QUOTIENT CLOSED SUBCATEGORIES OF QUIVER REPRESENTATIONS

STEFFEN OPPERMANN, IDUN REITEN, AND HUGH THOMAS

Abstract. Let Q be a finite quiver without oriented cycles, and let k be an algebraically closed field. The main result in this paper is that there is a natural bijection between the elements in the associated Coxeter group W_Q and the cofinite additive quotient-closed subcategories of the category of finite dimensional right modules over kQ. We prove this correspondence by linking these subcategories to certain ideals in the preprojective algebra associated to Q, which are also indexed by elements of W_Q.

1. Introduction

Let Q be a finite quiver without oriented cycles. Let k be an algebraically closed field. The main result in this paper is that there is a natural bijection between the elements in the associated Coxeter group W_Q and the cofinite additive quotient closed subcategories of the category mod kQ of finite dimensional right modules over the path algebra kQ. Here a subcategory A in mod kQ is called cofinite if there are only a finite number of indecomposable modules of mod kQ which are not in A. From now on, when we refer to subcategories, we mean full, additive subcategories.

The natural bijection is given via the following map. Let A be a cofinite quotient closed subcategory of mod kQ. We label the vertices of Q by $1, \ldots, n$ so that if P_1, \ldots, P_n are the corresponding projective modules, then $\text{Hom}(P_i, P_j) = 0$ for $i > j$. List the indecomposable modules not in A, starting with the projective ones, with indices in increasing order, then similarly for $\tau^{-1}P_1, \ldots, \tau^{-1}P_n$, etc., where τ denotes the AR-translation. The sequence of modules gives rise to a word w by replacing $\tau^{-i}P_j$ by the simple reflection s_j of W_Q. For example, if Q is the quiver $\begin{array}{ccc} 1 & \rightarrow & 2 \\ \rightarrow & & \rightarrow \\ 3 & \rightarrow & 2 \end{array}$, and $\tau^{-1}P_1, \tau^{-2}P_2$ are the indecomposable modules of a quotient closed subcategory of mod kQ, then the missing indecomposables in the required order are $\{P_1, P_2, P_3, \tau^{-1}P_2\}$. The associated word is therefore $w = s_1s_2s_3s_2$. Conversely, starting with an element w of length t, we describe explicitly how to find the t indecomposable kQ-modules which are not in the corresponding quotient closed subcategory.

Our method for proving this correspondence is to work with the preprojective algebra Π associated to Q. For each element w in W_Q, there is an associated ideal I_w in Π (see [IR, BIRS]), such that Π/I_w is a finite dimensional algebra. We associate to I_w the subcategory $\mathcal{C}(I_w) = \text{add}((I_w)_{kQ}) \cap \text{mod} kQ$. This is a subcategory of \mathcal{P}, the preprojective kQ-modules. We show that the additive category generated by $\mathcal{C}(I_w)$ together with the regular and preinjective kQ-modules is quotient closed and coincides with the subcategory corresponding as above to w in W_Q; we also

2010 Mathematics Subject Classification. 16G20, 16G70, 05E10.
show that any cofinite quotient closed subcategory of $\mod kQ$ is of this form. In our proofs, we have to distinguish between the Dynkin and non-Dynkin cases, with the Dynkin case being the more complicated one. To get the flavour of our results, the reader might prefer on a first reading to skip Sections 5 and 6, which deal with the Dynkin case.

Another interesting subcategory of $\mod kQ$ associated to an element w in W_Q is $\mathcal{C}(\Pi/\mathfrak{I} w)$. When Q is Dynkin, we use our main theorem to show that the map from w to $\mathcal{C}(\Pi/\mathfrak{I} w)$ is a bijection from W_Q to the subclosed subcategories of $\mod kQ$. In the general case, we conjecture that there is a correspondence between the elements of W_Q and a certain specific subclass of the subclosed subcategories containing finitely many indecomposables.

The correspondence $w \mapsto \mathcal{C}(\Pi/\mathfrak{I} w)$ was already investigated in a special case in [AIRT]. It was shown that this gives a bijection between a special class of elements of W_Q called c-sortable [Re1] and torsion-free subcategories of $\mod kQ$ with a finite number of indecomposable objects. (Such a bijection had previously been constructed in [IT, T].)

By analogy, it would be interesting to describe the elements w of W_Q such that $\mathcal{C}(I_w)$ is a torsion class. Also, given such an element w, one might wish to determine the element of W_Q corresponding to the associated torsion-free class. We solve these problems for finite type, and we state a conjecture for the general case.

Quotient closed subcategories have not been extensively studied previously, though torsion classes are an important and well-studied special case. The dual concept, that of subclosed subcategories, arises in recent work of Ringel [Ri2] and of Krause and Prest [KP]. In particular, he has dealt with subclosed subcategories of infinite type, and has shown that any infinite subclosed subcategory of finite dimensional modules over a finite dimensional algebra contains a minimal infinite such subcategory. His work was motivated by previous work on the Gabriel-Roiter measure.

The paper is organized as follows. In Section 2 we give some essential background material, and we state our main theorem giving a bijection between elements of W_Q and cofinite, quotient closed subcategories of $\mod kQ$. In Section 3 we establish preliminary results on subfunctors of \Ext^1_{Π} and on interpretations of reflection functors, which are important for the proof of the main result. We show in Section 4 that I_w is determined by $\mathcal{C}(I_w)$ in the non Dynkin case, and in Section 5 that $\Pi/\mathfrak{I} w$ is determined by $\mathcal{C}(\Pi/\mathfrak{I} w)$ in the Dynkin case. In Section 6 we give some more results when Q is a Dynkin quiver, including the relationship between subcategories of the form $\mathcal{C}(\Pi/\mathfrak{I} w)$ and those of the form $\mathcal{C}(I_w)$. The proof of the main theorem is given in Section 7. In Section 8 we extend our main theorem to give a bijection between arbitrary quotient closed subcategories of \mathcal{P} and a suitable class of possibly infinite words. In Section 9 we deal with the categories $\mathcal{C}(\Pi/\mathfrak{I} w)$, and show that they are exactly the subclosed subcategories in the Dynkin case. We also state a conjecture for the non-Dynkin case. In Section 10 we investigate when the categories $\mathcal{C}(I_w)$ are torsion classes, and how to describe the associated torsion-free classes in that case. We give a complete answer in the Dynkin case, and state a conjecture in the general case. In Section 11 we show how our main theorem can be used to recover the characterization by Postnikov [Po] in terms of J-diagrams of the leftmost reduced subwords (equivalently, positive distinguished subexpressions) in the type A Grassmannian permutations. Work of Armstrong on finite Coxeter groups [Arm]
was part of the initial motivation for this paper; we discuss connections to that work in Section 12.

2. Statement of main results

In this section we state our main results, and give relevant background material and an example for illustration.

Let Q be a quiver without oriented cycles and with vertices $1, \ldots, n$, and let k be an algebraically closed field. Denote by kQ the associated path algebra. The Coxeter group $W = W_Q$ associated to Q has a distinguished set of generators s_1, \ldots, s_n, with relations $s_i^2 = e$ (the identity element), $s_is_j = s_js_i$ if there is no arrow between i and j, and $s_is_js_i = s_js_is_j$ if there is exactly one arrow between i and j. For an element w in W, an expression $w = s_1 \ldots s_n$ (called a word) is said to be reduced if t is as small as possible. In this case, $t = \ell(w)$ is the length of w.

Our main result is the following:

Theorem 2.1. There is a natural bijection between the elements in the Coxeter group W_Q and the cofinite (additive) quotient closed subcategories of the category $\text{mod } kQ$ of finitely generated kQ-modules.

The following observation shows that we can equally well consider the cofinite quotient closed subcategories of the category \mathcal{P} of preprojective kQ-modules.

Proposition 2.2. Any cofinite quotient closed subcategory of $\text{mod } kQ$ contains all the non-preprojective indecomposable kQ-modules. Further, any cofinite quotient closed subcategory of \mathcal{P} can be extended to a cofinite quotient closed subcategory of $\text{mod } kQ$ by taking the additive subcategory generated by it together with all the non-preprojective indecomposable kQ-modules.

Proof. For Q Dynkin, $\mathcal{P} = \text{mod } kQ$, so there is nothing to prove. Assume that Q is not Dynkin, and let \mathcal{B} be an additive cofinite quotient closed subcategory of $\text{mod } kQ$. Since \mathcal{B} is cofinite, $\tau^{-i}kQ$ is in \mathcal{B} for i sufficiently large. Since \mathcal{B} is quotient closed and τ^{-1} preserves epimorphisms, it follows that \mathcal{B} contains the regular and preinjective indecomposables of $\text{mod } kQ$. This proves the first point.

Now suppose that \mathcal{A} is a cofinite, quotient closed subcategory of \mathcal{P}. Let $\overline{\mathcal{A}}$ be the additive subcategory of $\text{mod } kQ$ generated by \mathcal{A} together with all the non-preprojective indecomposable objects of $\text{mod } kQ$. Clearly, $\overline{\mathcal{A}}$ is cofinite in $\text{mod } kQ$, and it is quotient closed because there are no non-zero maps from a regular or preinjective module to an object of \mathcal{P}. \square

We introduce some more terminology in order to state the main theorem more explicitly. Let \mathcal{A} be a cofinite, quotient closed subcategory of \mathcal{P}, and let \mathcal{X} be the finite set of indecomposable preprojective modules not in \mathcal{A}. Let P_1, \ldots, P_n be an ordering of the indecomposable projective kQ-modules, compatible with the orientation of Q, that is, such that if $i < j$ then $\text{Hom}(P_j, P_i) = 0$. Consider the ordering $P_1, \ldots, P_n, \tau^{-1}P_1, \ldots, \tau^{-i}P_n, \tau^{-2}P_1, \ldots$ of the indecomposable preprojective kQ-modules, dropping any $\tau^{-i}P_j$ which are zero.

From this, we get an induced ordering on \mathcal{X}. We replace each module in \mathcal{X} of the form $\tau^{-i}P_j$ for some i, by s_j, thereby obtaining a word w associated to the subcategory \mathcal{A}.

Conversely, start with an element $w \in W_Q$. Consider the infinite word $\underbrace{\underline{w} \cdots w}^{\infty}$, where $\underline{w} = s_1 \ldots s_n$ is what is called a Coxeter element. We match the
reflections in \(c^\infty \) with the indecomposable objects in \(P \), so that the first \(s_i \) corresponds to \(P_i \), the second to \(\tau^{-1}P_i \), and so on. Now, among all the reduced expressions \(s_{i_1}\cdots s_{i_t} \) in \(c^\infty \) for \(w \), we choose the leftmost one, in the sense that \(s_{i_1} \) is as far to the left as possible in \(c^\infty \), and, among such expressions, \(s_{i_2} \) is as far to the left as possible (but to the right of \(s_{i_1} \)), and so on for each \(s_{i_j} \). In this way, we determine a unique subword \(w \) of \(c^\infty \). Consider the associated set \(X \) of indecomposable preprojective modules corresponding to this subword, as discussed above. Then we associate to \(w \) the additive subcategory \(A \) of \(P \), whose indecomposable objects are the indecomposable objects of \(P \) which do not lie in \(X \). We can now state the following more explicit version of our main theorem:

Theorem 2.3. There is a bijective correspondence between elements \(w \in W_Q \) and cofinite quotient closed subcategories of \(P \), which can be described as follows:

(a) The correspondence \(w \mapsto A \) is given by removing from \(P \) the indecomposable modules corresponding to the leftmost word \(w \) for \(w \) in \(c^\infty \).

(b) The correspondence \(A \mapsto w \) is given by taking the finite set \(X \) of indecomposable preprojective modules not in \(A \), and associating to it a word as described above.

In order to prove these results, we work with the preprojective algebra \(\Pi = \Pi_Q \) associated to \(kQ \). For each arrow \(a \) in \(kQ \), add an arrow \(a^* \) in the opposite direction to get a new quiver \(Q \). Then, by definition, \(\Pi = kQ/\sum_a (a a^* - a^* a) \).

We write \(\text{mod} \Pi \) for the category of finitely generated right \(\Pi \)-modules, and \(\text{Mod} \Pi \) for the category of all right \(\Pi \)-modules.

Let \(e_i \) be the idempotent corresponding to the vertex \(i \). Then consider the ideal \(I_i = \Pi(1 - e_i)\Pi \) in \(\Pi \). When \(w = s_{i_1}\cdots s_{i_t} \) is a reduced expression for \(w \in W_Q \), then \(I_w \) is (well-)defined by \(I_w = I_{i_t}\cdots I_{i_1} \) [BIRS]. (Note that the product of ideals is taken in the opposite order to the product of reflections in \(w \). This follows the convention of [AIRT].) Any \(\Pi \)-module, like \(I_w \), is a \(kQ \)-module by restriction.

Consider the subcategory \(\mathcal{C}(I_w) \) of \(\text{mod} \Pi \), whose indecomposable modules are those which appear as indecomposable summands of \(I_w \) as a \(kQ \)-module. The modules \(\tilde{P}_1, \tilde{P}_2, \tilde{P}_3 \) and \(\tilde{P}_4 \) are the indecomposable projective \(\Pi \)-modules. The modules \(\tilde{P}_1, \tilde{P}_2, \tilde{P}_3 \) together

Example 2.5. Let \(Q \) be the following quiver:

```
1 -> 2 -> 3
```

Then the indecomposable projective \(kQ \)-modules are

\[
P_1 = 1, \quad P_2 = 2, \quad P_3 = 3.
\]

Let \(w = s_1s_2s_3s_2s_1 \). We have \(I_w = I_1I_2I_3I_2I_1 \) and \(I_w = \tilde{P}_1I_w \oplus \tilde{P}_2I_w \oplus \tilde{P}_3I_w \), where \(\tilde{P}_1, \tilde{P}_2, \tilde{P}_3 \) are the indecomposable projective \(\Pi \)-modules. The modules \(\tilde{P}_1 \), together
with their submodules $\widetilde{P}_I w$, are illustrated below. The regions in grey indicate the parts that do not appear in $I w$. Solid lines indicate what remains connected upon restriction to kQ.

Then we compute that $(\widetilde{P}_I w)_{kQ} = \tau^{-1} P_3 \oplus (\bigoplus_{i=3}^{\infty} \tau^{-i} P_1)$, $(\widetilde{P}_I w)_{kQ} = \tau^{-1} P_1 \oplus (\bigoplus_{i=2}^{\infty} \tau^{-i} P_2)$, and $(\widetilde{P}_I w)_{kQ} = \bigoplus_{i=1}^{\infty} \tau^{-i} P_3$. We see that the indecomposable kQ-modules not in $C(I w)$ are $P_1, P_2, P_3, \tau^{-1} P_2, \tau^{-2} P_1$.

We also illustrate how to see this by using our direct description of the missing set of $\ell(w) = 5$ indecomposable kQ-modules. Consider the infinite word $c^\infty = s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_3 \ldots$. We indicate the leftmost subword for the element w by underlining the corresponding s_i: $s_1 s_2 s_3 s_1 s_2 s_3 s_1 \ldots$. Hence we obtain the associated set of indecomposable modules $P_1, P_2, P_3, \tau^{-1} P_2, \tau^{-2} P_1$.

3. Results on preprojective algebras

In this section we give two results, which will be useful later, on the relationship between the path algebra kQ and the associated preprojective algebra Π. The first gives a long exact sequence involving the subfunctor of the ordinary \Ext^1_{Π} functor, given by short exact sequences of Π-modules which split as kQ-modules. The second one gives a comparison between the functor $- \otimes_{\Pi} I_i$ and APR-tilting for kQ at the vertex i. Similar statements appear as [AIRT, Corollary 2.11], [BK, Proposition 22].

Relative homological algebra was investigated by Auslander and Solberg in [AS]. They consider certain subfunctors of \Ext^1_{Π} given by a choice of short exact sequences. In our context, we will be interested in those short exact sequences of Π-modules which split upon restriction to kQ. We write \Ext^1_{Π} for the subfunctor of \Ext^1_{Π} given by these short exact sequences.

In the following lemma, we use a description of preprojective algebras which first appeared in [BGL, Proposition 3.1]:

$$\Pi = T_{kQ} \Omega \quad \text{with} \quad \Omega = \Ext^1_{kQ}(D(kQ), kQ).$$

Here T_{kQ} denotes the tensor algebra over kQ, that is

$$T_{kQ} \Omega = kQ \oplus \Omega \oplus (\Omega \otimes_{kQ} \Omega) \oplus \Omega^{\otimes 3} \oplus \ldots.$$

In this description, a Π-module is given by a kQ-module M and a multiplication rule $\varphi_M: M \otimes_{kQ} \Omega \rightarrow M$.

One may note that for finite dimensional M we have $M \otimes_{kQ} \Omega = \tau^{-1} M$, so in this case the above description coincides with Ringel’s [Ri1].
Lemma 3.1. For two Π-modules \((A, \varphi_A)\) and \((B, \varphi_B)\) we have an exact sequence

\[
0 \to \text{Hom}_\Pi(A, B) \xrightarrow{f} \text{Hom}_{kQ}(A, B) \xrightarrow{g} \text{Hom}_{kQ}(A \otimes_{kQ} \Omega, B) \xrightarrow{h} \text{Ext}^1_{\Pi}(A, B) \to 0,
\]

with maps given by

- \(f\): restriction functor
- \(g\): \(g(\alpha) = \varphi_B \circ (\alpha \otimes 1_\Omega) - \alpha \circ \varphi_A\)
- \(h\): \(h(\beta)\) is given by the \(kQ\)-split short exact sequence

\[
0 \to (B, \varphi_B) \xrightarrow{(A \oplus B, \begin{pmatrix} \varphi_A & \varphi_B \\ \beta & \varphi_B \end{pmatrix})} (A, \varphi_A) \to 0
\]

Proof. Injectivity of \(f\) and surjectivity of \(h\) are clear.

It follows from the definition of \(g\) that \(\text{Ker} \, g = \text{Im} \, f\).

We determine \(\text{Ker} \, h\): \(\beta \in \text{Ker} \, h\) if and only if the following diagram can be completed commutatively:

\[
\begin{array}{ccc}
0 & \to & (B, \varphi_B) \\
& & \downarrow \\
0 & \to & (A \oplus B, \begin{pmatrix} \varphi_A & \varphi_B \\ \beta & \varphi_B \end{pmatrix})
\end{array}
\]

\[
\begin{array}{ccc}
& & (A, \varphi_A) \\
& & \downarrow \\
& & 0
\end{array}
\]

i.e. there is some \(\Psi \in \text{End}_{kQ}(A \oplus B)\) such that

- \(\Psi \circ \begin{pmatrix} \varphi_A \\ \varphi_B \end{pmatrix} = \begin{pmatrix} \varphi_A \\ \beta \varphi_B \end{pmatrix} \circ (\Psi \otimes 1_\Omega)\) (\(\Psi\) is a morphism of \(\Pi\)-modules),
- \(\Psi \circ \begin{pmatrix} 0 \\ 1_B \end{pmatrix} = \begin{pmatrix} 0 \\ 1_B \end{pmatrix}\) (the left square commutes), and
- \((1_A 0) \circ \Psi = (1_A 0)\) (the right square commutes).

Writing \(\Psi = \begin{pmatrix} \Psi_{AA} & \Psi_{AB} \\ \Psi_{BA} & \Psi_{BB} \end{pmatrix}\), the latter two points amount to \(\Psi_{AA} = 1_A, \Psi_{BB} = 1_B,\)

and \(\Psi_{BA} = 0\). Thus the first one becomes

\[
\begin{pmatrix} 1_A \\ \Psi_{AB} 1_B \end{pmatrix} \begin{pmatrix} \varphi_A \\ \varphi_B \end{pmatrix} = \begin{pmatrix} \varphi_A \\ \beta \varphi_B \end{pmatrix} \begin{pmatrix} 1_A \otimes 1_\Omega \\ \Psi_{AB} \otimes 1_\Omega 1_B \otimes 1_\Omega \end{pmatrix},
\]

that is

\[
\Psi_{AB} \circ \varphi_A = \beta + \varphi_B \circ (\Psi_{AB} \otimes 1).
\]

Hence we have \(\beta = g(-\Psi_{AB}) \in \text{Im} \, g\).

The same calculation read backwards shows that \(h \circ g = 0\). \qed

Proposition 3.2. Let \(0 \to A \to B \to C \to 0\) be a short exact sequence of \(\Pi\)-modules which splits upon restriction to \(kQ\). Then for any \(X \in \text{mod} \, \Pi\) there are induced exact sequences

\[
\begin{align*}
0 & \to \text{Hom}_\Pi(X, A) \to \text{Hom}_\Pi(X, B) \to \text{Hom}_\Pi(X, C) \\
& \to \text{Ext}^1_{\Pi}(X, A) \to \text{Ext}^1_{\Pi}(X, B) \to \text{Ext}^1_{\Pi}(X, C) \to 0
\end{align*}
\]
and

\[0 \to \text{Hom}_\Pi(C, X) \to \text{Hom}_\Pi(B, X) \to \text{Hom}_\Pi(A, X) \to \text{Ext}^1_\Pi(C, X) \to \text{Ext}^1_\Pi(B, X) \to \text{Ext}^1_\Pi(A, X) \to 0. \]

Proof. Note that since \(0 \to A \to B \to C \to 0\) is split exact over \(kQ\) the sequences

\[0 \to \text{Hom}_{kQ}(C, X) \to \text{Hom}_{kQ}(B, X) \to \text{Hom}_{kQ}(A, X) \to 0 \]

are exact. Hence the proposition follows from Lemma 3.1 and the snake lemma. \(\square\)

Now we investigate the interaction of tensoring with an ideal \(I_i\) and restricting to \(kQ\). It turns out that on the level of \(kQ\)-modules, tensoring with \(I_i\) corresponds to applying an APR-tilt. A similar observation had already been made in [AIRT].

We start by recalling the notion of APR-tilting [APR], which is a module-theoretic interpretation of the reflections of [BGP].

Let \(Q\) be a (connected, acyclic, finite) quiver, and \(i\) be a source of \(Q\), so the corresponding indecomposable projective \(kQ\)-module \(P_i\) is simple.

The \(kQ\)-module

\[T = \tau^{-1}P_i \oplus kQ/P_i \]

is an APR-tilting module. We set \(Q'\) to be the Gabriel quiver of \(\text{End}_{kQ}(T)\), so that \(kQ' = \text{End}_{kQ}(T)\). Then we have the mutually inverse equivalences

\[(3.1) \quad R\text{Hom}_{kQ}(T, -) : \text{D}^b(\text{mod } kQ) \leftrightarrow \text{D}^b(\text{mod } kQ') : - \otimes_{kQ'} L. \]

Recall from [BGL, Ri1] that we have

\[(3.2) \quad \Pi = \bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}kQ). \]

Since \(T\) is obtained from \(kQ\) by replacing one summand by its (inverse) AR-translation we also have

\[(3.3) \quad \Pi = \bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(T, \tau^{-n}T) = \bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ')}(kQ', \tau^{-n}kQ'). \]

Lemma 3.3. Via the identifications above we have isomorphisms of \(\Pi\)-\(\Pi\)-bimodules

\[\Pi \cong \bigoplus_{n \in \mathbb{Z}} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}T) \]

\[S_i \cong \bigoplus_{n < 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}T) \]

\[I_i \cong \bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}T) \]

where in all cases the term on the right gets its right \(\Pi\)-module structure via (3.2) and its left \(\Pi\)-module structure via (3.3).

Proof. The first claim is seen similarly to the identification in (3.3).

For the second claim note that

\[\bigoplus_{n < 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}T) = \text{Hom}_{D^b(\text{mod } kQ)}(P_i, \tau(\tau^{-1}P_i)), \]

so this module is isomorphic to \(S_i\) on both sides.
The final claim follows by looking at the short exact sequence

$$0 \longrightarrow \bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}T) \longrightarrow \bigoplus_{n \in \mathbb{Z}} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}T)$$

$$\longrightarrow \bigoplus_{n < 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}T) \longrightarrow 0$$

of Π-Π-bimodules. □

Theorem 3.4. Let Q be a quiver with a source i, and let T be the associated APR-tilting module as above. Then the following diagram commutes.

$$\begin{array}{ccc}
\text{Mod } \Pi & \overset{\otimes \Pi I_i}{\longrightarrow} & \text{Mod } \Pi \\
\text{res} & & \text{res} \\
\text{Mod } kQ' & \overset{- \otimes kQ'}{\longrightarrow} & \text{Mod } kQ
\end{array}$$

Proof. By Lemma 3.3 the commutativity of the diagram in the theorem is equivalent to commutativity of the following diagram.

$$\begin{array}{ccc}
\text{Mod } \left[\bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(T, \tau^{-n}T) \right] & \overset{- \otimes \left[\bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}kQ) \right]}{\longrightarrow} & \text{Mod } \left[\bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}kQ) \right] \\
\text{res} & & \text{res} \\
\text{Mod } \text{End}_{kQ}(T) & \overset{- \otimes T}{\longrightarrow} & \text{Mod } kQ
\end{array}$$

Here the restriction functors are given by restriction along the natural inclusions

$$\text{End}_{kQ}(T) \hookrightarrow \bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(T, \tau^{-n}T) \text{ and }$$

$$kQ = \text{End}_{kQ}(kQ) \hookrightarrow \bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}kQ),$$

Equivalently we may regard them as given by (derived) tensoring with $\bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(T, \tau^{-n}T)$ and $\bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}kQ)$, respectively.

Thus the commutativity of the diagram is equivalent to the Π-kQ-bimodules

$$\bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(T, \tau^{-n}T) \otimes_{kQ'} T \text{ and } \bigoplus_{n \geq 0} \text{Hom}_{D^b(\text{mod } kQ)}(kQ, \tau^{-n}T)$$

being isomorphic.

Clearly we have a morphism from the first to the second bimodule, which is given by evaluating. To see that this morphism is bijective it suffices to check that evaluation

$$\text{Hom}_{D^b(\text{mod } kQ)}(T, X) \otimes_{kQ'} T \longrightarrow \text{Hom}_{D^b(\text{mod } kQ)}(kQ, X)$$

is bijective for any indecomposable $X \in \text{add } \bigoplus_{n \geq 0} \tau^{-n}T$. If X is concentrated in degree 0 then this follows from the mutually inverse equivalences in (3.1). If X is concentrated in degree -1 or lower the right hand side vanishes, so we need to show...
that the term on the left also vanishes. We have $\text{Hom}_{D^b(\text{mod } kQ)}(T, X) = 0$ unless $X = S_i[1]$, so this is the only case to consider. But

$$\text{Hom}_{D^b(\text{mod } kQ)}(T, S_i[1]) = S_i, \quad \text{and} \quad S_i \otimes_{kQ'} T = H^0(S_i \otimes_{kQ} T) = H^0(S_i[1]) = 0,$$

again by the mutually inverse equivalences of (3.1).

\[\square \]

4. DESCRIBING I_w FOR Q NON-DYNKIN

Note that kQ is a subalgebra of Π in a natural way. To a Π-module X, we associate the subcategory

$$\mathcal{C}(X) = \text{add } X_{kQ} \cap \text{mod } kQ.$$

For Q a non-Dynkin quiver, we show that for any element w in the Coxeter group W, the Π-module I_w is uniquely determined by the category $\mathcal{C}(I_w)$, and even by $\text{Fac}\mathcal{C}(I_w)$. We use this to show, in the non-Dynkin case, that if $\mathcal{C}(I_v) \subseteq \mathcal{C}(I_w)$, then $I_v \subseteq I_w$. This is crucial for the proof of the main theorem. The Dynkin case of this result will be treated in Section 6.

For \mathcal{A} any (additive) subcategory of $\text{mod } kQ$, we write $\text{Fac}\mathcal{A}$ for the category consisting of the quotients of objects in \mathcal{A}. We write $\text{filt}(\mathcal{A})$ for the minimal subcategory of finite length Π-modules containing the objects from \mathcal{A} and closed under kQ-split extensions. We make the straightforward observation that $\text{filt}(\mathcal{C}(I_v)) \subseteq \text{filt}(\mathcal{C}(I_w))$ if $\mathcal{C}(I_v) \subseteq \mathcal{C}(I_w)$, since the kQ-modules in $\text{filt}(\mathcal{A})$ are exactly the objects of \mathcal{A}.

We set

$$\mathcal{I}_w = \{ M \in \text{mod } \Pi \mid \text{Ext}^1_{\Pi}(M, I_w) = 0 \}.$$

Throughout this section, let Q be a connected quiver which is not Dynkin. Then we know that the ideals I_w are tilting Π-modules [BIRS], and that the bounded derived category of finite length Π-modules is 2-Calabi-Yau [GLS].

Proposition 4.1. For any $w \in W$ we have $\mathcal{C}(I_v) \subseteq \mathcal{I}_w$.

Proof. We consider $F \in \text{Fac} I_w$ finite dimensional. Then we have an epimorphism $I_n^w \twoheadrightarrow F$ for some n. Applying $\text{Hom}_{\Pi}(I_w, -)$ and using that the projective dimension of I_w is at most 1, we obtain an epimorphism $\text{Ext}^1_{\Pi}(I_w, I_n^w) \twoheadrightarrow \text{Ext}^1_{\Pi}(I_w, F)$. The first space is zero since I_w is tilting, so $\text{Ext}^1_{\Pi}(I_w, F) = 0$ as well.

Next we look at $\text{Ext}^1_{\Pi}(F, I_w)$. The short exact sequence $0 \rightarrow I_w \rightarrow \Pi \rightarrow I_w \rightarrow 0$, together with the fact that $\text{Ext}^1_{\Pi}(F, \Pi) = 0$ for $i = 0, 1$, gives $\text{Ext}^1_{\Pi}(F, I_w) \simeq \text{Hom}_{\Pi}(F, \Pi/I_w)$. Thus we have

$$\text{Ext}^1_{\Pi}(F, I_w) \simeq \text{Hom}_{\Pi}(F, \Pi/I_w) \simeq D \text{Ext}^1_{\Pi}(I_w, F) \simeq D \text{Ext}^1_{\Pi}(I_w, F) \simeq 0.$$

Now let $X \in \mathcal{C}(I_w)$. That is, X is a kQ-split subquotient of (a finite sum of copies of) I_w. That is, X is a kQ-split submodule of some kQ-split quotient F of I_n^w. By the discussion above we know that $\text{Ext}^1_{\Pi}(F, I_w) = 0$. Now, using the right exactness of Ext^1_{Π}, we obtain $\text{Ext}^1_{\Pi}(X, I_w) = 0$. \[\square \]

Lemma 4.2. For any $w \in W$, the category \mathcal{I}_w is closed under taking factors modulo finite dimensional modules.
Proof. Let $0 \to A \to X \to F \to 0$ be a short exact sequence of Π-modules, such that A is finite dimensional and $X \in \mathcal{I}_w$. Then $\text{Hom}_\Pi(A, I_w) = 0$, and so we have a monomorphism $\text{Ext}^1_{\Pi}(F, I_w) \to \text{Ext}^1_{\Pi}(X, I_w)$. Note that the pullback of a kQ-split short exact sequence is kQ-split, so we obtain a commutative square

$$
\begin{array}{ccc}
\text{Ext}^1_{\Pi}(F, I_w) & \to & \text{Ext}^1_{\Pi}(F, I_w) \\
\downarrow & & \downarrow \\
\text{Ext}^1_{\Pi}(X, I_w) & \to & \text{Ext}^1_{\Pi}(X, I_w)
\end{array}
$$

Since the right map is injective, so is the left one. Thus, since $X \in \mathcal{I}_w$, also $F \in \mathcal{I}_w$. □

Corollary 4.3. For any $w \in W$ we have $\text{Fac}\mathcal{C}(I_w) \subseteq \mathcal{I}_w$.

Corollary 4.4. For any $w \in W$ we have $\text{filt}(\text{Fac}\mathcal{C}(I_w)) \subseteq \mathcal{I}_w$.

We say that a short exact sequence of Π-modules:

$$0 \to Z \to A \to M \to 0,$$

with M in some subcategory \mathcal{X} of $\text{mod}\Pi$, is a universal extension of Z by \mathcal{X}, if the induced map $M \to Z[1]$ is a right \mathcal{X}-approximation. The extension is called minimal if the map is right minimal. It follows directly that a minimal universal extension is unique up to isomorphism. We then have the following consequence of Corollaries 4.3 and 4.4

Corollary 4.5. For any $w \in W$, and n such that $I_{cw} \subseteq I_w$, the sequence

$$(4.1) \quad 0 \to I_{cw} \to I_w \to M \to 0$$

is a minimal universal kQ-split extension of I_{cw} by objects in any of $\text{filt}(\mathcal{C}(I_w))$, $\text{filt}(\text{Fac}\mathcal{C}(I_w))$, or \mathcal{I}_w.

Proof. Since the sequence $0 \to I_{cw} \to M \to \Pi/I_{cw} \to 0$ is clearly kQ-split, so is the sequence $0 \to I_{cw} \to I_w \to M \to 0$. Since $M \in \text{filt}(\mathcal{C}(I_w)) \subseteq \text{filt}(\text{Fac}\mathcal{C}(I_w)) \subseteq \mathcal{I}_w$ by Corollary 4.4, the sequence is (4.1) is a kQ-split extension of I_{cw} by objects in any of $\text{filt}(\mathcal{C}(I_w))$, $\text{filt}(\text{Fac}\mathcal{C}(I_w))$, or \mathcal{I}_w. Moreover, since by definition $\text{Ext}^1_{\Pi}(\mathcal{I}_w, I_w) = 0$, the extension is universal.

To see that it is minimal, consider the associated map $M \to I_c[1]$. Since I_w has no nonzero finite dimensional summand, there is also no non-zero summand of M which splits off, and hence the map is right minimal. □

Theorem 4.6. Let $v, w \in W$. For Q non-Dynkin, if any of the following three conditions holds:

(i) $\mathcal{C}(I_v) \subseteq \mathcal{C}(I_w)$,
(ii) $\text{Fac}\mathcal{C}(I_v) \subseteq \text{Fac}\mathcal{C}(I_w)$,
(iii) $\mathcal{I}_v \subseteq \mathcal{I}_w$,

then it follows that $I_v \subseteq I_w$.
Proof. It has already been remarked that condition (i) is equivalent to \(\text{filt}(\mathcal{C}(I_v)) \subseteq \text{filt}(\mathcal{C}(I_w)) \), and similarly that (ii) is equivalent to \(\text{filt}(\text{Fac}\mathcal{C}(I_v)) \subseteq \text{filt}(\text{Fac}\mathcal{C}(I_w)) \). We may therefore replace (i) and (ii) by these conditions.

We consider the exact sequences:

\[
0 \longrightarrow I_c^n \longrightarrow I_v \longrightarrow I_v/I_c^n \longrightarrow 0
\]

\[
0 \longrightarrow I_c^n \longrightarrow I_w \longrightarrow I_w/I_c^n \longrightarrow 0
\]

By Corollary 4.5 they are universal extensions, and by assumption the sets we are universally extending by are contained one in the other. Hence we obtain the factorization indicated in the diagram.

Let \(x \in W \). Consider the short exact sequence

\[
0 \longrightarrow I_x \longrightarrow \Pi \longrightarrow \Pi/I_x \longrightarrow 0.
\]

Since \(\Pi/I_x \) is finite dimensional, we have \(\text{Ext}^i_{\Pi}(\Pi/I_x, \Pi) = 0 \) for \(i \in \{0,1\} \). Thus the above sequence induces an isomorphism

\[
\text{Hom}_{\Pi}(I_x, \Pi) \cong \text{Hom}_{\Pi}(\Pi, \Pi).
\]

In other words, any map \(I_x \rightarrow \Pi \) factors uniquely through the embedding \(\iota_x \).

We then observe that \(\iota_w\varphi \in \text{Hom}_{\Pi}(I_v, \Pi) \), and hence \(\iota_w\varphi = \lambda \iota_v \) for some \(\lambda \in \Pi \). By the commutativity of the left square above we have

\[
\lambda I_c^n = \lambda \iota_v \alpha = \iota_w \varphi \alpha = \iota_w \beta = \iota_c^n,
\]

so \(\lambda = 1 \). Hence we have a commutative triangle

\[
\begin{array}{ccc}
I_v & \rightarrow & \Pi \\
\varphi \downarrow & & \downarrow \\
I_w & \rightarrow & \Pi
\end{array}
\]

and thus \(\varphi \) is an inclusion of ideals of \(\Pi \). \(\square \)

We state here a lemma, essentially in [BIRS], which we will need to refer to in the sequel. As usual, for \(w \in W \), we denote by \(\ell(w) \) the length of a reduced expression for \(w \).

Lemma 4.7. Suppose that \(Q \) is a non-Dynkin quiver. Let \(w \) be an element of the Coxeter group \(W \). Assume that \(\ell(s_iw) > \ell(w) \). Then we have the following:

1. \(I_{s_iw} \) is properly contained in \(I_w \).
2. \(\text{Tor}^1_{\Pi}(I_w, S_i) = 0 \).
3. The natural map \(I_w \otimes I_i \rightarrow I_{s_iw} \) is an isomorphism.

Proof. (1) is part of [BIRS, Proposition III.1.10].

Consider the short exact sequence \(0 \longrightarrow I_i \longrightarrow \Pi \longrightarrow S_i \longrightarrow 0 \). Tensoring with \(I_w \) we obtain the exact sequence

\[
0 \longrightarrow \text{Tor}^1_{\Pi}(I_w, S_i) \longrightarrow I_w \otimes \Pi I_i \longrightarrow I_w \longrightarrow I_w \otimes \Pi S_i \longrightarrow 0.
\]
From [BIRS, Proposition III.1.1], we know that at least one of $\text{Tor}_1^I(I_w, S_i)$ and $I_w \otimes \Pi S_i$ is zero. The image of $I_w \otimes I_i$ inside I_w is $I_{s,w}$, which is properly contained in I_w. Thus $I_w \otimes \Pi S_i$ is non-zero, and it follows that $\text{Tor}_1^I(I_w, S_i)$ is zero. This establishes (2), and (3) also follows. □

5. Describing Π/I_w

In this section, we show that I_w can be constructed from each of the categories $\mathcal{C}(\Pi/I_w)$ and $\mathcal{C}(\text{Sub} \Pi/I_w)$. This will be done by investigating the annihilators of the categories $\text{filt}(\mathcal{C}(\Pi/I_w))$ and $\text{filt}(\mathcal{C}(\text{Sub} \Pi/I_w))$. The results of this section hold for arbitrary quivers, but will be applied only in the Dynkin case in the following section.

Lemma 5.1. The category $Q = \{ X \in \text{mod} \Pi \mid X \text{ is a } kQ\text{-split quotient of an object in } \text{Sub} \Pi/I_w \}$ is closed under kQ-split extensions.

Proof. Let

$$0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$$

be a kQ-split short exact sequence, with X and Z in Q. Then there are kQ-split epimorphisms $X' \rightarrow X$ and $Z' \rightarrow Z$ with X' and Z' in $\text{Sub} \Pi/I_w$.

First consider the pullback along $Z' \rightarrow Z$ as indicated in the following diagram.

$$
\begin{array}{cccccc}
0 & \rightarrow & X & \rightarrow & Y' & \rightarrow & Z' & \rightarrow & 0 \\
0 & \rightarrow & X & \rightarrow & Y & \rightarrow & Z & \rightarrow & 0 \\
\end{array}
$$

The map $Y' \rightarrow Y$ is a kQ-split epimorphism, since it is a pullback of the kQ-split epimorphism $Z' \rightarrow Z$.

Now note that, if we denote by K the kernel of the map $X' \rightarrow X$, then right exactness of Ext_1^I from Proposition 3.2 implies that we obtain the following pullback diagram, and moreover that the lower short exact sequence is also kQ-split.

$$
\begin{array}{cccccc}
0 & \rightarrow & K & \rightarrow & X' & \rightarrow & X & \rightarrow & 0 \\
0 & \rightarrow & K & \rightarrow & Y'' & \rightarrow & Y' & \rightarrow & 0 \\
\end{array}
$$

The map f is a monomorphism with cokernel Z' by the first diagram. It follows from the second diagram that g is also a monomorphism with cokernel Z'. Thus Y'' is an extension of Z' by X'.

Finally, by [BIRS, Proposition III.2.3], the category $\text{Sub} \Pi/I_w$ is extension closed, so $Y'' \in \text{Sub} \Pi/I_w$, and hence $Y \in Q$. □

Proposition 5.2. For $w \in W$ we have

$$I_w = \text{Ann}(\text{filt}(\mathcal{C}(\Pi/I_w)))$$

$$= \text{Ann}(\text{filt}(\mathcal{C}(\text{Sub} \Pi/I_w))).$$
In particular \(\mathcal{C}(\Pi/I_v) \subseteq \mathcal{C}(\Pi/I_w) \) implies \(I_v \subseteq I_w \) for any \(v, w \in W \).

Proof. Since \(\Pi/I_w \in \text{filt}(\mathcal{C}(\Pi/I_w)) \subseteq \text{filt}(\mathcal{C}(\text{Sub}\Pi/I_w)) \), and \(\text{Ann}\Pi/I_w = I_w \), we clearly have

\[
I_w \supseteq \text{Ann}(\text{filt}(\mathcal{C}(\Pi/I_w))) \supseteq \text{Ann}(\text{filt}(\mathcal{C}(\text{Sub}\Pi/I_w)))).
\]

Thus it only remains to see that \(I_w \) annihilates \(\text{filt}(\mathcal{C}(\text{Sub}\Pi/I_w)) \).

Now note that \(\mathcal{C}(\text{Sub}\Pi/I_w)) \) is contained in the set \(Q \) of Lemma 5.1 above. Since this set is closed under \(kQ \)-split extensions by Lemma 5.1 it follows that also \(\text{filt}(\mathcal{C}(\text{Sub}\Pi/I_w)) \subseteq Q \). Thus it suffices to see that \(I_w \) annihilates \(Q \). This however is clear, since the objects in \(Q \) are subquotients of \(\text{add}\Pi/I_w \) by definition. \(\square \)

We also record here a lemma which we will need later:

Lemma 5.3. \(\mathcal{C}(\text{Sub}\Pi/I_w) \) is subclosed.

Proof. Let \(M \) be a submodule of some module in \(\mathcal{C}(\text{Sub}\Pi/I_w) \). That means that \(M \) is a submodule of \((\Pi/I_w)^n_{kQ} \) for some \(n \). Note that \(\Pi/I_w \) is a graded \(\Pi \)-module, and \((\Pi/I_w)_{kQ} \) is just the sum of the graded pieces \((\Pi/I_w)_d \). Thus \(M \) is a submodule of \(\bigoplus_{d=0}^\infty (\Pi/I_w)n_d \), for suitable \(n_d \). It follows that in the upper line of the following diagram, \(M \) is embedded into the degree 0 part of the \(\Pi \)-module on the right, where we have written \((d) \) to indicate a shift of the grading by \(d \).

\[
\begin{array}{ccc}
M & \xrightarrow{\text{filt}(\Pi/I_w)^n_d} & \bigoplus_{d=0}^\infty (\Pi/I_w)(d)n_d \\
\downarrow & & \\
M \otimes_{kQ} \Pi & \xleftarrow{\text{filt}(\Pi/I_w)^n_d} & \bigoplus_{d=0}^\infty (\Pi/I_w)(d)n_d
\end{array}
\]

By Hom-tensor adjointness we obtain a degree-preserving \(\Pi \)-linear map as indicated by the dashed arrow above. In particular its image \(Y \) is a graded \(\Pi \)-submodule of \(\bigoplus_{d=0}^\infty (\Pi/I_w)(d)n_d \). Looking at degree 0, we see that \(Y_0 \cong M \), and clearly \(Y_0 \in \mathcal{C}(Y) \subseteq \mathcal{C}(\text{Sub}\Pi/I_w) \). \(\square \)

6. Connection between the ideals \(I_w \) and the quotients \(\Pi/I_w \) in the Dynkin case

In Section 4 we have seen that \(\mathcal{C}(I_v) \subseteq \mathcal{C}(I_w) \) implies \(I_v \subseteq I_w \) for \(Q \) non-Dynkin. In order to prove the same result in the Dynkin case as well, we prove in this section that each \(I_w \) is dual to some \(\Pi/I_w' \). This allows us to work with \(\Pi/I_w \) instead of \(I_w \), so that we can use the results from Section 5 describing \(\Pi/I_w' \) to achieve the desired result.

Throughout this section let \(\Pi \) be the preprojective algebra of a Dynkin quiver. We write \(\text{mod}\Pi^{\text{op}} \) for the category of right \(\Pi^{\text{op}} \)-modules (or equivalently left \(\Pi \)-modules).

The following lemma is the Dynkin analogue of Lemma 4.7. For \(w \in W \) we denote as usual by \(\ell(w) \) the length of a shortest expression for \(w \).

Lemma 6.1. Let \(Q \) be Dynkin, and let \(w \) be an element of the Coxeter group \(W \). Assume that \(\ell(s_w) > \ell(w) \). Then we have the following:

1. \(I_{s_w} \) is properly contained in \(I_w \).
2. \(\text{Tor}^1_{\Pi}(I_w, S_w) = 0 \).
3. The natural map \(I_w \otimes I_s \rightarrow I_{s_w} \) is an isomorphism.
Proof. Let \(\overline{Q} \) be a non-Dynkin quiver containing \(Q \) as a subquiver. Let \(\Pi \) be the preprojective algebra for \(Q \), and \(\overline{\Pi} \) the preprojective algebra for \(\overline{Q} \). Denote by \(\overline{\mathcal{I}}_w \) and \(\mathcal{I}_i \) the corresponding ideals in \(\overline{\Pi} \). We have the exact sequence:

\[
\text{Tor}^1_{\overline{\Pi}}(\overline{\mathcal{I}}_w, S_i) \longrightarrow \overline{\mathcal{I}}_w \otimes \mathcal{I}_i \longrightarrow \overline{\mathcal{I}}_w \rightarrow \overline{\mathcal{I}}_w \otimes S_i.
\]

\(\overline{\mathcal{I}}_{s,w} \) is the image of \(\overline{\mathcal{I}}_w \otimes \mathcal{I}_i \) inside \(\overline{\mathcal{I}}_w \). By Lemma 4.7, we know \(\text{Tor}^1_{\overline{\Pi}}(\overline{\mathcal{I}}_w, S_i) = 0 \), and that \(\overline{\mathcal{I}}_{s,w} \) is properly contained in \(\overline{\mathcal{I}}_w \).

(1) Since \(\overline{\mathcal{I}}_{s,w} \) is properly contained in \(\overline{\mathcal{I}}_w \), we have a proper epimorphism \(\overline{\Pi}/\overline{\mathcal{I}}_{s,w} \rightarrow \overline{\Pi}/\overline{\mathcal{I}}_w \).

Since \(\overline{\Pi}/\overline{\mathcal{I}}_{s,w} \cong \Pi/\mathcal{I}_{s,w} \) and \(\overline{\Pi}/\overline{\mathcal{I}}_w \cong \Pi/\mathcal{I}_w \), we have a proper epimorphism \(\Pi/\mathcal{I}_{s,w} \rightarrow \Pi/\mathcal{I}_w \). Hence we have that \(\mathcal{I}_{s,w} \) is properly contained in \(\mathcal{I}_w \).

(2) As discussed above, \(\text{Tor}^1_{\Pi}(\mathcal{I}_w, S_i) = 0 \). Further, \(\text{Tor}^1_{\overline{\Pi}}(\overline{\mathcal{I}}_w, S_i) \cong \text{Tor}^2_{\overline{\Pi}}(\overline{\mathcal{I}}/\overline{\mathcal{I}}_w, S_i) \cong \text{Tor}^2_{\Pi}(\Pi/\mathcal{I}_w, S_i) \cong D(\text{Ext}^2_{\overline{\Pi}}(\overline{\mathcal{I}}/\overline{\mathcal{I}}_w, S_i) \cong \text{Hom}_{\overline{\Pi}}(S_i, \Pi/\mathcal{I}_w) \cong \text{Hom}_{\Pi}(S_i, \Pi/\mathcal{I}_w) \).

By using [CE] and the 2-CY property for finite length \(\overline{\Pi} \)-modules.

On the other hand, we have \(\text{Tor}^1_{\Pi}(\mathcal{I}_w, S_i) \cong \text{Tor}^2_{\Pi}(\Pi/\mathcal{I}_w, S_i) \cong D(\text{Ext}^2_{\Pi}(\Pi/\mathcal{I}_w, S_i)) \cong \text{Hom}(S_i, \Pi/\mathcal{I}_w) \), using [CE] and the 2-CY property for \(\mod(\Pi) \).

Since \(\text{Tor}^1_{\overline{\Pi}}(\overline{\mathcal{I}}_w, S_i) = 0 \), we then have \(\text{Hom}_{\overline{\Pi}}(S_i, \Pi/\mathcal{I}_w) = 0 \), hence \(\text{Hom}_{\Pi}(S_i, \Pi/\mathcal{I}_w) = 0 \), and so \(\text{Tor}^1_{\Pi}(\mathcal{I}_w, S_i) = 0 \).

(3) Consider the exact sequence

\[
\text{Tor}^1_{\Pi}(\mathcal{I}_w, S_i) \longrightarrow \mathcal{I}_w \otimes_{\Pi} \mathcal{I}_i \longrightarrow \mathcal{I}_w \longrightarrow \mathcal{I}_w \otimes_{\Pi} S_i.
\]

By definition, \(\mathcal{I}_{s,w} \) is the image of \(\mathcal{I}_w \otimes \mathcal{I}_i \) in \(\mathcal{I}_w \). The result now follows from (2). \(\square \)

Lemma 6.2. Let \(w \in W \).

(1) If \(\ell(s_i w) > \ell(w) \) then \(\text{Ext}^1_{\Pi}(I_w, S_i) = 0 = \text{Ext}^1_{\Pi}(S_i, I_w) \).

(2) If \(\ell(ws_i) > \ell(w) \) then \(\text{Ext}^1_{\Pi^{op}}(I_w, S_i) = 0 = \text{Ext}^1_{\Pi^{op}}(S_i, I_w) \).

Proof. We only prove (1), since (2) is dual.

Consider the exact sequence

\[
0 \longrightarrow \text{Tor}^1_{\Pi}(I_w, S_i) \longrightarrow I_w \otimes_{\Pi} \mathcal{I}_i \longrightarrow I_w \longrightarrow I_w \otimes_{\Pi} S_i \longrightarrow 0.
\]

We know that if \(\ell(s_i w) > \ell(w) \) then \(\text{Tor}^1_{\Pi}(I_w, S_i) = 0 \) by Lemma 6.1.

Now note that \(\text{Tor}^1_{\Pi}(I_w, S_i) = D \text{Ext}^1_{\Pi}(I_w, DS_i) \) [CE].

Hence the claim that \(\text{Ext}^1_{\Pi}(S_i, I_w) = 0 \) follows from the 2-CY property of the stable category \(\mod(\Pi) \). \(\square \)

Lemma 6.3. (1) Let \(M \subseteq N \) in \(\mod(\Pi^{op}) \). Then \(I_i M = I_i N \) if and only if \(N/M \cong S_i^n \) for some \(n \).

(2) Let \(M \subseteq N \) in \(\mod(\Pi) \). Then \(MI_i = NI_i \) if and only if \(N/M \cong S_i^n \) for some \(n \).

Proof. We only prove (1), since (2) is dual.

Consider \(0 \longrightarrow M \longrightarrow N \longrightarrow N/M \longrightarrow 0 \) in \(\mod(\Pi^{op}) \). Multiplying with \(I_i \) we obtain the complex

\[
0 \longrightarrow I_i M \longrightarrow I_i N \longrightarrow I_i N/M \longrightarrow 0
\]

whose homology is concentrated in the middle.

If we assume \(I_i M = I_i N \) then it follows that \(H_i(N/M) = 0 \), and hence \(N/M \cong S_i^n \) for some \(n \).
Assume now conversely that $N/M \cong S^n_\ell$ for some n. Then $I_\ell \otimes N/M = 0$, since $I_\ell^2 = I_\ell$, and hence the map $I_\ell \otimes N \rightarrow I_\ell \otimes N$ is onto. It follows that the inclusion map $I_\ell M \hookrightarrow I_\ell N$ is also onto, and hence $I_\ell M = I_\ell N$. \hfill \Box

We write w_0 for the longest element in W (which only exists when W is finite).

Proposition 6.4. Let $w \in W$.

1. $DI_w \cong \Pi/I_{w0}^{-1}$ in mod Π^{op}.
2. $DI_w \cong \Pi/I_{w0}^{-1} w_0$ in mod Π.

Proof. We only prove (1), since (2) is dual.

Since Π is self-injective, we have $\Pi \cong D\Pi$ in mod Π^{op}. Hence we have an epimorphism $\Pi \rightarrow DI_w$ of Π^{op}-modules. Let \tilde{T}_w be its kernel. (So \tilde{T}_w is a left ideal.) We want to show that it equals I_{w0}^{-1}.

Since $I_w \cdot I_{w0}^{-1} = 0$, and hence $I_{w0}^{-1} \cdot DI_w = 0$, we have $I_{w0}^{-1} \subseteq \tilde{T}_w$. We now show by induction on $\ell(w)$ that $I_{w0}^{-1} = \tilde{T}_w$. For $w = e$ we have $I_{w0}^{-1} = 0 = \tilde{T}_w$.

Assume the claim holds for w, so that $\tilde{T}_w = I_{w0}^{-1}$ and assume $\ell(s_i w) > \ell(w)$. Then we have an inclusion $I_{s_i w} = I_w I_{s_i} \hookrightarrow I_w$ of Π-modules. By Lemma 6.3(2) we have that $I_w / I_{s_i w} \cong S^n_1$ for some n as Π-modules. Dualizing we obtain the following short exact sequence in mod Π^{op}:

$$0 \rightarrow S^n_1 \rightarrow DI_w \rightarrow DI_{s_i w} \rightarrow 0$$

Then we obtain the following diagram in mod Π^{op}.

![Diagram](image)

By the snake lemma the left vertical map is an inclusion with cokernel S^n_ℓ. Thus by Lemma 6.3(1) we have $I_s I_{s_i w} \subseteq \tilde{T}_w$. By our induction assumption, we have $\tilde{T}_w = I_{w0}^{-1}$. Since

$$\ell(w_0^{-1} s_i) = \ell(w_0) - \ell(w^{-1} s_i) = \ell(w_0) - \ell(s_i w) = \ell(w_0) = \ell(w_0^{-1})$$

we have $I_s I_{w0}^{-1} s_i = I_{w0}^{-1}$. Putting all these together we have $I_s I_{s_i w} \subseteq I_s I_{w0}^{-1} s_i$, and clearly $I_s I_{w0}^{-1} s_i \subseteq I_s I_{s_i w}$. So, by Lemma 6.3(1) the quotient $\tilde{T}_{s_i w} / I_{w0}^{-1} s_i$ is isomorphic to S^n_ℓ for some m as Π^{op}-modules.

Now note that by Lemma 6.2(2) we have $\text{Ext}^1_{\Pi^{\text{op}}}(S_\ell, I_{w0}^{-1} s_i) = 0$. Hence $\tilde{T}_{s_i w}$ is the direct sum of $I_{w0}^{-1} s_i$, and a left ideal R of Π which is isomorphic to S^n_ℓ. If $R = 0$, then we are done, so assume $R \neq 0$. The only non-zero left ideal of Π which is isomorphic to S^n_ℓ for some m is $I_{w0} s_i$. By assumption $R \cap I_{w0}^{-1} s_i = 0$, so $I_{w0} s_i \not\subseteq I_{w0}^{-1} s_i$. But $I_{w0} s_i = I_{w0} s_i I_{w0} s_{i0} = I_{w0}^{-1} s_i I_{w0} s_{i0}$, since $\ell(w_0^{-1} s_i) + \ell(w_0 s_{i0}) = [\ell(w_0) - \ell(w) - 1] + \ell(w) = \ell(w_0) - 1 = \ell(w_0 s_{i0})$, and hence $I_{w0}^{-1} s_i \supseteq I_{w0} s_{i0}$. This is a contradiction. So $R = 0$, and hence $\tilde{T}_{s_i w} = I_{w0}^{-1} s_i$. This finishes the induction step, and hence the proof of the lemma. \hfill \Box
For \(v, w\) in \(W\), it is said that \(v\) is less than \(w\) in the Bruhat order, written \(v \leq w\), if, fixing a reduced word for \(w\), it is possible to find a subexpression of that word which equals \(v\).

Lemma 6.5. \(I_v\) contains \(I_w\) iff \(v \leq w\) in the Bruhat order.

Proof. This is known in the extended Dynkin case [IR]. To see that it follows in the Dynkin case, denote by \(\hat{\Pi}\) the preprojective algebra of the corresponding Euclidean quiver. Observe that \(\Pi = \hat{\Pi}/I_{w_0}\). Since \(w_0\) is the maximal element of \(W\) under Bruhat order, the ideal \(\hat{T}_{w_0}\) is contained in \(\hat{T}_w\) for any \(w \in W\). Thus, \(I_1 \ldots I_v = (\hat{T}_1 \ldots \hat{T}_v)/\hat{T}_{w_0}\), so containment relations agree in the two algebras. \(\square\)

Lemma 6.6. Let \(Q\) be a Dynkin quiver, and \(v, w \in W\). If \(\mathcal{C}(I_v) \subseteq \mathcal{C}(I_w)\) then \(I_v \subseteq I_w\).

Proof. By Proposition 6.4 we have that (as \(\Pi\)-modules) \(I_v \cong DII/I_{w_0v^{-1}}\) and \(I_w \cong DII/I_{w_0w^{-1}}\). Thus the assumption may be rewritten as

\[\mathcal{C}(DII/I_{w_0v^{-1}}) \subseteq \mathcal{C}(DII/I_{w_0w^{-1}})\]

Now note that dualizing commutes with restricting to the path algebra, so the above inclusion is equivalent to the inclusion

\[\mathcal{C}_{kQ^\text{op}}(\Pi/I_{w_0v^{-1}}) \subseteq \mathcal{C}_{kQ^\text{op}}(\Pi/I_{w_0w^{-1}})\]

By Proposition 5.2 (for \(kQ^\text{op}\)) this implies that \(I_{w_0w^{-1}} \subseteq I_{w_0v^{-1}}\). By Lemma 6.5 we deduce that \(w_0w^{-1} \geq w_0v^{-1}\) in Bruhat order. The map \(u \mapsto u^{-1}\) is clearly an automorphism of Bruhat order, while the map \(u \mapsto w_0u\) is an anti-automorphism of Bruhat order [BB, Proposition 2.3.4], so we deduce that \(v \geq w\). Thus, by Lemma 6.5 again, we deduce that \(I_v \subseteq I_w\). \(\square\)

7. Proof of main results

In this section, we prove our main results, stated in Section 2 as Theorems 2.3 and 2.4. In particular, we establish that the cofinite quotient closed subcategories of the category of preprojective \(kQ\)-modules are exactly those of the form \(\mathcal{C}(I_w)\) for some element \(w\) in the Coxeter group \(W\).

Lemma 7.1. For \(w \in W\), and \(i\) a source, we have that \(\mathcal{C}(I_w)\) contains \(S_i\), the simple projective at \(i\), iff \(w\) has no reduced expression as \(w = s_i v\).

Proof. Observe first that a \(\Pi\)-module \(M\) has \(S_i \in \mathcal{C}(M)\) iff it has \(S_i\) in its top, since otherwise (because \(i\) is a source), whatever is “sitting over” \(S_i\) will also be sitting over it as a \(kQ\)-module. So the problem reduces to asking when \(I_w\) has \(S_i\) in its top.

Consider the exact sequence:

\[\text{Tor}_1(I_w, S_i) \rightarrow I_w \otimes I_i \rightarrow I_w \rightarrow I_w \otimes S_i \rightarrow 0.\]

Suppose first that \(\ell(s_iw) > \ell(w)\). The image of \(I_w \otimes I_i\) in \(I_w\) is \(I_{s_iw}\), which is strictly contained in \(I_w\), by Lemma 4.7 or Lemma 6.1. Thus we get a nonzero quotient, which is necessarily semisimple as a \(\Pi\)-module, since it is annihilated by \(I_i\). Thus it is of the form \(S^n_i\) for some \(n > 0\), and we deduce that \(I_w\) has \(S_i\) in its top.
Now suppose that \(\ell(s_iw) < \ell(w) \). We can write \(w = s_i\tau w \) as a reduced product.

The image of \(I_{s_iw} \otimes I_i \) in \(I_{s_iw} \) is \(I_{s_iw}I_i = I_{s_iw} \). Thus the map \(I_{s_iw} \otimes I_i \to I_{s_iw} \) is surjective. It follows that \(I_{s_iw} \otimes S_i \) is zero, and thus that \(I_{s_iw} \) does not have \(S_i \) in its top. \(\square \)

Lemma 7.2. Let \(i \) be a source, so \(S_i \) is a simple projective. Assume \(\ell(s_iw) > \ell(w) \). Then \(\mathcal{C}(I_w) = \mathcal{C}(I_{s_iw}) \cup \{S_i\} \).

Proof. We have already established that \(\mathcal{C}(I_w) \) contains \(S_i \) while \(\mathcal{C}(I_{s_iw}) \) does not. Observe that we have a short exact sequence:

\[
0 \to I_{s_iw} \to I_w \to I_w \otimes S_i \to 0.
\]

View this sequence as a sequence of \(kQ \)-modules. Since the right hand side is projective as a \(kQ \)-module, the sequence splits. Thus the summands of \((I_w)_{kQ} \) other than those surviving in \((I_w \otimes S_i)_{kQ} \) coincide with those in \((I_{s_iw})_{kQ} \). \(\square \)

Number the vertices of \(Q \) from 1 to \(n \) so that if there is an arrow \(i \to j \) then \(i < j \).

Theorem 7.3. Any cofinite, quotient closed subcategory \(\mathcal{A} \) of the preprojective \(kQ \)-modules appears as \(\mathcal{C}(I_w) \) for some \(w \in W \) such that \(\ell(w) \) is the number of missing preprojective modules.

Such a \(w \) can be found as described in Section 2. Number the vertices of \(Q \) from 1 to \(n \), so that if there is an arrow \(i \to j \), then \(i < j \). Order the indecomposable preprojective modules as

\[
P_1, \ldots, P_n, \tau^{-1}P_1, \ldots, \tau^{-1}P_n, \tau^{-2}P_1, \ldots
\]

Let \(X \) be the indecomposable modules missing from \(\mathcal{A} \). Take these indecomposables in the induced order, and read \(\tau^{-j}P_i \) as \(s_i \). The result is the leftmost word for \(w \) in \(\mathcal{C}^\infty \), where \(\tau^{-j}P_i \) is identified with the \(j \)-th instance of \(s_i \) in \(\mathcal{C}^\infty \).

Before we prove this theorem, we first state and prove two lemmas.

Let \(\mathcal{A} \) be a cofinite, quotient closed subcategory of the preprojective \(kQ \)-modules. Let \(S_i \) be the simple projective \(kQ \)-module associated to the vertex 1, and let \(P \) be the sum of the other indecomposable projectives. Define \(T = P \oplus \tau^{-1}(S_1) \). Let \(Q' = \mu_1(Q) \). The associated reflection functor is \(R_1^+ = \text{Hom}_{kQ}(T,) \). If \(Q \) is non-Dynkin, then let \(\mathcal{A}' \) be the subcategory of \(kQ' \)-modules given by \(\text{Hom}(T, \mathcal{A}) \). If \(Q \) is Dynkin, define \(\mathcal{A}' \) to consist of the additive subcategory of \(\text{mod} \, kQ' \) generated by \(\text{Hom}(T, \mathcal{A}) \) together with \(S_1' \), the new simple \(kQ' \)-module.

Lemma 7.4. Let \(\mathcal{A}', Q', S_1' \) be as defined above. Then

1. \(\mathcal{A}' \) is quotient closed, and
2. if we have a short exact sequence of \(kQ' \)-modules

\[
0 \to Y' \to Z' \to (S_1')^* \to 0,
\]

with \(Y' \in \mathcal{A}' \) and \(Z' \) preprojective, then \(Z' \in \mathcal{A}' \).

Proof. (1) Let \(X \in \mathcal{A} \), so \(\text{Hom}(T, X) \in \mathcal{A}' \). Denote \(\text{Hom}(T, X) \) by \(X' \), and suppose that there is an epimorphism from \(X' \) to \(Y' \), with \(Y' \) a preprojective \(kQ' \)-module. We want to show that \(Y' \in \mathcal{A}' \).
Since $S'_1 \in \mathcal{A}'$ if it is preprojective, by construction, we may assume that Y' has no summands isomorphic to S'_1. By assumption, we have a short exact sequence in kQ'-mod:

$$0 \rightarrow K' \rightarrow X' \rightarrow Y' \rightarrow 0.$$

Since R_1 is an equivalence of categories from the additive hull of the indecomposable objects kQ-mod other than S_1 to the additive hull of the indecomposable objects of kQ'-mod other than S'_1, and our short exact sequence lies in the latter subcategory, there is a corresponding short exact sequence in kQ-mod, which shows that there is an epimorphism from X to Y, and thus that $Y \in \mathcal{A}$, so $Y' \in \mathcal{A}'$, as desired.

(2) We may assume that Y' and Z' have no summands isomorphic to S'_1, so we may write $Y' = \text{Hom}(T,Y)$ with $Y \in \mathcal{A}$, and $Z' = \text{Hom}(T,Z)$. The given short exact sequence of kQ'-modules then implies the existence of a short exact sequence of kQ-modules $0 \rightarrow S'_1 \rightarrow Y \rightarrow Z \rightarrow 0$. Since \mathcal{A} is closed under surjections, $Z \in \mathcal{A}$, so $Z' \in \mathcal{A}'$.

Lemma 7.5. Let \mathcal{A} be a cofinite, quotient closed subcategory of the preprojective kQ'-modules. Let \mathcal{A}' be defined as above.

Suppose that Theorem 7.3 holds for \mathcal{A}'. Then it also holds for \mathcal{A}.

Proof. The assumption that the theorem holds for \mathcal{A}' tells us that $\mathcal{A}' = \mathcal{C}_{\mathcal{Q}'}(I_w)$ for w obtained by reading the AR quiver for kQ' (starting with P_2, P_3, \ldots) and recording s_i for each indecomposable object which is not in \mathcal{A}'.

We claim that $\ell(s_1 w) > \ell(w)$. Seeking a contradiction, suppose that $w = s_1 w$ is a reduced expression for w. Thus $I_w = I_v I_{s_1}$. We claim that $\mathcal{C}(I_v) \subseteq \mathcal{C}(I_w)$. The reason is that modules in $\mathcal{C}(I_v)$ are extensions of S_1 by some object from $\mathcal{C}(I_w)$, but $\mathcal{C}(I_w)$ is closed under such extensions by Lemma 7.4(2). So $\mathcal{C}(I_v) \subseteq \mathcal{C}(I_w)$.

At the same time, I_v strictly contains I_w, by Lemma 4.7 or Lemma 6.1. These two statements together contradict Theorem 4.6 or Lemma 6.6. Therefore we conclude that $\ell(s_1 w) > \ell(w)$.

Write \mathcal{A}^+ for the additive category generated by \mathcal{A} together with S_1, and write \mathcal{A}^- for the additive category generated by the indecomposables of \mathcal{A} excluding S_1.

We now have either $\mathcal{A} = \mathcal{A}^+$ or $\mathcal{A} = \mathcal{A}^-$. Since $\mathcal{A}' = R_1(\mathcal{A}^+) = R_1(\mathcal{A}^-)$, both \mathcal{A}^+ and \mathcal{A}^- satisfy our hypotheses, so we need to prove that the theorem holds for both of them. We first treat \mathcal{A}^-. We recall that Theorem 3.4 says that the following diagram commutes:

$$\begin{array}{ccc}
\text{Mod II} & \xrightarrow{- \otimes II I_1} & \text{Mod II} \\
\text{res} & & \text{res}
\end{array}$$

$$\begin{array}{ccc}
\text{Mod } kQ' & \xrightarrow{- \otimes kQ' T} & \text{Mod } kQ \\
\text{res} & & \text{res}
\end{array}$$

If we start with I_w in the upper lefthand corner, we get \mathcal{A}' in the bottom left, and thus \mathcal{A}^- in the bottom right. On the other hand, in the upper right corner, we have $I_w \otimes I_1$. Since $\ell(s_1 w) > \ell(w)$, this is $I_{s_1 w}$ by Lemma 4.7 or Lemma 6.1. Therefore, $\mathcal{C}(I_{s_1 w}) = \mathcal{A}^-$. Now we establish the link to the leftmost word for $s_1 w$. Since $s_1 w$ admits s_1 on the left, the leftmost word for $s_1 w$ begins with s_1 (corresponding in the AR-quiver
to the simple projective S_1). The rest of the leftmost word for s_1w is the leftmost word for w in the AR quiver for Q', and by assumption, this corresponds to the indecomposable objects not in A'.

Now we consider A^*. Using the result which we have already established for A^-, Lemma 7.2 tells us that $\mathcal{C}(I_w) = A^*$. Since w does not admit s_1 as a leftmost factor, the leftmost word for w in the AR quiver of kQ is the same as the leftmost word for s_1w with the initial s_1 removed. This establishes the desired result for A^*.

Proof of Theorem 7.3. We establish the theorem by induction on m, the number of indecomposable objects missing from A, and on p, the position of the first indecomposable missing from A in the order on the indecomposable objects of A.

The statement is clear if A has no missing indecomposables. (The prescription for finding w gives us the empty word, which is the unique reduced word for the identity element e, and $\mathcal{C}(I_e)$ is the whole preprojective component.)

Now, let A be some cofinite, quotient closed subcategory of the preprojective kQ-modules, with m missing indecomposables, and with the first missing indecomposable in position p. Suppose that we already know that the theorem holds for any quotient closed subcategory with fewer than m missing indecomposables, or with exactly m missing indecomposables and with the first missing indecomposable in a position earlier than p. Define A' as above.

If $p = 1$, then A does not contain S_1. In this case, A' has fewer missing indecomposables than A does. If $p > 1$, then A and A' have the same number of missing indecomposables, but the first missing indecomposable is earlier in A' than it is in A.

Thus, in either case, the induction hypothesis tells us that the statement of the theorem holds for A', and Lemma 7.5 tells us that it also holds for A. □

We also have a converse.

Theorem 7.6. $\mathcal{C}(I_w)$ is quotient closed for any $w \in W$.

Proof. If Q is non-Dynkin, we proceed as follows. Consider Fac$_{pp} \mathcal{C}(I_w)$, where we write Fac$_{pp} A$ for the part of Fac A consisting of preprojective modules. Fac$_{pp} \mathcal{C}(I_w)$ is quotient closed and clearly cofinite, so by Theorem 7.3, Fac$_{pp} \mathcal{C}(I_w) = \mathcal{C}(I_v)$ for some v, and hence Fac $\mathcal{C}(I_w) = \text{Fac} \mathcal{C}(I_v)$. Thus $I_w = I_v$, by Theorem 4.6. Thus $\mathcal{C}(I_w)$ is quotient closed.

Now, in the Dynkin case, for $x \in W$, $\mathcal{C}(\text{Sub}(I_x))$ is subclosed by Lemma 5.3, so must equal $\mathcal{C}(\Pi/I_x)$ for some $v \in W$ (applying Theorem 7.3 after dualizing). By Proposition 5.2, Ann($\mathcal{C}(\text{Sub}(I_x)) = I_x$, and Ann($\mathcal{C}(\Pi/I_x)) = I_v$, so $I_x = I_v$, and thus $x = v$ by [BIRS, Proposition III.1.9, Proposition III.3.5]. It follows that $\mathcal{C}(\Pi/I_x)$ is subclosed for any x, and by Proposition 6.4, we conclude that $\mathcal{C}(I_w)$ is quotient closed for all $w \in W$. □

Proof of Theorems 2.3 and Theorem 2.4. Theorem 7.3 shows that the correspondences of Theorem 2.3 yield a bijection between the cofinite quotient closed subcategories of P and some subset X of W. Theorem 7.6 shows that for any $w \in W$, $\mathcal{C}(I_w)$ is quotient closed. It therefore can also be written as $\mathcal{C}(I_x)$ for some $x \in X$. From the fact that $\mathcal{C}(I_w) = \mathcal{C}(I_x)$ we conclude that $I_w = I_x$ (using Theorem 4.6 in the non-Dynkin case, and Lemma 6.6 in the Dynkin case). It then follows from
[BIRS, Proposition III.1.9, Proposition III.3.5] that \(w = x \). Therefore, \(w \in X \). Thus \(X = W \), and Theorem 2.3 is proved.

Theorem 2.4 now also follows. \(\square \)

8. Infinite words

In this section we extend our bijection between the Coxeter group and the cofinite quotient closed subcategories of \(P \), to a bijection between a specific class of subwords of \(c^\infty \) and arbitrary (i.e., not necessarily cofinite) quotient closed subcategories of \(P \).

Let \(Q \) be non-Dynkin. Fix the (one-way) infinite word \(c^\infty = ccc\ldots \).

We say that an infinite subword \(w \) of \(c^\infty \) is leftmost if, for all \(n \), the subword of \(c^\infty \) consisting of the first \(n \) letters of \(w \) is leftmost (among all reduced words in \(c^\infty \) for that element of \(W \) — i.e., in the usual sense).

Theorem 8.1. There is a bijective correspondence between the leftmost subwords of \(c^\infty \) and the quotient closed subcategories of the preprojective component of \(\text{mod} kQ \): the reflections in the word correspond to indecomposable objects not in the subcategory.

Proof. We need only worry about infinite words and non-cofinite subcategories. Let \(C \) be a non-cofinite quotient closed subcategory. It determines a sequence \(C_1, C_2, \ldots \) where \(C_i \) consists of the indecomposable \(kQ \)-modules except for the \(i \) leftmost indecomposables missing from \(C \). Clearly, \(C_i \) is cofinite and quotient closed. It therefore determines a word \(w_i \). By construction, \(w_{i-1} \) is a prefix of \(w_i \), and thus they together define an infinite word all of whose prefixes are leftmost, which means that it is, by definition, an (infinite) leftmost word in \(c^\infty \).

The argument in the converse direction works in essentially the same way. Each finite prefix determines a subcategory which is quotient closed; the intersection of all these is a non-cofinite quotient closed subcategory. \(\square \)

Our main theorem, Theorem 7.3 relates quotient closed subcategories, elements of \(W \), and certain ideals in \(\Pi \). One might therefore wonder if it is possible to find a class of ideals of \(\Pi \) in bijection with the subcategories and words of the previous theorem. The obvious way to do this fails. Specifically, let \(w_i \) be the element of \(W \) corresponding to the first \(i \) symbols of an infinite subword \(w \) of \(c^\infty \), and then take \(I_w = \bigcap I_{w_i} \). It can happen that if \(w \) and \(v \) are distinct leftmost subwords of \(c^\infty \), then nonetheless \(I_w = I_v \). For example, any leftmost subword \(w \) with the property that each simple reflection occurs an infinite number of times, will yield \(I_w = 0 \). (Consider the case of the quiver \(\tilde{A}_1 \), with two arrows from vertex 1 to vertex 2. Now consider the infinite words \(s_1s_2s_1s_2s_1s_2\ldots \) and \(s_2s_1s_2s_1s_2\ldots \). The subcategory corresponding to the first of these words is empty, while that corresponding to the second word contains the simple projective. Both words nonetheless define the 0 ideal. Further, note that there is no ideal \(I \) of \(\Pi \) such that \(k(I) \) is the additive hull of the simple projective.)

Theorem 8.1 gives a correspondence between certain subcategories and certain subwords of \(c^\infty \). This bijection seems somewhat different from the bijection in Theorem 7.3, in that, in that theorem, we biject subcategories with elements of \(W \), rather than with subwords of \(c^\infty \). However, theorem 7.3 could be formulated in a
fashion parallel to that of Theorem 8.1, because every element of W has a unique leftmost expression as a subword of c^∞.

We will now proceed instead to reformulate Theorem 8.1 in a way which is closer to Theorem 7.3. In order to do so, we will replace the leftmost subwords of c^∞ which appear in Theorem 8.1 by certain equivalence classes of subwords of c^∞, such that the equivalence classes of finite subwords are just the reduced subwords in c^∞ for a given $w \in W$.

We say that an infinite word is reduced if any prefix of it is reduced. We restrict our attention to such words.

Say that the infinite reduced word v is a braid limit of the infinite reduced word w if there is some, possibly infinite, sequence of braid moves B_1, \ldots, which transforms w into v, such that, for any particular position n, there is some $N(n)$ such that B_j for $j > N(n)$ only affects positions greater than n. (This is a rephrasing of the definition in [LP].)

Note that it is possible for v to be a braid limit of w even if the converse is not true. An example in \tilde{A}_2 (from [LP]) is as follows. Let $w = s_2s_1s_2s_3s_1s_2s_3 \ldots$ and let $v = s_1s_2s_3s_1s_2s_3 \ldots$. Transform $w \rightarrow s_1s_2s_3s_1s_2s_3 \rightarrow s_1s_2s_3s_1s_2s_3 \ldots$. After i steps, the first $2i$ positions agree with v. However, there are no braid moves applicable to w, thus w is certainly not a braid limit of v.

We then have the following proposition, analogous to the statement that any element of W has a unique leftmost expression in c^∞.

Proposition 8.2. Any infinite reduced word has a unique leftmost braid limit.

Proof. Let s_1 be the first reflection in c^∞. [LP, Lemma 4.8] (an extension to infinite words of the usual Exchange Lemma from Coxeter theory) states that, given an infinite word w, one of two things will happen when we consider the infinite word s_1w: either it will be reduced in turn, or there will be a unique reflection from w which cancels with s_1, leaving some \tilde{w}.

In the first case, no finite prefix of w is equivalent under braid moves to a word beginning s_1. Since a finite number of braid moves can only alter a finite prefix of w, it follows that no braid limit for w can begin with s_1. In the second case, w is equivalent, after a finite number of braid moves, to $s_1\tilde{w}$. Clearly, in this case, w admits a braid limit which begins with s_1.

Therefore, if the first case holds, no braid limit for w can involve the initial s_1, so it plays no role and we can continue on to consider the next simple reflection in c^∞. In the second case, a finite number of braid moves suffice to bring s_1 to the front of w, and we can now go on to find a braid limit for \tilde{w} beginning with the second reflection in c^∞. \hfill \Box

Say that two (possibly infinite) reduced words in the simple generators of W are equivalent if they have the same leftmost braid limit in c^∞. (The equivalence classes in which the words are of finite length correspond naturally to elements of W.) Then we can restate Theorem 8.1 in the following way:

Corollary 8.3. There is a bijection between equivalence classes of reduced words in the simple generators of W and quotient closed subcategories of the preprojective component of $\mod kQ$.
9. Subclosed subcategories

We have seen that C induces a bijection between the ideals of the form I_w in Π and the cofinite quotient closed subcategories of $\text{mod} kQ$. It is natural to ask if C similarly induces a bijection between the quotients Π/I_w and certain subcategories of $\text{mod} kQ$, and further if one can explicitly describe the subcategories of $\text{mod} kQ$ which are of the form $C(\Pi/I_w)$ for some w.

We start by observing that in case Q is Dynkin the situation is as good as one could have hoped:

Theorem 9.1. Let Q be a Dynkin quiver. Then the map

$$W \longrightarrow \{\text{subcategories of } \text{mod} kQ\}$$

$$w \longmapsto C(\Pi/I_w)$$

induces a bijection between W and the subclosed subcategories of $\text{mod} kQ$.

Proof. We have $C(\Pi/I_w) = C(DI_{w_0w^{-1}}) = DC_{\text{left}}(I_{w_0w^{-1}})$ from Section 6. Now the claim follows since $w \longmapsto w_0w^{-1}$ is a bijection from W to itself, $w \longmapsto C_{\text{left}}(I_w)$ is a bijection from W to the set of quotient closed subcategories of $\text{mod} kQ^{op}$, and D induces a bijection between quotient closed subcategories of $\text{mod} kQ^{op}$ and subclosed subcategories of $\text{mod} kQ$. □

The most obvious guess would be that for Q arbitrary, the map $w \longmapsto C(\Pi/I_w)$ might be a bijection from W to the subclosed subcategories of $\text{mod} kQ$ containing only finitely many indecomposables. However, this is not the case: there are subclosed subcategories of $\text{mod} kQ$ with finitely many indecomposable objects which do not appear as $C(\Pi/I_w)$ for any w. For instance, let Q be the Kronecker quiver. The subcategories consisting of direct sums of copies of one quasi-simple regular module and the simple projective module are subclosed, but not of the form $C(\Pi/I_w)$, as we will see in Proposition 9.6.

We however suspect that the following statement in the converse direction holds:

Conjecture 9.2. For $w \in W$, the subcategory $C(\Pi/I_w)$ of $\text{mod} kQ$ is subclosed.

By Theorem 9.1 the conjecture holds for Q Dynkin. It is also easy to verify this conjecture in the case that Q has two vertices by a direct calculation. See Proposition 9.6 below for an explicit description of the categories that arise.

Recall that we have seen in Lemma 5.3 that the categories $C(\text{Sub} \Pi/I_w)$ are always subclosed. It follows that $\text{Sub} C(\Pi/I_w) = C(\text{Sub} \Pi/I_w)$, and hence that Conjecture 9.2 is equivalent to

$$C(\text{Sub} \Pi/I_w) = C(\Pi/I_w).$$

We now formulate two conjectures on the description of the subcategories $C(\Pi/I_w)$. In the first one we restrict to the affine case, where the combinatorial description is somewhat simpler.

Conjecture 9.3. Suppose that Q is affine. A full subcategory Z of kQ-mod arises as $C(\Pi/I_w)$ for some $w \in W$ iff

- Z has a finite number of indecomposables,
- Z is subclosed, and
for any tube, there is at least one ray in the tube which does not intersect \(Z \).

In order to generalize this conjecture to arbitrary quivers, we introduce the following notion. Define the reduced Ext-quiver of a full subcategory \(Z \) of \(kQ \)-mod as follows: The vertices are the indecomposable objects of \(Z \). There is an arrow from \(Y \) to \(X \) if the simple \(Z \)-module \(\frac{\text{Hom}_{kQ}(-,X)}{\text{Rad}(-,X)} \) is a direct summand of the socle of the \(Z \)-module \(\text{Ext}^1_{kQ}(-,Y) \). Equivalently there is an arrow from \(Y \) to \(X \) if there is a morphism from \(\tau^{-1}Y \) to \(X \) which does not factor through any radical map \(Z \rightarrow X \).

Conjecture 9.4. A full subcategory \(Z \) of \(kQ \)-mod arises as \(\mathcal{C}(\Pi/I_w) \) for some \(w \in W \) iff

- \(Z \) has a finite number of indecomposables,
- \(Z \) is submodule-closed, and
- the reduced Ext-quiver of \(Z \) contains no cycles.

This conjecture is clearly true for \(Q \) of finite type. (The third condition is vacuous in this case.)

In the tame case, we show that the two conjectures above coincide.

Proposition 9.5. In the case that \(Q \) is affine, Conjecture 9.3 is equivalent to Conjecture 9.4.

Proof. Suppose that \(Z \) is a subclosed category, and that there is some tube such that \(Z \) contains objects from each ray of the tube. By the fact that \(Z \) is subobject closed, it contains the quasisimples from the bottom of the tube. Since each is the AR-translation of the next around the tube, the corresponding extensions cannot factor through any other element of \(Z \), so they give rise to a cycle in the reduced Ext-quiver of \(Z \), contrary to our assumption.

Conversely, suppose that \(Z \) is subclosed and each tube has a ray such that \(Z \) does not intersect that ray. Suppose \(Y \) and \(X \) are in the same tube, with \(X \) strictly higher than \(Y \). A map from \(\tau^{-1}Y \) to \(X \) factors through \(X' \), the indecomposable in the same ray as \(Y \) and on the same level as \(X \), and \(X' \) is in \(Z \) since \(Z \) is subclosed. Therefore, there is no arrow in the reduced Ext-quiver from \(Y \) to \(X \), so the only arrows in the reduced Ext-quiver go from an object to another object at the same height or lower. Further, there can only be an arrow from \(Y \) to some \(X \) at the same height as \(Y \) if \(X = \tau^{-1}Y \), since otherwise the map from \(\tau^{-1}Y \) will factor through \(X'' \), the indecomposable on the same ray as \(X \) which is one level lower.

Thus, a cycle would necessarily involve objects all at the same height, and each would have to be \(\tau^{-1} \) of the previous one. This would imply that there was no ray in the tube not intersecting \(Z \).

We now prove Conjecture 9.4 for the case that \(Q \) is a quiver with two vertices.

Proposition 9.6. Conjecture 9.4 holds when \(Q \) is a quiver with two vertices.

Proof. The subcategories that arise as \(\mathcal{C}(\Pi/I_w) \) are exactly those of the following form:

- A finite initial segment of the preprojective component, or
- A finite initial segment of the preprojective component together with the simple injective.
It is clear that these subcategories satisfy the conditions of Conjecture 9.4, so it is just a matter of checking that no other subcategory does.

Let \(Z \) be some subcategory satisfying the conditions of Conjecture 9.4. If \(Z \) contains a non-simple injective, then (being subclosed) it would also contain all the predecessors of \(Z \) in the preinjective component, and thus it would not be finite, contradicting our assumption.

Suppose now that \(Z \) contains some regular objects, \(R_1, \ldots, R_r \). Since \(kQ \text{-mod} \) has no rigid regular objects, each of these objects admits a self-extension. Thus, for each \(R_i \), there is a map from \(\tau^{-1}R_i \) to \(R_i \). This does not necessarily yield an arrow in the reduced Ext-quiver, but we can conclude that there is some arrow in the reduced Ext-quiver of \(Z \) starting at \(R_i \), and further that this arrow goes to a regular indecomposable of \(Z \), since the morphism from \(\tau^{-1}R_i \) to \(R_i \) factors through the morphism corresponding to this arrow. Thus, the reduced Ext-quiver contains arbitrarily long walks, so it must contain a directed cycle, contradicting our assumption.

Finally, if \(Z \) contains a preprojective object \(E \), it must contain all the predecessors of \(E \), since \(Z \) is subclosed. It follows that the only subcategories \(Z \) which satisfy the conditions of Conjecture 9.4 are those which we have already identified. □

10. Which cofinite quotient closed subcategories are torsion classes?

We have established that the cofinite quotient closed subcategories of \(kQ \text{-mod} \) can be formed as the additive hull of \(\mathcal{C}(I_w) \) together with all non-preprojective indecomposable objects for \(w \in W \). It is natural to ask for which \(w \) these subcategories are actually torsion classes.

When we have found a torsion class, it is also natural to ask about the corresponding torsion-free class. Since our torsion classes are cofinite, the corresponding torsion-free class will be finite, and it will therefore be useful to recall the correspondence established in [IT, AIRT] between torsion-free classes and certain elements of \(W \) called \(c \)-sortable elements.

As usual, \(c = s_1 s_2 \ldots s_n \), where the simple reflections (or equivalently, the vertices of \(Q \)) are numbered compatibly with the orientation of \(Q \). An element \(w \in W \) is called \(c \)-sortable if there is an expression for \(w \) of the form \(c^{(0)} c^{(1)} \ldots c^{(r)} \), where each \(c^{(i)} \) consists of some subset of the simple reflections, taken in increasing order, and such that the set of reflections appearing in \(c^{(i)} \) is contained in the set of reflections appearing in \(c^{(i-1)} \) [Re1]. It is shown in [AIRT] that there is a one-to-one correspondence between \(c \)-sortable elements of \(W \) and finite torsion-free classes for \(kQ \text{-mod} \), which takes \(w \) to \(\mathcal{C}(\Pi/I_w) \).

Therefore, when \(\mathcal{C}(I_w) \) together with the non-preprojective indecomposables form a torsion class, we can ask for the element \(v \in W \) such that the corresponding torsion-free class is given by \(\mathcal{C}(\Pi/I_v) \). In this section we give conjectural answers to both these questions, and we prove that our conjectures hold in the Dynkin case.

Write \(\text{sort}_c(w) \) for the longest \(c \)-sortable prefix of \(w \).

Conjecture 10.1. The following conditions are equivalent:

1. the additive category generated by \(\mathcal{C}(I_w) \) together with all non-preprojective indecomposable \(kQ \)-modules is a torsion class,
2. for every \(i \) such that \(\ell(ws_i) > \ell(w) \), we have that \(\text{sort}_c(ws_i) \) is strictly longer than \(\text{sort}_c(w) \).
Consider A_2, with S_1 the simple projective, so $c = s_1s_2$. We find that the elements of W satisfying each of the above conditions are c, s_1, s_1s_2, s_2s_1, $s_1s_2s_1$. (For example, s_2 does not satisfy the second condition, because s_2s_1 is longer than s_2, but the longest c-sortable prefix of both s_2s_1 and of s_2 is s_2. On the other hand, note that s_2s_1 satisfies the conditions: its longest c-sortable prefix is s_2, while the only word which can be obtained by lengthening s_2s_1 is $s_2s_1s_2 = s_1s_2s_1$ which is c-sortable.)

Conjecture 10.2. If the additive hull of $\mathcal{C}(I_w)$ together with the non-preprojective indecomposable objects forms a torsion class, its corresponding torsion-free class is that associated to $\text{sort}_c(w)$.

We will now prove both these conjectures for finite type. In order to do so, we introduce some notation.

There is an order on W, called right weak order, in which $u \leq_R v$ iff there is a reduced expression for v with a prefix which is an expression for u. This is a weaker order than Bruhat order, in the sense that if $u \leq_R v$, it is also true that $u \leq v$ in Bruhat order. (Left weak order, which we shall not need here, is defined similarly, using suffixes instead of prefixes.) For more on weak orders, see [BB, Chapter 3].

In finite type, the map sort_c, which takes W to c-sortable elements, is a lattice homomorphism from W with the right weak order to the c-sortable elements of W, ordered by the restriction of right weak order [Re2, Theorem 1.1]. This implies, in particular, that each fibre of sort_c is an interval in W.

Lemma 10.3. For Q of finite type, the following conditions on $w \in W$ are equivalent:

1. For every simple reflection s_i such that $\ell(ws_i) > \ell(w)$, we have that $\ell(\text{sort}_c(ws_i)) > \ell(\text{sort}_c(w))$.
2. w is the unique longest element among those $x \in W$ satisfying $\text{sort}_c(w) = \text{sort}_c(x)$.
3. ww_0 is c^{-1}-sortable.

Proof. Suppose (2) does not hold, so there exists some $y \geq_R w$ such that $\text{sort}_c(y) = \text{sort}_c(w)$. It then follows that the whole interval from y to w has the same maximal c-sortable prefix, and in particular this holds for some element ws_i which covers w. This shows that (1) does not hold.

Now suppose that (2) holds. Let s_i be a simple reflection such that $\ell(ws_i) > \ell(w)$. By (2), $\text{sort}_c(ws_i) \neq \text{sort}_c(w)$. Since ws_i lies above w in the right weak order, $\text{sort}_c(ws_i)$ lies above $\text{sort}_c(w)$ in the right weak order, so in particular it is longer. This establishes (1).

The equivalence of (2) and (3) follows from [Re2, Proposition 1.3].

Proposition 10.4. Conjecture 10.1 holds if Q is of finite type.

Proof. We denote by $\mathcal{C}_{\text{left}}$ the left module version of \mathcal{C}, that is, the map associating to a left Π-module the category of all finite direct sums of direct summands of its restriction to kQ. Note that for a finite dimensional Π-module X we have $D\mathcal{C}(X) = \mathcal{C}_{\text{left}} D(X)$.

By the left module version of [T, AIRT] we know that $\mathcal{C}_{\text{left}}(\Pi/I_w)$ is a torsion free class if and only if w^{-1} is c^{-1}-sortable.

Since $DI_w \cong \Pi/I_{w_0w^{-1}}$ as left Π-modules by Proposition 6.4(1), we have $D\mathcal{C}(I_w) = \mathcal{C}_{\text{left}}(\Pi/I_{w_0w^{-1}})$,
and this is a torsion free class in mod kQ^{op} if and only if $(w_0w^{-1})^{-1} = ww_0$ is c^{-1}-sortable.

Dualizing we obtain the claim. □

As was already mentioned, if w is c-sortable, we know that $\mathcal{C}(\Pi/Iw)$ is torsion-free. Write \mathcal{F}_w for this class.

For c-sortable w, write \hat{w} for the unique longest word with the same c-sortable prefix as w. (In order to know that such an element exists, we must continue to assume that Q is Dynkin.) Note, in particular, \hat{w} satisfies the equivalent conditions of Lemma 10.3. Thus, by Proposition 10.4, $\mathcal{C}(I\hat{w})$ is a torsion class. Write $\mathcal{T}\hat{w}$ for this subcategory. From the proof of Proposition 10.4, we also have the further equality:

$$\mathcal{T}\hat{w} = \mathcal{C}(I\hat{w}) = \mathcal{C}(\Pi/Iw_0\hat{w}^{-1})$$

Proving Conjecture 10.2 amounts to showing that, for w any c-sortable element, $(\mathcal{T}\hat{w}, \mathcal{F}_w)$ is a torsion pair.

For $w \in W$, choose a reduced expression $w = s_{i_1} \ldots s_{i_r}$. Define $\text{Inv}(w)$ to consist of the set of positive roots $\{s_{i_1} \ldots s_{i_{t-1}} \alpha_{i_t}\}$. Note that this set does not depend on the chosen expression for w.

Lemma 10.5. For v, w two c-sortable elements, the following are equivalent:

1. $v \leq_R w$,
2. $\text{Inv}(v) \subseteq \text{Inv}(w)$,
3. $\mathcal{F}_v \subseteq \mathcal{F}_w$,
4. $\hat{v} \leq_R \hat{w}$,
5. $\hat{v}w_0 \geq_R \hat{w}w_0$,
6. $\mathcal{T}_v \supseteq \mathcal{T}_w$.

Proof. The equivalence of (1) and (2) is clear. The equivalence of (2) and (3) follows from the fact that the dimension vectors of the indecomposable objects in \mathcal{F}_w are given by $\text{Inv}(w)$, by [AIRT, Theorem 2.6]. The equivalence of (1) and (4) follows from [Re2, Theorem 1.1] together with its dual. The equivalence of (4) and (5) follows from the fact that $\text{Inv}(v_0w)$ is the complement of $\text{Inv}(v)$ in the set of positive roots. The equivalence of (5) and (6) follows in the same way as the equivalence of (1) and (3), using $\mathcal{T}_\hat{v} = \mathcal{C}(\Pi/Iw_0\hat{w}^{-1})$ and the similar description of $\mathcal{T}_\hat{w}$. □

Define ϕ to be the map on torsion-free classes that takes \mathcal{F}_w to the torsion-free class associated to \mathcal{T}_w. We want to show that ϕ is the identity.

Lemma 10.6. The map ϕ is a lattice automorphism of the lattice of torsion-free classes.

Proof. It is clear from the definition that ϕ is invertible. The fact that ϕ is a poset automorphism follows from the equivalence of (3) and (5) in Lemma 10.5, together with the fact that taking the torsion-free class associated to a torsion class reverses containment. For a finite lattice, being a lattice automorphism is equivalent to being a poset automorphism, because poset relations determine lattice operations and vice versa. □

Lemma 10.7. For w a c-sortable element, \mathcal{F}_w is splitting iff w admits an expression corresponding to an initial segment of the AR-quiver of kQ-mod.
Proof. \mathcal{F}_w is splitting implies that the AR-quiver of \mathcal{F}_w is an initial subquiver of the AR-quiver of mod kQ. By [AIRT], we can read off a word for w from the AR-quiver of \mathcal{F}_w, so this shows that w admits an expression corresponding to an initial segment of the AR-quiver of mod kQ.

Conversely, suppose w corresponds to an initial subquiver of the AR-quiver with respect to an arbitrary linear extension. Reading this word by slices gives the c-sorting word for w. (This uses the fact, shown in [Arm], that if we think of the c-sorting word for w_0 contained in \mathcal{C}^∞, the c-sorting word for any w will be be contained in the c-sorting word for w_0.) By [AIRT], it follows that the AR-quiver for the torsion-free class corresponding to w coincides with the given initial subquiver of the AR-quiver. It follows that the objects of \mathcal{F}_w consist of an initial segment of the AR-quiver of kQ-mod. □

Lemma 10.8. The map ϕ is the identity map on the lattice of torsion-free classes.

Proof. We first show that ϕ fixes splitting torsion-free classes. If \mathcal{F}_w is splitting, then by Lemma 10.7, w can be read off from an initial segment of the AR-quiver for mod kQ. [PS, Proposition 2.8] establishes that if w comes from an initial segment of the AR-quiver for mod kQ, then w is the unique element of W whose c-sortable prefix is w. Thus $w = \hat{w}$.

The leftmost word for w inside the word for w_0 is the word read off from the initial segment of the AR-quiver, since we know that this is the c-sorting word. (This is not a complete triviality, because an initial segment of the AR-quiver is not typically an initial segment of our fixed linear order on the indecomposables.)

It now follows from Theorem 2.3 that \mathcal{F}_w consist of all sums of indecomposables not in this initial segment. This is precisely the splitting torsion class corresponding to \mathcal{F}_w. It follows that $\phi(\mathcal{F}_w) = \mathcal{F}_w$ whenever \mathcal{F}_w is splitting.

Say that a torsion-free class is principal if it is of the form $\text{Sub}(E)$ for some indecomposable kQ-module E. We will now show that ϕ fixes principal torsion-free classes.

Observe that principal torsion-free classes can be described in purely lattice-theoretic terms, as the non-zero torsion-free classes which cannot be written as the join of two smaller torsion-free classes. It follows that ϕ takes principal torsion-free classes to principal torsion-free classes.

Let E be an indecomposable object. Let \mathcal{S} be the splitting torsion-free class consisting of the additive hull of the objects up to and including E in our standard linear order on the indecomposable kQ-modules. Let \mathcal{S}' be the additive hull of the indecomposable objects of \mathcal{S} other than E. Then \mathcal{S}' is clearly also a splitting torsion-free class. As we have already seen, ϕ fixes both \mathcal{S} and \mathcal{S}'. Since $\text{Sub}E$ is the only principal torsion-free class contained in \mathcal{S} but not in \mathcal{S}', we have that $\phi(\text{Sub}(E)) = \text{Sub}(E)$.

Since any torsion-free class can be written as the join of the principal torsion-free classes corresponding to the indecomposable summands of a cogenerator for the torsion-free class, it follows that ϕ fixes all torsion-free classes, as desired. □

Proposition 10.9. Conjecture 10.2 holds if Q is of finite type.

Proof. Suppose that $\mathcal{C}(I_v)$ is a torsion class. By Proposition 10.4, we know that vw_0 is c^{-1}-sortable. Let $w = \text{sort}_{c^{-1}}(v)$. Applying the above analysis, we find that $\mathcal{F}_w = \phi(\mathcal{F}_w)$, so \mathcal{F}_w is the torsion-free class associated to $\mathcal{C}(I_v)$, as desired. □
11. Leftmost reduced words and L-diagrams

In this section, we explain how our results applied in type A_n provide an alternative derivation for Postnikov’s description of leftmost reduced subwords inside Grassmannian permutations in terms of L-diagrams.

Let W be the Weyl group of type A_n, which is isomorphic to the symmetric group on $n+1$ letters. Fix an integer k such that $1 \leq k \leq n$. Let $W_{\langle k \rangle}$ be the parabolic subgroup generated by the simple reflections other than s_k, and let $W^{(k)}$ be the minimal length coset representatives for $W_{\langle k \rangle}\backslash W$. These are the k-Grassmannian permutations in S_{n+1} (or, depending on a choice of convention, their inverses). The elements of $W^{(k)}$ have an essentially unique expression as a product of simple reflections; if $w \in W_{\langle k \rangle}$, then any two reduced expressions for w differ by commutation of commuting reflections.

Leftmost reduced subwords inside a reduced word for $w \in W_{\langle k \rangle}$ are of interest, as they index the cells in the totally non-negative part of the Grassmannian of k-planes in \mathbb{C}^{n+1}. In this context, such subwords are referred to as “positive distinguished subexpressions” of w. For more background on this, and for the equivalence of “leftmost reduced” and “positive distinguished,” see [Po, Section 19].

Postnikov gives a combinatorial criterion to identify the lexicographically first subexpressions in a reduced word for $w \in W^{(k)}$, as follows.

Let $w_0^{(k)}$ be the longest element of $W^{(k)}$. A reduced expression for $w_0^{(k)}$ can be written out explicitly as $(s_k s_{k+1} \ldots s_n) (s_{k-1} \ldots s_{n-1}) \ldots (s_1 \ldots s_{n-k+1})$. Write out this reduced expression inside a $k \times (n-k+1)$ rectangle, as is done in the example below with $n = 4, k = 2$.

\begin{center}
\begin{tabular}{ccc}
 \textbullet & \textbullet & \textbullet \\
 \textbullet & \textbullet & \textbullet \\
\end{tabular}
\end{center}

The elements $w \in W^{(k)}$ correspond bijectively to partitions that can be drawn inside this rectangle in the usual English notation (that is to say, the parts of the partition are left-justified rows of boxes, with the sizes of the parts weakly decreasing from top to bottom). If λ is a partition, a word for the corresponding element of $W^{(k)}$ is given by reading the reflections inside λ from left to right by rows, starting at the top row. We say that a subword (thought of as a subset of the boxes of this partition) has a bad L if there is some reflection which is used, such that there is some reflection in the column above it which is unused, and some reflection in the row to the left of it which is unused. (The relative position of the three reflections explains the use of the symbol L.)

Then Postnikov shows:

Theorem 11.1 ([Po, Theorem 19.2], see also [LW]). *A subword of $w \in W^{(k)}$ is a leftmost reduced subword iff it has no bad L.***

We will recover this result using our description of leftmost reduced words in terms of quotient-closed subcategories.

Let Q be the quiver of type A_n, with all arrows oriented away from vertex k. When we consider the AR quiver for kQ-mod, we observe that it consists of a rectangle R and two triangles, T_1, T_2, as in the picture below, showing the case $n = 4, k = 2$.

\begin{center}
\begin{tabular}{ccc}
 \textbullet & \textbullet & \textbullet \\
 \textbullet & \textbullet & \textbullet \\
\end{tabular}
\end{center}
The rectangle R consists of the representations whose support includes the vertex k. The lefthand corner of the rectangle is the simple projective supported at vertex k, while the righthand corner is the corresponding injective, the unique sincere indecomposable representation. The triangle T_1 consists of representations supported only on vertices smaller than k, while T_2 consists of representations supported only on vertices greater than k.

If we replace the indecomposables in the AR-quiver by the corresponding simple reflections, and then read them in the order given by the slices, then Theorem 2.3 tells us that we obtain a word for w_0, the longest element of W. Call this our standard word for w_0. Say that a reading order respects the AR-quiver if, for any irreducible morphism $A \rightarrow B$, we read the reflection corresponding to A before the reflection corresponding to B. Then any reading order which respects the AR-quiver, will yield a reduced word for w_0 which differs from the standard word by a sequence of commutations of commuting reflections. It follows that the leftmost reduced words for any reading order which respects the AR-quiver will correspond to quotient-closed subcategories in exactly the same way.

In particular, for any $w \in W^{(k)}$, we can take a reading order which begins by reading the reflections in the corresponding partition along lines sloping from bottom left to top right, followed by reading the remaining reflections in R and the reflections in the two triangles in any order compatible with the AR-quiver. The result is a word for w_0 which begins with a word for w.

By Theorem 2.3, leftmost reduced words inside w therefore correspond to quotient-closed subcategories of kQ-mod which contain all the indecomposables outside the partition corresponding to w. We have therefore reduced the combinatorial problem of classifying leftmost reduced words inside w to the problem of classifying quotient-closed subcategories which contain all the indecomposables outside a partition λ.

We say that a subcategory has a bad J if there is some indecomposable X in R which is missing from the subcategory, such that the subcategory contains an object on the line of morphisms leading to X from the top right, and an object on the line of morphisms leading to X from the bottom left. We will therefore recover Postnikov’s result once we have established the following proposition:

Proposition 11.2. The quotient-closed subcategories of kQ-mod which contain all the indecomposables outside λ are exactly those which have no bad J inside λ.

Proof. Suppose that a subcategory \mathcal{C} has a bad J. Then \mathcal{C} is missing some indecomposable X, and contains an indecomposable Y on the line of morphisms leading
to X from the top right, and an indecomposable Z on the line of morphisms leading to X from the bottom right. It is easy to see that there is an epimorphism $Y \oplus Z \rightarrow X$. Therefore C is not quotient closed.

Conversely, suppose that C contains all the indecomposables outside λ and is not quotient closed. Then there is some indecomposable X which is not in C, and such that there is an epimorphism from some object of C onto X. It is easy to see that this is only possible if C has a bad J with X at the corner, since all the irreducible morphisms inside R are monomorphisms. □

For this choice of Q, it is possible to use the same approach to describe the explicit combinatorics of the leftmost reduced words inside the word for w_0 which is obtained by replacing the indecomposables in the AR-quiver by the corresponding simple reflections, and then reading them in any order compatible with the AR-quiver.

Specifically, we have the following representation-theoretic result:

Proposition 11.3. A subcategory C of kQ is quotient-closed provided that:

- C has no bad J inside R.
- If any indecomposable from R appears in C, then so do all the elements of T_1 on the same diagonal running from bottom left to top right, and so do all the elements of T_2 on the same diagonal running from top left to bottom right.
- Along any line of morphisms running from bottom left to top right, if any indecomposable from T_1 is in C, all subsequent indecomposables along the diagonal also lie in C.
- Along any line of morphisms running from top left to bottom right, if any indecomposable from T_2 is in C, all subsequent indecomposables along the diagonal also lie in C.

Proof. We leave the proof of these elementary facts to the reader. □

By Theorem 2.3, this yields the following consequence. We think of the simple reflections in our word for w_0 as positioned at the vertices of the AR-quiver. In particular, this means that where one usually refers to rows and columns, we will refer to diagonals.

Corollary 11.4. A leftmost reduced word inside w_0 is one which has the following properties:

- It has no bad J inside the reflections coming from R,
- If any simple reflection s inside R is skipped, then all subsequent reflections in T_1 and T_2 on the diagonals through that s must also be skipped.
- If any simple reflection s inside T_1 is skipped, then all subsequent reflections inside T_1 on the same upward-pointing diagonal must be skipped,
- If any simple reflection s inside T_2 is skipped, then all subsequent reflections inside T_2 on the same downward-pointing diagonal must be skipped.

12. CONNECTION TO THE WORK OF ARMSTRONG

In this section, we explain the link to Armstrong’s work [Arm], which provided the initial motivation for our investigations. We restrict to the case that Q is Dynkin for simplicity; on the whole, that is the setting in which combinatorialists have worked.
Let E be a finite ground set and let \mathcal{A} be a collection of subsets of E. The sets in \mathcal{A} are referred to as feasible sets. We say that the set system \mathcal{A} is accessible if, for every $\emptyset \neq A \in \mathcal{A}$, there exists some $x \in A$ such that $A \setminus \{x\} \in \mathcal{A}$.

An accessible set system \mathcal{A} is called an antimatroid if it satisfies the condition that if $A, B \in \mathcal{A}$ with $B \not\subseteq A$, then there exists some $x \in B \setminus A$ such that $A \cup \{x\} \in \mathcal{A}$.

An antimatroid is called supersolvable [Arm], if E is equipped with a total order such that, if $A, B \in \mathcal{A}$, with $B \not\subseteq A$, then $A \cup \{x\} \in \mathcal{A}$, where x is the minimum element of B not in A (with respect to the total order).

Let W be a reflection group, which we assume to be finite. Fix an arbitrary word $w = s_{i_1} \ldots s_{i_N}$ in the simple reflections of W. For $v \in W$, consider the subwords of w which define reduced words for v, and, if there is at least one such subword, define A_v to be the subset of $\{1, \ldots, N\}$ corresponding to the positions occupied by the leftmost such word. Then define \mathcal{A}_w to consist of the collection of all the A_v (for those v such that A_v is defined). One of the main results of [Arm], Theorem 4.4, says that \mathcal{A}_w is a supersolvable antimatroid (with respect to the usual order on the ground set $\{1, \ldots, N\}$).

Using our results, we can recover this result of Armstrong for particular choices of word w. Suppose that W is simply-laced, so that it corresponds to a Dynkin diagram. Choose an arbitrary orientation for the diagram, obtaining a quiver Q. Now consider the word for the element $w_0 \in W$ obtained by reading the AR-quiver for kQ, as described in Section 2. We call this word w_{AR}. Using our correspondence between leftmost words and quotient closed subcategories, $A \in \mathcal{A}_{w_{AR}}$ iff A is the set of indecomposables missing from a quotient closed subcategory of kQ-mod. In this case we write A^c for the corresponding quotient closed subcategory.

Let $A, B \in \mathcal{A}_{w_{AR}}$, with $B \not\subseteq A$. Let x be the first indecomposable (with respect to our fixed total order) in B which is not in A. To show that $\mathcal{A}_{w_{AR}}$ is a supersolvable antimatroid, we must show that $A \cup \{x\} \in \mathcal{A}_{w_{AR}}$. This is equivalent to saying that x can be removed from the quotient closed category A^c, without destroying quotient closedness.

To see this, write X for the full subcategory of mod kQ whose indecomposable objects properly precede x in our fixed total order. Since $x \in B$, we know that x is not a quotient of any object of B^c. Since x is the first element of B not in A, the indecomposable objects of B which precede x all lie in A. Thus $B^c \cap X \subseteq A^c \cap X$, so $A^c \setminus \{x\}$ is still quotient closed, as desired. (As noted in [Arm], we do not have to check the fact that $\mathcal{A}_{w_{AR}}$ is accessible separately, since it follows from the condition we have already checked.)

References

A.B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups.

