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Abstract. We consider the homotopy category of complexes of projective

modules over a Noetherian ring. Truncation at degree zero induces a fully
faithful triangle functor from the totally acyclic complexes to the stable derived

category. We show that if the ring is either Artin or commutative Noetherian

local, then the functor is dense if and only if the ring is Gorenstein. Motivated
by this, we define the Gorenstein defect category of the ring, a category which

in some sense measures how far the ring is from being Gorenstein.

1. Introduction

Given a ring, one can associate to it certain triangulated categories: derived cat-
egories, homotopy categories, and various triangulated subcategories of these, such
as bounded derived categories or homotopy categories of acyclic complexes. When
the ring is Gorenstein, classical results by Buchweitz (cf. [Buc]) show that some of
these triangulated categories are equivalent: the stable category of maximal Cohen-
Macaulay modules, the stable derived category of finitely generated modules, and
the homotopy category of totally acyclic complexes of finitely generated projective
modules. Thus, for Gorenstein rings, these triangulated categories (together with
their respective cohomology theories) virtually coincide.

In this paper, we provide a categorical characterization of Gorenstein rings. Let
A be a left Noetherian ring, and projA the category of finitely generated projective
left A-modules. Brutal truncation at degree zero induces a map from the homo-
topy category Ktac(projA) of totally acyclic complexes to the homotopy category
K−,b(projA) of right bounded eventually acyclic complexes. However, this map is
not a functor. We therefore consider instead the stable derived category

Db
st(A)

def
= K−,b(projA)/Kb(projA)

of A, where Kb(projA) is the homotopy category of bounded complexes. Brutal
truncation now induces a triangle functor

βprojA : Ktac(projA) Db
st(A),

and we show that this functor is always full and faithful. The main result, Theorem
2.7, shows that the properties of this functor actually characterize Gorenstein rings.
Namely, if A is either an Artin ring or a commutative Noetherian local ring, then
the functor βprojA is dense if and only if A is Gorenstein. The “if” part here is
classical: it is part of [Buc, Theorem 4.4.1].

Motivated by this, we define the Gorenstein defect category Db
G(A) of A as the

Verdier quotient

Db
G(A)

def
= Db

st(A)/〈ImβprojA〉,
where 〈ImβprojA〉 is the isomorphism closure of the image of βprojA in Db

st(A): this
is a thick subcategory. Then Theorem 2.7 translates to the following: if A is either
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an Artin ring or a commutative Noetherian local ring, then Db
G(A) = 0 if and only

if A is Gorenstein. The dimension of the Gorenstein defect category is therefore in
some sense a measure of “how far” the ring is from being Gorenstein.

2. The results

Let P be an additive category, and KP the homotopy category of complexes

in P. This is a triangulated category, with suspension Σ: KP KP given by
shifting a complex one degree to the left, and changing the sign of its differential.
That is, for a complex C ∈ KP with differential d, the complex ΣC has Cn−1
in degree n, and −d as differential. The (distinguished) triangles in KP are the
sequences of objects and maps that are isomorphic to sequences of the form

C1
f−→ C2 C(f) ΣC1

for some map f and its mapping cone C(f).
We say that a complex C in P is acyclic if the complex HomP(P,C) of abelian

groups is acyclic for all objects P ∈P. If in addition HomP(C,P ) is acyclic for all
P ∈P, then C is totally acyclic. Moreover, C is eventually acyclic if for all objects
P ∈P, the complex HomP(P,C) is eventually acyclic, i.e. Hn (HomP(P,C)) = 0
for |n| � 0. Note that we cannot define acyclicity directly for complexes in P,
since the category is only assumed to be additive.

We shall be working with the following full subcategories of KP (the definitions
are up to isomorphism in KP):

KtacP = {C ∈ KP | C is totally acyclic}

K−,bP = {C ∈ KP | Cn = 0 for n� 0 and C is eventually acyclic}

KbP = {C ∈ KP | Cn = 0 for |n| � 0}.
These are all triangulated subcategories of KP. For example, when P is the
category of finitely generated left projective modules over a left Noetherian ring A,
then KbP is by definition the category of perfect complexes. Moreover, in this
setting it is well known that the triangulated categories K−,bP and Db(modA)
are equivalent, where modA is the category of finitely generated left A-modules.

The category KbP is a thick subcategory of K−,bP, that is, a triangulated
subcategory closed under direct summands. The Verdier quotient K−,bP/KbP
is therefore a well defined triangulated category. Recall that the objects in this

quotient are the same as the objects in K−,bP. A morphism C1 C2 in the
quotient is an equivalence class of diagrams of the form

C1 C2

D
g f

where f and g are morphisms in K−,bP, and g has the property that its mapping
cone C(g) belongs to KbP. Two such morphisms (g,D, f) and (g′, D′, f ′) are
equivalent if there exists a third such morphism (g′′, D′′, f ′′), and two morphisms

h : D′′ D and h′ : D′′ D′ in K−,bP, such that the diagram

C1 C2

D

D′

D′′

g f

g′ f ′

g′′ f ′′
h

h′
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is commutative. For further details, we refer to [Nee, Chapter 2]. The natural

triangle functor K−,bP K−,bP/KbP maps an object to itself, and a morphism

f : C1 C2 to the equivalence class of the diagram

C1 C2

C1
1 f

In Theorem 2.2, we establish a fully faithful triangle functor from KtacP to the
quotient K−,bP/KbP. To avoid too many technicalities in the proof, we first
prove the following lemma. It allows us to complete certain morphisms and homo-
topies of truncated complexes. Given an integer n and a complex

C : · · · dn+3−−−→ Cn+2
dn+2−−−→ Cn+1

dn+1−−−→ Cn
dn−→ Cn−1

dn−1−−−→ Cn−2
dn−2−−−→ · · ·

in P, we denote its brutal truncation

C : · · · dn+3−−−→ Cn+2
dn+2−−−→ Cn+1

dn+1−−−→ Cn −→ 0 −→ 0 −→ · · ·

at degree n by β≥n(C). Note that when C ∈ KtacP, then β≥n(C) ∈ K−,bP.

Lemma 2.1. Let P be an a additive category, and C,D two complexes in P with

C totally acyclic. Furthermore, let n be an integer, and f : β≥n(C) β≥n(D) a
chain map.

(a) The map f can be extended to a chain map f̂ : C D (with β≥n(f̂) = f).

(b) Let π : C β≥n(C) be the natural chain map, and consider the composite

chain map f◦π : C β≥n(D). If f◦π is nullhomotopic through a homotopy

h, then h can be extended to a homotopy ĥ making f̂ nullhomotopic.

Proof. (a) The chain map f is given by the solid part of the commutative diagram

· · · Cn+2 Cn+1 Cn Cn−1 Cn−2 · · ·

· · · Dn+2 Dn+1 Dn Dn−1 Dn−2 · · ·

fn+2 fn+1 fn fn−1

dCn+3

dDn+3

dCn+2

dDn+2

dCn+1

dDn+1

dCn

dDn

dCn−1

dDn−1

dCn−2

dDn−2

and it suffices to find a map fn−1 as indicated, making the square to its left com-
mutative. The composition dDn ◦ fn ◦ dCn+1 is zero, and by assumption the sequence

HomP(Cn−1, Dn−1)
(dCn )∗−−−−→ HomP(Cn, Dn−1)

(dCn+1)
∗

−−−−−→ HomP(Cn+1, Dn−1)

is exact. Therefore, there exists a map fn−1 : Cn−1 Dn−1 such that fn−1 ◦ dCn =

dDn ◦ fn.
(b) The homotopy h is given by maps hn−1, hn, hn+1, . . . as in the diagram

· · · Cn+2 Cn+1 Cn Cn−1 Cn−2 · · ·

· · · Dn+2 Dn+1 Dn Dn−1 Dn−2 · · ·

fn+2 fn+1 fn fn−1 fn−2 hn−3hn−2hn−1hnhn+1hn+2

dCn+3

dDn+3

dCn+2

dDn+2

dCn+1

dDn+1

dCn

dDn

dCn−1

dDn−1

dCn−2

dDn−2

with fi = dDi+1 ◦ hn + hi−1 ◦ dCi for all i ≥ n. We must find maps hn−2, hn−3, . . .
completing the homotopy.
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To find the map hn−2, consider the map fn−1−dDn ◦hn−1 in HomP(Cn−1, Dn−1),
for which we obtain

(fn−1 − dDn ◦ hn−1) ◦ dCn = dDn ◦ fn − dDn ◦ (fn − dDn+1 ◦ hn) = 0.

Since the sequence

HomP(Cn−2, Dn−1)
(dCn−1)

∗

−−−−−→ HomP(Cn−1, Dn−1)
(dCn )∗−−−−→ HomP(Cn, Dn−1)

is exact, there exists a map hn−2 : Cn−2 Dn−1 such that

fn−1 − dDn ◦ hn−1 = hn−2 ◦ dCn−1.

Iterating this procedure, we obtain the maps hn−3, hn−4, . . . giving ĥ. �

We are now ready to prove Theorem 2.2. It establishes a fully faithful triangle
functor from KtacP to the quotient K−,bP/KbP, mapping a complex C to its
brutal truncation β≥0(C) at degree zero. Note that brutal truncation does not
define a functor between homotopy categories.

Theorem 2.2. For an additive category P, brutal truncation at degree zero induces
a fully faithful triangle functor

βP : KtacP K−,bP/KbP.

Proof. To simplify notation, we denote βP by just β. The first issue to address is

well-definedness. Let f : C D be a map of complexes in KtacP, as indicated in
the following diagram:

· · · C2 C1 C0 C−1 · · ·

· · · D2 D1 D0 D−1 · · ·

f−1f0f1f2

dC3

dD3

h2

dC2

dD2

h1

dC1

dD1

h0

dC0

dD0

h−1

dC−1

dD−1

h−2

It suffices to show that if f vanishes in KtacP, that is, if there is a homotopy h
as indicated by the dashed arrows above, then β≥0(f) vanishes in K−,bP/KbP.
Using this homotopy h, we see that the map

· · · C2 C1 C0 0 · · ·

· · · D2 D1 D0 0 · · ·

f1f2

dC3

dD3

dC2

dD2

dC1

dD1

f0−h−1◦dC0

is nullhomotopic in K−,bP. Consequently, the map β≥0(f) is homotopic to the
map

· · · C2 C1 C0 0 · · ·

· · · D2 D1 D0 0 · · ·

dC3

dD3

dC2

dD2

dC1

dD1

h−1◦dC000

in K−,bP. Clearly, this map factors through the stalk complex with C−1 in
degree zero. Therefore β(f), which equals the image of β≥0(f) in the quotient
K−,bP/KbP, vanishes. This shows that the functor β is well-defined.
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It is easy to check that β is a triangle functor. The natural isomorphism β ◦
Σ Σ ◦ β is given by

de
g
2

de
g
1

de
g
0

de
g
−1

β(ΣC) : · · · C1 C0 C−1 0 · · ·

Σ(β(C)) : · · · C1 C0 0 0 · · ·

This is indeed an isomorphism in K−,bP/KbP, since its mapping cone in K−,bP
is isomorphic to the stalk complex with C−1 in degree one, which belongs to KbP.
Using a similar isomorphism, one checks that β commutes with mapping cones.

Next, we prove that β is faithful. Let f : C D be a morphism in KtacP such
that β(f) = 0. We may think of f as a morphism of complexes. Then the condition
β(f) = 0 means that, up to homotopy, the brutal truncation β≥0(f) factors through
a bounded complex C ′ ∈ KbP. Choose a positive integer n such that C ′i = 0 for i ≥
n. By truncating at degree n, we see that the induced map β≥n(f)◦π : C β≥n(D)
of complexes is nullhomotopic. It then follows from Lemma 2.1(b) that f itself is
nullhomotopic, and this shows that the functor β is faithful.

It remains to show that β is full. Let ψ : β(C) β(D) be a morphism in

K−,bP/KbP between two complexes in the image of β. Then ψ is represented by
a diagram

β≥0(C) β≥0(D)

C ′
g f

of complexes and maps in K−,bP, where the mapping cone C(g) of the map g
belongs to KbP. Up to homotopy, in sufficiently high degrees, the complex C ′ then
coincides with β≥0(C), and then also with C. Therefore, for some positive integer n,
there is an equality β≥n(C) = β≥n(C ′), and the truncation β≥n(g) is the identity.

Furthermore, the truncation β≥n(f) is a morphism β≥n(f) : β≥n(C) β≥n(D).

By Lemma 2.1(a), it admits and extension f̂ : C D of complexes in KtacP: we

shall prove that ψ = β(f̂).
Consider the solid part of the diagram

β≥0(C) β≥0(D)

C ′

β≥0(C)

β≥−1(C)

g f

1 β≥0(f̂)

π β≥0(f̂) ◦ π

θ

π

of complexes and maps in K−,bP, where π is the natural projection. The lower
two triangles obviously commute. Furthermore, by Lemma 2.1(a), the identity

chain map 1: β≥n(C) β≥n(C ′) admits an extension θ : β≥−1(C) C ′, and by
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construction the equalities

β≥n(π) = β≥n(g ◦ θ)

β≥n

(
β≥0(f̂) ◦ π

)
= β≥n(f ◦ θ)

hold. The chain map π− g ◦ θ can be viewed as a chain map C β≥0(C), and its
truncation β≥n(π−g◦θ) is trivially nullhomotopic. Thus, by Lemma 2.1(b), the map
π−g ◦θ itself is nullhomotopic, and this shows that the top left triangle commutes.
Similarly, the top right triangle commutes, hence the diagram is commutative.

Consequently, the map ψ equals β(f̂), and so the functor β is full. �

We shall apply Theorem 2.2 to the case when the additive category P is the
category projA of finitely generated projective modules over a left Noetherian ring
A. The following result shows that, in this situation, if the functor is dense (i.e.
an equivalence in view of Theorem 2.2), then all higher extensions between any
module and the ring vanish. Recall first that the Verdier quotient

K−,b(projA)/Kb(projA)

is the classical stable derived category Db
st(A) of A.

Proposition 2.3. Let A be a left Noetherian ring and projA the category of finitely
generated projective left A-modules. If the functor

βprojA : Ktac(projA) Db
st(A)

is dense, then ExtnA(M,A) = 0 for all n � 0 and every finitely generated left
A-module M .

Proof. Let M be a finitely generated left A-module, and

P : · · · d4−→ P3
d3−→ P2

d2−→ P1
d1−→ P0

its projective resolution: this is a complex in K−,b(projA). Since the functor
βprojA is dense, the complex P is isomorphic in Db

st(A) to βprojA(T ) for some
totally acyclic complex T ∈ Ktac(projA). For some n � 0, the two complexes
β≥n(P ) and β≥n(T ) coincide up to homotopy, giving

ExtiA(M,A) ' H−i (HomA(P,A)) ' H−i (HomA(T,A))

for all i ≥ n+1. Since the complex T is totally acyclic, the group Hj (HomA(T,A))
vanishes for all j ∈ Z, and this proves the result. �

Specializing to the case when the ring is either left Artin or commutative Noe-
therian local, we obtain the following two corollaries. Recall that a commutative
local ring is Gorenstein if its injective dimension (as a module over itself) is finite.

Corollary 2.4. Let A be a left Artin ring, and projA the category of finitely
generated projective left A-modules. If the functor

βprojA : Ktac(projA) Db
st(A)

is dense, then the injective dimension of A as a left module is finite.

Proof. There are finitely many simple left A-modules S1, . . . , St, and by Proposi-
tion 2.3 there exists an integer n such that ExtiA(⊕Sj , A) = 0 for i ≥ n + 1. The
injective dimension of A is therefore at most n. �

Corollary 2.5. Let A be a commutative Noetherian local ring, and projA the
category of finitely generated projective (i.e. free) A-modules. If the functor

βprojA : Ktac(projA) Db
st(A)

is dense, then A is Gorenstein.
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Proof. Let k be the residue field of A. By Proposition 2.3 there exists an integer n
such that ExtiA(k,A) = 0 for i ≥ n + 1. The injective dimension of A is therefore
at most n. �

The following result shows that, in the situation of Proposition 2.3, every injec-
tive module has finite projective dimension.

Proposition 2.6. Let A be a left Noetherian ring and projA the category of finitely
generated projective left A-modules. If the functor

βprojA : Ktac(projA) Db
st(A)

is dense, then the projective dimension of every finitely generated injective left A-
module is finite.

Proof. Let I be a finitely generated injective left A-module, and PI ∈ K−,b(projA)
a projective resolution of I. For every n ≥ 1, denote by ΩnA(I) the image of the
nth differential in PI . It suffices to show that the identity on PI factors through
an object in Kb(projA), for this would imply that ΩnA(I) is projective for high n.

Let T be a totally acyclic complex in Ktac(projA), and M the image of its zeroth

differential. Then there is a monomorphism f : M P for some P ∈ projA (take

for example P = T−1). Since I is injective, every map M I factors through f .
Now for every n ≥ 1, denote by ΩnA(M) the image of the nth differential in T . We

claim that every map g : ΩnA(M) ΩnA(I) factors through a projective module. To

see this, note that every such map lifts to a chain map β≥n(T ) β≥n(PI), and by

Lemma 2.1(a) this chain map can be extended to a chain map T PI . This gives

a map g′ : M I, which factors through a projective module by the above. Since
g = ΩnA(g′), the map g also factors through a projective module, as claimed.

We show next that HomDb
st(A)(βprojA(T ), PI) = 0. Any morphism ψ in this

group is (represented by) a diagram

β≥0(T ) PI

C
g f

in K−,b(projA), with the cone of g belonging to Kb(projA). As in the proof of
Theorem 2.2, we can assume that (up to homotopy) the two complexes β≥0(T ) and
C agree in high degrees. From the above, it then follows that for high n, every map

Bn(C) Bn(PI) factors through a projective module, where Bn(D) denotes the
image of the nth differential in a complex D. This shows that ψ = 0.

We can now show that the identity on PI factors through an object in Kb(projA).
Namely, since the functor βprojA is dense, the complex PI is isomorphic in Db

st(A)
to βprojA(T ) for some acyclic complex T ∈ Ktac(projA). From what we showed
above, we obtain

HomDb
st(A)(PI , PI) ' HomDb

st(A)(βprojA(T ), PI) = 0,

and the result follows. �

Recall that a Noetherian ring (i.e. a ring that is both left and right Noetherian) is
Gorenstein if its injective dimensions both as a left and as a right module are finite.
By a classical result of Zaks (cf. [Zak, Lemma A]), the two injective dimensions
then coincide. However, it is an open question whether a Noetherian ring of finite
selfinjective dimension on one side is of finite selfinjective dimension on both sides,
and therefore Gorenstein.
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We have now come to the main result. It deals with Artin rings (i.e. rings that
are both left and right Artin) and commutative Noetherian local rings. Namely,
for such a ring A, the functor βprojA is dense if and only if A is Gorenstein. As
mentioned in the introduction, the “if” part of this result is classical: it is part of
[Buc, Theorem 4.4.1]. We include a proof for the convenience of the reader.

Theorem 2.7. Let A be either an Artin ring or a commutative Noetherian local
ring, and projA the category of finitely generated projective left A-modules. Then
the functor

βprojA : Ktac(projA) Db
st(A)

is dense if and only if A is Gorenstein.

Proof. Suppose the functor βprojA is dense. If A is local, then it is Gorenstein by
Corollary 2.5. If A is Artin, then the injective dimension of A as a left module is
finite by Corollary 2.4. Moreover, by Proposition 2.6, every finitely generated in-
jective left A-module has finite projective dimension. The duality between finitely
generated left and right modules then implies that every finitely generated projec-
tive right A-module has finite injective dimension. Therefore A is Gorenstein.

Conversely, suppose thatA is Gorenstein, and let C be a complex in K−,b(projA).
Using the same notation as in the previous proof, there is an integer n such that
the A-module Bn(C) is maximal Cohen-Macaulay, and such that β≥n(C) is a pro-
jective resolution of Bn(C). Since Bn(C) is maximal Cohen-Macaulay, it admits a
projective co-resolution C ′, and splicing β≥n(C) and C ′ at Bn(C) gives a totally
acyclic complex T ∈ Ktac(projA). Since β≥n(C) = β≥n(T ), the complexes C and
βprojA(T ) are isomorphic in Db

st(A), hence the functor βprojA is dense. �

Motivated by Theorem 2.2 and Theorem 2.7, we now introduce a new triangu-
lated category for any left Noetherian ring A. Since the triangle functor

βprojA : Ktac(projA) Db
st(A)

is fully faithful by Theorem 2.2, the category Ktac(projA) embeds in Db
st(A) as

the image of βprojA. The isomorphism closure 〈ImβprojA〉 is a thick subcategory
of Db

st(A), hence we may form the corresponding Verdier quotient.

Definition. The Gorenstein defect category of a left Noetherian ring A is the
Verdier quotient

Db
G(A)

def
= Db

st(A)/〈ImβprojA〉,

where projA is the category of finitely generated projective left A-modules.

In terms of the Gorenstein defect category, Theorem 2.7 takes the following form.

Theorem 2.8. If A is either an Artin ring or a commutative Noetherian local ring,
then Db

G(A) = 0 if and only if A is Gorenstein.

Theorem 2.8 suggests that the size of the Gorenstein defect category (of an Artin
ring or a commutative Noetherian local ring) measures in some sense “how far” the
ring is from being Gorenstein. It would therefore be interesting to find criteria
which characterize the rings whose Gorenstein defect categories are n-dimensional,
in the sense of Rouquier (cf. [Rou]). An answer to the following question would be
a natural start.

Question. What characterizes Artin rings and commutative Noetherian local rings
with zero-dimensional Gorenstein defect categories?
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