MA3203 - Problem sheet 5

Problem 1. Given a ring Λ, let $F, G: \bmod \Lambda \longrightarrow A b$ be two functors, F covariant and G contravariant.
(a) If $0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C)(G(C) \rightarrow G(B) \rightarrow G(A) \rightarrow 0)$ is an exact sequence whenever $0 \rightarrow A \rightarrow B \rightarrow C$ is, we say that F is left exact functor (G is right exact functor).
(b) If $F(A) \rightarrow F(B) \rightarrow F(C) \rightarrow 0(0 \rightarrow G(C) \rightarrow G(B) \rightarrow G(A))$ is an exact sequence whenever $A \rightarrow B \rightarrow C \rightarrow 0$ is, we say that F is right exact functor (G is left exact functor).
(c) If $0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C) \rightarrow 0(0 \rightarrow G(C) \rightarrow G(B) \rightarrow G(A) \rightarrow$ 0) is an exact sequence whenever $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is, we say that F is exact functor (G is exact functor).
Let $X \in \bmod \Lambda$.
(1) Show that the functor $F=\operatorname{Hom}_{\Lambda}(X$,$) is a left exact (covariant) functor.$ Show also that $F=\operatorname{Hom}_{\Lambda}(X$,$) is an exact functor if and only if X$ is a projective Λ-module.
(2) Show that the functor $F=\operatorname{Hom}_{\Lambda}(, X)$ is a left exact (contravariant) functor. Show also that $F=\operatorname{Hom}_{\Lambda}(, X)$ is an exact functor if and only if X is an injective Λ-module.

Problem 2. Let $\Lambda=k \Gamma$, where Γ is the quiver:

$$
1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3
$$

Find the indecomposable injective Λ-modules and find the socles and injective envelopes of the following representations:
(1) $k \xrightarrow{0} k \xrightarrow{0} 0$
(2) $k \xrightarrow{1} k \xrightarrow{0} 0$
(3) $k^{2} \xrightarrow{\left(\begin{array}{ll}1 & 0\end{array}\right)} k \xrightarrow{\binom{1}{1}} k^{2}$

Problem 3. Let $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver:

$$
1 \xrightarrow{\alpha} 2 \underset{\gamma}{\stackrel{\beta}{\rightrightarrows}} 3,
$$

$\rho=\{\beta \alpha\}$ and k is a field. Find all indecomposable injective Λ-modules and find the socles and injective envelopes of the following representations :
(1) $k \xrightarrow{1} k \underset{\binom{0}{1}}{0} k^{2}$.
(2) $k \xrightarrow{\binom{0}{1}} k^{2} \xrightarrow[\left(\begin{array}{ll}1 & 1\end{array}\right)]{\stackrel{(10}{1})} k$.
(3) $\left.0 \xrightarrow{0} k^{2} \xrightarrow[\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)]{\stackrel{(1}{1} 1} \begin{array}{l}1 \\ 1\end{array}\right)$.

Problem 4. Let $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver:

$$
1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2
$$

$\rho=\{\alpha \beta\}$ and k is a field. Find the injective envelopes of the simple Λ-modules. Also, for each indecomposable module I_{i}, find representations of (Γ, ρ) corresponding to $I_{i} / \operatorname{soc} I_{i}$ for each i.
Problem 5. Let Λ be an artin algebra, I an indecomposable injective and M an arbitrary module in $\bmod \Lambda$.

Prove that $\operatorname{Hom}_{\Lambda}(M, I) \neq(0)$ if and only if $\operatorname{soc} I$ is a composition factor of M. Problem 6 (Challenge). Let k be a field, Γ the quiver

and $\Lambda=k \Gamma$.
Let M be the representation

and let N be the representation

(a) Find the radical and the socle of M and N.
(b) Given a ring R and a left R-module A, we define the annihilator of A by $\operatorname{Ann}_{R}(A)=\{r \in R \mid r a=0, \forall a \in A\}$. It is a two-sided ideal in R.

Find the annihilator, $\operatorname{Ann}_{\Lambda}(M)$ and $\operatorname{Ann}_{\Lambda}(N)$, of M and N, respectively.
(c) Prove that M is a projective $\left(\Lambda / \operatorname{Ann}_{\Lambda}(M)\right)$-module and that N is an injective $(\Lambda / \operatorname{Ann} \Lambda(N))$-module.
(d) Challenge: For a general artin algebra Λ, show that

$$
\operatorname{soc} M=\{m \in M \mid \mathfrak{r} m=(0)\}
$$

where \mathfrak{r} is the radical of Λ.

