
TKP4555

Advanced Simulation

TensorFlow

Julie Rasmussen and Oliver Sale Haugberg
November 2017

Abstract

This reports can be viewed as an introduction tutorial to TensorFlow, where its
main principles are explained and illustrated with different examples.

Contents

1 Introduction 1

2 Machine Learning 2

3 Artificial Neural Networks 2
3.1 Network Architecture . 3
3.2 Forward Propagation and Node Activation 3
3.3 Gradient Computation for Neural Networks 5

4 TensorFlow Basics 6
4.1 Tensors . 6
4.2 Computational Graph and Operations 6
4.3 Sessions . 7
4.4 TensorBoard . 8
4.5 Placeholders and Feed Dictionaries 9
4.6 Variables . 10
4.7 Training and Optimization . 11

5 Image Recognition Example Using TensorFlow 16
5.1 The MNIST Database . 16
5.2 Example Code . 16
5.3 Analysing The Model . 21

5.3.1 Learning Rate . 21
5.3.2 Number of Nodes in Hidden Layer 23
5.3.3 Batch Size . 24
5.3.4 Different Numbers of Hidden Layers 24

6 Conclusion 26

A Example code in full 28

1 Introduction

TensorFlow is an open source multipurpose software library used for numerical com-
putation using data flow graphs [4]. It is designed for machine learning applications
using mathematical concepts such as neural networks. It is a library that it provides
a vast number of functions for simple implementation of complex algorithms, such
as automatic computation of model gradients or fully implemented model training
algorithms.

TensorFlow, and its predecessor DistBelief, were developed by Google Brain, a
research project at Google. The project has it’s roots in using deep learning, a sub-
field of general machine learning to handle problems related to artificial intelligence.
From this project DistBelief, a large-scale deep learning software system was made.
As the number of applications of the DistBeliefs system grew within the Google
conglomerate, TensorFlow was created as a faster and a more robust application-
grade library. TensorFlow is also open source, which its predecessor was not, and
has a flexible architecture that allows the same programs to work on a wide range
of different hardware configurations. A single API, (Application Programming In-
terface), can be run on different numbers of CPUs, (Central Processing Units),
and GPUs (Grapic Processing Units). Google have also recently announced the
use and development of TPUs(Tensor processing units). These computer circuits
are custom made for TensorFlow applications and vastly increases their computa-
tional effectiveness. At the moment TensorFlow applications can be written in both
Python and C++, whereas Python has most supported features.

Even though TenorFlow was originally developed for internal use, it was in late
2015 released under the Apache 2.0 open source license. This licence allows users to
freely use the library for any purpose, modify of the library, and even distribution of
these modified versions. As a result of this TensorFlow has a large community with
over 24,000 commits on github and over 18,000 posts tagged with ’tensorflow’ on
StackOverflow [5][6]. There are also a wide range companies that use TensorFlow,
including CocaCola, AirBnb and Airbus.

The main use of TensorFlow is the training and optimization of Artificial Neu-
ral Networks. These networks are mathematical models that have shown excellent
performance in patterns recognition problems, and have been implemented for use
in a wide range of areas. Within Google several of their products are already using
TensorFlow to improve performance. For example Google Translate can now, in
real time, translate visual images of text to another language for the user [1], By
using more complicated neural networks, automatic generation of email responses
can be made [2]. Google search has also started using Rankbrain, an algorithm
developed with TensorFlow for improving search results. Outside Google there has
also been research into how these neural network models can be used for drug dis-
covery [3].

This report is written as an introductory tutorial for how models can be made
and trained in TensorFlow. The examples are written in Python where TensorFlow
is imported as a library. As TensorFlow was inherently designed for experienced
programmers many concepts might, unfortunately, seem complex and counter in-
tuitive. Therefore this report will start with a brief explanation in section 2 and
3 of TensorFlows main applications; Machine Learning and Artificial Neural Net-

1

works. Section 4 presents the main concepts and terms in TensorFlow. In section
4.7 these concepts are used to create a small program solving a problem with linear
regression, before a more complicated problem is presented and solved in Section 5.
Lastly, the solution along with some TensorFlows pros and cons will be discussed,
before the report is concluded in section 6.

2 Machine Learning

Machine learning is a field of computer science that gives the computer the ability
to learn without being explicitly programmed. It makes it possible to solve prob-
lems without much insight in to the particular problem and to solve input/output
responses where it is hard to define an explicit algorithm. The drawback is that
you often need a lot test/training data and a lot of computation time. But because
of the explosive growth in computer clock-speed and computer memory in recent
years, the performance of machine learning based programs has increased rapidly
[8].
Machine learning can be categorized in three main tasks:

1. Supervised learning: The program is provided with example inputs and
their desired outputs, and the goal is to develop a general rule that maps
the input with the output. In TensorFlow this is called the training data.
A typical example of this is the mail spam detector that sorts spam mails
form other mails. This training continues when you mark mail as spam or not
spam.

2. Unsupervised learning: When the program receives input but not the
desired output, and the goal is to find the pattern itself. For example if you
have a set of photos of 6 people, but with no information about who is on
which one. The task is then to divide this data-set into 6 piles, each with
photos of one individual.

3. Reinforcement learning: A program interacts with a dynamic environment
in which it must achieve a certain goal. It learns by punishments and rewards.
For example train an model to play tetris by only giving it its main goal which
is to get a higher score.

In this report we only show examples of supervised learning.

3 Artificial Neural Networks

An Artificial neural network (ANN) is a mathematical model that is inspired by
biological neural networks. In a biological neural network, neurons receive, react
to, and transmit electrical signals depending on external stimuli. Depending on
the received stimuli it will then turn on and send out an output signal. These
neurons will then themselves send signals to other neurons forming a network.
This behaviour is basis for how an ANN are modelled.
Because of the wide range of applications for ANN’s there are several different
types or structures that can be used. Not only can the topology of the network
vary greatly, but also how information or data flow is processed. This chapter starts
in section 3.1 by introducing the theory behind ANN architecture and general setup.
Section 3.2 explain how the information flow is structured in a ANN, and how the
structure is mathematical represented. Further, this theory is used to show how
they can be trained and optimised in section 3.3.

2

3.1 Network Architecture

To understand how ANN’s work it is important to have a good understanding
of what components they are made of, and what these components actually do.
They turn out to be quite simple when looked at individually, and the complexity
of neural networks instead comes from the scale of the model. The networks are
made up of neurons, which can be thought of as nodes, and edges, or connections,
between these nodes. The easiest way to think of these nodes are as ”something
that stores a number”. The edges between them also hold a value, which represents
the strength of the connection.

Figure 1: Example of how a neural network is structured

As shown in figure 1 the nodes are sorted into different layers, each with their
own number of nodes. In this network all nodes have connections to all nodes
in the next layer, which is called a dense layer. The number of nodes in each
layer, and the number of layers will off course depend on the problem to be solved.
The input layer will have one node for each input, and the output layer have one
for each output. All layers between are known as the hidden layers. The chosen
structure of the hidden layers will depend on the problem to be solved and what
type of neural network is being made. More complicated neural networks can have
a large number of hidden layers, they can have different layer types, and different
connection patterns.

3.2 Forward Propagation and Node Activation

To build a quick and efficient mathematical model of what is going on in the net-
work, matrices are used. In figure 2 the value for the node is represented by a1n,
which would be the n’th node in layer 1.

3

Figure 2

The input of this node will be the sum of all previous node times their connection
strength, or their weight wi,j .

a1n = w1,1a
0
1 + w1,2a

0
2 + w1,3a

0
3 + ...+ w1,na

0
n (1)

The value stored in the node, and therefore the value that is send to its edges
is then σ(a1n). σ is here the activation function of the node.

This function is applied because the value of a1n could be anything, so the data
can quickly become quite unstructured. Because of this it is normal to use an
activation function on every node. The activation function will define what the
output of the node will be, given the input. Various of activation functions can be
used, depending on the problem. Often we want the range of each node value to
be (0,1), and to do this the sigmoid activation function can be used. This function
is expressed as

σ(x) =
1

1 + e−x
(2)

Figure 3: Sigmoid function

As the figure shows, higher positive values will return 1, and low negatives return
0. This gives the node a turned on or turned off behaviour. If only the input from
the previous layers is given, the functions ”switching point” will be around 0. To
shift this point a bias can be subtracted from the input. This bias could shift the
turning point to say 10, resulting in only higher inputs turning on the node. We
can then rewrite equation 1 with the activation function, and the bias included.

a1n = σ(w1,1a
0
1 + w1,2a

0
2 + w1,3a

0
3 + ...+ w1,na

0
n − b1) (3)

4

It can now be seen that the output value of node a1n will be ”turned on” or set to
1 if the weighted sum of the inputs is above the bias value. Now matrices can be
used to get a function for every node output, as a function of node input in a layer.a21a22

a23

 = σ

(w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

a11a12
a13

−
b11b12
b13

) (4)

Which can be rewritten for a more general case as

an+1 = σ(Wan − bn) (5)

3.3 Gradient Computation for Neural Networks

A general cost function for a neural network can look like this:

J =
1

2

∑
(y − ŷ)2 (6)

where y is the desired model output and ŷ is the estimate model output. The values
of ŷ are calculated using equation [5] for the final layer. The desired output is taken
from our labelled training data.

The gradient of the cost function is a function of every weight and bias∇J(W,b).
The number of weights and biases if off course determined by the structure of the
network. So what we are looking for are all the partial derivatives of the cost
function.

∇J = (
δJ

δw1,1
,
δJ

δb1
, ...,

δJ

δwj,k
,
δJ

δbj
) (7)

Now these derivatives are in themselves not that hard to calculate for simple sys-
tems, but when there are many nodes in a network and especially when there are
many layers, the exact formula for the derivatives becomes very large. This is be-
cause every node is a function of every node in a previous layer. In other words,
because nodes are connected to a large number of edges, they will have an effect
on each weight. But when using tools like TensorFlow the exact algorithms for
calculating these derivatives are not required as TensorFlow already has built in
algorithms. The functions find the path from each variable to the cost function,
then they backtrack from the cost function to each variable. When backtracking
the partial gradients are calculated along the path using the chain rule. Then when
each partial gradient has been computed, the gradients for each variable can be
computated.

5

preisig

preisig

4 TensorFlow Basics

4.1 Tensors

Tensors are the central unit of data in TensorFlow and the creators define tensors
as a ”typed multidimentional array” [9]. That is, an object to store data elements
of different types; e.g. strings, integers floats etc. The rank of the tensor is its
number of dimensions, and the shape is its size in each of its dimensions. Examples
of tensors of different sizes with integer elements are shown below.

4 scalar, a rank 0 tensor with shape []
[1, 2, 3] vector, a rank 1 tensor with shape [3]
[[1, 2, 3], [7, 8, 9]] matrix, a rank 2 tensor with shape [2, 3]
[[[1, 2, 3], [1, 2, 3]], [[4, 5, 6], [7, 8, 9]]] a rank 3 tensor with shape [2, 2, 3]

4.2 Computational Graph and Operations

TensorFlow programs can be divided into two sections:

1. Building the computational graph.

2. Running the computational graph.

A computational graph in TensorFlow is a series of TensorFlow operations, where
each operation is denoted as a node in the graph. The example below shows how a
simple computational graph can be implemented, with the nodes a, b and c.

import t en so r f l ow as t f

Bulid graph
a = t f . constant ([[−1 .0 , −1 .0 , −1 .0] , [−1 .0 , −1 .0 , −1 .0]])
b = t f . constant (1 . 0 , shape =[3 , 2]) # an other way o f d e f i n i n g a

tenso r
c = t f . matmul (a , b)

Print output
p r i n t (c)

This will produces the output

Tensor (”MatMul : 0 ” , shape =(2 , 2) , dtype=f l o a t 3 2)

tf.matmul is a built-in TensorFlow operation that multiplies its input matrices.
Table 1 shows a list of some operations that are provided in the TensorFlow library.
Some of them will be used in the examples in this report.

6

Table 1: Example of some TensorFlow operators

Operator types Examples
Mathematical operations add, sub, mul, div, exp, log, greater, square, less, equal, ...
Array operations concat, slice, split, constant, rank, shape, shuffle, ...
Matrix operations matmul, matrix inverse, matrix determinant, ...
Stateful operations Variable, assign, assign add, global variables initializer,

local variables initializer, variables initializer
Activation Functions softmax, sigmoid, relu, convolution2D, maxpool, ...
Checkpointing operations Save, restore
Reduction operators reduce mean, reduce max, reduce prod, reduce all
Random tensor generators random normal,truncated normal, random uniform,

random crop, multinomial...

4.3 Sessions

The output in the previous section was not printing a numerical tensor as expected.
A special remark with TensorFlow is that the graph has to be evaluated, in order
to get a numerical value. Session is class for running TensorFlow operations. A
Session object encapsulates the environment where operation objects is executed
and the tensor objects are evaluated [12]. The following code example first build
the graph, and then creates a Session object which uses the run method to evaluate
the graph - i.e first build the graph and then run the graph.

import t en so r f l ow as t f

Bulid graph
a = t f . constant ([[−1 .0 , −1 .0 , −1 .0] , [−1 .0 , −1 .0 , −1 .0]])
b = t f . constant (1 . 0 , shape =[3 , 2]) # an other way o f d e f i n i n g a

tenso r
c = t f . matmul (a , b)

Create a s e s s i o n ob j e c t
s e s s = t f . S e s s i on ()

Run the graph
pr in t (s e s s . run (c))

This produce the output:

[[−3 . −3.]
[−3. −3 .]]

It is also possible to use an InteractiveSession. The InteractiveSession object
installs itself as the default session on construction and it is not needed to pass an
explicit session object to evaluate it.

s e s s = t f . I n t e r a c t i v e S e s s i o n ()

Evaluate the t enso r c ,
can j u s t use ’ c . eva l () ’ without pas s ing ’ s e s s ’
p r i n t (c . eva l ())

7

This will give the exact same output

[[−3 . −3.]
[−3. −3 .]]

4.4 TensorBoard

The computational graphs in TensorFlow can quickly become quite complicated.
To get a better understanding on what’s actually going on, the tool TensorBoard
can be used to visualize the graph. The visualization is interactive, and the user
can zoom, pan, expand or collapse different groups for a more detailed description.
In order to be able to view the TensorBoard page the following line must be added
to the end of your script.

w r i t e r = t f . summary . F i l eWr i t e r (’ o u t p u t f o l d e r ’ , s e s s . graph)

tf.summary provide a way to save and export information about the graph to Ten-
sorBoard. The FileWriter class writes the summary to a folder in the current
directory, which in this case is called ’output folder’. To then launch TensorBoard
the following must be done:

• Run the command: tensorboard –logdir=path/to/log-directory

• In a web browser, navigate to: localhost:6006

Figure 4 shows the TensorBoard page for the code example in section 4.3.

Figure 4: Screenshot showing how TensorBoard visualizes the graph.

To make the graph more readable in TensorBoard, it is possible to name the
different operators in the graph. The a, b and c operators in the previous example
can be named by inserting ’name = ’x” in the operator declaration.

import t en so r f l ow as t f
a = t f . constant (−1.0 , shape =[2 , 3] , name = ’A ’)
b = t f . constant (1 . 0 , shape =[3 , 2] , name = ’B ’)
c = t f . matmul (a , b , name = ’C ’)

s e s s = t f . S e s s i on ()
p r i n t (s e s s . run (c))
w r i t e r = t f . summary . F i l eWr i t e r (” output ” , s e s s . graph)

8

This changed the look of the TensorBoard page to the following:

Figure 5: Screenshot showing how TensorBoard visualizes the named graph.

It is also possible to sort your graph into different name scopes in TensorBoard.
This increases the readability even more, especially for more complicated graphs.
One simple example:

import t en so r f l ow as t f
with t f . name scope (’ Model1 ’) :

a = t f . constant (−1.0 , shape =[2 , 3] , name = ’A ’)
b = t f . constant (1 . 0 , shape =[3 , 2] , name = ’B ’)
c = t f . matmul (a , b , name = ’C ’)

with t f . name scope (’ Model2 ’) :
d = t f . matmul (c , c , name = ’D’)

s e s s = t f . S e s s i on ()
p r i n t (s e s s . run (d))
w r i t e r = t f . summary . F i l eWr i t e r (” output ” , s e s s . graph)

Figure 6: TensorBoard page

Figure 7: TensorBoard page when expand for the different scopes

4.5 Placeholders and Feed Dictionaries

In order to make graphs that can be parameterized to accept external inputs, the
placeholder operation must be used [11]. The placeholder must be declared with
a type, with options to declare its shape and name. If a parameter is declared with
a placeholder it must be provided with values later, using the feed dict optional
argument to Session.run(). If the graph consist of placeholder, the run method must
be provided with inputs in order to be evaluated. Example of implementation:

9

import t en so r f l ow as t f
import numpy as np
c r e a t e p l a c eho ld e r
x = t f . p l a c eho lde r (dtype=t f . f l o a t 3 2)

d e f i n e s e s s i o n ob j e c t in order to eva luate
s e s s = t f . S e s s i on ()

run and pr in t p l a c eho ld e r
#pr in t (s e s s . run (x)) # w i l l f a i l s i n c e x i s not provided with

va lue s

make random numbers with numpy , 4X4 tenso r
rand array = np . random . rand (4 , 4)

p r i n t (s e s s . run (x , f e e d d i c t={x : rand array })) # w i l l work

And produces the random output of a 4X4 matrix:

[[0 .18460925 0.1135103 0.4232578 0 .60328126]
[0 .46244735 0.2923753 0.37354666 0 .79248434]
[0 .9640283 0.62143719 0.43418732 0 .17993963]
[0 .15920405 0.9960075 0.81037658 0 . 1 9 7 0 2 1 8 6]]

4.6 Variables

Objects of the Variable class makes it possible to add trainable parameters to a
graph [13]. The constructor, Variable(), must be provided with an initial value
that define its shape and type. The type and shape of the variable is fixed after
construction. By contrast to the constant nodes a and b, shown in the examples
in section 4.2, 4.3, 4.4, variables needs to be initialised explicitly. TensorFlow has
an operation called global variables initializer() that initials all variables in the
program.

In the example code below, variable objects are used to fit a liner model to some
data. We use the model:

yest = W · x+ b

We want to find the parameters W and b, that maps the relationship between x
and y. In order to evaluate a model, we must have a cost function that we want to
minimize. In this example the sum of all square deltas is used as the cost function:

cost =
∑

(y − y est)2

The cost function tells how far the estimated output, y est, is from the provided
data, y. The following code show the implementation in using TensorFlow.

import t en so r f l ow as t f
d e f i n e model
W = t f . Var iab le ([1 . 5])
b = t f . Var iab le ([−1 . 5])
x = t f . p l a c eho lde r (t f . f l o a t 3 2)
y e s t = t f . add (t f . mul t ip ly (W, x) ,b)

10

c r e a t e s e s s i o n ob j e c t
s e s s = t f . S e s s i on ()

i n i t i a l i z e v a r i a b l e s
i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r () . run ()

d e f i n e co s t func t i on
y = t f . p l a c eho lde r (t f . f l o a t 3 2)
s q u a r e d e l t a s = t f . square (y es t−y)
c o s t f u n c t i o n = t f . reduce sum (s q u a r e d e l t a s)

eva luate co s t
p r i n t (s e s s . run (c o s t f u n c t i o n , f e e d d i c t={x : [1 , 2 , 3 , 4] , y : [0 , 1 , 2 , 3]

}))
pr in t out the model e s t imat i on
p r in t (s e s s . run (y es t , f e e d d i c t={x : [1 , 2 , 3 , 4] }))

That gives the following output for the loss and the estimated output, y est, re-
spectively:

3 .5
[0 . 1 . 5 3 . 4 . 5]

The initial values for W and b are used to calculate the the value for y est, and
the loss is quite high. This is because our model variables W and b are completely
wrong. We have just given the model two random variables. In order to get a model
with a better fit to the data, we must train the model. This is done by changing
the variables to minimize the cost function.

4.7 Training and Optimization

In order to create a useful model in TensorFlow, we need training data that our
model can be used on, to see what it is doing, and to check it’s current performance.
Using this data we can then ”train” our model to perform better in regard to some
cost function. The way our model changes and improves its performance during
training, is by adjusting its variables. This is why constants, placeholders and
variables are fundamentally quite different in TensorFlow. Their way TensorFlow
organises and handles them are quite different. TensorFlow will find the model and
its variables, and then adjust them to minimize the cost function. The variables
are changed by a certain rate, called the learning rate, for a certain amount of
iterations. These parameters, the learning rate and the number of training steps,
are defined by the user.

The module tf.train provide a set of classes and functions that help train
models. TensorFlow has several classes built in that define and implement dif-
ferent optimization algorithms, such as GradientDescentOptimizer, AdagradOpti-
mizer, AdamOptimizer, FtrlOptimizer, ProximalGradientDescentOptimizer, Prox-
imalAdagradOptimizer, ect. All these classes are sub classes of the base class
Optimizer. The Optimizer class provides the gradient of the cost function with
respect to the variables it depends on. The GradientDecentOptimizer is one of
the simpler optimizers, as the algorithm is easier to use and less complex. In this
report we only use this optimizer. The general procedure for the gradient decent
optimizer is as follows:

11

preisig

preisig

1. It starts of with initial values for the variables, V0.

2. The derivative of the cost function are calculated with respect to the variable,

∆ =
∂cost

∂V0

The derivative describes which way we need to change the variable in order
to get a lower cost in the next iteration. In other words, it is the gradient of
the cost function.

3. A learning rate parameter, α, must be specified in order to know how much
the variable change for each training step. The variable for the next iteration
is then given by:

V1 = V0 − (α ·∆)

This process is repeated for a given number of steps.

The next example code below shows how GradientDecentOptimizer can be used
to solve the linear regression problem, shown in section 4.6. It does this by trying to
minimizes the cost function over 1000 iterations. In this example we use the same
training date in every training step, as we only want our model to fit to these data
points. In the example, the parameters are named and name scopes are defined
for the different part of the program. This is done to make the TensorBoard page
more readable.

import t en so r f l ow as t f
d e f i n e model scope
with t f . name scope (’ model ’) :

W = t f . Var iab le ([1 . 5] , name = ’W’)
b = t f . Var iab le ([−1 . 5] , name = ’b ’)
x = t f . p l a c eho lde r (t f . f l o a t32 , name = ’ x ’)
y e s t = t f . add (t f . mul t ip ly (W, x) ,b , name = ’ y e s t ’)

d e f i n e a scope f o r co s t func t i on
with t f . name scope (’ c o s t f u n c ’) :

y = t f . p l a c eho lde r (t f . f l o a t32 , name = ’ y ’)
s q u a r e d e l t a s = t f . square (y es t−y , name =’ s q a r e d e l t a s ’)
c o s t f u n c t i o n = t f . reduce sum (squa r e de l t a s , name = ’ co s t ’)

d e f i n e scope f o r t r a i n i n g
with t f . name scope (’ t r a i n i n g ’) :

l e a r n i n g r a t e = 0.01
opt imize r = t f . t r a i n . GradientDescentOptimizer (l e a r n i n g r a t e ,

name = ’ opt imize r ’)
t r a i n s t e p = opt imize r . minimize (c o s t f u n c t i o n)

c r e a t e s e s s i o n ob j e c t
s e s s = t f . I n t e r a c t i v e S e s s i o n ()
i n i t i a l i z e v a r i a b l e s
i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r () . run ()

t r a i n i n g data
x t r a i n = [1 , 2 , 3 , 4]
y t r a i n = [0 , −1, −2, −3]

t r a i n i n g loop
f o r i in range (1000) :

12

s e s s . run (t r a i n s t e p , {x : x t ra in , y : y t r a i n })

w r i t e r = t f . summary . F i l eWr i t e r (” fo lder name ” , s e s s . graph)

Gives TensorBoad page:

Figure 8: TensorBoard page

Figure 9: Tensorboard page when
zoomed in for the different scopes

13

Figure 10 shows that the Variable objects, W and b, are changed for each
iteration and that the cost is minimized. The variables initial value and the learning
rate will have an effect on how fast the model improved performance, and is shown
in Figure 11 and 12.

Figure 10: Plot shows how the variables, W and b, and the cost function
changes for every iteration in the training loop

Figure 11: Plot shows how the cost function get reduced for every iteration
for two different learning rates.

14

Figure 11 shows that a higher learning rate converges faster. It were also tested
for learning rates higher than 0.01, but they did not converge at all.

Figure 12: Plot show the cost for every iteration with different initial values
for W and b.

Figure 12 shows that a initial value closer to the desired parameters, W = -1 ,
b = 1, converges faster.

Even though this is an easy example, it gives some insight into how TensorFlow
programs are structured. The basic building blocks that are required in TensorFlow
programs have been introduced. These will be used in the next section on a more
complicated problem.

15

5 Image Recognition Example Using Tensor-

Flow

One of the major issues when dealing with machine learning models is the need
for large sets of training data. Not only is a large amount of data needed, but a
large set of labeled and structured data. Because of this in this section by using
TensorFlow, a detailed explanation will be given on how to create a model to
accurately recognise handwritten digits. In section 5.2 a detailed explanation is
given on a set of example code. The entire code can also be found in the appendix.

5.1 The MNIST Database

The MNIST database is a collection of handwritten digits that are commonly used
to test different models for image recognition. The main benefits of the database are
its size and simplicity of its structure. There are 60,000 training images and 10,000
testing images. Each image in the set is a 28x28 pixel image with grey-scale values
for each pixel. Instead of working with a 28x28 matrix, these values are flattened
into a 784 long vector. The labels for each image represent what the correct digit is
is displaying. These labels are stored as ”one-hot vectors”, this means that a label
indicating 4 as the wright digit would be represented as [0,0,0,0,1,0,0,0,0,0]. This
notation will make it easier to mathematically check for accuracy.

5.2 Example Code

After importing TensorFlow and downloading the mnist dataset the structure of
the model is defined.

import t en so r f l ow as t f
import matp lo t l i b . pyplot as p l t
import numpy as np
from ten so r f l ow . examples . t u t o r i a l s . mnist import input data
mnist = input data . r e a d d a t a s e t s (”MNIST data/” , one hot=True)

In this basic example there are three layers in the artificial neural network. There
is the input layer, which will be one node for each pixel, the hidden layer which can
be any number of nodes, and the output layer. The output layer is 10 nodes, one
for each digit.

16

Figure 13: Vizualization of the ANN structure

The idea behind the model is, when run on a sample image, we want the output
node corresponding the correct digit to have the highest value. This will create a
probability distribution, where the highest number is the best guess. For example
when run on an image showing 0, we want the first output node to be 1, and all
others to be 0. The model will off course never have a perfect guess, but it should
return a significantly higher number in the first node.

Next the structure of the graph is defined. These operations are named and de-
fined under a common name scope called ”model”. When displayed in TensorBoard,
all operations are located together to simplify the structure.

with t f . name scope (’ model ’) :
#input
x = t f . p l a c eho lde r (t f . f l o a t32 , [None , 784] , name = ’ x ’)

#l a y e r 1
l a y e r s i z e = 200

W1 = t f . Var iab le (t f . random normal ([7 8 4 , l a y e r s i z e]) ,name = ’
W1’)

b1 = t f . Var iab le (t f . random normal ([l a y e r s i z e]) ,name = ’ b1 ’)
y1 = t f . nn . s igmoid (t f . matmul (x , W1) + b1 , name = ’ y1 ’)

#l a y e r 2
W2 = t f . Var iab le (t f . random normal ([l a y e r s i z e , 1 0]) ,name = ’W2
’)
b2 = t f . Var iab le (t f . random normal ([1 0]) ,name = ’ b2 ’)
y2 = t f . nn . softmax (t f . matmul (y1 , W2) + b2 , name = ’ y2 ’)

#output
y = y2

In the dimension of of the x operation [None, 784], none is written because when
declaring it’s values we want to be able to modify the number of images. None
declarers that any number is valid. This will be used to vary the batch sizes later
when training the model. For the first set of weights and biases the new dimension
is 200. This is then the number of nodes in the hidden layer. For the second set
there are only 10, as this is the number of nodes in the output layer.

17

preisig
are the names local - layer_size

The variables are initialized with the tf.random normal operation, for a given
shape. It returns a tensor of a specified shape with normal distributed values. In
our example we use the default values of standard deviation = 1.0 and mean =
0.0. TensorFlow provides several other types of operations that produce different
tensors often used for initialization from random values[15].

We are using the sigmoid activation from function 2 in the first hidden layer,
and an activation function called softmax in the secound layer.

σ(x)i =
exp(xi)∑N
i exp(xi)

for i = 1, ..., N (8)

The softmax activation function is often used in ANN classification problems. These
problems have the advantage that the desiered outcome, the one hot vector in this
case, are mutually exclusive. The softmax activation function works in a similar
way to the sigmoind, with the difference being that the sum of all the node values
will be 1. This works out great, as it then is on the same format as our one hot
vector.

From TensorBoard we can now get a check that the graph of the model section
is correct.

Figure 14: Model section of the graph

This is actually the entire model, and if the weights and biases where known we
could simply put them to their right values and start using the model to classify
images. But because we have initialised them with random values we need to adjust
them using the training data. To do this we need to first define the cost function

18

preisig
this is an abstract syntax tree

for our model. In this example we will use the cross entropy function. Which is
defined as

Hy(yest) = −
∑
i

yilog(yest) (9)

The cross entropy function is used instead of mean error, because in our model
the output is a probability distribution. Cross entropy measures the difference
between a estimated probability distribution and the true one. Next the train
step operation is defined. This is where the benefits of using Tensorflow really are
displayed. The entire algorithm for calculating the gradient of the cost function,
and adjusting all variables is done in one line. All operations needed to do this in our
graph are then put in by TensorFlow. In this example, the operation train step uses
gradient decent to minimize the cross entropy function. The train step operation
use the graph to find the variables connected to cross entropy, then it can use the
algortihms for adjusting them.

y = t f . p l a c eho ld e r (t f . f l o a t32 , [None , 1 0])

with t f . name scope (’ Train ing ’) :
c r o s s e n t r o p y = t f . reduce mean(− t f . reduce sum (y ∗ t f . l og (y) ,
r e d u c t i o n i n d i c e s =[1]) ,name =’ Cross entropy ’)
l e a r n i n g r a t e = 1
t r a i n s t e p = t f . t r a i n . GradientDescentOptimizer (l e a r n i n g r a t e ,

name =’ Tra in s tep ’) . minimize (c r o s s e n t r o p y)

The .minimize() function simply combines two other functions of GradientDecen-
tOptimizer namely compute gradients() and apply gradients().

The accuracy of the model is calculated by the next two operators, correct prediction
and accuracy.

with t f . name scope (’ Accuracy ’) :

c o r r e c t p r e d i c t i o n = t f . equal (t f . argmax (y , 1) , t f . argmax (y , 1)
,name =’ C o r r e c t p r e d i c t i o n ’)
accuracy = t f . reduce mean (t f . c a s t (c o r r e c t p r e d i c t i o n , t f .

f l o a t 3 2) ,name =’ Accuracy ’)

s e s s = t f . I n t e r a c t i v e S e s s i o n () # c r e a t e s e s s i o n ob j e c t
t f . g l o b a l v a r i a b l e s i n i t i a l i z e r () . run () # i n i t i a l i z e v a r i a b l e s
t f . summary . F i l eWr i t e r (”graph” , s e s s . graph) # TensorBoard

v i s u a l i z a t i o n

correct prediction first uses argmax to return the index of the highest number.
Remember that for the correct answers y , the index of the correct digit is 1, with
all others 0. The model y, will have the highest value in the index it thinks is the
right digit. The equal function will then return a list of booleans, with True for a
correct guess and false for a wrong guess. Next the accuracy operation takes this
list, turns the booleans into integers 1 and 0, then calculated the average. This
value is then the accuracy of the model.

Next the actual training of the model is done. Here we are doing 10000 train-
ing steps with each of them containing a batch of 100 random samples. Here it is
important to understand how TensorFlow works for the code to make proper sense.

19

Because the placeholders x and y , are connected to ’train step’ trough the cost
function, we need to supply the sess.run method with a feed dict. The feed dict
is a batch of 100 randomly sampled training images and their corresponding one
hot vectors. In every iteration all variables in the graph, all weights and biases are
slightly adjusted to minimise our cost function. In the code bellow the accuracy is
calculated at the end, when the all the training steps are done.

b a t c h s i z e = 100
f o r i in range (10000) :

batch xs , batch ys = mnist . t r a i n . next batch (b a t c h s i z e)
s e s s . run (t r a i n s t e p , f e e d d i c t={x : batch xs , y : batch ys })

p r i n t (s e s s . run (accuracy , f e e d d i c t={x : mnist . t e s t . images , y :
mnist . t e s t . l a b e l s }))

Because name scope has been used to order our operations, it is now easier to
look into how the graph is structured, and thereby understand the program better.

Figure 15: The graph

Figure 16: Training section of the graph

20

Figure 17: Accuracy section of the graph

5.3 Analysing The Model

In this section the effect different parameters have on the training and optimisation
of the model will be shown. Hopefully it should give a better understanding of
what these parameters actually do.

The three parameters that where changed where the learning rate given to the
gradient decent optimiser, the training data batch size, the number of nodes in
the hidden layer, and the number of hidden layers. If not otherwise specified, the
default values used where: Learning rate: 1, Batch size: 100, number of nodes:
200, and 1 hidden layer. Note that for all the following figures in this section, the
y-axis represents the model performance, 0.9 representing 90% accuracy at correct
recognition. The x-axis is training steps, or iterations.

5.3.1 Learning Rate

Figure 18: Learning rate for first 500 steps

Figure 18 shows how the learning rate impacts the model for the first 500 training
steps. It can clearly be seen that for higher learning rates, the model accuracy is

21

preisig
axis

more quickly tuned to a higher values at the cost of some noise on the way. If
instead looking at the first 10 000 training steps, the accuracy is as follows:

Figure 19: Learning rate for 10 000 steps, plotting every 100th.

This figure was quite surprising, as the expected behaviour was that lower learn-
ing rates would eventually converge to a higher accuracy, but this does not seem to
be the case. The optimal rate seems to be 1, as anything above this could result in
divergence.

Figure 20: Learning rate for the final 100 steps

Looking at the final 100 steps (Figure 20), the final accuracy levels can be seen.
It is also quite surprising that the noise seems to hardly be any higher for the higher
learning rate. One cause of this could be that at this level, because the model is
close to the desired outcome, the gradients are very small that the learning rate is
no longer the determining factor in the noise.

22

5.3.2 Number of Nodes in Hidden Layer

The number of nodes in the hidden layer is looked at next. Unlike the input and
output layer, the hidden layer (or layers) has no real physical meaning it can be
quite hard to determine how it should be structured.

Figure 21: Different layer sizes for the final 100 steps

Going from 20 to 200 nodes there is a clear improvement at the end of the train-
ing. But now the catch is that the number of weights and biases are significantly
higher. This results in longer computational time for optimisation. For this model
the running time is not that much of a worry as is is generally quite low. But for
more complicated models that use extremely large training sets, computation time
becomes very important.
Increasing the number beyond 200 did not result in any better performance

Figure 22: Different layer sizes for the last 100 steps

23

5.3.3 Batch Size

As previously explained, the model uses gradient decent to tune the model. It is an
example of a stochastic gradient decent optimizer, using only a batch of training
images, or an approximation of the true full data set. The effect varying the size
of this batch is here shown.

Figure 23: Batch size for first 500 steps

Clearly using a to small batch sizes is not good for training. Because the opti-
miser can only tunes in the direction of the minimum for the current batch, it can
clearly go in the wrong direction when the batch is to small. This is very clear from
the plot for a batch size of 10.
For higher batch sizes the accuracy becomes better, but the drawback here is again
that the computation time gets longer. Using a batch size of 100 compared to a
batch size of 200 gave an increase in accuracy of 0.1%. But the computation time
was 50% longer. A too large batch size can also result in ’over-fitting’. If you take in
the whole mnist training set of 60,000 images for every iteration. The model would
give an almost perfect accuracy for those images. But since its been adjusted over
and over again for the same images, it might cause problems when it’s tested for
other images outside the training batch.

5.3.4 Different Numbers of Hidden Layers

Because of the ”black box” nature of the hidden layers it is not always intuitive
how one should set up the neural network. In this part the model was extended
with extra hidden layers and the accuracy’s after training was plotted for models
using 0 to 4 hidden layers. The code for the generation of this plot can be found
in the appendix. This model was structured with 200 nodes in the first layer, 100
in the second, 60 in the third and 30 in the fourth layer.

24

preisig
number of samples & number of parameters

Figure 24: Accuracy for models with 5 different number of layers, shown for
the last 100 training steps.

Number of layers 0 1 2 3 4
Accuracy [%] 91.22 95.34 94.09 94.22 94.16

Table 2: Final accuracy for 10,000 iteration for different number of hidden
layers.

As seen in figure 24 and table 2 the accuracy do not increase with a higher
numbers of hidden layer in this example. With zero hidden layers the accuracy is
at its lowest, and its fluctuating quite aggressively. The model with one hidden
layer gave the best result.

At first glance, this is not the result one might expect. One might think that
more layers would give a better accuracy, but here there is instead a decrease in
performance. One explanation for this might be that more layers ”over complicates”
the model. At its core, the model is only trying to sort images into 10 different
boxes. Adding more layers increases the number of weights and biases significantly,
which probably are not needed. For each new layer added, the information must
also flow through yet another activation function. This might acts as a filter simply
removing information. The model is probably filtering out important information
to classify images as different. Computational time for the model will also increase
significantly with each added layer.
So the best accuracy for this model was found with one hidden layer, 200 nodes in
the hidden layer, a learning rate of 1.0, and a batch size of 100.

25

6 Conclusion

Hopefully this report has given an insight into what TensorFlow is and what it can
be used for. An in depth tutorial of all the areas of TensorFlow is out of the scope
for this report, anyhow the report presents the main concepts behind the software
library and it’s building blocks.

Working with TensorFlow for some months we where quite impressed what the
library could do. It is possible to very quickly develop complex models that solve
quite complicated tasks, using only a few lines of code. The large amount of build
in functions and tools allow the user to skip a large part of the groundwork usually
required for using machine learning to solve problems. Such as data structures and
the development of algorithms.

Since ML and ANNs are used to solve problems that can be difficult to ex-
press mathematically. This makes it difficult to define how your input map to your
expected output, that is, defining the model. TensorFlow is inherently structured
around neural networks, and expressing a problem correctly in neural network terms
is often the hardest part. But when this has been done, and a clear understanding
of what the user wants the neural network to do TensorFlow is extremely power-
ful.TensorFlow make the problems easier to solve by using some of its ”blackbox”
functionality. The downside to this is that it also distances the programmer to ac-
tually understand the whats going on in the network, and this could make it harder
to improve the performance of the model. Some of the main challenges with ANNs
is to know how to structure the network in terms of activation functions, layer sizes,
connections between the layers and number of layers. Our experience with this so
far, is that a lot of trial and error is involved to be able to build a usable model.

TensorFlow was originally developed for internal use within Google. Because of
this it might be hard for non experienced programmers to use it to its full poten-
tial. For example one of the main benefits with TensorFlow is its ability to fully
utilise different hardware for its capabilities, such as multiple CPUs, GPUs and
even TPUs. This side of TensorFlow has not been explored in this report at all, as
the examples given have not been limited by computational time.

On the other hand as TensorFlow is very new, and in constant development it
also has a large and active community. This makes it possible for inexperienced
users to quickly find help, and examples from more experienced users. The library
is also well documented on the TensorFlow homepage, where there also are multiple
examples and tutorials.

Our advice if someone wants to start using TensorFlow to solve problems is to
first make sure it actually is the right tool for the problem. Supervised machine
learning, which everything in this report, is an example of, requires large amounts
of training and testing data. We also suggest that before jumping right into Ten-
sorFlow one should have a good understanding of the concepts related to Artificial
Neural Networks and optimization in general. This is because they often are at the
core of TensorFlow programs.

26

References

[1] https://research.googleblog.com/2015/07/how-google-translate-squeezes-
deep.html Accessed: 18.11.2017

[2] https://research.googleblog.com/2015/11/computer-respond-to-this-
email.html Accessed: 18.11.2017

[3] Massively multitask networks for drug discovery B Ramsundar, S Kearnes, P
Riley, D Webster, D Konerding, V Pande arXiv preprint arXiv:1502.02072

[4] https://en.wikipedia.org/wiki/TensorFlow

[5] https://github.com/tensorflow/tensorflow

[6] https://stackoverflow.com/tags/tensorflow/info

[7] https://www.coursera.org/learn/machine-learning

[8] https://en.wikipedia.org/wiki/Machine learning

[9] http://download.tensorflow.org/paper/whitepaper2015.pdf

[10] https://www.tensorflow.org/

[11] https://www.tensorflow.org/api docs/python/tf/placeholder

[12] https://www.tensorflow.org/api docs/python/tf/Session

[13] https://www.tensorflow.org/api docs/python/tf/Variable

[14] http://yann.lecun.com/exdb/mnist/

[15] https://www.tensorflow.org/versions/r1.2/api guides/python/constant op

27

A Example code in full

import t en so r f l ow as t f
import matp lo t l i b . pyplot as p l t
import numpy as np
from ten so r f l ow . examples . t u t o r i a l s . mnist import input data
mnist = input data . r e a d d a t a s e t s (”MNIST data/” , one hot=True)

de f xLayerModel (nLayer) :
with t f . name scope (’ model ’) :

#input
x = t f . p l a c eho lde r (t f . f l o a t32 , [None , 784] , name = ’ x ’)

#l a y e r 1
l a y e r 1 s i z e = 200

W1 = t f . Var iab le (t f . random normal ([7 8 4 , l a y e r 1 s i z e]) ,
name = ’W1’)

b1 = t f . Var iab le (t f . random normal ([l a y e r 1 s i z e]) ,name =
’ b1 ’)

y1 = t f . nn . s igmoid (t f . matmul (x , W1) + b1 , name = ’ y1 ’)

#l a y e r 2
l a y e r 2 s i z e = 100

W2 = t f . Var iab le (t f . random normal ([l a y e r 1 s i z e ,
l a y e r 2 s i z e]) ,name = ’W2’)

b2 = t f . Var iab le (t f . random normal ([l a y e r 2 s i z e]) ,name =
’ b2 ’)

y2 = t f . nn . s igmoid (t f . matmul (y1 , W2) + b2 , name = ’ y2 ’)

#l a y e r 3
l a y e r 3 s i z e = 60

W3 = t f . Var iab le (t f . random normal ([l a y e r 2 s i z e ,
l a y e r 3 s i z e]) ,name = ’W3’)

b3 = t f . Var iab le (t f . random normal ([l a y e r 3 s i z e]) ,name =
’ b3 ’)

y3 = t f . nn . s igmoid (t f . matmul (y2 , W3) + b3 , name = ’ y3 ’)

#l a y e r 4
l a y e r 4 s i z e = 30

W4 = t f . Var iab le (t f . random normal ([l a y e r 3 s i z e ,
l a y e r 4 s i z e]) ,name = ’W4’)

b4 = t f . Var iab le (t f . random normal ([l a y e r 4 s i z e]) ,name =
’ b4 ’)

y4 = t f . nn . s igmoid (t f . matmul (y3 , W4) + b4 , name = ’ y4 ’)

switch case dec id ing l a y e r s t r u c t u r e
i f nLayer == 0 :

l s = 784
yx = x

e l i f nLayer == 1 :
l s = l a y e r 1 s i z e
yx = y1

e l i f nLayer == 2 :
l s = l a y e r 2 s i z e
yx = y2

e l i f nLayer == 3 :
l s = l a y e r 3 s i z e
yx = y3

28

e l i f nLayer == 4 :
l s = l a y e r 4 s i z e
yx = y4

e l s e :
p r i n t (’ nLayer should be between 0 and 4 ’)

#l a y e r 5
W5 = t f . Var iab le (t f . random normal ([l s , 1 0]) ,name = ’W5’)
b5 = t f . Var iab le (t f . random normal ([1 0]) ,name = ’ b5 ’)
y5 = t f . nn . softmax (t f . matmul (yx , W5) + b5 , name = ’ y5 ’)

#output
y = y5

y = t f . p l a c eho ld e r (t f . f l o a t32 , [None , 1 0])

#Operat ions f o r t r a i n i n g
with t f . name scope (’ Train ing ’) :

c r o s s e n t r o p y = t f . reduce mean(− t f . reduce sum (y ∗ t f . l og
(y) ,

r e d u c t i o n i n d i c e s =[1]) ,name =’ Cross entropy ’)
l e a r n i n g r a t e = 1
t r a i n s t e p = t f . t r a i n . GradientDescentOptimizer (

l e a r n i n g r a t e , name =’ Tra in s tep ’) . minimize (c r o s s e n t r o p y)

#Operat ions f o r c a l c u l a t i n g accuracy
with t f . name scope (’ Accuracy ’) :

c o r r e c t p r e d i c t i o n = t f . equal (t f . argmax (y , 1) , t f . argmax (
y , 1) ,name =’ C o r r e c t p r e d i c t i o n ’)

accuracy = t f . reduce mean (t f . c a s t (c o r r e c t p r e d i c t i o n , t f .
f l o a t 3 2) ,name =’ Accuracy ’)

s e s s = t f . I n t e r a c t i v e S e s s i o n ()
t f . g l o b a l v a r i a b l e s i n i t i a l i z e r () . run ()
t f . summary . F i l eWr i t e r (”graph” , s e s s . graph)

acc = []
i t e r s = []
b a t c h s i z e = 100
#Training loop us ing new batch each i t t e r a t i o n
f o r i in range (10000+1) :

batch xs , batch ys = mnist . t r a i n . next batch (b a t c h s i z e)
s e s s . run (t r a i n s t e p , f e e d d i c t={x : batch xs , y : batch ys

})
#Store accuracy data f o r l a s t 100 t r a i n i n g s t ep s
i f i > 10000−100:

acc . append (s e s s . run (accuracy , f e e d d i c t={x : mnist .
t e s t . images , y :

mnist . t e s t . l a b e l s }))
i t e r s . append (i)

l a s tAcc = s e s s . run (accuracy , f e e d d i c t={x : mnist . t e s t . images ,
y :

mnist . t e s t . l a b e l s })
re turn acc , i t e r s , l a s tAcc

f e t c h data

29

acc0 , i t e r s 0 , la s tAcc0 = xLayerModel (0)

acc1 , i t e r s 1 , la s tAcc1 = xLayerModel (1)

acc2 , i t e r s 2 , la s tAcc2 = xLayerModel (2)

acc3 , i t e r s 3 , la s tAcc3 = xLayerModel (3)

acc4 , i t e r s 4 , la s tAcc4 = xLayerModel (4)
p r i n t (acc0)
p r i n t (i t e r s 0)

p r i n t (lastAcc0 , lastAcc1 , lastAcc2 , lastAcc3 , la s tAcc4)
p lo t data
import matp lo t l i b . pyplot as p l t
p l t . f i g u r e (1)
p l t . p l o t (i t e r s 0 , acc0 , ’ g ’ , l a b e l= ’ 0 hidden l a y e r s ’)
p l t . p l o t (i t e r s 1 , acc1 , ’ r ’ , l a b e l= ’ 1 hidden l a y e r s ’)
p l t . p l o t (i t e r s 2 , acc2 , ’b ’ , l a b e l= ’ 2 hidden l a y e r s ’)
p l t . p l o t (i t e r s 3 , acc3 , ’ k ’ , l a b e l= ’ 3 hidden l a y e r s ’)
p l t . p l o t (i t e r s 4 , acc4 , ’m’ , l a b e l= ’ 4 hidden l a y e r s ’)

p l t . l egend (l o c=’ best ’)
p l t . show ()

p l t . s a v e f i g (’ xLayer s igmoid . png ’)

30

