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Abstract—We propose a memory-aware system scenario ap- of active banks. In this work a reconfigurable memory platfor
proach that exploits variations in memory needs during the s constructed using detailed memory models. This is fatidw

liftetime of an application in order to optimize energy usage p exneriments with dynamic multimedia applications inesrd
Different system scenarios capture the application’s ditrent to study the effecti fth thodol

resource requirements which change dynamically at run-tine. In 0 sltudy _e e ec_lver_1ess ot the methodo og;_/.

addition to computational resources, the many possible meaty The main contribution of the current work is the develop-
platform configurations and data-to-memory assignments a& ment of data variable based system scenarios. Previoustont
important system scenario parameters. Here we present an yariable based system scenarios are unable to handle the fine
extended memory model that includes existing state-of-thart grain behaviour of the studied multimedia applications tiue

memories, available in the industry and academia, and show L . . .
how it is employed during the system design exploration phas their significant variation under different execution ations.

Both commercial SRAM and standard cell based memory models Furthermore, compared with use case scenario approaches in
are explored in this study. The effectiveness of the propode which scenarios are generated based on a user’'s behaviour,

methodology is demonstrated and tested using a large set ofthe system scenario methodology focuses on the behaviour
multimedia benchmarks published in the Polybench, Mibench ot yhe system to generate scenarios and can, thereforg, full
and Mediabench suites. Reduction in energy consumption inhie - . - - .
memory subsystem ranges from 35% to 55 % for the chosen set exploit the_ detailed platforml mapping |qf0rmat|on. Rather
of benchmarks. than focusing on the processing cores, this work analyses th
application of system scenarios on the memory organisation
. INTRODUCTION Other contributions are for the purpose sufficiently dethil
Modern embedded systems are becoming more and maral accurate memory models used for the system design
powerful as the semiconductor processing techniques kes¢ploration, an extensive number of benchmark application
increasing the number of transistors on a single chip. Coon which the methodology is applied, and a categorisation of
sequentially, demanding applications, e.g., in the sigmal applications based on their dynamic characteristics. Rer t
cessing and multimedia domains, can be executed on thesdtimedia domain, the current work presents a comprehen-
devices [1]. On the other hand, the desired performance s methodology for optimising energy consumption in the
to be delivered with minimum power consumption due to th@emory subsystem.
limited energy available in mobile devices [2]. System scen
methodologies propose the use of different platform corfigu
rations in order to exploit run-time variations in compidgatl A large number of papers have demonstrated the importance
and memory needs often seen in such applications [2].  of the memory organization to the overall system energy
Platform reconfiguration is performed through tuning ofonsumption. Especially for embedded systems, the memory
different system parameters, also called system knobghEor subsystem accounts for up to 50% of the overall energy
memory-aware system scenario methodology, a platform cemnsumption [3] and the cycle-accurate simulator preskinte
be reconfigured through a number of potential knobs, eah estimates that the energy expenditures in the memory sub
resulting in different performance and power consumption system range from 35% up to 65% for different architectures.
the memory subsystem. Foremost, modern memories supprtording to [2], conventional allocation and assignmeht o
different energy states, e.g., through power gating tepgles data done by regular compilers is suboptimal. Performance
and by switching to lower power modes when not accesséass is caused by stalls for fetching data and data conflicts
The second platform knob is the assignment of data to tfa different tasks, due to the limited size of memory and
available memory banks. The data assignment decisions affdne competition between tasks.The significant contrilouttiat
both the energy per access for the mapped data, the dhememory subsystem has to the overall energy consumption
conflicts as a result of suboptimal assignment, and the numbé a system and the dynamic nature of many applications

II. MOTIVATION AND RELATED WORK



offer a strong motivation for the study and optimization of
the memory organisation in modern embedded devices.
Many papers have focused on memory related optimisation
also in the presence of a partitioned and distributed memot
organisation with memory blocks of different sizes. In [8} a e image iz ...
thors present a methodology for automatic memory hierarch, end while
generation that exploits memory access locality, whileGh [
they propose an algorithm for the automatic partitioningiof
chip SRAM in multiple banks. Several design techniques for
designing energy efficient memory architectures for embddd
systems are presented in [7]. The current work differesdiat
by employing a platform that is reconfigurable during run-
time. In [8] a large number of data and memory optimisation
techniques, that could be dependent or independent of ettarg
platform, are discussed. Again, reconfigurable platformes a
not considered. ~ TTTTTTTTTTmmm e e e
Energy-aware assignment of data to memory banks for Fig. 1. Profiling results based on application code and injaiia
several task-sets based on the MediaBench suit of benckmark

is presented in [9]. Low energy multimedia applications are . o o
discussed also in [10] with focus on processing rather thdffterministic parts of the application, by providing oréjated

the memory platform. Furthermore, both [9] and [10] bas@€mory costs for those, and keeps parts of the application
their analysis on use case situations and do not incorporgféle that are non-deterministic in terms of memory usage
sufficient support for very dynamically behaving applioati available to the system designer [13].

codes. System scenarios alleviate this bottleneck andleenak. Design-time Profiling Based on Data Variables

handling of such dynamic behaviour. In addition, the curren Application profiling is performed at design-time for a

work explqres the as§|gnment of ,d"?‘ta to the memory and R/r\‘/?de range of inputs. The analysis focuses on the allocated
effect of different assignment decisions on the overalrgye memory size during execution and on access pattern vargatio

INPUT DATABASE ~ APPLICATION
— .,§ Efficient Pyramid Image Coder (EPIC)

while image. ndO f Database do

else if size >
Deallocate (size
end if
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" "Memory size

consumption. Techniques described in [14] are, e.g., used in order t@eixtr
I1l. DATA VARIABLE BASED the access scheme through analysis of array iteration space
MEMORY-AWARE SYSTEM SCENARIO METHODOLOGY The profiling stage is depicted in Fig. 1 and consists of

_— . L ) running the application code with suitable input data often
Designing with system scenarios is workload adaptive a nd in a database, in order to produce profiling resultg Th

offers different configurations of the platform and the &fe s  oq,t5 shown here are limited for demonstrational purpose

of switching to the most efficient scenario at run-time. Aoy appiication would have thousands or millions of profi

system scenario is a configuration of the system that corabing y\njes  The profiling reveals parts of the application code
S'm"?‘r run-time situations (RTS_S)' An RTS consists of Rith high memory activity and with varying memory access
running mstance_of a task and its corresponding COSF (ejﬁﬁ‘fensity, which possibly depends on input data variables.
energy consumption) and one complete run of the applicatigl.a e of this behaviour, a static study of the application
on the target platform represents a sequence of RTSs [1{yg 5i0ne is insufficient since the target applicationstr

The system is configured to meet the cost requirements of &Ry, 4o10gy have non-deterministic behaviour that is edriv
RTS by choosing the appropriate system scenario, whicteis input.

one that satisfies the requirements using minimal powehent *| Fig. 1 the profiled applications are two image related

following subsections, the different steps of the memam@ 1 jtimedia benchmarks and the input database should ¢onsis
system scenario methodology are outlined. of a variety of images. The memory requirements in each
The general system scenario methodology follows & WQse are driven by the current input image size, which is
stage exploration, namely design-time and run-time stagefyssified as a data variable due to the wide range of its
as described in [12]. This splitting is also employed in thg,sgible values. Depending on the application the whole
memory-aware extension of the methodology. The two staggaqe or a region of interest is processed. Other applicatio
exploration is chosen because it reduces run-time overhgagde other input variables deciding the memory requirement

while preserving an important degree of freedom for rumtmhynamism, e.g., the SNR level on the channel in the case of
configuration [2]. The application is analysed at desigmeti .. encoding/decoding application.
and different execution paths causing variations in memory

demands are identified. This procedure, which is time coB- Design-time System Scenario Identification and Pregficti
suming and as a result can be performed only during tR&sed on Data Variables

design phase, will result in a grey-box model represematio The next step is the clustering of the profiled memory sizes
of the application. The grey-box model hides all static aridto groups with similar characteristics. This is refertedas
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Fig. 2. Clustering of profiling results into three (a) or fi\® §ystem scenarios

Fig. 3.  Run-time system scenario prediction and switchiaged on the
o o o current input
system scenario identification. Clustering is necessagaibse

it will be extremely costly to have a different scenario for
every possible size, due to the number of memories needegmory units. Switching takes place when the switching cost
Clustering neighbouring RTSs is a rational choice, becausdower than the energy gains achieved by switching. In more
two instances with similar memory needs have similar enerdgtail, the run-time manager compares the memory energy
consumption. In Fig. 2 the clustering of the previously geafi consumption of executing the next task in the current active
information is presented. The clustering of RTSs is baséld b&ystem scenario with the energy consumption of execution
on their distance on the memory size axis and the frequengith the optimal system scenario. If the difference is geeat
of their occurrence. Consequently, the memory size is spiitan the switching cost, then scenario switching is peréatm
unevenly with more frequent RTSs having a shorter memoj3]. Switching costs are defined by the platform and include
size range. This is better than even splitting because #@gn all memory energy penalties for run-time reconfiguratiofis o
cost of each system scenario is defined by the upper size lindite platform, e.g., extra energy needed to change state of a
as each scenario should support all RTSs within its rangth Wimemory unit.
more scenarios, e.g., five instead of 3, the aggregated RT$n Fig. 3 an example of the run-time phase of the method-
running overhead is reduced. Still the number of scenariolgy is depicted. The run-time manager identifies the size
should be limited due to overhead of a complex memouf the image that will be processed and reconfigures the
platform and of frequent switching between scenarios. memory subsystem on the platform, if needed, by increasing
The design-time system scenario prediction phase consistsdecreasing the available memory size. The reconfiguratio
of determination of the data variables that define the actigptions are effected by platform hardware limitations. The
system scenario. This can be achieved by careful study of iheage size is the data variable monitored in order to detect
application code, combined with the application’s datauinp the system scenario and the need for switching.
In our case the grey-box model reveals only the code parts tha
will influence memory usage, so that data variables deciding
memory space changes can be identified. An example of this isSelection of target platform is an important aspect of the
a non static variable that influences the number of iteratfion memory-aware system scenario methodology. The key feature
a loop that performs one memory allocation at each iteratioreeded in the platform architecture is the ability to effitlg
In the depicted example the system scenario prediction datgpport different memory sizes that correspond to the sys-
variable is the input image height and width values. Morgovéem scenarios generated by the methodology. The dynamic
the designer should look for a correlation between inputesl memory platform is achieved by organising the memory area
and the corresponding cost. This information will be us@ful in a varying number of banks that can be switched between
the following steps of the methodology [2]. different energy states. In this work, a clustered memory
. . . I organisation with up to five memory banks of varying sizes
C. Run-time System Scenario Detection and Switching Ba% xplored. Some gxamples of alte)r/native memori// p?atforms

on Data Variables that can be used for exploration is shown in Fig. 4.
Switching decisions are taken at run-time by the run- )

time manager. The switching phase consists of all platforfh Models of Different Memory Types

configuration decisions that can be made at run-time, eey., f The dynamic memory organisation is constructed using

guency/voltage scaling, changing the power mode of memargmmercially available SRAM memory models (MM). In ad-

units, including turning them off, and reassignment of datia dition, experimental standard cell-based memories (SCYMEM

IV. TARGET PLATFORM AND ENERGY MODELS



| . | | Memory 3 Algorithm 1 Memory organisation exploration steps

1: RT Sset < storage requirement for each RTS
-~ N
Processing vemons ** | processing z z 2: Database <+ memory dz_itabase _ _
Element Element 5 é 3: N < number of scenarios (up to 5 in this work)
4. for i=1— N do
Alternative 1 Alternative 5 5. for all combinations of i banks in databade
6: if Y] size(bank) > size(maxz(RTS)) then
Fig. 4. Alternative memory platforms with varying number lufinks 7: Keep configuration
8: end if
. . . 9: Select configuration that minimizes Eq.1 87" S set
[15] are considered for smaller memories due to their energ¥.  and for g .
and area efficiency for reasonably small storage capacites 11: end for

argued in [16]. Both MMs and SCMEMSs can operate under-&
wide range of supply voltages, thus support different djrega
modes that provide an important exploration space. In the
active mode the memory can be accessed at the maximum
supported speed and the supply voltage is set at 1.1V. While
data are not accessed for a period of time the light/deep slee ® P> . are the energy penalties for each
or shut down mode should be considered. In light sleep mode trzir];gtli)gﬁiéosggaievely

the supply voltage is lowered with values around 0.7V, while ' L )

on deep sleep mode the supply voltage is set to the lowest € overall energy consumption is given aft.er cglculatmg
possible value that can be used without loss of data. TH{E® €nergy for each memory bank. The execution time of the
voltage threshold is expected to be lower for SCMEMs thaﬁ,pphcatlon is needed _to c_alculate the leak time. It can bado
MM models and can be as low as 0.3V. The shut down mog¥ €xecuting the application on a reference embedded proces
uses power-gating techniques to achieve near zero leakd§e The simulator described in [17] is chosen to calculate
power, but stored data is lost. The time and the energy rlm1|u"execut|on time for the chosen appll|cat|ons. in this work. The
for switching from these low leakage modes to the actifOCESSOr is assumed to be running continuously, accepting

state differs and all the necessary energy/power infoomati"€W input data as soon as computations on the previous data
is available to the system designer. set has been finished. Memory sleep times are hence only

caused by data dependent dynamic behaviour.

Nsw Light» Nsw Deep @NANsw shut Down @re the number
of transitions from each retention state to active state

ELSleep to Actives EDSleep to Active and

B. Energy consumption calculation ) _

. , . C. Architecture Exploration
The overall energy consumption for each configuration is ) ) _
calculated using a detailed formula, as can be seen in (1). The exploration of alternative memory platforms is per-

; formed using the steps described in Alg. 1. All potentially

E — S (Nya X Enead + Nur X Eyrie energy eff_icient configurations are tested for a given n_um_ber
memories of scenarios and the sequence of RTSs of the application.

+ (T —Trsteep — TDSteep — TShutDown) X Pleaka..iv. First, all possible configurations for a given number of mgmo
+ TLsieep X Pleakpsice, T IDSleep X Pleakpsicer banks are constructed. The only requirement in order to &eep
+  Tshutbown X Pleaksnuipown configuration for further investigation is that the comhlrsize
+  Nswright X ELSteep to Active of all banks should satisfy the storage requirements of thetm
+  Nswpeep X EDSleep to Active demanding RTS. Then, each configuration is tested for the
+  NswshutDown X EshutDown to Active) sequence of RTSs and the one that minimizes Eq.1 is chosen

) ) (1) as the most energy efficient for this number of scenarios (i.e
All the important transactions on the platform that coryymper of banks).

tribute to the overall energy are included, in order to aghie

as accurate results as possible. In particular: V. APPLICATION BENCHMARKS
e N,4 is the number of read accesses The applications that benefit most from the memory-aware
e Fgeqaaq 1S the energy per read system scenario methodology are characterised by having dy
e N, is the number of write accesses namic utilization of the memory organisation during theiee
o Ewrite IS the energy per write cution. Multimedia applications often exhibit such dynaityi
« T is the execution time of the application and are consequentially suitable candidates for the preden

o Trsiceps TDsicep aNdTshutpown are the times spent in methodology. The effectiveness is demonstrated and tested
light sleep, deep sleep and shut down states respectivefyng a variety of open multimedia benchmarks, which can be

o Pieaka.in. 1S the leakage power in active mode found in the Polybench [18], Mibench [19] and Mediabench

o Pieakpsicepr Pleakpsice, @A Pieaksyura0n, are the leakage [20] benchmark suites.
power values in light sleep, deep sleep and shut downAn overview of the benchmark applications that were tested
modes with different values corresponding to each modepresented in Tab. I. Two key parameters under considerati



are the dynamic data variable of each application and th . | Gaifor diferent number of scenarios - 6 benchmark applcations
variation in the memory requirement it causes. The dynami
data variable is the variable that results in different eyst

scenarios due to its range of values. Examples of such
variable are an input image of varying size or data deper
dent loop bound values. For each application an appropria
input database is constructed with realistic RTS cases. Tt
memory size limits are defined as the minimum and maximur
storage requirement occurred during testing of an apjphicat

The dynamic characteristics that are used to categorize tl
applications are the dynamism in the memory size bounds ar
the variance of cases within the memory size limits. 0
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The memory size bounds correspond to the minimum an_
maximum memory size values profiled over all possible cases. _ _ _ L
. Fig. 5. Energy gain for increasing number of system scesari®tatic
In general, larger distances between upper and lower boug@gorm corresponds to 0%
increase the possibilities for energy gains. This is a tesul
of using larger and more energy hungry memories in order

to support the memory requirements for the worst case evgfly 1 scenario. This corresponds to zero percentage gain in
when only small memories are required. Large energy gaingy 5.

expected when large parts of the memory subsystem can be'rhe introduction of a second system scenario results in

switched into retention for a long time. : ;
. ; o : . ner ains between 15% and 40% for the tested applica-
Another metric used for identification of different kinds Oﬁonsgégpending on the app?lication’s c(l)ynamism the max?rFr)]um
dynamism is the memory requirement variation. The vani'ialtiore orted energy gains range from around 35% to 55%. As

takes into consideration both the number of different casg pected according to the categorisation presented irestbs

that are present within the memory requirement limits ared tlﬁon V, higher energy gains are achieved for applicatiorth wi
distribution of those cases between minimum and maxim bre ,dynamic memory requirements, i.e., bigger difference

memory size. Applications with a limited number of diffetenbet cen the minimum and maximum allocated size. The
cases are expected to have most of its possible gain obtaiﬂ%{ﬁmum gains for JPEG, motion estimator, mesa 3|'3 and

with a few platiorm supported system scenarios and mu P are around 50% while blowfish, jacobi, and Viterbi
smaller energy gains from additional system scenari0$rAftdecoders are around 40% ’ ’

this point most of the cases are already fitting one of the . .
) . : ) . As the number of system scenarios that are implemented
platform configurations and adding new configurations have

o X o L op the memory subsystem increases, the energy gains im-
a minimal impact. The opposite is seen for applications tha . . ; .
feature a wide range of well distributed cases. prove since variations in memory requirements can be better

exploited with more configurations. The switching cost also
VI. RESULTS increases for an increasing number of system scenarios due
The memory aware system scenario methodology is appliedthe increasing frequency of platform reconfigurationisTh
to all the presented benchmark applications to study isceff overhead reduces the achieved gain, but for up to 5 scenarios
tiveness. The profiling phase is based on different input fae still see improvements for all but one of our benchmarks.
the data variables shown in Tab. | and is followed by th€he switching cost is below 2% even for a platform with 5
clustering phase. The execution and sleep times neededmi@mory banks in all cases. The most efficient of the tested
Eg.1 are found through the profiling but are also reflected loyganisations for each benchmark are presented in Fig. 6,
the dynamic characteristics in Tab. I. Data variables aee tiwvhere each memory bank is depicted with a different colour
variables used by the run-time manager in order to predwid each length is proportional to the memory bank size. The
the next active scenario. The clustering is performed witlowfish decoder is the only benchmark that has only 3 banks
one to five system scenarios. All potentially energy effitiefn its most efficient memory organisation.
configurations are tested for a given number of scenariosComparative results from applying a use case scenario
using the steps described in Alg. 1. For example, in thapproach as a reference are presented in Fig. 7. Reported
case of 2 scenarios all possible memory platforms with géhergy gains for both use case scenarios and system scenario
memory banks that fulfil the memory size requirement of there given assuming a static platform as a base (0%). Use case
worst case are generated and tested. The same proceduseésarios are generated based on a higher abstractiotHavel
performed for 3, 4 and 5 scenarios. The exploration includesvisible as a user’s behaviour. For example, use casersogna
memories of different sizes, technologies and varying wofdr image processing applications generate three scemdfio
lengths. The energy gain percentages are presented in.Figakge, medium and small are the image sizes identified by the
Energy gains are compared to the case of a fixed non-tser. In general, use case scenario identification can lneasee
configurable platform, i.e., a static platform configuratieith more coarse compared to identification on the detailed syste



TABLE |
BENCHMARK APPLICATIONS OVERVIEW

I Data variables used for Dynamic Characteristics
Application Source scenario prediction Memory Variation(B) [ Number of caseg Distribution of cases
Epic image compression MediaBench Image size 4257 - 34609 Average good
Motion Estimation MediaBench Image size 4800 - 52800 High average
Blowfish decoder MiBench Input file size 256 - 5120 Low poor
Jacobi 1D Decomposition Polybench Number of steps 502 - 32002 Low good
Mesa 3D MediaBench Loop bound 5 - 50000 High average
JPEG DCT MediaBench Block size 10239 - 61439 High average
PGP encryption MediaBench Encryption length 3073 - 49153 High average
Viterbi encoder Open Constraint length 5121 - 14337 Low good
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The scope of this work is to apply the memory-aware system
scenario methodology to a wide range of multimedia applica-

tion and test its effectiveness based on an extensive mem@rQ}/
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