
OpenFOAM Exercise 2 
 

0. Initial advice 

It is best to have done the first OpenFOAM exercise before attacking this one. For those who 

still want to do this exercise without having done the first, it is recommended to at least read 

through the first to get a few elementary understandings and tools in place.  

 

The weir from the laboratory exercise is going to be simulated in this exercise, which requires a 

.stl file from the previous exercise. For those who have not done the previous exercise, a .stl file 

can be found on blackboard. Others may also want to compare files to ensure everything is ok. 

In this case, it is better to compare .txt-files than .stl-files, since they are easier to read. Viewing 

the stl-file in paraView with axes visible (as described in homework 9) should also be a good 

check of your stl-file. If you saved the stl-file given on blackboard with a different name than the 

one that you made yourself, you can compare them in paraView. 

 

A general advice regarding running simulation cases in OpenFOAM is that you never create a 

case from scratch. It is considered better to copy a tutorial or another case that is similar to the 

case in question, and only make the changes necessary to the existing files. For this case there 

is a template on blackboard that can be copied and modified. Necessary changes will be 

described in the following.  

 

To ease the work load on this exercise a certain amount of details is already filled out in this 

template. The idea is that you shouldn’t have to repeat tasks similar to those performed in 

homework 9. And also to show you the possibility to dereference variables by $myVariable 

and to calculate variables by implementing expressions using inline commands #calc 

“myEquation”. Nevertheless, feel free to remove the contents that are already implemented if 

you want to learn more or better! 

 

 

Purpose of the exercise 
 

• Create a mesh using an STL-file and snappyHexMesh 

– The geometry of the STL-file should model the weir from the laboratory 

assignment  

– Define the domain for a background mesh that fits your STL-file 

– Run snappyHexMesh to create the desired geometry 

– Run the case using interFoam 

• Compare results from CFD with experimental results obtained in the lab 

– Using the same post-processing utility in paraFoam as in homework 9 



Commands for this case: 

paraFoam -  opens the case in paraView 

foamCleanPolyMesh - deletes the mesh 

foamCleanTutorials - deletes settings/calculations that OpenFOAM has done 

blockMesh - generates background mesh 

snappyHexMesh -overwrite - inserts weir mesh into background mesh 

extrudeMesh - creates 2D case from 3D case (nicer cells towards the boundaries) 

checkMesh – check the quality of the mesh 

interFoam - computes water flow using only one core 

decomposePar + mpiexec -n x interFoam -parallel + reconstructPar  

-computes water flow in parallel, x is the number of cores. 

1. Pre-processing 

Download the case template from blackboard and place it in your run-folder.  

Backgrond mesh 

Meshing is done for the area in which fluid is flowing. This means a meshed weir is not needed, 

only a meshed area around the weir. In OpenFOAM, the procedure is to create a background 

mesh including both the area for the flow and the weir, and then insert within the background 

mesh the shape that the flow will encounter, in this case, the weir. 

 

The .stl file is already made (in homework 9 or available at blackboard), and it is important to 

take its coordinates into consideration when creating the background mesh. The weir needs to 

fit into the background. The weir from the laboratory experiment was 37 cm high and 42 cm 

long. Your weir.stl file should have about these dimensions. If the top of the weir is at a given 

coordinate, there has to be enough space above it for the water to have a free surface within the 

background mesh. These measures should be the starting point for creation of your background 

mesh. 

 

Enter the case folder 

 

run 

cd ofassignment2 

 

If it does not already exist, create a folder named triSurface within the constant directory 

 

mkdir constant/trisurface  

 

Place your weir.stl file in this folder  

 

cp pathToMyStlFile/weir.stl constant/triSurface 



Open paraFoam to view your .stl-file  

 

paraFoam & 

 

Open your .stl file by File->Open->myStlFile.stl and press Apply. Show the axes by checking of 

the ‘Edit Axes Grid’ box. Pay attention to the orientation of the coordinate system. For the given 

weir, z is the vertical direction. The coordinates for your blockMesh, as well as the direction of 

gravity, should correspond to this. View your g-file in wordpad to check the direction of gravity. 

 

write constant/g 

 

The area needed above the weir will also depend on the given water discharge. In the 

laboratory exercise, different discharges were measured. To be able to compare the numerical 

solution to the one obtained in the laboratory, you have to use the same rate. If you do not have 

a discharge from the laboratory exercise, you can use a discharge of 25 L/s.  

 

A starting point for the inlet height can be taken from your laboratory results, or estimated from 

the following equation: 

 

𝑄 = 𝐶 ∗ 𝐿 ∗ 𝐻3/2 

 

Remember that the H in this equation is the height above the top of your weir.   

 

Open the U-file placed in the 0 directory.  

 

write 0/U 

 

This is the file where the boundary- and initial conditions are to given. Insert the volumetric flow 

rate given in m3/s. The spots where you have to fill in the velocity are marked with some 

comments (/*some explanation*/).  

 

Coordinates for the background mesh are given in blockMeshDict. As in homework 9, we use 

hexahedral boxes for the grid. Different from homework 9 we are now only going to make a 



simple rectangular grid. In this case it is practical to use two hexahedral blocks, one upon the 

other, see Figur 1.   

 

 
Figur 1: This figure shows how the two blocks and weir look. It also illustrates the placement of the different patches 

(boundary regions). 

 

Since you already spent some time on defining the blockMesh in homework 9, you don’t have to 

spend time on this here. That means that the vertices, blocks, and patches are already defined 

in the template, based on some user defined input variables. Nevertheless, you have to supply 

the blockMeshDict file with these input variables.  

 

The variables you have to supply are the grid dimensions, which means the simulated length of 

the channel, the width of the channel, the height of your domain, as well as the height of your 

water inlet. You also have to give in the cell size of your grid (more about this later). 

 

The spots for the different input variables are described in lines that are commented out in the 

file. Open the blockMeshDict file and give in your measures    

 

write system/blockMeshDict 

 

Towards the top of the file will look something like this 

 
// Defining variables - values given in assignment text 
h_in ;  // heigth inlet [m] 
b ;     // width of channel [m] 
 
//choose grid dimensions 
xstart ; // start of domain in x-direction [m] 
xend ;    // end of domain in x-direction [m] 
h_top ; // top heigth of domain [m] 

 

Type your measures right in front of the semicolons, which means no space between the value 

and the semicolon. 



 

The width of the channel is given (0.6 m). Make sure that the stl-file exceeds the block mesh in 

both ends. If not, extend the width of your stl-file. 

 

The size of a block obviously depends on the coordinates of the vertices, and cell size depends 

on the number of cells in each direction. As we want to do a 2 dimensional analysis, we only 

use one layer off cells in the y-direction. As a starting point, you can use cell size of 2.5 cm. This 

is a parameter (one of several) that can be reduced if you experience convergence problems. 

 

Insert this cell size as ‘dx’ in blockMeshDict 

 
// Cell size given in assignment text 
dx ; // cell size [m] 

 

The number of cells in each direction is then calculated based on size of your domain and the 

desired cell size in the following lines. 

 
// Calculate number of cells in each direction 
length #calc "$xend - $xstart"; // length of domain [m] 
dhlow $h_in; // heigth of lower block 
dhtop #calc "$h_top - $h_in"; // heigth of upper block 
 
nx #calc "std::ceil($length/$dx)"; 
ny 1; 
nz1 #calc "std::ceil($dhlow/$dx)"; 
nz2 #calc "std::ceil($dhtop/$dx)"; 
 

 

In this file we define the input variables and refer to these variables by typing ‘$myVar’ in the 

following, instead of typing the same number several times. This makes it easier if we want to 

change anything (i.e. the domain size) later. Then we only have to change the variable at one 

place, instead of at every occasion the variable is used. Nevertheless, the resulting mesh would 

have been identical if you have used numbers as we did in homework 9. 

   

Pay attention to the calculation possibility within OpenFOAM, you can do mathematical 

calculations within #calc “myMathematicalExpression”. Within the #calc-frame you also have the 

possibility to use c++ functions, as done when using the ceil function 

(https://en.wikipedia.org/wiki/Floor_and_ceiling_functions) for calculating the elements in each 

direction. This function is used here to get integers, which is required when giving the number of 

elements in each direction.  

 

 

Then you are pretty much done with your blockMeshDict file. 

 

Run the blockMesh command and look at the resulting mesh in paraView. View the mesh 

choosing ‘surface with edges’. Check that your patches, as well as their placements, 

corresponds to the ones given in Figur 1.   

 

 

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions


Meshing weir with snappyHexMesh 

If everything looks as it should, you are ready to go to the next task. You are now going to 

adjust your grid using snappyHexMesh. Make sure that your weir.stl file is placed in the 

constant/triSurface directory 

 

ls constant/triSurface 

 

View your stl-file together with your background mesh to make sure that they fit each other. If 

everything looks ok, still standing in the case directory, execute  

 

snappyHexMesh –overwrite 

 

This will insert the weir into the background mesh. Then execute extrudeMesh, which makes 

the mesh 2D instead of the default 3D. Now execute checkMesh. If this command prints “Mesh 

OK” in the cygwin terminal, take a look in paraView for verification that everything is as it should. 

If it prints out “Failed x mesh checks”, try to find out why, and correct the error. If you run 

checkMesh before you have executed extrudeMesh, checkMesh will print out “Failed x 

mesh checks”. 

 

Setting initial fields 

The water and air are now set to come flowing in from the left, and there is no water any other 

place in the mesh. This means the upstream side of the weir has to be filled before water can 

flow over the crest. This steals unnecessary calculation time. Fortunately, it is easy to fill these 

cells with water before running a calculation, by defining the desired region in a dictionary called 

setFieldsDict, and then execute setFields. Open the dictionary, and make sure the coordinates 

given are reasonable, or change them if they are not. It may be helpful to view your backround 

mesh in paraView, with grid axes visible, to see whether the coordinates in setFieldsDict are 

reasonable. 

 

Before rexecuting the setFields command, make sure that the 0 directory contains both files 

alpha.water and alpha.water.org. If not copy the one that are lacking from the other.  

 

cp 0/alpha.water.org 0/alpha.water  

 

or 

 

cp 0/alpha.water 0/alpha.water.org 

 

It is the alpha.water-file that is included in the simulation. The setFields command will do 

changes to the 0/alpa.water-file, by giving all cells values of 0 or 1. This means that this file 

becomes mesh dependent. If you do changes to your mesh and then run the setFields 



command you will get an error message related to the inconsistent number of cells. In these 

cases you need a clean alpha.water file, which can be copied from the alpha.water.org file, 

executing the copy command:   

 

cp 0/alpha.water.org 0/alpha.water  

 

So if you ever find out that you want to run the case with another grid size, you have to copy 

back the original version of the alpha.water-file (alpha.water.org), before it will be possible to run 

the file again. 

 

Then execute setFields. View the case in paraView by choosing alpha.water as the viewed 

variable. This should give you a view like this 

 

 

 
 

It may be the case that the windows version of paraView got a problem by showing this for the 

initial time step, if so, just inspect the alpha.water-file. If there is some ones, and not only zeros 

in that file, probably everything is ok. A solution can also be to start the simulation and let it write 

at least one time step. Then you can view the alpha.water field of the first time step, which 

should be pretty similar to the initial situation. 

2. Running the case 

The case is now almost ready for simulation. The simulation will take some time, depending on 

the power of the computer and number of cores available. A computer with several cores 

provides the opportunity to split the case into as many parts as there are cores, and will 

calculate the case in a fraction of the time. See section 0 for commands and their variations 

according to the number of cores. If the user chooses to use several cores for the calculation, 

the decomposeParDict file, placed in the system folder, has to be adjusted. The file 



decomposeParDict requires the number of cores that the user wants to split the case into. This 

number is irrelevant if the user prefers to run the case on one core, as OpenFOAM will not read 

decomposeParDict unless the command decomposePar is actually executed.  

 

Since this simulation may take some time, it is recommended to run interFoam as a background 

process, and save the output to a log-file 

 

interFoam > log.interFoam & 

 

It might be that your simulation do not converge at your first attempt. Then you can try to adjust 

the inlet height, or the length in front of the weir, reduce the time step (by adjusting the courant 

number maxCo, maxAlphaCo), reducing the cell size or changing the discretization scheme (in 

system/fvSchemes). Change different parameters one at the time. You can also go into the 

snappyHexMeshDict-file and adjust the refined area. For example, you can play around with the 

parameter nCellsBetweenLevels and nSurfaceLayers and the size of the surface refinement 

area defined in the surface and surfaceAfter dictionaries. Nevertheless, the values given in the 

template should be reasonable for running the case.  

3. Post-processing 

After simulation, open paraView and look at the motion of the water. Experiment with 

parameters, angles, colors and so on.  

 

Use the method described in homework 9 to find the height of the surface on the upstream side 

of the weir at the last stadium of the calculation. Can you see from the surface elevation graph 

whether the simulation has converged? Calculate the discharge coefficient. 

 

Compare it with the results obtained from the laboratory exercise. What is the deviation? Include 

an evaluation of this, and the surface elevation graph in your answer. 


