## MA3203 - Problem sheet 3

Problem 1. Given $\Lambda=k \Gamma /\langle\rho\rangle$, where $\Gamma$ is the quiver $1 \xrightarrow{\alpha} 2 \underset{\gamma}{\underset{\gamma}{\Longrightarrow}} 3$ with relations $\rho=\{\beta \alpha\}$ and $k$ is a field. Find the radicals and tops of representations of $\Lambda e_{i}$ for different possible values of $i$.

Problem 2. Given $\Lambda=k \Gamma /\langle\rho\rangle$, where $\Gamma$ is the quiver $1 \underset{\beta}{\stackrel{\alpha}{\leftrightarrows}} 2$ with relations $\rho=\{\alpha \beta\}$ and $k$ is a field. Let $J$ be the ideal in $k \Gamma$ generated by the arrows.
(a) Show that there is some $t$ such that $J^{t} \subset\langle\rho\rangle \subset J^{2}$. Is the dimension of $\Lambda$ over $k$ finite?
(b) Find the representations of $\Lambda e_{i}$ for different possible values of $i$ and find their radicals and tops.
(c) Find the radical of $\Lambda$.

Problem 3. Let $I$ be an ideal of a ring $\Lambda$, and let

$$
A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

be an exact sequence of $\Lambda$-modules and homomorphisms (i.e. $\operatorname{Im} f=\operatorname{Ker} g$ and $g$ is onto; $f$ does not need to be mono).

Show that the sequence

$$
A / I A \xrightarrow{\bar{f}} B / I B \xrightarrow{\bar{g}} C / I C \rightarrow 0
$$

also is exact, where the maps $\bar{f}$ and $\bar{g}$ are induced by $\bar{f}(a+I A)=f(a)+I B$ and $\bar{g}(b)=g(b)+I C$.

