other Unix variants typically have Python pre-installed[2]. To check what version

you have, run the following command in your terminal:

1 $ python −V

Make sure to download the correct version of Anaconda for your Python version.

Install Pyomo with Anaconda

Download Anaconda from https://www.anaconda.com/download/macos. Run the following

command to install the latest version of Pyomo:

1 $ conda i n s t a l l −c conda−forge pyomo

Pyomo also has conditional dependencies on a variety of third-party Python packages. PySP is

part of this Pyomo extension package. These can also be installed with Anaconda:

1 $ conda i n s t a l l −c conda−forge pyomo. extras

Pyomo does not include any stand-alone optimization solvers. Consequently, most users will

need to install third-party solvers to analyze optimization models built with Pyomo. The GNU

Linear Programming Kit (GLPK) is a software package intended for solving large-scale linear

31

APPENDIX A. DOWNLOAD AND INSTALLATION OF SOFTWARE 32

programming (LP), mixed integer programming (MIP), and other related problems. This soft-

ware package can be downloaded with the following command in your terminal:

1 $ conda i n s t a l l −c bioconda glpk

IPOPT, short for "Interior Point OPTimizer, pronounced I-P-Opt", is a software library for large

scale nonlinear optimization of continuous systems. This software library can be downloaded

with the following command in your terminal:

1 $ conda i n s t a l l −c bioconda ipopt

A.2 Dakota

Dakota is available for Windows, Mac OS X and Linux. Downloading Dakota is a pretty straight-

forward process. A pre-built version of Dakota can be downloaded from Dakota’s homepages

https://dakota.sandia.gov/download.html (the pre-built Linux versions are built on RHEL

6 and 7, and might not work on other Linux distributions). Then, the files must be extracted to

a fitting location, and the extracted directory must be renamed to “Dakota”.

The platform’s PATH must also be set to access the Dakota executables. This process is de-

scribed in https://dakota.sandia.gov/content/set-environment-linux-mac-os-x (for

OS X and Linux) and in https://dakota.sandia.gov/content/set-windows-environment

(for Windows).

For advanced users, it’s also possible to download and compile Dakota from source code.

https://dakota.sandia.gov/download.html
https://dakota.sandia.gov/content/set-environment-linux-mac-os-x
https://dakota.sandia.gov/content/set-windows-environment

Appendix B

Pyomo code

B.1 Command Line Arguments

• -h or ——help

Show help message and exit. The following command will show help message and other

supporting commands to help with general problem solving.

$ pyomo solve -h

While this next command will provide support and messages for the glpk solver.

$ pyomo solve --solver=glpk -h

The next command will provide documentation about the different solver interfaces and

solver managers available.

$ pyomo help -s

• ——solver=SOLVER TYPE

The type of solver used to solve scenario sub-problems. Default is cplex. The following

line will solve the instance specified in someProblem.py using a glpk solver. The glpk

solver is most suitable for LP(linar programming and MIP (mixed integer programming).

$ pyomo solve --solver=glpk someProblem.py

33

APPENDIX B. PYOMO CODE 34

• Concrete Model

ConcreteProblem.py contains both data and model instance. This command will solve

the optimization problem in ConcreteProblem.py

$ pyomo solve --solver=somesolver ConcreteProblem.py

• Abstract Model

AbstractProblem.py contains the model instance while AbstractProblem.dat con-

tains the supporting data. This command will solve the optimization problem that is de-

fined through AbstractProblem.py and AbstractProblem.dat

$ pyomo solve --solver=somesolver AbstractProblem.py AbstractProblem.dat

B.2 Rosebrock Function

Command line

The following command is used in the terminal to compile and execute the optimization prob-

lem.

$ pyomo solve --solver=ipopt rosenbrock.py

Rosenbrock.py

rosenbrock.py

A Pyomo model for the Rosenbrock problem

from pyomo.environ import *

model = ConcreteModel()

model.x = Var(initialize=1.5)

model.y = Var(initialize=1.5)

def rosenbrock(model):

APPENDIX B. PYOMO CODE 35

return (1.0-model.x)**2 + 100.0*(model.y - model.x**2)**2

model.obj = Objective(rule=rosenbrock, sense=minimize)

Rosenbrock result

==

= Solver Results =

==

--

Problem Information

--

Problem:

- Lower bound: -inf

Upper bound: inf

Number of objectives: 1

Number of constraints: 0

Number of variables: 2

Sense: unknown

--

Solver Information

--

Solver:

- Status: ok

Message: Ipopt 3.11.1\x3a Optimal Solution Found

Termination condition: optimal

Id: 0

Error rc: 0

Time: 0.021049976348876953

--

Solution Information

--

APPENDIX B. PYOMO CODE 36

Solution:

- number of solutions: 1

number of solutions displayed: 1

- Gap: None

Status: optimal

Message: Ipopt 3.11.1\x3a Optimal Solution Found

Objective:

obj:

Value: 7.013645951336496e-25

Variable:

y:

Value: 1.0000000000016314

x:

Value: 1.0000000000008233

Constraint: No values

APPENDIX B. PYOMO CODE 37

B.3 Maximum flow problem

This is code for the maximum flow problem example. In this case Z oo is the source and Home

is the source.

Command line

The following command is used in the terminal to compile and execute the optimization prob-

lem.

$ pyomo solve --solver=glpk maxflow.py maxflow.dat

maxflow.dat

set N := Zoo A B C D E Home;

set A := (Zoo,A) (Zoo,B) (A,C) (A,D) (B,A) (B,C) (C,D) (C,E) (D,E) (D,Home) (E,Home);

param s := Zoo;

param t := Home;

param: c :=

Zoo A 11

Zoo B 8

A C 5

A D 8

B A 4

B C 3

C D 2

C E 4

D E 5

D Home 8

E Home 6;

APPENDIX B. PYOMO CODE 38

maxflow.py

from pyomo.environ import *

model = AbstractModel()

Nodes in the network

model.N = Set()

Network arcs

model.A = Set(within=model.N*model.N)

Source node

model.s = Param(within=model.N)

Sink node

model.t = Param(within=model.N)

Flow capacity limits

model.c = Param(model.A)

The flow over each arc

model.f = Var(model.A, within=NonNegativeReals)

Maximize the flow into the sink nodes

def total_rule(model):

return sum(model.f[i,j] for (i, j) in model.A if j == value(model.t))

model.total = Objective(rule=total_rule, sense=maximize)

Enforce an upper limit on the flow across each arc

def limit_rule(model, i, j):

APPENDIX B. PYOMO CODE 39

return model.f[i,j] <= model.c[i, j]

model.limit = Constraint(model.A, rule=limit_rule)

Enforce flow through each node

def flow_rule(model, k):

if k == value(model.s) or k == value(model.t):

return Constraint.Skip

inFlow = sum(model.f[i,j] for (i,j) in model.A if j == k)

outFlow = sum(model.f[i,j] for (i,j) in model.A if i == k)

return inFlow == outFlow

model.flow = Constraint(model.N, rule=flow_rule)

Maxflow result

==

= Solver Results =

==

--

Problem Information

--

Problem:

- Name: unknown

Lower bound: 14.0

Upper bound: 14.0

Number of objectives: 1

Number of constraints: 17

Number of variables: 12

Number of nonzeros: 30

Sense: maximize

--

Solver Information

APPENDIX B. PYOMO CODE 40

--

Solver:

- Status: ok

Termination condition: optimal

Statistics:

Branch and bound:

Number of bounded subproblems: 0

Number of created subproblems: 0

Error rc: 0

Time: 0.023765087127685547

--

Solution Information

--

Solution:

- number of solutions: 1

number of solutions displayed: 1

- Gap: 0.0

Status: feasible

Message: None

Objective:

total:

Value: 14

Variable:

f[D,E]:

Value: 2

f[D,Home]:

Value: 8

f[B,C]:

Value: 3

f[Zoo,A]:

APPENDIX B. PYOMO CODE 41

Value: 11

f[E,Home]:

Value: 6

f[C,E]:

Value: 4

f[C,D]:

Value: 2

f[A,C]:

Value: 3

f[A,D]:

Value: 8

f[Zoo,B]:

Value: 3

Constraint: No values

Appendix C

PySP code

C.1 Command Line Arguments

These are some useful command line arguments for PySP:

• ——model-directory=MODEL DIRECTORY

The directory of the reference model file ReferenceModel.py and ReferenceModel.dat

• ——instance-directory=SCENARIO DIRECTORY

The directory where the scenario tree is specified. The directory of ScenarioStructure.py

and ScenarioStructure.dat as well as data for the particular scenarios.

• ——solver=SOLVER TYPE

The type of solver used to solve scenario sub-problems. Default is cplex.

To compile and run the farmer problem, type the following command with cplex solver in the

terminal:

$ runef --model-directory=MODELDIRECTORY --instance-directory=SCENARIODATA

C.2 Farmer problem

ReferenceModel.py

42

APPENDIX C. PYSP CODE 43

1 ___

2 #

3 # Pyomo: Python Optimization Modeling Objects

4 # Copyright 2017 National Technology and Engineering Solutions of Sandia , LLC

5 # Under the terms of Contract DE−NA0003525 with National Technology and

6 # Engineering Solutions of Sandia , LLC , the U. S . Government r e ta i ns certain

7 # r i g h t s in t h i s software .

8 # This software i s distr ibuted under the 3−clause BSD License .

9 # ___

10

11 # Farmer : rent out version has a s c a l a r root node var

12 # note : t h i s w i l l minimize

13 #

14 # Imports

15 #

16

17 from pyomo. core import *

18

19 #

20 # Model

21 #

22

23 model = AbstractModel ()

24

25 #

26 # Parameters

27 #

28

29 model .CROPS = Set ()

30

31 model .TOTAL_ACREAGE = Param(within=Posit iveReals)

32

33 model . PriceQuota = Param(model .CROPS, within=Posit iveReals)

34

35 model . SubQuotaSellingPrice = Param(model .CROPS, within=Posit iveReals)

36

APPENDIX C. PYSP CODE 44

37 def super_quota_sel l ing_price_validate (model , value , i) :

38 return model . SubQuotaSellingPrice [i] >= model . SuperQuotaSellingPrice [i]

39

40 model . SuperQuotaSellingPrice = Param(model .CROPS, v al i d a te =

super_quota_sel l ing_price_validate)

41

42 model . CattleFeedRequirement = Param(model .CROPS, within=NonNegativeReals)

43

44 model . PurchasePrice = Param(model .CROPS, within=Posit iveReals)

45

46 model . PlantingCostPerAcre = Param(model .CROPS, within=Posit iveReals)

47

48 model . Yield = Param(model .CROPS, within=NonNegativeReals)

49

50 #

51 # Variables

52 #

53

54 model . DevotedAcreage = Var (model .CROPS, bounds = (0 . 0 , model .TOTAL_ACREAGE))

55

56 model . QuantitySubQuotaSold = Var (model .CROPS, bounds = (0 . 0 , None))

57 model . QuantitySuperQuotaSold = Var (model .CROPS, bounds = (0 . 0 , None))

58

59 model . QuantityPurchased = Var (model .CROPS, bounds = (0 . 0 , None))

60

61 #

62 # Constraints

63 #

64

65 def ConstrainTotalAcreage_rule (model) :

66 return summation(model . DevotedAcreage) <= model .TOTAL_ACREAGE

67

68 model . ConstrainTotalAcreage = Constraint (rule=ConstrainTotalAcreage_rule)

69

70 def EnforceCattleFeedRequirement_rule (model , i) :

71 return model . CattleFeedRequirement [i] <= (model . Yield [i] * model . DevotedAcreage [i]) +

APPENDIX C. PYSP CODE 45

model . QuantityPurchased [i] − model . QuantitySubQuotaSold [i] − model .

QuantitySuperQuotaSold [i]

72

73 model . EnforceCattleFeedRequirement = Constraint (model .CROPS, rule=

EnforceCattleFeedRequirement_rule)

74

75 def LimitAmountSold_rule (model , i) :

76 return model . QuantitySubQuotaSold [i] + model . QuantitySuperQuotaSold [i] − (model . Yield

[i] * model . DevotedAcreage [i]) <= 0.0

77

78 model . LimitAmountSold = Constraint (model .CROPS, rule=LimitAmountSold_rule)

79

80 def EnforceQuotas_rule (model , i) :

81 return (0 . 0 , model . QuantitySubQuotaSold [i] , model . PriceQuota [i])

82

83 model . EnforceQuotas = Constraint (model .CROPS, rule=EnforceQuotas_rule)

84

85 #

86 # Stage−s p e c i f i c cost computations

87 #

88

89 def ComputeFirstStageCost_rule (model) :

90 return summation(model . PlantingCostPerAcre , model . DevotedAcreage)

91

92 model . FirstStageCost = Expression (rule=ComputeFirstStageCost_rule)

93

94 def ComputeSecondStageCost_rule (model) :

95 expr = summation(model . PurchasePrice , model . QuantityPurchased)

96 expr −= summation(model . SubQuotaSellingPrice , model . QuantitySubQuotaSold)

97 expr −= summation(model . SuperQuotaSellingPrice , model . QuantitySuperQuotaSold)

98 return expr

99

100 model . SecondStageCost = Expression (rule=ComputeSecondStageCost_rule)

101

102 #

103 # PySP Auto−generated Objective

APPENDIX C. PYSP CODE 46

104 #

105 # minimize : sum of StageCosts

106 #

107 # An act ive scenario objective equivalent to that generated by PySP i s

108 # included here for informational purposes .

109 def t o t a l _ c o s t _ r u l e (model) :

110 return model . FirstStageCost + model . SecondStageCost

111 model . Total_Cost_Objective = Objective (rule= total_cost_ru le , sense=minimize)

ReferenceModel.dat

1 set CROPS := WHEAT CORN SUGAR_BEETS ;

2

3 param TOTAL_ACREAGE := 500 ;

4

5 # no quotas on wheat or corn

6 param PriceQuota :=

7 WHEAT 100000 CORN 100000 SUGAR_BEETS 6000 ;

8

9 param SubQuotaSellingPrice :=

10 WHEAT 170 CORN 150 SUGAR_BEETS 36 ;

11

12 param SuperQuotaSellingPrice :=

13 WHEAT 0 CORN 0 SUGAR_BEETS 10 ;

14

15 param CattleFeedRequirement :=

16 WHEAT 200 CORN 240 SUGAR_BEETS 0 ;

17

18 # can ' t purchase beets (no need , as c a t t l e don ' t eat them)

19 param PurchasePrice :=

20 WHEAT 238 CORN 210 SUGAR_BEETS 100000 ;

21

22 param PlantingCostPerAcre :=

23 WHEAT 150 CORN 230 SUGAR_BEETS 260 ;

24

25 param Yield := WHEAT 3.0 CORN 3.6 SUGAR_BEETS 24 ;

APPENDIX C. PYSP CODE 47

ScenarioStructure.py

1 from coopr .pyomo import *

2 model = AbstractModel ()

3 model . Stages = Set (ordered=True)

4 model . Nodes = Set ()

5 model . NodeStage = Param(model . Nodes , \

6 within=model . Stages)

7 model . Children = Set (model . Nodes , \

8 within=model . Nodes , \

9 ordered=True)

10 model . ConditionalProbabil ity = Param(model . Nodes)

11 model . Scenarios = Set (ordered=True)

12 model . ScenarioLeafNode = Param(model . Scenarios , \

13 within=model . Nodes)

14 model . StageVariables = Set (model . Stages)

15 model . StageCostVariable = Param(model . Stages)

16 model . ScenarioBasedData = Param(within=Boolean , default=True)

ScenarioStructure.dat

1 # IMPORTANT − THE STAGES ARE ASSUMED TO BE IN TIME−ORDER.

2

3 set Stages := F i r s t S t a g e SecondStage ;

4

5 set Nodes := RootNode

6 BelowAverageNode

7 AverageNode

8 AboveAverageNode ;

9

10 param NodeStage := RootNode F i r s t S t a g e

11 BelowAverageNode SecondStage

12 AverageNode SecondStage

13 AboveAverageNode SecondStage ;

14

15 set Children [RootNode] := BelowAverageNode

16 AverageNode

APPENDIX C. PYSP CODE 48

17 AboveAverageNode ;

18

19 param ConditionalProbabil ity := RootNode 1.0

20 BelowAverageNode 0.33333333

21 AverageNode 0.33333334

22 AboveAverageNode 0.33333333 ;

23

24 set Scenarios := BelowAverageScenario

25 AverageScenario

26 AboveAverageScenario ;

27

28 param ScenarioLeafNode :=

29 BelowAverageScenario BelowAverageNode

30 AverageScenario AverageNode

31 AboveAverageScenario AboveAverageNode ;

32

33 set StageVariables [F i r s t S t a g e] := DevotedAcreage [*] ;

34

35 set StageVariables [SecondStage] := QuantitySubQuotaSold [*]

36 QuantitySuperQuotaSold [*]

37 QuantityPurchased [*] ;

38

39 param StageCost := F i r s t S t a g e FirstStageCost

40 SecondStage SecondStageCost ;

AboveAverageScenario.dat

1

2 # above mean scenario

3

4 set CROPS := WHEAT CORN SUGAR_BEETS ;

5

6 param TOTAL_ACREAGE := 500 ;

7

8 # no quotas on wheat or corn

9 param PriceQuota := WHEAT 100000 CORN 100000 SUGAR_BEETS 6000 ;

10

APPENDIX C. PYSP CODE 49

11 param SubQuotaSellingPrice := WHEAT 170 CORN 150 SUGAR_BEETS 36 ;

12

13 param SuperQuotaSellingPrice := WHEAT 0 CORN 0 SUGAR_BEETS 10 ;

14

15 param CattleFeedRequirement := WHEAT 200 CORN 240 SUGAR_BEETS 0 ;

16

17 # can ' t purchase beets (no r e a l need , as c a t t l e don ' t eat them)

18 param PurchasePrice := WHEAT 238 CORN 210 SUGAR_BEETS 100000 ;

19

20 param PlantingCostPerAcre := WHEAT 150 CORN 230 SUGAR_BEETS 260 ;

21

22 param Yield := WHEAT 3.0 CORN 3.6 SUGAR_BEETS 24 ;

BelowAverageScenario.dat

1 # below−mean scenario

2

3 set CROPS := WHEAT CORN SUGAR_BEETS ;

4

5 param TOTAL_ACREAGE := 500 ;

6

7 # no quotas on wheat or corn

8 param PriceQuota := WHEAT 100000 CORN 100000 SUGAR_BEETS 6000 ;

9

10 param SubQuotaSellingPrice := WHEAT 170 CORN 150 SUGAR_BEETS 36 ;

11

12 param SuperQuotaSellingPrice := WHEAT 0 CORN 0 SUGAR_BEETS 10 ;

13

14 param CattleFeedRequirement := WHEAT 200 CORN 240 SUGAR_BEETS 0 ;

15

16 # can ' t purchase beets (no r e a l need , as c a t t l e don ' t eat them)

17 param PurchasePrice := WHEAT 238 CORN 210 SUGAR_BEETS 100000 ;

18

19 param PlantingCostPerAcre := WHEAT 150 CORN 230 SUGAR_BEETS 260 ;

20

21 param Yield := WHEAT 2.0 CORN 2.4 SUGAR_BEETS 16 ;

APPENDIX C. PYSP CODE 50

AverageScenario.dat

1 # "mean" scenario

2

3 set CROPS := WHEAT CORN SUGAR_BEETS ;

4

5 param TOTAL_ACREAGE := 500 ;

6

7 # no quotas on wheat or corn

8 param PriceQuota := WHEAT 100000 CORN 100000 SUGAR_BEETS 6000 ;

9

10 param SubQuotaSellingPrice := WHEAT 170 CORN 150 SUGAR_BEETS 36 ;

11

12 param SuperQuotaSellingPrice := WHEAT 0 CORN 0 SUGAR_BEETS 10 ;

13

14 param CattleFeedRequirement := WHEAT 200 CORN 240 SUGAR_BEETS 0 ;

15

16 # can ' t purchase beets (no r e a l need , as c a t t l e don ' t eat them)

17 param PurchasePrice := WHEAT 238 CORN 210 SUGAR_BEETS 100000 ;

18

19 param PlantingCostPerAcre := WHEAT 150 CORN 230 SUGAR_BEETS 260 ;

20

21 param Yield := WHEAT 2.5 CORN 3 SUGAR_BEETS 20 ;

Appendix D

Dakota code

D.1 Dakota

To run Dakota, you need open the command line (remember to set the path!), navigate to the

directory in which your input file is located, then write:

dakota [name of input file].in

This will just run the actions in the in-file, and show the output in the console. To save the

output to a textfile, you can write

dakota -i [name of input file].in -o [name of output file].out

If you include the tabular_data option in your input file (as shown below in section D.2),

the raw data will be saved in a .dat file, which is generally more useful than saving the console

output like above.

D.2 Rosenbrock Function in Python

1 # Demonstrate Dakota s c r i p t i n t e r f a c e to Python analysis (Rosenbrock)

2

3 environment ,

4 tabular_data

5 t a b u l a r _ d a t a _ f i l e = ' rosen_opt . dat '

6

7 method ,

51

APPENDIX D. DAKOTA CODE 52

8 optpp_newton

9 max_iterations = 50

10 convergence_tolerance = 1e−4

11

12 model ,

13 s ingle

14

15 variables ,

16 continuous_design = 2

17 c d v _ i n i t i a l _ p o i n t −1.2 1.0

18 cdv_lower_bounds −2.0 −2.0

19 cdv_upper_bounds 2.0 2.0

20 cdv_descriptor ' x1 ' ' x2 '

21

22 interface ,

23 fork

24 a n a l y s i s _ d r i v e r s = ' python . exe rosenbrock_bb_di . py '

25 parameters_fi le = 'params . in '

26 r e s u l t s _ f i l e = ' r e s u l t s . out '

27

28 responses ,

29 num_objective_functions = 1

30 analyt ic_gradients

31 analytic_hessians

The wrapper function rosenbrock_bb_di.py is specified in the analysis_drivers field.

1 import dakota . i n t e r f a c i n g as di

2

3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 # Parse Dakota parameters f i l e

5 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−
6

7 params , r e s u l t s = di . read_parameters_file ()

8

9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 # Convert and send to application

APPENDIX D. DAKOTA CODE 53

11 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12

13

14 # set up the data structures the rosenbrock analysis code expects

15 # for t h i s simple example , put a l l the variables into a single hardwired array

16 # The asv has to be mapped back into an integer

17 continuous_vars = [params [' x1 '] , params [' x2 ']]

18 act ive_set_vector = 0

19 i f r e s u l t s [" obj_fn "] . asv . function :

20 act ive_set_vector += 1

21 i f r e s u l t s [" obj_fn "] . asv . gradient :

22 act ive_set_vector += 2

23 i f r e s u l t s [" obj_fn "] . asv . hessian :

24 act ive_set_vector += 4

25

26 # set a dictionary for passing to rosenbrock via Python kwargs

27 rosen_params = { }

28 rosen_params [' cv '] = continuous_vars

29 rosen_params [' asv '] = [act ive_set_vector]

30 rosen_params [' functions '] = 1

31

32 # execute the rosenbrock analysis as a separate Python module

33 print "Running rosenbrock . . . "

34 from rosenbrock import rosenbrock_l ist

35 rosen_results = rosenbrock_l ist (* * rosen_params)

36 print "Rosenbrock complete . "

37

38 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 # Return the r e s u l t s to Dakota

40 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−
41

42 # I n s e r t functions from rosen into r e s u l t s

43 # Results i t e r a t o r provides an index , response name, and response

44 for i , n , r in r e s u l t s :

45 i f r . asv . function :

46 r . function = rosen_results [' fns '] [i]

APPENDIX D. DAKOTA CODE 54

47 i f r . asv . gradient :

48 r . gradient = rosen_results [' fnGrads '] [i]

49 i f r . asv . hessian :

50 r . hessian = rosen_results [' fnHessians '] [i]

51

52 r e s u l t s . write ()

The wrapper function calls the actual simulation model. In this case it is simply the Rosenbrock

function, which is a test function for optimization algorithms. It could be swapped out for a

complex model with the same number of inputs and outputs without needing to change much

(if anything) in the input- and wrapper files.

1 def rosenbrock_list (* * kwargs) :

2

3 num_fns = kwargs [' functions ']

4

5 x = kwargs [' cv ']

6 ASV = kwargs [' asv ']

7

8 f0 = x[1]−x [0] * x [0]

9 f1 = 1−x [0]

10

11 r e t v a l = d i c t ([])

12

13 i f (ASV[0] & 1) : # * * * * f :

14 f = [100* f0 * f0+f1 * f1]

15 r e t v a l [' fns '] = f

16

17 i f (ASV[0] & 2) : # * * * * df /dx :

18 g = [[−400* f0 * x [0] − 2* f1 , 200* f0]]

19 r e t v a l [' fnGrads '] = g

20

21 i f (ASV[0] & 4) : # * * * * d^2 f /dx^2:

22 f x = x [1]−3* x [0] * x [0]

23

24 h = [

25 [[−400* f x + 2 , −400*x [0]] ,

APPENDIX D. DAKOTA CODE 55

26 [−400*x [0] , 200]]

27]

28 r e t v a l [' fnHessians '] = h

29

30 return (r e t v a l)

D.3 Rosenbrock Function in MATLAB

Another example of an input file, this time interfacing with MATLAB. Note that this input file

is without the environment block as well as the model block. The lack of a model block makes

no difference, as the default value is single, like specified above. The lack of the environment

block means no .dat file will be created. A different local gradient based solver than before is

used (conmin_frcg) and the gradients are estimated numerically. In reality, the interface

block from this input file could be inserted into the one above (assuming that the MATLAB

model would calculate the gradients and hessians, which this example does not), and it would

work just as well.

1 method ,

2 conmin_frcg

3

4 variables ,

5 continuous_design = 2

6 c d v _ i n i t i a l _ p o i n t −1.0 1.0

7 cdv_lower_bounds −2.0 −2.0

8 cdv_upper_bounds 2.0 2.0

9 cdv_descriptor ' x1 ' ' x2 '

10

11 interface ,

12 fork ,

13 parameters_fi le = 'params . in '

14 r e s u l t s _ f i l e = ' r e s u l t s . out '

15 a n al y s i s _ d r i v e r = ' c s c r i p t matlab_rosen_bb_simulator . vbs '

16

17 responses ,

18 num_objective_functions = 1

APPENDIX D. DAKOTA CODE 56

19 numerical_gradients

20 fd_gradient_step_size = .000001

21 no_hessians

Note that the input file calls a VBScript, which in turn calls the MATLAB wrapper script:

1 Dim mlobj

2

3 Set mlobj = CreateObject ("Matlab . Application ")

4

5 ' Direct the matlab server to change to the current working directory , where the

6 ' parameters f i l e w i l l be written by Dakota , and where Dakota expects to find

7 ' the responses f i l e a f t e r completion of t h i s s c r i p t

8 sCurPath = CreateObject (" Script ing . FileSystemObject ") . GetAbsolutePathName (" . ")

9 cd_command = "cd (' " & sCurPath & " ') "

10 mlobj . Execute (cd_command)

11

12 ' Get the command l i n e arguments passed by DAKOTA, so we work on the correct f i l e s

13 paramsfile = WScript . Arguments . Item (0)

14 r e s u l t s f i l e = WScript . Arguments . Item (1)

15

16 Dim matlab_command

17 matlab_command = "matlab_rosen_wrapper (' " & paramsfile & " ' , ' " & r e s u l t s f i l e & " ') "

18

19 Dim r e s u l t

20 r e s u l t = mlobj . Execute (matlab_command)

21 WScript . Echo "Matlab returned : " & r e s u l t

22

23 'TODO: capture and act on any error from Matlab

The MATLAB wrapper is:

1 function matlab_rosen_wrapper (params , r e s u l t s)

2

3 %−−
4 % Set any f ixed / default values needed for your analysis .m code

5 %−−
6

7 alpha = 100;

APPENDIX D. DAKOTA CODE 57

8

9

10 %−−
11 % READ params . in (or params . in .num) from DAKOTA and set Matlab variables

12 %

13 % read params . in (no aprepro) −− j u s t one param per l i n e

14 % continuous design , then U.C. vars

15 % −−> 1 s t c e l l of C has values , 2nd c e l l l a b e l s

16 % −−> variables are in rows 2−−>?

17 %−−
18

19 f i d = fopen (params , ' r ') ;

20 C = textscan (f id , '%n%s ') ;

21 f c l o s e (f i d) ;

22

23 num_vars = C{ 1 } (1) ;

24

25

26 % set design variables −− could use vector notation

27 % rosenbrock x1 , x2

28

29 x (1) = C{ 1 } (2) ;

30 x (2) = C{ 1 } (3) ;

31

32

33 %−−
34 % CALL your analysis code to get the function value

35 %−−
36

37 [f] = rosenbrock (x , alpha) ;

38

39

40 %−−
41 % WRITE r e s u l t s . out

42 %−−
43 f i d = fopen (r es u l ts , 'w') ;

APPENDIX D. DAKOTA CODE 58

44 f p r i n t f (f id , ' %20.10e f \n ' , f) ;

45 %f p r i n t f (f id , '%20.10e params\n ' , C{ 1 } (2 : 5)) ;

46

47 f c l o s e (f i d) ;

48

49 % a l t e r n a t e l y

50 %save (r e su l ts , ' vContact ' , ' − a s c i i ') ;

The actual objective function is (like before) very simple, but could just as well be a complicated

simulation model.

1 % return function values for the rosenbrock problem

2 % f (x1 , x2) = alpha * (x2 − x1^2) ^2 + (1 − x1) ^2

3

4 function f = rosenbrock (x , alpha) ;

5

6 f = alpha * (x (2) − x (1) ^2) ^2 + (1 − x (1)) ^2;

7

8 end

	Introduction
	Motivation
	Modelling
	Optimization

	Technology
	Pyomo
	Mathematical Model Design

	PySP
	Data Files

	Dakota
	Solvers
	An Illustration of Convergence Times
	The Dakota/Model Interface
	The Structure of the Dakota Input File

	Example Problems
	Maximum Flow Problem – LP
	Rosenbrock Function – NLP
	Birge and Louveaux’s Farmer Problem – SP

	Discussion and Recommendations
	Download and Installation of Software
	Pyomo
	Dakota

	Pyomo code
	Command Line Arguments
	Rosebrock Function
	Maximum flow problem

	PySP code
	Command Line Arguments
	Farmer problem

	Dakota code
	Dakota
	Rosenbrock Function in Python
	Rosenbrock Function in MATLAB

