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Introduction.

This paper, the last of a series of three papers studying the uses of relative homological algebra
in the representation theory of artin algebras, is devoted to giving a rather explicit connection
between the relative cotilting theory introduced in the previous paper and standard cotilting
theory. The reader is referred to the previous papers in this series [2, 3] for basic definitions and
results, as well as notations, concerning the relative homological algebra and theory of relative
cotilting modules used in this paper. We now describe the main result of this paper.

Let mod Λ be the category of finitely generated left modules over an artin algebra Λ. Suppose
F is an additive subfunctor of the additive bifunctor Ext1Λ( , ): (mod Λ)op×modΛ → Ab. Assume
that F has enough projectives and injectives and that P(F ), the subcategory of mod Λ consisting
of the F -projectives, is addG for some G in mod Λ. Then G is a generator for mod Λ since P(F )
contains Λ. Let ΓG = EndΛ(G)op.

Let T in mod Λ be an F -cotilting module. We show that the ΓG-module HomΛ(G, T ) = (G, T )
is a standard cotilting module and that the algebra EndΓG

((G, T )) is naturally isomorphic to
Γ = EndΛ(T ). In addition we show that the relative cotilting functor HomΛ( , T ): modΛ →
mod Γ is canonically isomorphic to the composition HomΓG

( , (G, T ))◦HomΛ(G, ) of the functors
HomΛ(G, ): mod Λ → mod ΓG and the standard cotilting functor HomΓG

( , (G, T )): mod ΓG →
mod Γ. This shows how relative cotilting functors can be described in terms of standard cotilting
functors. The proof of this result uses the notion of the Wedderburn correspondence introduced
in [1] and also gives the following connection between the Wedderburn correspondence, and both
standard and relative tilting and cotilting theory.

Suppose G is a generator for mod Λ. Denote Fadd G by F . Then F has enough projectives
and injectives and P(F ) = addG. Again letting ΓG = EndΛ(G)op, we get that G is an F -
tilting module. Thus HomΛ(G, ): mod Λ → mod ΓG is a special case of a relative tilting functor.
We then get that HomΛ(G, ): mod Λ → mod ΓG is canonically isomorphic to the composition
HomΓ( , (G, T ))◦HomΛ( , T ) where HomΛ( , T ): modΛ → mod Γ is a relative cotilting functor and
HomΓ( , (G, T )): mod Γ → mod ΓG is a standard cotilting functor with idΓ(G, T ) = 2. Further, we
have that the Grothendieck groups F -K0(mod Λ) and K0(mod ΓG) are isomorphic.
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1 Preliminaries.

For the basic definitions and results about relative homology and relative cotilting theory we refer
the reader to the two papers [2] and [3]. However for the convenience of the reader we recall some
of the most frequently used definitions and results from [2] and [3].

Let Λ be an artin algebra and let F be an additive subfunctor of Ext1Λ( , ) with enough
projectives and injectives. Let C be any subcategory of mod Λ. We denote by ⊥C the subcategory
of mod Λ given by {X ∈ mod Λ | Exti

F (X, C) = 0, for all i > 0} and by C⊥ the subcategory of
mod Λ given by {Y ∈ mod Λ | Exti

F (C, Y ) = 0, for all i > 0}.
For an F -selforthogonal Λ-module T denote by XT the subcategory of ⊥T whose objects are

the Λ-modules C such that there is an F -exact sequence

0 → C → T0
f0
→ T1 → · · · → Tn

fn

→ Tn+1 → · · ·

with Ti in addT and Im fi in ⊥T for all i ≥ 0. In [3, Theorem 3.2] we showed that XT = ⊥T for
all F -cotilting modules T .

For a subcategory C in mod Λ we denote by Ĉ the subcategory of modΛ whose objects are the
Λ-modules M for which there is an F -exact sequence

0 → Cn → Cn−1 → · · · → C0 →M → 0

with Ci in C.
Let X be a contravariantly finite F -generator in mod Λ. Then the resolution dimension of a

Λ-module M with respect to X is defined to be the minimum of n including infinity such that
there exists an F -exact sequence

0 → Xn → Xn−1 → · · · → X1 → X0 →M → 0,

where Xi is in X . We denote this dimension by X -resdimF M . If Y is a subcategory of mod Λ
then X -resdimF Y is defined to be sup{X - resdimF Y | Y ∈ Y}.

A subcategory W of mod Λ is called an ExtF -injective cogenerator for a subcategory X of
mod Λ if (i) W is contained in X ∩ X⊥ and (ii) for each X in X there exists an F -exact sequence
0 → X → W → X ′ → 0 in X with W in W . The following two results are key results in our
investigation of relative cotilting theory.

Theorem 1.1 ([3, Theorem 2.4]) Let X be an F -resolving subcategory of mod Λ with an ExtF -

injective cogenerator W. If X̂ = mod Λ, we have the following.

(a) The subcategory X is contravariantly finite in mod Λ.

(b) Y = X⊥ = Ŵ.

Theorem 1.2 ([3, Theorem 3.13 and Proposition 3.15]) Let T be an F -cotilting module in

mod Λ with idF T = r and let Γ = EndΛ(T ). Then we have the following.

(a) The subcategory (P(F ), T ) = addT0 for a cotilting module T0 over Γ with idΓ T0 ≤
max{r, 2}. The subcategory (XT , T ) = XT0

= ⊥T0.

(b) The module ΓT is a direct summand of a cotilting module T0 over Γ with addT0 =
(P(F ), T ), idΓ T0 ≤ max{r, 2} and idΓ T ≤ r. Moreover the natural homomorphism X →
HomΛ(HomΓ(X,T ), T ) is an isomorphism for all X in XT0

= ⊥T0.

The last notion we recall from [2, 3] is the notion of the relative Grothendieck group. Let
Z(mod Λ) denote the free abelian group with the isomorphism classes [A] of modules A in mod Λ as
basis. We define the F -Grothendieck group of mod Λ, F -K0(mod Λ), to be Z(mod Λ)/F -R(modΛ),
where F -R(mod Λ) is the subgroup of Z(mod Λ) generated by the elements [A]+[C]−[B] whenever
there is an F -exact sequence of modules 0 → A→ B → C → 0.
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2 Dualizing summands of cotilting modules.

Throughout this section let F be an additive subfunctor of Ext1Λ( , ) with enough projectives and
injectives. Let T be an F -cotilting module and let Γ = EndΛ(T ). Then by Theorem 1.2 (b) the
module ΓT is a direct summand of a cotilting module T0 over Γ with the property that the natural
homomorphism X → HomΛ(HomΓ(X,T ), T ) is an isomorphism for all X in XT0

. In particular the
natural homomorphism T0 → HomΛ(HomΓ(T0, T ), T ) is an isomorphism. We make the following
definition for a module M over an artin algebra Γ. Let M = M ′ ⊕M ′′ and Λ = EndΓ(M ′). If the
natural homomorphism A → HomΛ(HomΓ(A,M ′),M ′) is an isomorphism for some Λ-module A,
then M ′ is said to dualize A. If this is true for A = M , then M ′ is said to be a dualizing summand
of M .

Let T = Ta ⊕ Tb be a cotilting module over a artin algebra Γ with Ta a dualizing summand of
T . Denote by Λ the artin algebra EndΓ(Ta) and F = FP(F ) where P(F ) = HomΓ(addT, Ta). We
show that Ta is an F -cotilting module in mod Λ and that EndΛ(Ta) is isomorphic to Γ. This show
that every dualizing summand of a cotilting module is induced from itself as a relative cotilting
module over its endomorphism ring.

We begin with the following general observation concerning dualizing summands of arbitrary
Λ-modules.

Proposition 2.1 Let M be an arbitrary module in mod Λ and let Γ = EndΛ(M). For a module

A in mod Λ the natural homomorphism

αA:A → HomΓ(HomΛ(A,M),M)

is an isomorphism if and only there exists an exact sequence

0 → A
f
→Mn →Mm,

where f :A→Mn is a left addM -approximation.

Proof : Assume that αA:A → HomΓ(HomΛ(A,M),M) is an isomorphism. The Γ-module HomΛ(A,M)
is finitely generated, so we have a Γ-projective presentation

HomΛ(Mm,M)
(f1,M)
→ HomΛ(Mn,M)

(f0,M)
→ HomΛ(A,M) → 0,

which is induced from a complex A
f0
→ Mn f1

→ Mm in mod Λ. Applying the functor HomΓ( ,M)
to this sequence we obtain the following commutative diagram

0 → ((A,M),M) → ((Mn,M),M) → ((Mm,M),M)x o αA

x o αMn

x o αMm

0 → A
f0
→ Mn f1

→ Mm,

where the upper row is exact. Hence the lower row is also exact. Moreover it has the property
that every map g:A→ M extends to Mn.

Assume that there is an exact sequence 0 → A
f0
→ Mn f1

→ Mm such that f0:A → Mn is a
left addM -approximation. Let K = cokerf0, then choose or modify f1 if necessary such that
K →Mm is a left addM -approximation. Then the induced sequence

HomΛ(Mm,M) → HomΛ(Mn,M) → HomΛ(A,M) → 0

is exact. Therefore we have the following commutative exact diagram

0 → A
f0
→ Mn f1

→ Mm
yαA

y o αMn

y o αMm

0 → ((A,M),M) → ((Mn,M),M) → ((Mm,M),M).
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Hence, αA is an isomorphism.

From this result the following corollary follows immediately.

Corollary 2.2 Let M be an arbitrary module in mod Λ and let Γ = EndΛ(M). Assume that the

natural homomorphism

αA:A → HomΓ(HomΛ(A,M),M)

is an isomorphism for a module A in mod Λ. Then the natural homomorphism

α′

A:A→ HomΓ′(HomΛ(A,M ′),M ′)

is an isomorphism for any module M ′ in mod Λ with addM ′ = addM and Γ′ = EndΛ(M ′).

In rest of this section let T = Ta ⊕ Tb be a cotilting module over an artin algebra Γ with
idΓ T = r, where Ta is a dualizing summand of T . Let T ′ be a module such that addT ′ = addTa.
Denote by Λ = EndΓ(T ′). Then T ′ is a Γ-Λ-bimodule. Therefore HomΓ(addT, T ′) is a subcategory
of mod Λ and F = FHomΓ(add T,T ′) is a subfunctor of Ext1Λ( , ) with enough projectives and
injectives. The projectives of F are P(F ) = HomΓ(addT, T ′) by [2, Proposition 1.10]. Our
first aim is to show that T ′ is an F -cotilting module over Λ. Thus showing that every dualizing
summand of a cotilting module is induced from some relative cotilting module. Using this notation
we have the following result.

Proposition 2.3
(a) The functors HomΛ( , ΛT

′
Γop): mod Λ → mod Γ and HomΓ( , ΓT

′
Λop): mod Γ → mod Λ are

an adjoint pair of contravariant functors, that is, we have the isomorphism

φ: HomΓ(A,HomΛ(C, ΛT
′
Γop)) → HomΛ(C,HomΓ(A, ΓT

′
Λop))

functorial in both variables for all A in mod Γ and C in mod Λ given by φ(f)(c)(a) = f(a)(c) for

f in HomΓ(A,HomΛ(C, ΛT
′
Γop)).

(b) For all X in XT the natural homomorphism

X → HomΛ(HomΓ(X,T ′), T ′)

is an isomorphism.

Proof : (a) Define ψ: HomΛ(C,HomΓ(A, ΓT
′
Λop )) → HomΓ(A,HomΛ(C, ΛT

′
Γop)) by ψ(g)(a)(c) =

g(c)(a) for g in HomΛ(C,HomΓ(A, ΓT
′
Λop)). It is easy to see that φ and ψ are inverse isomorphisms

functorial in both variables.
(b) Let X be in XT . Then there is an exact sequence 0 → X → T0

d
→ T1, where Im d and

Cokerd are in ⊥T . Since T ′ dualizes T by Corollary 2.2, the claim follows easily from this.

An immediate consequence of this is the following result.

Corollary 2.4 (a) For all X in XT and all A in mod Γ

HomΓ( , T ′): HomΓ(A,X) → HomΛ((X,T ′), (A, T ′))

is an isomorphism functorial in both variables.

(b) The map Γ → EndΛ(ΛT
′) given by γ 7→ fγ where fγ(t) = γ · t for all t in T ′ is an

isomorphism.

The isomorphism of the homomorphism groups in Corollary 2.4 extends to an isomorphism of
the Ext-groups.
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Proposition 2.5 For all X and Y in XT

HomΓ( , T ′): Exti
Γ(X,Y ) → Exti

F ((Y, T ′), (X,T ′))

is an isomorphism functorial in both variables for all i > 0.

Proof : Let X and Y be in XT and let 0 → X → T0
d0→ T1

d1→ · · · be a coresolution of X in addT
with Im di in ⊥T . Then it is easy to see that the exact sequence

· · · → (T1, T
′) → (T0, T

′) → (X,T ′) → 0

is an F -exact projective resolution of (X,T ′). When applying HomΛ( , (Y, T ′)) to this sequence
we obtain the following commutative diagram by Corollary 2.4

0 → ((X,T ′), (Y, T ′)) → ((T0, T
′), (Y, T ′)) → ((T1, T

′), (Y, T ′)) → · · ·xo
xo

xo
0 → (Y,X) → (Y, T0) → (Y, T1) → · · · .

The cohomology of the upper sequence is Exti
F ((X,T ′), (Y, T ′)) and the cohomology of the lower

sequence is Exti
Γ(Y,X), hence our desired result. The isomorphism between the Ext-groups is

induced by the functorial isomorphism of the homomorphism groups, therefore it follows that the
isomorphism between the Ext-groups is functorial in both variables.

Since Γ is in XT = ⊥T , the following corollary follows immediately from Proposition 2.5.

Corollary 2.6 (a) Exti
F ((XT , T

′), T ′) = 0 for all i > 0.
(b) Exti

F (T ′, T ′) = 0 for all i > 0.

With these preliminary results we can show that the Λ-module T ′ is an F -cotilting module.

Proposition 2.7 With the notation as above we have the following.

(a) The subcategory (XT , T
′) is F -resolving contravariantly finite in mod Λ with (XT , T

′)-

resdimF (mod Λ) ≤ max{idΓ T, 2} and (XT , T
′)⊥ = ̂addT ′.

(b) The subcategory ̂addT ′ is F -coresolving covariantly finite in mod Λ with idF ( ̂addT ′) ≤
max{idΓ T, 2}.

(c) The module T ′ is an F -cotilting module in mod Λ with idF T
′ ≤ max{r, 2}.

Proof : (a) First we want to show that (XT , T
′) is an F -resolving subcategory of mod Λ. Since

Exti
Γ(X,Y ) ' Exti

F ((Y, T ′), (X,T ′)) for all X and Y in XT and all i > 0 by Proposition 2.5,
the subcategory (XT , T

′) is closed under F -extensions and P(F ) is contained in (XT , T
′). So, it

remains to prove that (XT , T
′) is closed under kernels of epimorphisms in F -exact sequences.

Let η: 0 → A→ (X2, T
′) → (X3, T

′) → 0 be F -exact with X2 and X3 in XT . This sequence is

induced from an exact sequence X3
f
→ X2

g
→ X1 → 0 where A ' (X1, T

′). Since X3 is in XT , the
following diagram is exact and commutative

0 → ((X3, T
′), T ′) → ((X2, T

′), T ′) → ((X1, T
′), T ′) → 0xo

xo
xα

X3
f
→ X2

g
→ X1 → 0.

Hence, f is a monomorphism and α is an isomorphism. Then it follows that Exti
Γ(X1, T ) = 0

for i > 1, since X2 and X3 is in XT . Since η is F -exact, the following diagram is exact and
commutative

((T, T ′), (X2, T
′)) → ((T, T ′), (X1, T

′)) → 0xo
xo

(X2, T ) → (X3, T ) → Ext1Γ(X1, T ) → 0.
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Therefore, Ext1Γ(X1, T ) = 0 and we have shown that X1 is in XT . Since A ' (X1, T
′), it follows

that (XT , T
′) is closed under kernels of epimorphisms in F -exact sequences. Thus we have shown

that (XT , T
′) is F -resolving.

Next we want to show that (XT , T
′)-resdimF (mod Λ) is finite. Since P(F ) is contained in

(XT , T
′), it is enough to show that the i-th syzygy in a relative projective resolution of any

module C in mod Λ is in (XT , T
′) for large enough i. Let (T1, T

′) → (T0, T
′) → C → 0 be the

start of a relative projective resolution of C in mod Λ. This sequence is induced from an exact
sequence T0 → T1 → B → 0 in mod Γ, so that Ω2

F (C) ' (B, T ′). A relative projective resolution
of (B, T ′) corresponds to a succession of minimal left addT -approximations, B → T2 → B1 → 0,
B1 → T3 → B2 → 0 and so on. By [3, Lemma 3.12] the module B is in XT if idΓ T ≤ 2 and
BidΓ T−2 is in XT if idΓ T > 2. Therefore we have that (XT , T

′)-resdimF (mod Λ) ≤ max{idΓ T, 2}.
Since (XT , T

′) is an F -resolving subcategory of mod Λ with (XT , T
′)-resdimF (mod Λ) finite,

it suffices to find an ExtF -injective cogenerator for (XT , T
′) in order to show that (XT , T

′) is
contravariantly finite in mod Λ by Theorem 1.1. The subcategory addT ′ is contained in (XT , T

′)∩
(XT , T

′)⊥ by Corollary 2.6 (a). Let X be in XT and let 0 → X ′ → P → X → 0 be the projective
cover ofX . Then the sequence 0 → (X,T ′) → (P, T ′) → (X ′, T ′) → 0 is F -exact by Proposition 2.5
with (P, T ′) in addT ′ and (X ′, T ′) in (XT , T

′). Hence addT ′ is an ExtF -injective cogenerator for
(XT , T

′). Then by Theorem 1.1 the subcategory (XT , T
′) is contravariantly finite in mod Λ and

(XT , T
′)⊥ = ̂addT ′.

(b) By (a) ̂addT ′ = (XT , T
′)⊥, so by [3, Proposition 2.2 (a)] the subcategory ̂addT ′ is

F -coresolving covariantly finite in mod Λ. Since (XT , T
′)-resdimF (mod Λ) ≤ n if and only if

idF (XT , T
′)⊥ ≤ n by [3, Theorem 2.5], it follows from (a) that idF

̂addT ′ ≤ max{idΓ T, 2}.
(c) Since (XT , T

′) is F -resolving contravariantly finite with (XT , T
′)-resdimF (mod Λ) finite,

the subcategory (XT , T
′) ∩ (XT , T

′)⊥ is addT ′′ for some F -cotilting module T ′′ over Λ by [3,
Proposition 3.22]. It is not hard to see that (XT , T

′) ∩ (XT , T
′)⊥ = addT ′. Therefore T ′ is an

F -cotilting module with idF T
′ ≤ max{idΓ T, 2}, since idF

̂addT ′ ≤ max{idΓ T, 2}.

Then the following characterization of dualizing summands of cotilting modules is an immediate
consequence from the above results and the remark in the introduction to this section.

Theorem 2.8 Let T = T1⊕T2 be a cotilting module in mod Γ and let Λ = EndΓ(T1). Define F to

be the subfunctor of Ext1Λ( , ) given by FP(F ), where P(F ) = (addT, T1). Then T1 is a dualizing

summand of the Γ-module T if and only if T1 is an F -cotilting module in mod Λ.

One natural question is whether or not the dualizing summand Ta of T determines the cotilting
module T uniquely. We observed in [3] that a module T ′ could be a relative cotilting with respect
to two different relative theories. The endomorphism ring of T ′ is independent of the relative
theories. It is easy to see that this implies that T ′ as a module over its endomorphism ring is a
dualizing summand of two different cotilting modules.

3 Wedderburn correspondence.

Let T = Ta ⊕ Tb be a cotilting module over an artin algebra Γ, where Ta is a dualizing summand
of T . Denote by Σ = EndΓ(T ). Then HomΓ(Ta, T ) is a projective Σ-module, moreover we
show that it is a Wedderburn projective. The existence of a relative cotilting module for mod Λ
implies that P(F ) = addG for some generator G of mod Λ by [3, Corollary 3.14]. This section
is devoted to investigating the connections between all these concepts, cotilting modules with
dualizing summands, relative cotilting modules, generators and Wedderburn projectives.

First we recall the notion of a Wedderburn projective and Wedderburn the correspondence
from [1].

Let Γ be an artin algebra and P a projective module in mod Γ. Let ΛP = EndΓ(P )op and
GP = HomΓ(P,Γ). Then we have the following functors

HomΓ(P, ): mod Γ → mod ΛP
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and
HomΛP

(GP , ): mod ΛP → mod Γ.

The ΛP -module GP is a generator for mod ΛP . The module P is called a Wedderburn projective Γ-
module if the canonical homomorphism Γ → HomΛP

(GP , GP ) given by γ 7→ fγ where fγ(g) = g ·γ
for g in GP , is an isomorphism. Moreover, if P is a Wedderburn projective, then HomΛP

(GP ,ΛP )
is isomorphic to P as Λ-modules by [1, Proposition 8.2].

Let Λ be an artin algebra and G a generator for mod Λ. Let ΓG = EndΛ(G)op and PG =
HomΛ(G,Λ). Then we have the following functors

HomΛ(G, ): mod Λ → mod ΓG

and
HomΓG

(PG, ): mod ΓG → mod Λ.

With the notation above we recall the following result from [1].

Proposition 3.1 Let Λ be an artin algebra and G a generator for mod Λ. Then we have the

following.

(a) The functor HomΛ(G, ): mod Λ → mod ΓG is a fully faithful functor which is a right adjoint

of HomΓG
(PG, ): mod ΓG → mod Λ.

(b) The composition HomΓG
(PG, )◦HomΛ(G, ) is functorial isomorphic to the identity functor

on mod Λ.

(c) The functor HomΛ(G, )|add G: addG → P(ΓG) is an equivalence of categories.

(d) The homomorphism HomΛ(G, ): HomΛ(Λ,Λ) → HomΓG
(PG, PG) is an isomorphism in-

ducing an isomorphism Λ → EndΓG
(PG)op of rings.

It follows from Proposition 3.1 that the ΓG-module PG is a Wedderburn projective. A module
M in mod Λ is said to be a Wedderburn module if it is either a generator for modΛ or it is a Wedder-
burn projective Λ-module. A pair (Λ,M) is called a Wedderburn pair if M is a Wedderburn mod-
ule. The operation End on (Rings, Modules) given by End(Λ,M) = (EndΛ(M)op,HomΛ(M,Λ))
is an involution on the collection of Wedderburn pairs and it is called the Wedderburn correspon-

dence.
Let P be a Wedderburn projective in mod Λ. Denote by ∆ = EndΛ(P )op and G = HomΛ(P,Λ).

Then by the above results the canonical homomorphisms Λ → Hom∆(G,G)op and P → Hom∆(G,∆)
are isomorphisms as algebras and as Λ-modules respectively. Let F = Fadd G, then P(F ) = addG
and I(F ) = I(∆) ∪ addDTrG. Assume that T is a ∆-module such that addT = I(F ). Then T
is an F -cotilting module in mod ∆ with idF T = 0. Denote by Γ = End∆(T ). By Theorem 1.2 (a)
the module T0 = Hom∆(G, T ) is a cotilting module over Γ with idΓ T0 ≤ 2 and idΓ T = 0. More-
over, idΓ T0 = 2 by [3, Proposition 3.26]. If Λ′ = EndΓ(T0), then Λ′T0 is a cotilting module over
Λ′. Since T is an F -cotilting module in mod ∆, we have that

EndΓ(T0) = HomΓ(Hom∆(G, T ),Hom∆(G, T )) ' Hom∆(G,G)op.

Because P is a Wedderburn projective in mod Λ, it follows that EndΓ(T0) ' Λ. This shows that to
every Wedderburn projective P there is a cotilting module naturally associated with it. Moreover,
we have the following result.

Proposition 3.2 Let P be a Wedderburn projective in mod Λ. Then there exists a cotilting module

T0 in mod Λ, such that if Γ = EndΛ(T0), the module ΓT0 has the properties (i) ΓT0 is a cotilting

module in mod Γ with idΓ T0 = 2, (ii) if Ta the maximal injective summand of T0, then it is a

dualizing summand of T0 and (iii) P ' HomΓ(T ′, T0) for some module T ′ with addT ′ = addTa.

Proof : By the above considerations we have shown that there exists a cotilting module T0 over Λ
such that idΓ T0 = 2, since Γ ' EndΛ(T0). This proves (i).

(ii) Let G = Q⊕M , where Q is projective and M has no nonzero projective summands. This
gives the decomposition T0 = Hom∆(Q,T ) ⊕ Hom∆(M,T ) of T0. Denote by Ta = Hom∆(Q,T )
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and Tb = Hom∆(M,T ). Since addTa = add ΓT and ΓT dualizes T0, the module Ta is dualizing
summand of T0 and idΓ Ta = 0. It remains to show that Ta is a maximal injective summand of T0.
Assume that I is an injective summand of Tb = Hom∆(M,T ). The functor Hom∆( , T ): mod∆ →
mod Γ induces a duality between XT = mod Λ and ⊥T0 by [3, Corollary 3.6 (a)]. Then I '
Hom∆(X,T ) for some summand X of M . Using the duality again it follows that X must be
projective. By assumption M has no nonzero projective summands, so X = 0. Therefore Tb does
not have any nonzero injective summands and Ta is the maximal injective summand of T0.

(iii) We have that add ΓT = addTa. We want to prove that P ' HomΓ(T, T0). Since T is an
F -cotilting module, we have that

HomΓ(T, T0) = HomΓ(Hom∆(∆, T ),Hom∆(G, T )) ' Hom∆(G,∆).

Because P is a Wedderburn projective in mod Λ, we have that Hom∆(G,∆) ' P . Hence
HomΓ(T, T0) ' P .

Let T = Ta ⊕Tb be a cotilting module over an artin algebra Γ with Ta a dualizing summand of
T . Denote by Λ = EndΓ(T ). Then we observed above that at least in one special case HomΓ(T ′, T )
is a Wedderburn projective projective in mod Λ for all modules such that addT ′ = addTa. Next
we prove that this is true in general.

Proposition 3.3 Let T = Ta ⊕ Tb be a cotilting module over an artin algebra Γ with Ta a dual-

izing summand of T . Denote by Λ = EndΓ(T ). Then the module HomΓ(T ′, T ) is a Wedderburn

projective in mod Λ for all modules T ′ such that addT ′ = addTa.

Proof : Let T ′ be a module such that addT ′ = addTa. Denote by Σ = EndΓ(T ′), the subfunctor
F = FHomΓ(add T,T ′) and G = HomΓ(T, T ′). By Proposition 2.7 the module ΣT

′ is an F -cotilting
module. The module G is a generator for mod Σ. Therefore, if ∆ = EndΣ(G)op, the module
P = HomΣ(G,Σ) is a Wedderburn projective over ∆. Since T ′ is an F -cotilting module, we have
the following isomorphisms

∆ = HomΣ(G,G)op = HomΣ(HomΓ(T, T ′),HomΓ(T, T ′))op ' HomΓ(T, T ) = Λ

and
P = HomΣ(G,Σ) = HomΣ(HomΓ(T, T ′),HomΓ(T ′, T ′)) ' HomΓ(T ′, T ).

Hence HomΓ(T ′, T ) is a Wedderburn projective in mod Λ.

This result also shows that the converse of Proposition 3.2 is true. Hence we have proved that
the statements (a) and (b) in the following proposition are equivalent.

Proposition 3.4 Let P be a module in P(Λ). Then the following are equivalent.

(a) The module P is a Wedderburn projective in mod Λ.

(b) There exists a cotilting module T in mod Λ, such that if Γ = EndΛ(T ), the module ΓT has

the properties (i) ΓT is a cotilting module in mod Γ with idΓ T = 2, (ii) if Ta the maximal injective

summand of T , then it is a dualizing summand of T and (iii) P ' HomΓ(T ′, T ) for some module

T ′ with addT ′ = addTa.

(c) There exists an exact sequence

0 → Λop f
→ HomΛ(P,Λ)n → HomΛ(P,Λ)m,

where f : Λop → HomΛ(P,Λ)n is a left HomΛ(P,Λ)-approximation.

Proof : (b) implies (c). Let T = Ta ⊕ Tb be a cotilting module over an artin algebra Γ with Ta a
dualizing summand of T . Denote by Λ = EndΓ(T ). Let T ′ be a module such that addT ′ = addTa.
Then T ′ dualizes T and therefore there exists an exact sequence

0 → T
f
→ (T ′)n → (T ′)m,
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where f :T → (T ′)n is a left addT ′-approximation by Proposition 2.1. Applying the functor
HomΓ(T, ) to this sequence gives rise to the exact sequence

0 → HomΓ(T, T )
HomΓ(T,f)

→ HomΓ(T, T ′)n → HomΓ(T, T ′)m,

where HomΓ(T, f): HomΓ(T, T ) → HomΓ(T, T ′)n is a left addHomΓ(T, T ′)-approximation. Let
P = HomΓ(T ′, T ). Since ΓT is a cotilting module, we have the following isomorphism

HomΛ(P,Λ) = HomΛ(HomΓ(T ′, T ),HomΓ(T, T )) ' HomΓ(T, T ′).

Hence, the above exact sequence has the following form

0 → Λop f ′

→ HomΛ(P,Λ)n → HomΛ(P,Λ)m,

where f ′: Λop → HomΛ(P,Λ)n is a left add HomΛ(P,Λ)-approximation. This completes the proof
of (b) implies (c).

(c) implies (a). Assume that there exists an exact sequence

0 → Λop f
→ HomΛ(P,Λ)n → HomΛ(P,Λ)m,

where f ′: Λop → HomΛ(P,Λ)n is a left add HomΛ(P,Λ)-approximation. By Proposition 2.1 this is
equivalent to the natural homomorphism

Λop → Hom∆(HomΛop(Λop,HomΛ(P,Λ)),HomΛ(P,Λ))

being an isomorphism, where ∆ = EndΛop(HomΛ(P,Λ)). Since HomΛ( ,Λ):P(Λ) → P(Λop) is a
duality, we have that

∆ = EndΛop(HomΛ(P,Λ)) ' EndΛ(P )op = ΛP .

Therefore the above natural homomorphism

Λop → HomΛP
(HomΛ(P,Λ),HomΛ(P,Λ))

is given by λ 7→ fλ, where fλ(g) = g · λ for g in G = HomΛ(P,Λ). This implies that the canonical
homomorphism Λ → HomΛP

(G,G) is an isomorphism, so that P is a Wedderburn projective in
mod Λ.

Remark: (1) If P is a basic module, it is easy to see that T ′ in the above proposition is Ta.
(2) It follows directly from the above proposition that if P is a Wedderburn projective in

mod Λ, then all modules Q such that addQ = addP are also Wedderburn projective. In partic-
ular, a module P is a Wedderburn projective if and only if the corresponding basic module is a
Wedderburn projective.

Let F be an additive subfunctor of Ext1Λ( , ) with enough projectives and injectives. Let T be
an F -cotilting module and Γ = EndΛ(T ). Then P(F ) = addG for some generator G in mod Λ by
[3, Corollary 3.14]. The module T0 = (G, T ) is a cotilting module in mod Γ with ⊥T0 = (XT , T )
by Theorem 1.2 (a). Let Σ = EndΓ(T0) and ΓG = EndΛ(G)op. Similarly as in Proposition 2.1
and Corollary 2.4 one can show that HomΛ( , T ): HomΛ(A,C) → HomΓ((C, T ), (A, T )) is an
isomorphism for all modules A in mod Λ and all modules C in XT . Then it follows that φ =
HomΛ( , T ): ΓG → Σ is an isomorphism. Since G is a generator for mod Λ, the pair (ΓG, PG =
HomΛ(G,Λ)) is the Wedderburn pair corresponding to (Λ, G) by the Wedderburn correspondence.
Then we have the following diagram of functors

mod Λ
HomΛ( ,T )

−→ mod ΓyHomΛ(G, )

yHomΓ( ,(G,T ))

mod ΓG
φ−1

−→ mod Σ,
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where we also have a diagonal functor HomΓG
( , (G, T )): mod ΓG → mod Γ. By the above re-

mark the composition HomΓ( , (G, T ))◦HomΛ( , T ) is functorial isomorphic to φ−1
◦HomΛ(G, )

when restricted to XT . It follows by applying Theorem 1.2 (a) twice that the ΓG-module (G, T )
is a cotilting module with idΓG

(G, T ) ≤ max{idF T, 2} and where Γ ' EndΓG
((G, T )). Since

HomΛ(G, ): mod Λ → mod ΓG is a fully faithful functor by Proposition 3.1 (a), we have that
HomΓG

( , (G, T ))◦HomΛ(G, ) ' HomΛ( , T ): modΛ → mod Γ. Hence we have shown the follow-
ing result.

Proposition 3.5 Every relative cotilting functor HomΛ( , T ): modΛ → mod Γ is isomorphic to

the composition of functors HomΓG
( , (G, T ))◦HomΛ(G, ), where HomΛ(G, ): mod Λ → mod ΓG

is the usual functor and HomΓG
( , (G, T )): mod ΓG → mod Γ is a standard cotilting functor.

Let G be a generator for mod Λ. Denote Fadd G by F . Then F has enough projectives and
injectives. The projectives of the subfunctor are P(F ) = addG by [2, Proposition 1.10]. Let ΓG =
EndΛ(G)op. Then G is an F -tilting module, so that the functor HomΛ(G, ): mod Λ → modΓG is
a special case of a relative tilting functor.

Let T be a module in modΛ such that addT = I(F ), then T is a F -cotilting module with
XT = mod Λ. Denote by Γ = EndΛ(T ) and let G be a Λ-module such that addG = P(F ). From
the above discussion it follows that the functor HomΛ(G, ): mod Λ → mod ΓG is isomorphic to
HomΓ( , (G, T ))◦HomΛ( , T ), where HomΛ( , T ): modΛ → mod Γ is the relative cotilting functor
and HomΓ( , (G, T )): mod Γ → mod ΓG is a standard cotilting functor. By [3, Proposition 3.18]
the abelian groups F −K0(mod Λ), K0(mod Γ) and K0(mod ΓG) are all isomorphic. Using these
remarks and Theorem 1.2, it is easy to see that we have the following result.

Proposition 3.6 Let Λ, G, T and F be as above. Then the following is true.

(a) The functor HomΛ(G, ): mod Λ → mod ΓG is the composition of the relative cotilting

functor HomΛ( , T ): modΛ → mod Γ and the standard cotilting functor HomΓ( , (G, T )): mod Γ →
mod ΓG.

(b) The Grothendieck groups F -K0(mod Λ) and K0(mod ΓG) are isomorphic.

(c) The ΓG-module (G, T ) is a cotilting module with idΓG
(G, T ) = 2.
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