MA3203 - Problem sheet 2 **Problem 1.** Let k be a field. Find the representations corresponding to the modules Λe_i for the different possible values of i and for the different cases of Λ listed below. (a) $\Lambda = k\Gamma$, where Γ is the quiver: $$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$ (b) $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver: $$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$ and $\rho = \{\beta \alpha\}.$ (c) $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver: $$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$ and $\rho = \{\beta \alpha\}.$ (d) $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver: $$1 \xrightarrow{\alpha \atop \beta} 2 \bigcirc \gamma$$ and $\rho = {\gamma \alpha, \gamma^3}.$ **Problem 2.** Find a composition series for the following representations: - (a) Λe_1 where Λ is as in (c) above. - (b) Λe_1 where Λ is as in (d) above. ## Problem 3. - (a) Given a ring Λ . Show that a Λ -module M is decomposable if and only if its endomorphism ring $\operatorname{End}_{\Lambda}(M) = \{f \colon M \to M \mid f \Lambda\text{-homomorphism}\}$ contains a nontrivial idempotent (i.e. there is an f in $\operatorname{End}_{\Lambda}(M)$ such that $f^2 = f$ and $f \neq 0, 1$). - (b) Use (a) to show that Λe_1 where Λ is as in (b) in Problem 1 is indecomposable. Here we will use without proof that the endomorphism ring of themodule Λe_1 is isomorphic to the endomorphism ring of the representation to responding to Λe_1 . - (c) Given a ring Λ with an idempotent e. Show that the endomorphism ring $\operatorname{End}_{\Lambda}(\Lambda e)^{\operatorname{op}}$ is isomorphic to $e\Lambda e$. Let $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is a quiver with vertices $\{1, \ldots, n\}$ and ρ is a set of relations. Assume that $J^t \subset \langle \rho \rangle \subset J^2$ for some t. Conclude (using (a)) that Λe_i is indecomposable for each i. (d) Given a ring Λ and two simple Λ -modules S and S'. Show that if $f: S \to S'$ is a nonzero Λ -homomorphism, then f is an isomorphism. **Problem 4.** Let Γ be the quiver with relations as in (b) in Problem 1, and let V be its representation over k given by: V(1) = k, $V(2) = k^2$, $V(3) = k^2$, $f_{\alpha} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $f_{\beta} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$. Determine if V is decomposable, and if it is, find its decomposition into a direct sum of indecomposable representations. Furthermore, find a composition series for V. **Problem 5.** Let k be a field and let Γ be the quiver $$\begin{array}{c} 1 \\ 3 \longrightarrow 4 \end{array}$$ For an ordered pair (i, j) of elements in k, let M_{ij} be the representation given by $$k \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} k^2 \xrightarrow{\begin{pmatrix} i & j \end{pmatrix}} k$$ $$k \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} k$$ - (a) determine for which (i, j) the representation M_{ij} is indecomposable and for which (i, j) it decomposes. - (b) Prove that if M_{ij} and M_{rs} are indecomposable then they are isomorphic. Is the same true if M_{ij} and M_{rs} decomposes? **Problem 6.** Let Λ_c be the algebra over \mathbb{C} with basis $\{e_0, e_1, e_2, e_3\}$ over \mathbb{C} , where c is a given complex number. The multiplication is given by the following multiplication table: | | e_0 | e_1 | e_2 | e_3 | |-------|-------|--------|--------|-------| | e_0 | e_0 | e_1 | e_2 | e_3 | | e_1 | e_1 | e_3 | e_3 | 0 | | e_2 | e_2 | $-e_3$ | ce_3 | 0 | | e_3 | e_3 | 0 | 0 | 0 | For which c and c' are the algebras Λ_c and $\Lambda_{c'}$ isomorphic? Challenge 1. Find a quiver with relations ρ_c over \mathbb{C} such that $\Lambda_c \cong \mathbb{C}\Gamma/\langle \rho_c \rangle$. Challenge 2. Show that there exists an infinite number of non-isomorphic indecomposable modules over Λ_c for any value of c in \mathbb{C} . **Challenge 3.** Show that there exists an infinite number of non-isomorphic indecomposable modules over Λ_c for any value of c in \mathbb{C} . **Problem 7.** Let k be a field and Γ the quiver $$\alpha \bigcap 1 \stackrel{\delta}{\Longrightarrow} 2 \bigcap \beta$$ with relations $\rho = \{\delta \gamma - \alpha^2, \alpha^3 - \alpha^2, \gamma \delta - \beta^2, \beta^3 - \beta^2, \alpha \delta - \delta \beta, \gamma \alpha - \beta \gamma\}.$ - (a) Show that the dimension of $k\Gamma/\langle \rho \rangle$ over k is 12. - (b) Show that the subspace of $k\Gamma/\langle\rho\rangle$ spanned by $\alpha^2, \gamma\alpha^2, \alpha^2\delta, \beta^2$ is a ring which is isomorphic to $M_2(k)$ -ring of 2×2 -matrices over k. **Problem 8.** We say that a ring Λ is local if the nonunits of Λ (elements in Λ without multiplicative invers) form an ideal in Λ . Show that if Λ is local, then 0 and 1 are the only idempotents in Λ .