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Abstract—We propose a memory-aware system scenario ap-
proach that exploits variations in memory needs during the
lifetime of an application in order to optimize energy usage.
Different system scenarios capture the application’s different
resource requirements which change dynamically at run-time. In
addition to computational resources, the many possible memory
platform configurations and data-to-memory assignments are
important system scenario parameters. Here we present an
extended memory model that includes existing state-of-the-art
memories, available in the industry and academia, and show
how it is employed during the system design exploration phase.
Both commercial SRAM and standard cell based memory models
are explored in this study. The effectiveness of the proposed
methodology is demonstrated and tested using a large set of
multimedia benchmarks published in the Polybench, Mibench
and Mediabench suites. Reduction in energy consumption in the
memory subsystem ranges from 35% to 55 % for the chosen set
of benchmarks.

I. I NTRODUCTION

Modern embedded systems are becoming more and more
powerful as the semiconductor processing techniques keep
increasing the number of transistors on a single chip. Con-
sequentially, demanding applications, e.g., in the signalpro-
cessing and multimedia domains, can be executed on these
devices [1]. On the other hand, the desired performance has
to be delivered with minimum power consumption due to the
limited energy available in mobile devices [2]. System scenario
methodologies propose the use of different platform configu-
rations in order to exploit run-time variations in computational
and memory needs often seen in such applications [2].

Platform reconfiguration is performed through tuning of
different system parameters, also called system knobs. Forthe
memory-aware system scenario methodology, a platform can
be reconfigured through a number of potential knobs, each
resulting in different performance and power consumption in
the memory subsystem. Foremost, modern memories support
different energy states, e.g., through power gating techniques
and by switching to lower power modes when not accessed.
The second platform knob is the assignment of data to the
available memory banks. The data assignment decisions affect
both the energy per access for the mapped data, the data
conflicts as a result of suboptimal assignment, and the number

of active banks. In this work a reconfigurable memory platform
is constructed using detailed memory models. This is followed
by experiments with dynamic multimedia applications in order
to study the effectiveness of the methodology.

The main contribution of the current work is the develop-
ment of data variable based system scenarios. Previous control
variable based system scenarios are unable to handle the fine-
grain behaviour of the studied multimedia applications dueto
their significant variation under different execution situations.
Furthermore, compared with use case scenario approaches in
which scenarios are generated based on a user’s behaviour,
the system scenario methodology focuses on the behaviour
of the system to generate scenarios and can, therefore, fully
exploit the detailed platform mapping information. Rather
than focusing on the processing cores, this work analyses the
application of system scenarios on the memory organisation.
Other contributions are for the purpose sufficiently detailed
and accurate memory models used for the system design
exploration, an extensive number of benchmark applications
on which the methodology is applied, and a categorisation of
applications based on their dynamic characteristics. For the
multimedia domain, the current work presents a comprehen-
sive methodology for optimising energy consumption in the
memory subsystem.

II. M OTIVATION AND RELATED WORK

A large number of papers have demonstrated the importance
of the memory organization to the overall system energy
consumption. Especially for embedded systems, the memory
subsystem accounts for up to 50% of the overall energy
consumption [3] and the cycle-accurate simulator presented in
[4] estimates that the energy expenditures in the memory sub-
system range from 35% up to 65% for different architectures.
According to [2], conventional allocation and assignment of
data done by regular compilers is suboptimal. Performance
loss is caused by stalls for fetching data and data conflicts
for different tasks, due to the limited size of memory and
the competition between tasks.The significant contribution that
the memory subsystem has to the overall energy consumption
of a system and the dynamic nature of many applications



offer a strong motivation for the study and optimization of
the memory organisation in modern embedded devices.

Many papers have focused on memory related optimisations,
also in the presence of a partitioned and distributed memory
organisation with memory blocks of different sizes. In [5] au-
thors present a methodology for automatic memory hierarchy
generation that exploits memory access locality, while in [6]
they propose an algorithm for the automatic partitioning ofon-
chip SRAM in multiple banks. Several design techniques for
designing energy efficient memory architectures for embedded
systems are presented in [7]. The current work differentiates
by employing a platform that is reconfigurable during run-
time. In [8] a large number of data and memory optimisation
techniques, that could be dependent or independent of a target
platform, are discussed. Again, reconfigurable platforms are
not considered.

Energy-aware assignment of data to memory banks for
several task-sets based on the MediaBench suit of benchmarks
is presented in [9]. Low energy multimedia applications are
discussed also in [10] with focus on processing rather than
the memory platform. Furthermore, both [9] and [10] base
their analysis on use case situations and do not incorporate
sufficient support for very dynamically behaving application
codes. System scenarios alleviate this bottleneck and enable
handling of such dynamic behaviour. In addition, the current
work explores the assignment of data to the memory and the
effect of different assignment decisions on the overall energy
consumption.

III. D ATA VARIABLE BASED

MEMORY-AWARE SYSTEM SCENARIO METHODOLOGY

Designing with system scenarios is workload adaptive and
offers different configurations of the platform and the freedom
of switching to the most efficient scenario at run-time. A
system scenario is a configuration of the system that combines
similar run-time situations (RTSs). An RTS consists of a
running instance of a task and its corresponding cost (e.g.,
energy consumption) and one complete run of the application
on the target platform represents a sequence of RTSs [11].
The system is configured to meet the cost requirements of an
RTS by choosing the appropriate system scenario, which is the
one that satisfies the requirements using minimal power. In the
following subsections, the different steps of the memory-aware
system scenario methodology are outlined.

The general system scenario methodology follows a two
stage exploration, namely design-time and run-time stages,
as described in [12]. This splitting is also employed in the
memory-aware extension of the methodology. The two stage
exploration is chosen because it reduces run-time overhead
while preserving an important degree of freedom for run-time
configuration [2]. The application is analysed at design-time
and different execution paths causing variations in memory
demands are identified. This procedure, which is time con-
suming and as a result can be performed only during the
design phase, will result in a grey-box model representation
of the application. The grey-box model hides all static and
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Fig. 1. Profiling results based on application code and inputdata

deterministic parts of the application, by providing only related
memory costs for those, and keeps parts of the application
code that are non-deterministic in terms of memory usage
available to the system designer [13].

A. Design-time Profiling Based on Data Variables

Application profiling is performed at design-time for a
wide range of inputs. The analysis focuses on the allocated
memory size during execution and on access pattern variations.
Techniques described in [14] are, e.g., used in order to extract
the access scheme through analysis of array iteration spaces.

The profiling stage is depicted in Fig. 1 and consists of
running the application code with suitable input data often
found in a database, in order to produce profiling results. The
results shown here are limited for demonstrational purposes. A
real application would have thousands or millions of profiling
samples. The profiling reveals parts of the application code
with high memory activity and with varying memory access
intensity, which possibly depends on input data variables.
Because of this behaviour, a static study of the application
code alone is insufficient since the target applications forthis
methodology have non-deterministic behaviour that is driven
by input.

In Fig. 1 the profiled applications are two image related
multimedia benchmarks and the input database should consist
of a variety of images. The memory requirements in each
case are driven by the current input image size, which is
classified as a data variable due to the wide range of its
possible values. Depending on the application the whole
image or a region of interest is processed. Other applications
have other input variables deciding the memory requirement
dynamism, e.g., the SNR level on the channel in the case of
an encoding/decoding application.

B. Design-time System Scenario Identification and Prediction
Based on Data Variables

The next step is the clustering of the profiled memory sizes
into groups with similar characteristics. This is referredto as
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Fig. 2. Clustering of profiling results into three (a) or five (b) system scenarios

system scenario identification. Clustering is necessary, because
it will be extremely costly to have a different scenario for
every possible size, due to the number of memories needed.
Clustering neighbouring RTSs is a rational choice, because
two instances with similar memory needs have similar energy
consumption. In Fig. 2 the clustering of the previously profiled
information is presented. The clustering of RTSs is based both
on their distance on the memory size axis and the frequency
of their occurrence. Consequently, the memory size is split
unevenly with more frequent RTSs having a shorter memory
size range. This is better than even splitting because the energy
cost of each system scenario is defined by the upper size limit,
as each scenario should support all RTSs within its range. With
more scenarios, e.g., five instead of 3, the aggregated RTS
running overhead is reduced. Still the number of scenarios
should be limited due to overhead of a complex memory
platform and of frequent switching between scenarios.

The design-time system scenario prediction phase consists
of determination of the data variables that define the active
system scenario. This can be achieved by careful study of the
application code, combined with the application’s data input.
In our case the grey-box model reveals only the code parts that
will influence memory usage, so that data variables deciding
memory space changes can be identified. An example of this is
a non static variable that influences the number of iterations for
a loop that performs one memory allocation at each iteration.
In the depicted example the system scenario prediction data
variable is the input image height and width values. Moreover,
the designer should look for a correlation between input values
and the corresponding cost. This information will be usefulin
the following steps of the methodology [2].

C. Run-time System Scenario Detection and Switching Based
on Data Variables

Switching decisions are taken at run-time by the run-
time manager. The switching phase consists of all platform
configuration decisions that can be made at run-time, e.g., fre-
quency/voltage scaling, changing the power mode of memory
units, including turning them off, and reassignment of dataon
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Fig. 3. Run-time system scenario prediction and switching based on the
current input

memory units. Switching takes place when the switching cost
is lower than the energy gains achieved by switching. In more
detail, the run-time manager compares the memory energy
consumption of executing the next task in the current active
system scenario with the energy consumption of execution
with the optimal system scenario. If the difference is greater
than the switching cost, then scenario switching is performed
[2]. Switching costs are defined by the platform and include
all memory energy penalties for run-time reconfigurations of
the platform, e.g., extra energy needed to change state of a
memory unit.

In Fig. 3 an example of the run-time phase of the method-
ology is depicted. The run-time manager identifies the size
of the image that will be processed and reconfigures the
memory subsystem on the platform, if needed, by increasing
or decreasing the available memory size. The reconfiguration
options are effected by platform hardware limitations. The
image size is the data variable monitored in order to detect
the system scenario and the need for switching.

IV. TARGET PLATFORM AND ENERGY MODELS

Selection of target platform is an important aspect of the
memory-aware system scenario methodology. The key feature
needed in the platform architecture is the ability to efficiently
support different memory sizes that correspond to the sys-
tem scenarios generated by the methodology. The dynamic
memory platform is achieved by organising the memory area
in a varying number of banks that can be switched between
different energy states. In this work, a clustered memory
organisation with up to five memory banks of varying sizes
is explored. Some examples of alternative memory platforms
that can be used for exploration is shown in Fig. 4.

A. Models of Different Memory Types

The dynamic memory organisation is constructed using
commercially available SRAM memory models (MM). In ad-
dition, experimental standard cell-based memories (SCMEM)
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[15] are considered for smaller memories due to their energy
and area efficiency for reasonably small storage capacities, as
argued in [16]. Both MMs and SCMEMs can operate under a
wide range of supply voltages, thus support different operating
modes that provide an important exploration space. In the
active mode the memory can be accessed at the maximum
supported speed and the supply voltage is set at 1.1V. While
data are not accessed for a period of time the light/deep sleep
or shut down mode should be considered. In light sleep mode
the supply voltage is lowered with values around 0.7V, while
on deep sleep mode the supply voltage is set to the lowest
possible value that can be used without loss of data. This
voltage threshold is expected to be lower for SCMEMs than
MM models and can be as low as 0.3V. The shut down mode
uses power-gating techniques to achieve near zero leakage
power, but stored data is lost. The time and the energy required
for switching from these low leakage modes to the active
state differs and all the necessary energy/power information
is available to the system designer.

B. Energy consumption calculation

The overall energy consumption for each configuration is
calculated using a detailed formula, as can be seen in (1).

E =
all∑

memories

(Nrd × ERead +Nwr × EWrite

+ (T − TLSleep − TDSleep − TShutDown)× PleakActive

+ TLSleep × PleakLSleep
+ TDSleep × PleakDSleep

+ TShutDown × PleakShutDown

+ NSWLight × ELSleep to Active

+ NSWDeep × EDSleep to Active

+ NSWShutDown × EShutDown to Active)
(1)

All the important transactions on the platform that con-
tribute to the overall energy are included, in order to achieve
as accurate results as possible. In particular:

• Nrd is the number of read accesses
• ERead is the energy per read
• Nwr is the number of write accesses
• EWrite is the energy per write
• T is the execution time of the application
• TLSleep, TDSleep andTShutDown are the times spent in

light sleep, deep sleep and shut down states respectively
• PleakActive

is the leakage power in active mode
• PleakLSleep

, PleakDSleep
andPleakShutdown

are the leakage
power values in light sleep, deep sleep and shut down
modes with different values corresponding to each mode

Algorithm 1 Memory organisation exploration steps
1: RTSset← storage requirement for each RTS
2: Database← memory database
3: N ← number of scenarios (up to 5 in this work)
4: for i = 1→ N do
5: for all combinations of i banks in databasedo
6: if

∑i

1
size(bank) ≥ size(max(RTS)) then

7: Keep configuration
8: end if
9: Select configuration that minimizes Eq.1 forRTSset

10: end for
11: end for

• NSWLight, NSWDeep andNSWShutDown are the number
of transitions from each retention state to active state

• ELSleep to Active, EDSleep to Active and
EShutDown to Active are the energy penalties for each
transition respectively.

The overall energy consumption is given after calculating
the energy for each memory bank. The execution time of the
application is needed to calculate the leak time. It can be found
by executing the application on a reference embedded proces-
sor. The simulator described in [17] is chosen to calculate
execution time for the chosen applications in this work. The
processor is assumed to be running continuously, accepting
new input data as soon as computations on the previous data
set has been finished. Memory sleep times are hence only
caused by data dependent dynamic behaviour.

C. Architecture Exploration

The exploration of alternative memory platforms is per-
formed using the steps described in Alg. 1. All potentially
energy efficient configurations are tested for a given number
of scenarios and the sequence of RTSs of the application.
First, all possible configurations for a given number of memory
banks are constructed. The only requirement in order to keepa
configuration for further investigation is that the combined size
of all banks should satisfy the storage requirements of the most
demanding RTS. Then, each configuration is tested for the
sequence of RTSs and the one that minimizes Eq.1 is chosen
as the most energy efficient for this number of scenarios (i.e.,
number of banks).

V. A PPLICATION BENCHMARKS

The applications that benefit most from the memory-aware
system scenario methodology are characterised by having dy-
namic utilization of the memory organisation during their exe-
cution. Multimedia applications often exhibit such dynamicity
and are consequentially suitable candidates for the presented
methodology. The effectiveness is demonstrated and tested
using a variety of open multimedia benchmarks, which can be
found in the Polybench [18], Mibench [19] and Mediabench
[20] benchmark suites.

An overview of the benchmark applications that were tested
is presented in Tab. I. Two key parameters under consideration



are the dynamic data variable of each application and the
variation in the memory requirement it causes. The dynamic
data variable is the variable that results in different system
scenarios due to its range of values. Examples of such a
variable are an input image of varying size or data depen-
dent loop bound values. For each application an appropriate
input database is constructed with realistic RTS cases. The
memory size limits are defined as the minimum and maximum
storage requirement occurred during testing of an application.
The dynamic characteristics that are used to categorize the
applications are the dynamism in the memory size bounds and
the variance of cases within the memory size limits.

The memory size bounds correspond to the minimum and
maximum memory size values profiled over all possible cases.
In general, larger distances between upper and lower bounds
increase the possibilities for energy gains. This is a result
of using larger and more energy hungry memories in order
to support the memory requirements for the worst case even
when only small memories are required. Large energy gain is
expected when large parts of the memory subsystem can be
switched into retention for a long time.

Another metric used for identification of different kinds of
dynamism is the memory requirement variation. The variation
takes into consideration both the number of different cases
that are present within the memory requirement limits and the
distribution of those cases between minimum and maximum
memory size. Applications with a limited number of different
cases are expected to have most of its possible gain obtained
with a few platform supported system scenarios and much
smaller energy gains from additional system scenarios. After
this point most of the cases are already fitting one of the
platform configurations and adding new configurations have
a minimal impact. The opposite is seen for applications that
feature a wide range of well distributed cases.

VI. RESULTS

The memory aware system scenario methodology is applied
to all the presented benchmark applications to study its effec-
tiveness. The profiling phase is based on different input for
the data variables shown in Tab. I and is followed by the
clustering phase. The execution and sleep times needed in
Eq.1 are found through the profiling but are also reflected by
the dynamic characteristics in Tab. I. Data variables are the
variables used by the run-time manager in order to predict
the next active scenario. The clustering is performed with
one to five system scenarios. All potentially energy efficient
configurations are tested for a given number of scenarios
using the steps described in Alg. 1. For example, in the
case of 2 scenarios all possible memory platforms with 2
memory banks that fulfil the memory size requirement of the
worst case are generated and tested. The same procedure is
performed for 3, 4 and 5 scenarios. The exploration includes
memories of different sizes, technologies and varying word
lengths. The energy gain percentages are presented in Fig. 5.
Energy gains are compared to the case of a fixed non-re-
configurable platform, i.e., a static platform configuration with

Epic Motion Blowfish Jacobi Mesa3D JPEG PGP Viterbi
0

10

20

30

40

50

60

Applications

G
ai

ns
 c

om
pa

re
d 

to
 a

 s
ta

tic
 p

la
tfo

rm

Gain for different number of scenarios − 8 benchmark applications

 

 

2 scenarios
3 scenarios
4 scenarios
5 scenarios
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only 1 scenario. This corresponds to zero percentage gain in
Fig. 5.

The introduction of a second system scenario results in
energy gains between 15% and 40% for the tested applica-
tions. Depending on the application’s dynamism the maximum
reported energy gains range from around 35% to 55%. As
expected according to the categorisation presented in subsec-
tion V, higher energy gains are achieved for applications with
more dynamic memory requirements, i.e., bigger difference
between the minimum and maximum allocated size. The
maximum gains for JPEG, motion estimator, mesa 3D and
PGP are around 50% while blowfish, jacobi, and Viterbi
decoders are around 40%.

As the number of system scenarios that are implemented
on the memory subsystem increases, the energy gains im-
prove since variations in memory requirements can be better
exploited with more configurations. The switching cost also
increases for an increasing number of system scenarios due
to the increasing frequency of platform reconfiguration. This
overhead reduces the achieved gain, but for up to 5 scenarios
we still see improvements for all but one of our benchmarks.
The switching cost is below 2% even for a platform with 5
memory banks in all cases. The most efficient of the tested
organisations for each benchmark are presented in Fig. 6,
where each memory bank is depicted with a different colour
and each length is proportional to the memory bank size. The
blowfish decoder is the only benchmark that has only 3 banks
in its most efficient memory organisation.

Comparative results from applying a use case scenario
approach as a reference are presented in Fig. 7. Reported
energy gains for both use case scenarios and system scenarios
are given assuming a static platform as a base (0%). Use case
scenarios are generated based on a higher abstraction levelthat
is visible as a user’s behaviour. For example, use case scenarios
for image processing applications generate three scenarios, if
large, medium and small are the image sizes identified by the
user. In general, use case scenario identification can be seen as
more coarse compared to identification on the detailed system



TABLE I
BENCHMARK APPLICATIONS OVERVIEW

Application Source Data variables used for
scenario prediction

Dynamic Characteristics
Memory Variation(B) Number of cases Distribution of cases

Epic image compression MediaBench Image size 4257 - 34609 Average good
Motion Estimation MediaBench Image size 4800 - 52800 High average
Blowfish decoder MiBench Input file size 256 - 5120 Low poor

Jacobi 1D Decomposition Polybench Number of steps 502 - 32002 Low good
Mesa 3D MediaBench Loop bound 5 - 50000 High average

JPEG DCT MediaBench Block size 10239 - 61439 High average
PGP encryption MediaBench Encryption length 3073 - 49153 High average
Viterbi encoder Open Constraint length 5121 - 14337 Low good

Fig. 6. Bank sizes for the most efficient of the tested organisations for each
benchmark
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implementation level.

VII. C ONCLUSION

The scope of this work is to apply the memory-aware system
scenario methodology to a wide range of multimedia applica-
tion and test its effectiveness based on an extensive memory
energy model. The results demonstrate the effectiveness of
the methodology reducing the memory energy consumption
between 35% and 55%.
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