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ABSTRACT
Object detection consists in perceiving and locating instances of
objects in multi-dimensional data, such as images or lidar scans.
While object detection is a fundamental step in autonomous vehi-
cles applications, it is typically evaluated with generic metrics like
precision and recall. Recently, metrics that take into account safety
have been proposed in the literature. In this paper we compare
two recently proposed safety metrics models for object detectors,
“Planning KL divergence” and “Object Criticality Model”, validat-
ing to what extent they actually measure the safety of an object
detector when employed in an autonomous driving application. We
base our experiments on the nuScenes dataset, and we compare
the two metrics in different scenarios, both nominal ones and with
the deliberate injection of detection faults. We conclude that both
metrics serve as an indicator of the safety of an object detector,
but they also provide different perspectives, and should therefore
be used complementarily. As a by-product of this work, we also
release a library for the injection of faults in experiments based on
the nuScenes object detection task.

CCS CONCEPTS
• Software and its engineering → Software safety; • Comput-
ing methodologies → Object detection.
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1 INTRODUCTION
The task of object detection has seen much innovation within the
last decade. Much of the progress within the field can be attrib-
uted to the introduction of increasingly sophisticated deep learning
approaches, made possible by the increasing processing power of
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modern GPUs [12]. Today, emerging safety-critical technologies
rely on object detection as a fundamental part of their perceptual in-
terface to their environments, the most prominent being automated
driving assistance systems and autonomous vehicles [24].

When evaluating the performance of object detection models,
the most accepted metrics rely on the concepts of precision and
recall [22]. Precision is defined as the number of correct predic-
tions out of all the predictions made, and recall as the portion of
ground truth (GT) objects that are correctly predicted, respectively.
Utilizing precision and recall for evaluating the performance of
object detectors (ODs) is helpful for the basic task of generic object
detection, associated with locating and classifying instances of ob-
jects from a number of predefined categories [17]. However, when
ODs are applied in specialized and safety-critical systems, tradi-
tional metrics fail to consider the situation in which detections are
made. In tasks such as autonomous driving, failing to detect specific
objects poses a higher risk to the safety of the agent, its environ-
ment, and its passengers. Furthermore, the incorrect detection of
non-existent objects may cause downstream components to unnec-
essarily interrupt the driving task. The differences in the relevance,
or criticality, of objects, are not reflected in traditional precision-
and recall-based metrics, which are instead context-agnostic.

In the last three years, context-aware (and safety-aware) metrics
have been proposed, with the objective to evaluate ODswith respect
to the safety and reliability of the system in which they will operate
[3, 23, 30]. However, the very few proposed metrics convey different
information, and no work has attempted to compare them so far.

In this paper, we validate and compare two recently proposed
safety-aware metrics models for object detectors, namely PKL [23]
and the OCM [3]; both rank the importance of specific detections
in a scene, either explicitly or implicitly. The motivation of this
paper and the corresponding experimental work is to provide a
basis for comparing safety-oriented metrics for object detectors, so
to motivate further work towards solid metrics for the evaluation of
perception models with regard to safety. Our work aims to support
system and software engineers in architecting ODs and assessing
their deployment in safety-critical and reliable systems.

The rest of the paper is organized as follows. In Section 2 we
introduce the background and related work, while the two selected
metrics models are reviewed in more detail in Section 3. Section 4
presents the technical environment for our analysis, while Section 5
details the adopted methodology. Experiments and results are pre-
sented in Section 6 and final conclusions are drawn in Section 7.
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2 BACKGROUND AND RELATEDWORK
2.1 Object Detection
The task of object detection consists in locating and classifying
semantic objects of certain object classes within an input frame,
with the frame being either a 2D visual image or a 3D point cloud.

The output of an object detection model is a list of bounding
boxes (BBs), their labels and their confidence scores [12]. The label is
the predicted semantic class of the object, and the confidence score
reflects the confidence of the detection model in that prediction.
BBs are tightly bound boxes encompassing objects in the scene,
represented in 2D and 3D as rectangles and cuboids, respectively.

Most modern object detection approaches apply a Convolutional
Neural Network (CNN) as a backbone for performing feature extrac-
tion. The purpose of the backbone is to extract meaningful features
from the original input [12], reducing the dimensionality of the
data. Typically, features extracted by the backbone serve as input to
a prediction head, an architecture that receives high-level features
and is responsible for performing the final classification task. The
specific architecture of an object detector may vary, combining
different backbones and different prediction heads.

2.2 Evaluation Metrics for Object Detectors
To evaluate the predictions produced by an object detector, a com-
parison between the predicted BBs and the BBs in the ground
truth is performed. Object detectors compute BBs with an assigned
confidence score. Then, a detection threshold is applied as a con-
figuration parameter: all BBs with a confidence score above the
selected threshold are considered as predictions, while the others
are discarded.

The classification of true positives (TPs), false positives (FPs),
and false negatives (FNs), is based on some definition of distance
between the predicted BBs and the ground truth BBs. In this paper,
we use the distance between their center points [2]. While there
are several measures that can evaluate the performance of object
detectors, the conventional approach is based on measures that are
derived from the count of TPs, FPs, and FNs. Note that TNs are
not relevant for object detectors, because in any image there are
infinite BBs that should not be detected.

Precision, P = TP/(TP + FP), indicates how many of the selected
items are relevant; precision is 1 if all the detected objects actually
exist in the GT, and 0 if none of them exist. Conversely, Recall,
R = TP/(TP + FN), indicates how many items from the GT are
correctly selected. A detector with recall equal to 1 detects all the
objects in the GT. Various derived metrics are grounded in precision
and recall, the most commonly used being the F1-score [22] and the
Average Precision (AP) [6]. The F1-score is essentially the harmonic
mean of precision and recall, while the AP summarizes the precision-
recall curve as the weighted mean of precision scores achieved at
different detection thresholds.

While the metrics presented so far indicate the ability of ODs
to accurately predict instances of objects in a scene, they do not
consider the importance of such objects within the specific scenario.
Research on applyingODs in safety-critical environments has raised
the problem of defining safety-aware evaluation metrics. We review
the most relevant ones for our work in the next section.

2.3 Related Work
To date, relatively few attempts have been made to define safety-
aware metrics for object detectors. Furthermore, they all appeared
within the last three years.

We investigated related research works based on the following
criteria: i) the work proposes a new situation-aware metric for
benchmarking object detectors; ii) the metric introduced is safety-
oriented (in some way); iii) experimental results are presented;
and iv) factors considered in the evaluation of the detectors are
documented well enough to allow for an evaluation of experimental
results with respect to safety and reliability. Details of our review
are not reported here for the sake of brevity; a more extended report
can be found in [27]. We identified five relevant works introducing
safety-related metrics, which are briefly described in the following.

The work in [18] defines task-oriented metrics to detect pedestri-
ans. The idea is to apply the IoU (Intersection over Union, i.e., the
overlapping area between the predicted BBs and the ground-truth
BBs, divided by the area of union between them [22]) to the pre-
dicted BBs of pedestrians and their GTs, and measure up to which
distance a specified threshold holds. The resulting metric is the
maximum distance at which no ground truth BB is missed, for a
specific IoU threshold. The proposal is evaluated using the CARLA
simulator [5].

The metric proposed in [31] is designed to evaluate models that
implement people detection in off-road environments. The idea is
to weight BBs, both in the GTs and in the detected ones, according
to a weighting factor based on the position and estimated time-to-
collision with the object. The work was evaluated on the “BOSCH
internal off-road dataset”, which is not available to the public.

The work of [30] proposes a metric to evaluate predictions of an
object detection and tracking algorithm. The authors argue that for
an algorithm to be safe, multiple dimensions need to be evaluated,
namely quality (of the predictions), relevance (of predicted objects
with respect to the ego vehicle), and time (to produce the predic-
tions). Each of these factors is scored with a combination of existing
metrics and new heuristics, and then aggregated to produce a final
safety score. The proposal was evaluated on the KITTI dataset [7].

Finally, the PKL [23] and OCM [3] metrics are the focus of this
paper, and they are described in detail in Section 3.1 and Section 3.2,
respectively. We chose those two for our work, because they have
been both evaluated on the nuScenes dataset by their authors, but at
the same time they are based on two very different underlying ideas.
Both Guo et al. [10] and Ceccarelli et al. [3] compared, respectively,
the PKL and the OCM against traditional metrics such as AP and
mAP. However, those comparisons aimed to expose the difference
of their metrics to traditional metrics. In this paper we instead aim
at investigating which metric is most suited to describe the safety
guarantees of ODs. We are not aware of evaluations comparing
safety-aware metrics for ODs, such as the PKL or the OCM.

3 OVERVIEW OF THE SELECTED METRICS
3.1 Planning KL-divergence
In [23], Philion et al. argue that the evaluation of the performance
of perception systems in autonomous vehicles should be aligned
with the downstream task of trajectory planning. Planning is a
crucial part of the autonomous pipeline, so the “best” detection
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models should be those that make the planner compute a trajectory
as close as possible to the one computed on GT information only.
Based on this observation, they propose the Planning KL-divergence
(PKL) metric, as a measure of the difference between the trajectory
planned based on GT objects, and the trajectory planned based on
objects detected by an object detector.

In more details, PKL is a measure of the KL-divergence [13] be-
tween the probability distribution of future positions of the vehicle,
at different time steps, given the semantic observations (detections)
of the detector and the ideal observations represented by GT ob-
jects [23]. As a measure of divergence, a “perfect” detection would
receive a PKL score of 0, corresponding to no divergence between
the distributions. Further details can be found in [23].

Evaluating a detector based on the impact of its predictions on the
trajectory planned by the vehicle implicitly ranks the “importance”,
or criticality, of detecting specific objects in the scene. With the
important assumption that the adopted planner is sufficiently robust
to plan a reasonable trajectory with regard to safety, the PKL score
can function as an indicator of the impact on the safety of a specific
detection model.

3.2 Object Criticality Model
The authors of [3] argue that an evaluation metric applied in au-
tonomous systems should discriminate based on the context sur-
rounding the vehicle. The authors propose the Object Criticality
Model (OCM), which shares some ideas with the work of Wolf et
al. [31] discussed before. In the OCM, a criticality value is assigned
to each object in a specific scene, based on safety-relevant factors
relating the object and the ego vehicle. Such value is computed for
both the GT objects and the predicted objects.

Three factors are considered to compute the criticality of an
object 𝐵: distance, colliding trajectory, and time-to-collision, which
result in three individual criticality scores, ^𝑑 (𝐵), ^𝑟 (𝐵), and ^𝑡 (𝐵).
Each of these scores ranges in the interval [0, 1], with 1 mean-
ing maximum criticality. The model depends on three parameters,
𝐷max, 𝑅max, and 𝑇max, which define a threshold after which the
corresponding criticalities assume value 0. For example, 𝐷max = 30
means that for objects farther than 30 meters ^𝑑 (𝐵) = 0. Further de-
tails can be found in [3]. The overall criticality weight of an object,
^ (𝐵), is defined as a linear combination of the three above scores.

The performance of a detector is then measured in terms of “how
much criticality” it is able to detect. More specifically, the authors of
[3] define two metrics called reliability-weighted precision (𝑃R ), and
safety-weighted recall (𝑅S ), as variants of the Precision and Recall
metrics in which objects are weighted based on their criticality
score. The authors also define Average Critical Precision (APcrit), as
a variant of AP, computed using 𝑃R and 𝑅S .

4 TECHNICAL ENVIRONMENT
We review the technical environment we used for our analysis. In
particular, we discuss the adopted dataset, libraries, and detection
models.

4.1 The nuScenes Dataset
Recent years have seen the release of several sophisticated datasets
which have played important roles in the advancement of 3D object

detectors in autonomous driving. Some important examples are the
KITTI [8], Waymo [29], and nuScenes [2] datasets. For our work,
we used nuScenes, as it is the one that was used by the original
works on PKL [23] and OCM [3].

nuScenes [2] was released in 2019 as a multimodal dataset for the
task of training and evaluating perception systems for autonomous
driving. The dataset has received particular acclaim for the range of
different sensor types supported in the dataset. The main contribu-
tions of the nuScenes dataset are its large volumes and complexities
of data, with 360-degrees sensor coverage on a real driving scenario.

nuScenes comprises 1000 driving scenes of 20 seconds each, ac-
quired in Boston and Singapore, under a wide array of situations
and environmental conditions. The 1000 scenes have been manually
selected to contain relevant traffic scenarios (i.e., high-density traf-
fic, rare object classes, potentially dangerous scenarios, etc.). Highly
accurate annotations are provided with every keyframe, sampled
at 2Hz. The 23 object classes are each annotated by their semantic
category, bounding boxes, and attributes that include visibility, ac-
tivity, and pose. In addition, the dataset includes all intermediate,
non-annotated frames [2]. The frequency of objects of the car class
is on average 20 per keyframe.

For the experimental work presented in this paper, the nuScenes
devkit [21] is utilized extensively. The devkit implements an API
for parsing and loading data from nuScenes, and functionality re-
lated to object detection. Among those, it provides functionality
to perform metric evaluations of predictions produced by object
detector inference over the nuScenes dataset [2]. When evaluating
detector predictions, the devkit utilizes the 2D center distance on
the ground plane as a match criterion.

4.2 The MMDetection3D Toolbox
MMDetection3D [19] is a part of the open-source object detection
toolbox MMDetection [4], implementing a large set of detection
methods and components related to 3D object detection. MMDe-
tection provides weights for over 200 pre-trained object detection
models ready to be applied. Furthermore, the Python module pro-
vides compatibility with multiple datasets, including nuScenes.

MMDetection3D provides specific integration with the nuScenes
dataset and devkit, which makes it particularly suited for our work.
Furthermore, its components are known to provide good results in
terms of performance, speed, and memory usage when compared
with other frameworks [4].

In the experimental work presented in Section 6, two pre-trained
models with weights from the MMDetection3D model zoo [4] are
utilized, described in the following.

Pointpillars with FPN backbone. PointPillars [15] was proposed by
Lang et al., as a novel encoder that learns features from vertical
columns (pillars) of point clouds resulting from LIDAR scans. The
PointPillars architecture consists of three stages: a feature encoder
network, to transform a 3D point cloud into a pseudo-image; a 2D
convolutional backbone, for extracting high-level features from the
pseudo-image; and a detection head for BB classification and regres-
sion. Compared to previous point-cloud models and fusion-based
models for 3D object detection, the PointPillars encoder enables
faster inference [9].
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In our experimental work we used the pre-trained PointPillars
model with an FPN [16] backbone. This specific model will be
denoted as PPT in the remainder of the paper.

SSNwith RegNet Backbone. Zhu et al. [33] proposed Shape-Signature
Networks (SSNs), a framework that incorporate shape information
in the model, to discriminate between object classes. The proposed
shape signature is designed to be compact and effective, for the pur-
pose of high inference speed. Furthermore, the shape signature is
designed to be robust to sparsity and noise in the point clouds, and
thus to guide the learning of discriminative features during training.
Zhu et al. [33] demonstrate that SSN-based models achieve state-
of-the-art results and that the proposed shape signature achieves
good scalability across various backbone networks.

The specific, pre-trained SSN model applied in this paper em-
ploys a RegNetX-400MF-SECFPN backbone and neck, based on
the architectures RegNetX [26], SECOND [32], and FPN [16]. This
model will be simply denoted as SSN in the remainder of this paper.

5 METHODOLOGY
We now discuss the methodology we adopted for analyzing the
metrics introduced in Section 3.1 and Section 3.2. Experiments and
results are presented in Section 6 later.

5.1 Alignment of Metrics
The summarizing metric defined in the OCM [3], 𝐴𝑃𝑐𝑟𝑖𝑡 , is com-
puted in a similar fashion to AP, which means that detectors are
evaluated over multiple confidence thresholds. In contrast, PKL
evaluates detector predictions on a single confidence threshold (𝜏).
This difference would make the comparison sensitive to the specific
threshold applied to PKL.

In [10], Guo et al. propose computing PKL (and mAP) using an
“optimal confidence threshold”, namely the threshold that achieves
the highest F1-score, to perform a fair comparison between submis-
sions scored in the nuScenes detection [2] task. Still, this solution
is not appropriate for our objectives, because the comparison of
metrics would be influenced by the behavior of the detector itself,
thus making it difficult to interpret the results.

To enable a comparison of PKL with the OCM on fixed sets of
BB predictions, we focus on the more detailed metrics proposed in
the OCM, namely reliability-weighted precision (𝑃R ) and safety-
weighted recall (𝑅S ). This allows for evaluating the OCM at a set
of BB predictions at a pre-defined threshold 𝜏 .

To summarize the OCM “variants” of precision and recall into
a single indicator, we decided to utilize a variation of F1-score,
with reliability-weighted precision and safety-weighted recall as
components. The resulting metric will be denoted 𝐹1𝑐𝑟𝑖𝑡 , defined
as follows:

𝐹1𝑐𝑟𝑖𝑡 = 2
𝑃R · 𝑅S
𝑃R + 𝑅S

. (1)

Another important factor to consider when comparing results
with the aforementioned metrics is their relation with object classes.
The 𝑃R and 𝑅S metrics proposed in [3] are based on precision and
recall, and they are typically evaluated for each object class present
in the dataset separately. In contrast, PKL evaluates to a single value
that considers all the objects present in the scene, for a single scene
(nuScenes sample). To compare the two metrics we only take into

Table 1: Custom datasets of metric data over randomly se-
lected nuScenes samples.

Name Injected Errors 𝜏 Samples

RAW_40 None 0.40 894
FP_40 False Positive 0.40 923
FN_40 False Negative 0.40 739

consideration a single semantic class, namely cars; this is achieved
by filtering on the “car” class of the nuScenes dataset, for each
sample evaluated. As a consequence, nuScenes samples in which
no cars are present are excluded.

5.2 Datasets of Metrics Values
The experiments introduced later in Section 6 involve quantitative
analysis of metric evaluations over single nuScenes samples. To
have a common baseline for the comparison of the two evaluation
models (PKL and OCM), we created three custom datasets based on
nuScenes. The datasets include the values of the target metrics (PKL,
𝑃R , and 𝑅S ), calculated on the BBs predicted by the SSN detector
(see Section 4.2), on randomly selected samples from nuScenes.

The first dataset, named RAW_40, was created by randomly se-
lecting 1000 samples from the nuScenes dataset, including samples
from both the training and the validation sets. We first ran the
SSN object detector on each sample (i.e., scene), obtaining a set of
predicted BBs. As discussed before, a threshold 𝜏 needs to be set
to discriminate between TP and FP predictions. We used 𝜏 = 0.40
for our dataset (hence the suffix “_40” in its name), because it was
shown to produce the best values for PKL [10]. Evaluation was then
performed, producing metric data for the task-oriented metrics
PKL, 𝑃R , and 𝑅S . Note that computing the PKL metric involves ex-
ecuting a path planner model on each sample, which is particularly
intensive in terms of time and resources.

Besides the base dataset with nominal values, we also created two
datasets in which synthetic detection errors have been injected in
the set of predicted BBs. The idea behind those additional datasets is
to evaluate the impact of detection errors on the target metrics. The
two datasets, FP_40 and FN_40, were created following a procedure
similar to the one described above, but with an intermediate step in
which false positive or false negative detections have been injected,
respectively. The procedure for performing such injection is detailed
in the next section.

The three datasets are summarized in Table 1, along with the
number of nuScenes samples contained in each of them. For each
dataset, we also report the kind of injected misdetection and the
value of the threshold that was used.

Note that, even thoughwe sampled 1000 scenes from the nuScenes
dataset, some samples have been excluded because they did not
match our criteria, hence the varying sizes in Table 1. As previously
discussed, one main condition for exclusion is the absence of ob-
jects labeled as “car” in the GTs of the sample. Other conditions
are more related to the implementation; for example, samples that
receive exactly 0.0 as PKL value are excluded, because comparison
is performed using the logarithm of PKL, which is undefined for
zero. Furthermore, for injecting FNs we remove objects in a specific
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region of the scene (see next section); therefore we excluded from
FN_40 those samples that did not have any objects in that region
that could be removed.

5.3 Fault Injection Procedure
The creation of FP_40 and FN_40 involved a fault injection [11]
step, in which the predictions produced by the SSN detector were
modified with synthetic detection mistakes. Different strategies
exist for fault injection [20]; our approachmodifies the output of the
object detector (injection of interface errors [20]), thus emulating
its faulty behavior. Further details on the procedure are explained
in the following. The code we used to inject faults in nuScenes
prediction is available in the repository of this project [28].

Injection of FPs. Injecting a FP means adding a bounding box in the
list of BBs produced by the detector. By controlling where to place
the erroneously detected object, it is possible to emulate specific
contextually-relevant situations.

Our injection procedure supports a series of parameters describ-
ing the properties of the object to be injected. The main properties
include: position, size, velocity, and orientation (in three dimensions)
of the object to be injected, and its confidence score. Other properties
can also be set, including its category (e.g., ‘car’) and attributes (e.g.,
‘vehicle.moving’). Furthermore, a parameter decides the number of
objects that will be injected in a sample.

To create the FP_40 dataset mentioned above, we ran the injec-
tion procedure on each of the 1000 randomly selected nuScenes
samples. All the injected objects are assigned to the ‘car’ category,
and their orientation and vertical position (z-coordinate) are set to
the same as ego. The confidence score is set to 0.99, to make sure
that the object is not filtered out due to a low confidence.

The size and position of the object are selected randomly. Con-
sidering a 3D coordinate system in which ego is placed at the
origin, (0, 0, 𝑧), the injected object has coordinates (𝐼𝑥 , 𝐼𝑦, 𝑧), with
𝐼𝑥 ∈ [−5, 5] meters from ego, and 𝐼𝑦 ∈ [−10, 30] meters from
ego. The size of the object is (𝐼𝑤 , 𝐼𝑙 , 𝐼ℎ), where 𝐼𝑤 ∈ [1.5, 3.5],
𝐼𝑙 ∈ [2.0, 6.0], and 𝐼ℎ ∈ [1.5, 3.0] meters. The parameters 𝐼𝑥 , 𝐼𝑦 ,
𝐼𝑤 , 𝐼𝑙 , and 𝐼ℎ are all drawn from their respective uniform probabil-
ity distributions, in the intervals specified above. The velocity of the
injected FP is set either as 0, or as equal to the ego velocity, each
selected with 50% probability. This choice also influences whether
the object would get the ‘vehicle.moving’ or ‘vehicle.stopped’ at-
tribute. Finally, the number of objects injected per sample is also
selected randomly, in the interval [0, 3].

Injection of FNs. Injecting a FN means removing a bounding box
from those correctly predicted by the object detector. While re-
moving an object is conceptually simpler, there is however limited
flexibility, because what can be done depends on what objects are
present in the scenario.

The procedure for injecting a FN is based on two parameters: a
distance 𝑑 , and a probability 𝑝 . First, all the objects with Euclidean
distance from ego smaller than 𝑑 are collected (i.e., those within a
circle of radius 𝑑 from ego). Then, each of them is tested for removal
against probability 𝑝; if an object is removed, the procedure stops.

To create the FN_40 dataset mentioned above, the distance 𝑑 was
drawn randomly from a uniform distribution such that 𝑑 ∈ [10, 40],

while the removal probability is set to 𝑝 = 1/4. Similarly as for
FPs, the number of objects to be removed per sample is also selected
randomly, in the interval [0, 3].

6 EXPERIMENTS AND RESULTS
In this section we validate and compare PKL and the OCM met-
rics. We first discuss how individual samples have been evaluated
qualitatively (Section 6.1), and then we analyze the distribution of
metrics on our datasets (Section 6.2). In Section 6.3 we discuss the
impact of scenario size, and in Section 6.4 we analyze their statis-
tical correlation. We then go into more details on their sensitivity
to hazardous detection errors (Section 6.5), and finally we discuss
their relation with traditional metrics (Section 6.6). The source code
we used in the experiments, and the obtained results, are available
in the repository of this project [28].

6.1 Qualitative Analysis of Individual Samples
Before proceeding to a deeper comparison between the metrics, we
quantitatively analyzed their behavior on selected nuScenes sam-
ples. We first analyzed the metrics values in the nominal setup, and
then after the injection of detection errors. Such analysis allowed
us to have a first understanding of the two metrics, and to craft the
subsequent experiments.

While it is not possible to report all the details here, we discuss
the analysis of a representative sample, to show how the evalua-
tion was performed. Figure 1 provides an overview of nuScenes
sample with sample token 6c8d4379e83646d08436f6ec92b35fe5.
In the given scenario, the ego vehicle executes a right turn at an
intersection while two cars approach from the right and pass in
front of it. One of the vehicles makes a left turn into the same street
from which the ego vehicle came, while the other vehicle proceeds
straight ahead. The two aforementioned vehicles clearly have a
distinctive role in the presented scenario.

Figure 1b and Figure 1c show the predictions of the PPT and
SSN detectors, respectively, along with the GT objects. In the fig-
ures, the axes are measured in meters, and the coordinate system
is aligned with the reference frame of the ego vehicle. Predicted
objects are visualized in blue and GT objects in green; the number
annotated next to the BB depicts the criticality according to the
OCM. Furthermore, both figures include an injected FP, at position
(3, 5), which has criticality 1.0.

From the figures, we observe that the two vehicles in proximity of
ego are detected by both detectors, and that they receive criticality
of 1.0 according to the OCM. Note that the two detectors have
different behaviors, which results in different criticality values for
some objects, especially distant ones. Also, PPT (Figure 1b) detects
two FPs with very high criticality, just in front of the ego vehicle.

We computed the target metrics for the analyzed sample, both
in the base scenario and in two scenarios with one injected fault,
one FP and one FN, respectively. Results are reported in Table 2.

We first observe that PKL and the metrics from the OCM rank
the two detectors differently: SSN is ranked best by both 𝑃R and
𝑅S (and consequently by 𝐹1𝑐𝑟𝑖𝑡 ), while PPT is ranked best by PKL
(recall that for PKL a lower score is preferred). In fact, PKL indicates
an almost perfect detection for PPT, and some more consistent
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(a) Front camera frame (b) Predictions made by the PPT detector, with an in-
jected FP at position (3, 5) .

(c) Predictions made by the SSN detector, with an in-
jected FP at position (3, 5) .

Figure 1: Overview of sample 6c8...fe5 of the nuScenes dataset, and example of the qualitative analysis we performed.

Table 2: Metric values computed on sample 6c8...fe5, in
different scenarios. For each scenario, the best values of each
metric is highlighted in bold.

Base Scenario Injected FP Injected FN
Metric PPT SSN PPT SSN PPT SSN

𝑃R 0.533 0.915 0.466 0.733 0.455 0.880
𝑅S 0.989 0.998 0.989 0.998 0.717 0.720
𝐹1𝑐𝑟𝑖𝑡 0.693 0.955 0.633 0.845 0.556 0.799
PKL 0.677 3.673 20.74 5.169 4.50 3.31

deviation for SSN. Note also that 𝑃R is very low for PPT, due to the
two FPs being detected almost in front of ego (see Figure 1b).

When injecting the FP, there is a reduction in the values of
𝐹1𝑐𝑟𝑖𝑡 and PKL for both detectors, as expected. For 𝐹1𝑐𝑟𝑖𝑡 , the
decrease is caused by 𝑃R (reliability score), which decreases sharply
as expected; 𝑅S instead remains unchanged. Interestingly, the PKL
score for PPT sharply worsens to 20.74. This is probably due to the
combined effect of the injected FP with the two pre-existing ones,
which causes a big deviation of the planned trajectory. Instead, the
PKL value for SSN experiences only a minor increase, to 5.17, and
thus, after injecting the FP, the SSN turns out as the best detector
also according to PKL.

For the injection of a FN, the correct prediction of the car closest
to ego was removed. This is the vehicle just at the front left of ego,
turning left at the intersection. We observe that OCM-related met-
rics are impacted similarly on the two detectors by the introduction
of a FN. Also, both detectors are evaluated approximately equally
in terms of 𝑅S . 𝐹1𝑐𝑟𝑖𝑡 is substantially lower for PPT than for SSN;
this is due to the strong difference in 𝑃R , which is in turn caused
by the two FPs close to ego. Note that while 𝑅S is not influenced
by injecting FPs, the definition of 𝑃R also depends on FNs. This
explains the change observed in 𝑃R for both detectors, compared
to the base scenario.

For PKL, a small increase is seen for PPT after the injection of
the FN. Interestingly, for SSN, the PKL value is instead slightly
lower (i.e., better) in the scenario where a FN has been injected.

Figure 2: Distribution of 𝐹1𝑐𝑟𝑖𝑡 (left) and − log(PKL) (right) on
the RAW_40 dataset.

This means that the path computed from the set of objects in which
the car closest to ego is removed is actually closer to the GT than
the one computed based on the full set of objects predicted by SSN.

6.2 Metrics Distribution
Figure 2 shows the distribution of 𝐹1𝑐𝑟𝑖𝑡 (left) and − log(PKL)
(right) on the RAW_40 dataset. Note that for PKL the plot shows
the negative logarithm of the score, because PKL ∈ [0,∞). Also,
note that for PKL < 1.0 the negative logarithm evaluates to positive
values. Thus, for the right-hand histogram in Figure 2, values larger
than 0 (in the negative logarithm) actually represent base PKL scores
smaller than 1.0, i.e., good scores. This particular characteristic of
PKL should be considered when interpreting the results.

Even taking that into account, a dissimilarity between the distri-
butions of metric results can be observed. 𝐹1𝑐𝑟𝑖𝑡 rates more than
one third of the samples with the highest score (1.0), but then the
number of samples rapidly decreases for lower 𝐹1𝑐𝑟𝑖𝑡 values. This
means that it is easy to distinguish “safe” scenarios, from scenarios
where context-relevant misdetections occurred. Note that to have
𝐹1𝑐𝑟𝑖𝑡 = 1.0 it is necessary that both 𝑃R and 𝑅S are equal to 1.0.

Figure 3 shows the distribution of the same metrics on the
datasets FN_40, FP_40 in which synthetic detection errors have
been injected. The first observation is that both metrics are heavily
affected by the injected faults, which, we recall, are injected close
to the ego vehicle. They are therefore measuring, to some extent,
how “safe” the predictions of the underlying detector are. We also
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(a) Distributions on the FN_40 dataset

(b) Distributions on the FP_40 dataset

Figure 3: Distribution of 𝐹1𝑐𝑟𝑖𝑡 (left) and − log(PKL) (right) on
the FN_40, FP_40 dataset, which include the injected detec-
tion errors.

note that PKL seems to be more heavily affected by FP injections,
while 𝐹1𝑐𝑟𝑖𝑡 is more heavily affected by FN injections.

To further analyze the relations between the OCM metrics and
PKL, in Figure 4 we plot their joint distributions on the samples
from our datasets. Each row of plots refers to a different dataset,
while each column refers to a different OCM metric. For all the
plots, the 𝑦 axis reports the − log(PKL) value associated with a
sample, while the 𝑥 axis reports 𝑃R , 𝑅S , or 𝐹1𝑐𝑟𝑖𝑡 , respectively.

When observing the distributions on the base dataset (RAW_40,
Figure 4a) we note very little relation between the OCM metrics
and PKL. In particular, samples that achieve optimal values on
one metric (i.e., 0.0 for PKL and 1.0 for 𝑃R , 𝑅S , and 𝐹1𝑐𝑟𝑖𝑡 ), may
assume very disparate values on the metric(s) from the other model.
We visually observe that the 𝑅S penalizes missed detections (low
values of safety-weighted recall in Figure 4b, central figure), while
the 𝑃R penalizes false positives (low values of reliability-weighted
precision in Figure 4b, left figure). This difference is not evidently
captured, instead, by using PKL only.

It is possible to notice a better alignment between the metrics on
the FN_40 and FP_40 datasets. In particular, the most visible agree-
ment, albeit still barely visible, is on the FN_40 dataset, between
𝑅S and − log(PKL) (middle plot in Figure 4b). In fact, it can at least
be noticed that samples with high 𝑅S values also exhibit a good
PKL score.

6.3 Sensitivity to Scenario Size
Previous work on PKL [10] found that PKL scores rapidly deterio-
rate when the number of cars in the scenario increases. Based on
this finding, we decided to compare the OCM and PKL metrics on
modified versions of our datasets, in which only samples that have

(a) Metrics joint distributions over the RAW_40 dataset

(b) Metrics joint distributions over the FN_40 dataset

(c) Metrics joint distributions over the FP_40 dataset

Figure 4: Joint distribution between the OCM metrics and
PKL on the different datasets.

𝑁 objects or less in their GT set are retained. In the following, we
refer to those datasets as constrained datasets.

The joint distribution of metrics on the constrained datasets is
shown in Figure 5. Considering the FN_40 dataset, there indeed
seems to be more agreement between the metrics as the number
of objects in the evaluated scene decreases (Figure 5b). Fewer data
points with low values of PKL and high values of 𝐹1𝑐𝑟𝑖𝑡 can in fact
be observed, when compared to Figure 4. Furthermore, there ap-
pears now to be an evident linear trend between𝑅S and− log(PKL),
when FNs are injected (middle plot in Figure 5b). Interestingly, a sim-
ilar but weaker trend can be observed between 𝑃R and − log(PKL),
when instead FPs are injected (left-hand plot in Figure 5c). Such
symmetry can be explained by the fact that the PKL score is affected
by both FNs and FPs, while 𝑃R and 𝑅S are mainly affected by only
one of the two kinds of detection errors.

Viewed in the context of all the visualized joint distributions,
safety-weighted recall (𝑅S ) appears to be more correlated with PKL
than reliability-weighted precision (𝑃R ). 𝐹1𝑐𝑟𝑖𝑡 also exhibits some
degree of correlation with PKL on all the datasets, when they are
constrained for 𝑁 = 4. Note however that a linear trend between
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(a) Metrics joint distributions over the constrained RAW_40 dataset (𝑁 = 4)

(b) Metrics joint distributions over the constrained FN_40 dataset (𝑁 = 4)

(c) Metrics joint distributions over the constrained FP_40 dataset (𝑁 = 4)

Figure 5: Joint distribution between the OCM metrics and
PKL on the constrained datasets where the number of objects
in the scenario is limited to 4.

𝑅S and − log(PKL) implies a non-linear trend with respect to the
real PKL value.

6.4 Statistical Correlation
To obtain statistical evidence of the correlation between PKL and
OCM metrics, the Spearman [25] and Pearson [1] coefficient are
computed; namely the Pearson product-moment correlation coeffi-
cient (𝑟𝑃 ) and Spearman’s rank order correlation coefficient (𝑟𝑆 ).

The Pearson 𝑟𝑃 gives an indication of the strength of the lin-
ear relationship between two random variables. In contrast, the
Spearman 𝑟𝑆 indicates the strength of a monotonic relationship
between the variables (i.e., it does not assume linearity). Both of the
coefficients range in the interval [−1, 1], with the strength of the
association between the variables being indicated by the absolute
value, and the direction being indicated by the sign. A value of 0
indicates no association between the variables (i.e., no correlation).

Table 3 reports the 𝑟𝑃 and 𝑟𝑆 coefficients computed on PKL and
𝐹1𝑐𝑟𝑖𝑡 , on different versions of our datasets, both constrained (with
𝑁 = 4 and 𝑁 = 8) and unconstrained (we indicate it with 𝑁 = ∞).

Table 3: Correlation coefficients betweenPKL and 𝐹1𝑐𝑟𝑖𝑡 when
limiting the number of objects in the scenario (𝑁 ).

Dataset 𝑁 𝑟𝑃 𝑟𝑆 𝑝𝑃 𝑝𝑆 Size

RAW_40
∞ 0.207 0.318 4.094e-10 1.872e-22 894
8 0.280 0.365 1.505e-15 1.616e-9 447
4 0.343 0.408 1.392e-7 2.258e-10 224

FN_40
∞ 0.346 0.327 3.112e-22 6.774e-20 739
8 0.503 0.503 5.382e-21 6.177e-21 305
4 0.577 0.598 1.820e-11 2.163e-12 114

FP_40
∞ 0.242 0.251 8.163e-14 1.089e-14 923
8 0.290 0.268 1.119e-10 2.720e-9 476
4 0.230 0.198 0.240e-3 0.169e-2 250

The p-value for statistical significance is also reported in the table,
indicating the probability of observing test values at least as extreme
as the observed values under the null hypothesis. In other words, the
p-value is an indication of the likelihood that the observed results
could be occurring by chance.

In the table, 𝑝𝑃 and 𝑝𝑆 refer to the p-values for Pearson and
Spearman coefficients, respectively, which indicate the probability
of observing values with the same properties under the null hy-
pothesis; p-values below 0.001 are typically regarded as indication
of statistical significance [14]. Finally, Size refers to the size of the
constrained datasets at the corresponding value of 𝑁 .

As shown in the table, the coefficients always indicate a positive
correlation between PKL and 𝐹1𝑐𝑟𝑖𝑡 . Furthermore, the correspond-
ing p-values always stay sufficiently low to indicate statistically
significant results, except for the FP_40 dataset when constrained
to 𝑁 = 4. Note that, despite being smaller, the other two datasets
constrained to 𝑁 = 4 achieve a much lower p-value (i.e., stronger
significance).

The coefficients in Table 3 also confirm what was observed,
informally, from the plots of Figure 5: i) the strongest correlation
is observed when injecting FN detections (FN_40 dataset), and ii)
the correlation between the metrics progressively improves when
reducing the number of objects in the considered samples. The
latter does not however apply for FP injections, for which a weak
correlation is observed even with fewer objects.

The highest correlation is observed on the dataset with injected
FNs, when limiting to 4 or less ground truth objects. Both 𝑟𝑃 and
𝑟𝑆 are in fact close to 0.6, with p-values lower than 10−10, which
indicate a consistent positive correlation between the two metrics.

6.5 Sensitivity to Hazardous Detection Errors
In this section, we analyze the impact of detection mistakes on the
two metrics models. We progressively inject detection errors on
the same nuScenes samples, using the injection method described
in Section 5.3. The method injects misdetections of objects that are
close to the ego vehicle, which are therefore hazardous detection
errors. For computational reasons, we used only 100 randomly
selected nuScenes samples for this experiment. For each of them,
we injected FPs and FNs, separately, an incremental number of
times, from 1 to 5, and we computed the target metric for each of
those modified scenarios.
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Figure 6: Mean values of 𝑃R , 𝑅S , 𝐹1𝑐𝑟𝑖𝑡 (left), and PKL (right),
over 100 samples for 0–5 injected FPs.

Figure 7: Mean values of 𝑃R , 𝑅S , 𝐹1𝑐𝑟𝑖𝑡 (left), and PKL (right),
over 100 samples for 0–5 injected FNs.

Figure 6 and Figure 7 show the mean of the target metrics on the
100 samples, at varying the number (and type) of injected faults.
For visualization purposes, the negated values of PKL are displayed
in the plot; recall in fact that an optimal PKL value is 0.0, and it
increases otherwise.

We notice that both models correctly penalize the hazardous
misdetections, although with some differences. As noticed also in
the earlier analyses, PKL is more strongly impacted by FP injections,
while the opposite holds for 𝐹1𝑐𝑟𝑖𝑡 . By its construction, with the
OCM it is possible to distinguish between FPs and FNs, by looking
at the individual 𝑃R and 𝑅S components; different detection errors
are instead indistinguishable with PKL.

The two OCM components have a slightly different behavior:
safety-weighted recall (𝑅S ) remains constant when an increasing
number of FPs are injected (Figure 6), while reliability-weighted
precision (𝑃R ) is somehow affected by FNs (Figure 7).

Also, PKL seems to continue penalizing multiple errors in the
same way, while 𝐹1𝑐𝑟𝑖𝑡 has a sharper decrease in the beginning
and tends to stabilize for a higher number of injected misdetections.
However, this same behavior of PKL is responsible for the increased
dependence of PKL on the number of objects in the scenario, as
discussed in [10].

6.6 Relation to Traditional Metrics
We conclude our analysis by discussing the relation between the
PKL, the OCM, and the traditional Precision and Recall metrics.
The plots in Figure 8 visualize such relation on the RAW_40 dataset,
constrained to 𝑁 = 8.

(a) 𝑥 = Precision, 𝑦 = − log(PKL), 𝑧 = 𝑃R

(b) 𝑥 = Recall, 𝑦 = − log(PKL), 𝑧 = 𝑅S

Figure 8: Relation between PKL, OCM metrics, and tradi-
tional metrics (Precision and Recall) on the constrained
RAW_40 dataset, with 𝑁 = 8.

In Figure 8a, each nuScenes sample in the dataset is positioned
according to the Precision (𝑥-axis) and − log(PKL) score (𝑦-axis)
obtained by SSN, and it is colored according to 𝑃R . Figure 8a shows
instead Recall and 𝑅S , following a similar organization.

While some samples get a similar score for generic metrics and
safety-oriented ones, most samples are evaluated differently by
these metrics. Furthermore, it is evident that each of the three met-
rics models provide a different perspective. In Figure 8b, samples
with a good PKL score (i.e., − log(PKL) ≥ 0) are assigned very dis-
parate values of Precision and Recall and of 𝑅S . A similar behavior
can be observed in Figure 8a for Precision and 𝑃R .

Samples with good 𝑅S have often also a good Recall value, which
follows from the definition of the metric. The opposite is instead
not true, as there are samples with low Recall but very high 𝑅S .
A similar behavior can be observed between Precision and 𝑃R .
This behavior is due to the focus of 𝑃R and 𝑅S on critical objects,
meaning that low-criticality objects are less reflected in the OCM
than in their generic counterparts.

Finally, we note that Precision and Recall align on specific values,
producing some definite “vertical bands” in Figure 8, which does
not happen with their OCM counterparts (e.g., refer to Figure 5).
This is due to the fact that Precision and Recall are, by definition,
constrained to a discrete set of values, which furthermore depends
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on the number of objects in the scenario. For example, in a scenario
with 4 GT objects, both Precision and Recall can only assume values
in the set {0, 0.25, 0.5, 0.75, 1}. The same is not true for 𝑃R and 𝑅S ,
which instead may assume continuous values in the entire interval
[0, 1], independently on the number of objects in the scenario.

7 CONCLUSION
In this paper, we elaborated on a recent line of thought for which
object detectors in safety-critical domains should prioritize the de-
tection of objects that are most likely to interfere with the decisions
of the autonomous actor. Very recent works in the literature pro-
posed metrics to evaluate object detectors following this concept.
Especially, we focused on two metrics models for object detectors,
PKL and OCM, that are intended for the autonomous driving do-
main and whose code has been released publicly.

We evaluated PKL and OCM to understand to what extent correct
detections and misdetections may impact safety and reliability, and
how this can be captured by the two metrics. We conclude that both
metrics serve as an indicator of the safety of an object detector, but
they also provide different perspectives. Concisely, OCM is able to
distinguish between a safety issue and a reliability issue, while PKL
does not make this distinction. All the software used in this paper
is organized in a library, and released for reproducibility [28] and
to encourage the usage of PKL and OCM.

As future work we aim at defining a training procedure of object
detectors to maximize PKL or OCM. Intuitively, the object detector
is intended to reward the detection of objects that are relevant
(close and in colliding trajectories), and it is expected instead to be
far less effective in the detection of objects that are not relevant
for the tasks. Practically, this can be realized by a proper training
phase, where the usual loss measurement approach is modified
according to the principles and measures established by OCM and
PKL. Another direction consists in involving humans in the evalua-
tion, to understand to what extent those metrics actually reflect the
perception of a human driver on the safety of specific scenarios.
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