Rough Path Approach to Non-commutative Stochastic Processes:
 Free Brownian Motion and q-Brownian Motion

Roland Speicher
Saarland University
Saarbrücken, Germany
supported by ERC Advanced Grant
"Non-Commutative Distributions in Free Probability"

Section 1

Free Brownian Motion and Its Stochastic Calculus

Free Brownian Motion

Definition

A free Brownian motion is given by a family $\left(S_{t}\right)_{t \geq 0} \subset(\mathcal{A}, \varphi)$ of random variables (\mathcal{A} von Neumann algebra, φ faithful trace), such that

- $S_{0}=0$
- each increment $S_{t}-S_{s}(s<t)$ is semicircular with mean $=0$ and variance $=t-s$, i.e.,

$$
d \mu_{S_{t}-S_{s}}(x)=\frac{1}{2 \pi(t-s)} \sqrt{4(t-s)-x^{2}} d x
$$

- disjoint increments are free: for $0<t_{1}<t_{2}<\cdots<t_{n}$,

$$
S_{t_{1}}, \quad S_{t_{2}}-S_{t_{1}}, \quad \ldots, \quad S_{t_{n}}-S_{t_{n-1}} \quad \text { are free }
$$

Free Stochastic Calculus

History

- Kümmerer + Speicher: JFA 1992
- Biane + Speicher: PTRF 1998

Free Stochastic Calculus

History

- Kümmerer + Speicher: JFA 1992
- Biane + Speicher: PTRF 1998

Goal

For processes

$$
\left(A_{t}\right)_{t \geq 0}, \quad\left(B_{t}\right)_{t \geq 0} \subset \mathcal{A}
$$

(functions of the free Brownian motion) define

$$
\int A_{t} d S_{t} B_{t}
$$

Ito-Type Definition for Adapted Processes

As usual: processes must be adapted
Definition
$\left(A_{t}\right)_{t \geq 0}$ is adapted if

$$
A_{t} \in \mathrm{vN}(S(\tau) \mid \tau \leq t) \quad \forall t \geq 0
$$

Definition

Then define for piecewise constant processes

$$
\int A_{t} d S_{t} B_{t}:=\sum_{i} A_{t_{i}}\left(S_{t_{i+1}}-S_{t_{i}}\right) B_{t_{i}}
$$

and extend by continuity

Norm Estimates for Free Stochastic Integrals

- Ito isometry: for the L^{2} norm $\|a\|_{2}^{2}:=\varphi\left(a a^{*}\right)$ we have

$$
\left\|\int A_{t} d S_{t} B_{t}\right\|_{2}^{2}=\int\left\|A_{t}\right\|_{2}^{2} \cdot\left\|B_{t}\right\|_{2}^{2} d t
$$

note: this is essentially the fact that for a semicircle S of variance $d t$, which is free from $\left\{a, a^{*}, b, b^{*}\right\}$ we have

$$
\varphi\left(a S b b^{*} S a^{*}\right)=\varphi\left(b b^{*}\right) \varphi\left(a a^{*}\right) d t
$$

Norm Estimates for Free Stochastic Integrals

- Ito isometry: for the L^{2} norm $\|a\|_{2}^{2}:=\varphi\left(a a^{*}\right)$ we have

$$
\left\|\int A_{t} d S_{t} B_{t}\right\|_{2}^{2}=\int\left\|A_{t}\right\|_{2}^{2} \cdot\left\|B_{t}\right\|_{2}^{2} d t
$$

note: this is essentially the fact that for a semicircle S of variance $d t$, which is free from $\left\{a, a^{*}, b, b^{*}\right\}$ we have

$$
\varphi\left(a S b b^{*} S a^{*}\right)=\varphi\left(b b^{*}\right) \varphi\left(a a^{*}\right) d t
$$

- free Burkholder-Gundy inequality for $p=\infty$: for the operator norm we have the much deeper estimate

$$
\left\|\int A_{t} d S_{t} B_{t}\right\|^{2} \leq c \cdot \int\left\|A_{t}\right\|^{2} \cdot\left\|B_{t}\right\|^{2} d t
$$

Free Ito Formula

We have as for classical Brownian motion

$$
d S_{t} d S_{t}=d t
$$

Free Ito Formula

We have as for classical Brownian motion

$$
d S_{t} d S_{t}=d t
$$

... but that's not all, we also need

$$
d S_{t} A d S_{t}=\varphi(A) d t
$$

for A adapted
[Classically we have of course: $d W_{t} A d W_{t}=A d t$]

Section 2

q-Brownian Motion and Its Stochastic Calculus

q-Brownian Motion

Let $\left(W_{t}\right)_{t \geq 0}$ be classical Brownian motion and $\left(S_{t}\right)_{t \geq 0}$ be free Brownian motion, then we have for their joint moments the "Wick formula" with covariance function $c(t, s)=\min (t, s)$.

$$
\begin{aligned}
& E\left[W_{t_{1}} \cdots W_{t_{n}}\right]=\sum_{\pi \in \mathcal{P}_{2}(n)} \prod_{(i, j) \in \pi} c\left(t_{i}, t_{j}\right) \\
& \varphi\left[S_{t_{1}} \cdots S_{t_{n}}\right]=\sum_{\pi \in N C_{2}(n)} \prod_{(i, j) \in \pi} c\left(t_{i}, t_{j}\right)
\end{aligned}
$$

q-Brownian Motion

Let $\left(W_{t}\right)_{t \geq 0}$ be classical Brownian motion and $\left(S_{t}\right)_{t \geq 0}$ be free Brownian motion, then we have for their joint moments the "Wick formula" with covariance function $c(t, s)=\min (t, s)$.

$$
\begin{aligned}
& E\left[W_{t_{1}} \cdots W_{t_{n}}\right]=\sum_{\pi \in \mathcal{P}_{2}(n)} \prod_{(i, j) \in \pi} c\left(t_{i}, t_{j}\right) \\
& \varphi\left[S_{t_{1}} \cdots S_{t_{n}}\right]=\sum_{\pi \in N C_{2}(n)} \prod_{(i, j) \in \pi} c\left(t_{i}, t_{j}\right)
\end{aligned}
$$

Definition (Bożejko, Speicher '91; Bożejko, Kümmerer, Speicher '97) For $0 \leq q \leq 1$ we define a q-Brownian motion $\left(X_{t}\right)_{t \geq 0}$ by the following q-version of a Wick formula

$$
\varphi\left[X_{t_{1}} \cdots X_{t_{n}}\right]=\sum_{\pi \in \mathcal{P}_{2}(n)} q^{\text {crossings of } \pi} \prod_{(i, j) \in \pi} c\left(t_{i}, t_{j}\right)
$$

q-Stochastic Calculus

- Donati-Martin 2003

Definition of Ito-type stochastic integral

$$
\int A_{t} d X_{t} B_{t} \quad \text { for adapted } A, B
$$

in L^{2}-setting

q-Stochastic Calculus

- Donati-Martin 2003

Definition of Ito-type stochastic integral

$$
\int A_{t} d X_{t} B_{t} \quad \text { for adapted } A, B
$$

in L^{2}-setting

- q-Ito formula

$$
d X_{t} d X_{t_{1}} \cdots d X_{t_{n}} d X_{t}=q^{n} d X_{t_{1}} \cdots d X_{t_{n}} d t
$$

for $t_{i} \neq t_{j}(i \neq j)$

q-Stochastic Calculus

- Donati-Martin 2003

Definition of Ito-type stochastic integral

$$
\int A_{t} d X_{t} B_{t} \quad \text { for adapted } A, B
$$

in L^{2}-setting

- q-Ito formula

$$
d X_{t} d X_{t_{1}} \cdots d X_{t_{n}} d X_{t}=q^{n} d X_{t_{1}} \cdots d X_{t_{n}} d t
$$

for $t_{i} \neq t_{j}(i \neq j)$

- Deya, Schott 2017

Definition of Stratonovich-type stochastic integrals in L^{∞}-setting via rough path approach

Section 3

Rough Path Approach to Non-Commutative Stochastic Integration

- geometric rough path given by geometric Levy area

$$
X_{s t} \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} d X_{t_{1}} \otimes d X_{t_{2}}
$$

Capitaine, Donati-Martin 2001; Victoir 2004: for free BM
Deya, Schott 2013: for q-case

- geometric rough path given by geometric Levy area

$$
X_{s t} \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} d X_{t_{1}} \otimes d X_{t_{2}}
$$

Capitaine, Donati-Martin 2001; Victoir 2004: for free BM
Deya, Schott 2013: for q-case

- geometric case: allows to deal with one-sided SDE

$$
d Z_{t}=f\left(Z_{t}\right) d X_{t}
$$

- geometric rough path given by geometric Levy area

$$
X_{s t} \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} d X_{t_{1}} \otimes d X_{t_{2}}
$$

Capitaine, Donati-Martin 2001; Victoir 2004: for free BM Deya, Schott 2013: for q-case

- geometric case: allows to deal with one-sided SDE

$$
d Z_{t}=f\left(Z_{t}\right) d X_{t}
$$

- controlled case: allows to deal with two-sided SDE

$$
d Z_{t}=f\left(Z_{t}\right) d X_{t} g\left(Z_{t}\right)
$$

- geometric rough path given by geometric Levy area

$$
X_{s t} \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} d X_{t_{1}} \otimes d X_{t_{2}}
$$

Capitaine, Donati-Martin 2001; Victoir 2004: for free BM
Deya, Schott 2013: for q-case

- controlled rough path theory

Deya, Schott 2013: for free BM
Deya, Schott 2017: for q-BM

- geometric case: allows to deal with one-sided SDE

$$
d Z_{t}=f\left(Z_{t}\right) d X_{t}
$$

- controlled case: allows to deal with two-sided SDE

$$
d Z_{t}=f\left(Z_{t}\right) d X_{t} g\left(Z_{t}\right)
$$

Recall commutative case for $1 / 3 \leq \alpha<1 / 2$:

We want to define

$$
I(t)=\int_{0}^{t} f_{\tau} d X_{\tau}, \quad \text { or } \quad\left(\delta_{1} I\right)_{s t}=\int_{s}^{t} f_{\tau} d X_{\tau}
$$

Recall commutative case for $1 / 3 \leq \alpha<1 / 2$:

We want to define

$$
I(t)=\int_{0}^{t} f_{\tau} d X_{\tau}, \quad \text { or } \quad\left(\delta_{1} I\right)_{s t}=\int_{s}^{t} f_{\tau} d X_{\tau}
$$

For this we use approximating germ

$$
A_{s t}=f_{s}\left(X_{t}-X_{s}\right)+f_{s}^{\prime} Y_{s t}
$$

where quadratic correction Y should satisfy

$$
\left(\delta_{2} Y\right)_{s u t}=\left(X_{u}-X_{s}\right)\left(X_{t}-X_{u}\right)
$$

Recall commutative case for $1 / 3 \leq \alpha<1 / 2$:

We want to define

$$
I(t)=\int_{0}^{t} f_{\tau} d X_{\tau}, \quad \text { or } \quad\left(\delta_{1} I\right)_{s t}=\int_{s}^{t} f_{\tau} d X_{\tau}
$$

For this we use approximating germ

$$
A_{s t}=f_{s}\left(X_{t}-X_{s}\right)+f_{s}^{\prime} Y_{s t}
$$

where quadratic correction Y should satisfy

$$
\left(\delta_{2} Y\right)_{s u t}=\left(X_{u}-X_{s}\right)\left(X_{t}-X_{u}\right)
$$

With this $Y, \delta_{2} A$ has enough regularity and the Sewing Lemma allows to change A to the exact solution:

$$
A \mapsto \tilde{A}:=A-\Lambda \delta_{2} A
$$

Recall commutative case for $1 / 3 \leq \alpha<1 / 2$:

We want to define

$$
I(t)=\int_{0}^{t} f_{\tau} d X_{\tau}, \quad \text { or } \quad\left(\delta_{1} I\right)_{s t}=\int_{s}^{t} f_{\tau} d X_{\tau}
$$

For this we use approximating germ

$$
A_{s t}=f_{s}\left(X_{t}-X_{s}\right)+f_{s}^{\prime} Y_{s t}
$$

where quadratic correction Y should satisfy

$$
\left(\delta_{2} Y\right)_{s u t}=\left(X_{u}-X_{s}\right)\left(X_{t}-X_{u}\right)
$$

With this $Y, \delta_{2} A$ has enough regularity and the Sewing Lemma allows to change A to the exact solution:

$$
A \mapsto \tilde{A}:=A-\Lambda \delta_{2} A .
$$

Then $\delta_{2}(\tilde{A})=0$, hence there is (unique up to constant) I such that $\tilde{A}=\delta_{1} I$; this I is our wanted integral.

Recall commutative case for $1 / 3 \leq \alpha<1 / 2$:

We want to define

$$
I(t)=\int_{0}^{t} f_{\tau} d X_{\tau}, \quad \text { or } \quad\left(\delta_{1} I\right)_{s t}=\int_{s}^{t} f_{\tau} d X_{\tau}
$$

For this we use approximating germ

$$
A_{s t}=f_{s}\left(X_{t}-X_{s}\right)+f_{s}^{\prime} Y_{s t}
$$

where quadratic correction Y should satisfy

$$
\left(\delta_{2} Y\right)_{s u t}=\left(X_{u}-X_{s}\right)\left(X_{t}-X_{u}\right) \quad \text { just take: } Y_{s t}=\frac{1}{2}\left(X_{t}-X_{s}\right)^{2}
$$

With this $Y, \delta_{2} A$ has enough regularity and the Sewing Lemma allows to change A to the exact solution:

$$
A \mapsto \tilde{A}:=A-\Lambda \delta_{2} A .
$$

Then $\delta_{2}(\tilde{A})=0$, hence there is (unique up to constant) I such that $\tilde{A}=\delta_{1} I$; this I is our wanted integral.

The Problem of Being Non-Commutative

Consider now

$$
Y_{s t}=\left(X_{t}-X_{s}\right)^{2}
$$

for non-commuting $\left(X_{t}\right)_{t}$.

The Problem of Being Non-Commutative

Consider now

$$
Y_{s t}=\left(X_{t}-X_{s}\right)^{2}
$$

for non-commuting $\left(X_{t}\right)_{t}$.
Then

$$
\begin{aligned}
\left(\delta_{2} Y\right)_{s u t} & =Y_{s t}-Y_{s u}-Y_{u t} \\
& =\left(X_{t}-X_{s}\right)^{2}-\left(X_{u}-X_{s}\right)^{2}-\left(X_{t}-X_{u}\right)^{2} \\
& =-2 X_{u}^{2}-X_{t} X_{s}-X_{s} X_{t}+X_{u} X_{s}+X_{s} X_{u}+X_{t} X_{u}+X_{u} X_{t} \\
& =\left(X_{t}-X_{u}\right)\left(X_{u}-X_{s}\right)+\left(X_{u}-X_{s}\right)\left(X_{t}-X_{u}\right)
\end{aligned}
$$

The Problem of Being Non-Commutative

Consider now

$$
Y_{s t}=\left(X_{t}-X_{s}\right)^{2}
$$

for non-commuting $\left(X_{t}\right)_{t}$.
Then

$$
\begin{aligned}
\left(\delta_{2} Y\right)_{s u t} & =Y_{s t}-Y_{s u}-Y_{u t} \\
& =\left(X_{t}-X_{s}\right)^{2}-\left(X_{u}-X_{s}\right)^{2}-\left(X_{t}-X_{u}\right)^{2} \\
& =-2 X_{u}^{2}-X_{t} X_{s}-X_{s} X_{t}+X_{u} X_{s}+X_{s} X_{u}+X_{t} X_{u}+X_{u} X_{t} \\
& =\left(X_{t}-X_{u}\right)\left(X_{u}-X_{s}\right)+\left(X_{u}-X_{s}\right)\left(X_{t}-X_{u}\right)
\end{aligned}
$$

Though one has here only one process, this is the same problem as in the multi-dimensionsal commutative case.

The Problem of Being Non-Commutative

Consider now

$$
Y_{s t}=\left(X_{t}-X_{s}\right)^{2}
$$

for non-commuting $\left(X_{t}\right)_{t}$.
Then

$$
\begin{aligned}
\left(\delta_{2} Y\right)_{s u t} & =Y_{s t}-Y_{s u}-Y_{u t} \\
& =\left(X_{t}-X_{s}\right)^{2}-\left(X_{u}-X_{s}\right)^{2}-\left(X_{t}-X_{u}\right)^{2} \\
& =-2 X_{u}^{2}-X_{t} X_{s}-X_{s} X_{t}+X_{u} X_{s}+X_{s} X_{u}+X_{t} X_{u}+X_{u} X_{t} \\
& =\left(X_{t}-X_{u}\right)\left(X_{u}-X_{s}\right)+\left(X_{u}-X_{s}\right)\left(X_{t}-X_{u}\right)
\end{aligned}
$$

Though one has here only one process, this is the same problem as in the multi-dimensionsal commutative case.

1 non-commutative dimension $\hat{=} \infty$-many commutative dimensions

Hence this explicit $Y_{\text {st }}$ cannot be used as quadratic (Stratonovic) correction. One has to define

$$
Y_{s t} \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} d X_{t_{1}} d X_{t_{2}}
$$

by some other means.

Hence this explicit $Y_{s t}$ cannot be used as quadratic (Stratonovic) correction. One has to define

$$
Y_{s t} \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} d X_{t_{1}} d X_{t_{2}}
$$

by some other means. Actually, we need more general a product Levy area of the form

$$
Y_{s t}[A \otimes B] \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} A d X_{t_{1}} B d X_{t_{2}}
$$

Hence this explicit $Y_{s t}$ cannot be used as quadratic (Stratonovic) correction. One has to define

$$
Y_{s t} \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} d X_{t_{1}} d X_{t_{2}}
$$

by some other means. Actually, we need more general a product Levy area of the form

$$
Y_{s t}[A \otimes B] \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} A d X_{t_{1}} B d X_{t_{2}}
$$

formally this is a family $\left(Y_{s t}[A \otimes B]\right)_{s \leq t}$ which satisfies

- some adequate L^{∞}-regularity
- Chen identity

$$
Y_{s t}[A \otimes B]-Y_{s u}[A \otimes B]-Y_{u t}[A \otimes B]=A\left(X_{u}-X_{s}\right) B\left(X_{t}-X_{u}\right) \text { erc }
$$

Results for Free and q-Brownian Motion

The definition of such a product Levy area

$$
Y_{s t}[A \otimes B] \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} A d X_{t_{1}} B d X_{t_{2}}
$$

(and thus of a non-commutative stochastic integration theory) was achieved

Results for Free and q-Brownian Motion

The definition of such a product Levy area

$$
Y_{s t}[A \otimes B] \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} A d X_{t_{1}} B d X_{t_{2}}
$$

(and thus of a non-commutative stochastic integration theory) was achieved

- for the free Brownian motion in Deya, Schott 2013: by using the existing L^{∞}-theory of Biane-Speicher

Results for Free and q-Brownian Motion

The definition of such a product Levy area

$$
Y_{s t}[A \otimes B] \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} A d X_{t_{1}} B d X_{t_{2}}
$$

(and thus of a non-commutative stochastic integration theory) was achieved

- for the free Brownian motion in Deya, Schott 2013: by using the existing L^{∞}-theory of Biane-Speicher
- for the q-Brownian motion in Deya, Schott 2017: by defining the product Levy area directly, via heavy L^{p}-calculations for $p \rightarrow \infty$, as a limit of linear interpolations via dyadic partitions

Results for Free and q-Brownian Motion

The definition of such a product Levy area

$$
Y_{s t}[A \otimes B] \hat{=} \int_{s \leq t_{1} \leq t_{2} \leq t} A d X_{t_{1}} B d X_{t_{2}}
$$

(and thus of a non-commutative stochastic integration theory) was achieved

- for the free Brownian motion in Deya, Schott 2013: by using the existing L^{∞}-theory of Biane-Speicher
- for the q-Brownian motion in Deya, Schott 2017: by defining the product Levy area directly, via heavy L^{p}-calculations for $p \rightarrow \infty$, as a limit of linear interpolations via dyadic partitions

