On the Radius of Convergence of Interconnected Analytic Nonlinear Systems*

Makhin Thitsa
Department of Electrical and Computer Engineering
Old Dominion University Norfolk, Virginia USA

RPCCT 2011
San Diego, California
*This research is funded in part by the NSF grant DMS 0960589

Overview*

1. Introduction
2. Mathematical Preliminaries
3. Radius of Convergence
3.1 The Cascade Connection
3.2 The Self-excited Feedback Connection
3.3 The Unity Feedback Connection
4. Conclusions and Future Research
*See www.ece.odu.edu/~sgray/RPCCT2011/thitsaslides.pdf

1. Introduction

- For each $c \in \mathbb{R}^{\ell}\langle\langle X\rangle\rangle$, one can associate an m-input, ℓ-output operator F_{c} in the following manner:
- With $t_{0}, T \in \mathbb{R}$ fixed and $T>0$, define recursively for each $\eta \in X^{*}$ the mapping $E_{\eta}: L_{1}^{m}\left[t_{0}, t_{0}+T\right] \rightarrow \mathcal{C}\left[t_{0}, t_{0}+T\right]$ by

$$
E_{x_{i} \bar{\eta}}[u]\left(t, t_{0}\right)=\int_{t_{0}}^{t} u_{i}(\tau) E_{\bar{\eta}}[u]\left(\tau, t_{0}\right) d \tau,
$$

where $E_{\emptyset}=1, x_{i} \in X, \bar{\eta} \in X^{*}$ and $u_{0}(t) \equiv 1$.

- The input-output operator corresponding to c is the Fliess operator

$$
y=F_{c}[u](t)=\sum_{\eta \in X^{*}}(c, \eta) E_{\eta}[u]\left(t, t_{0}\right) .
$$

- If there exist real numbers $K_{c}, M_{c}>0$ such that

$$
\begin{equation*}
|(c, \eta)| \leq K_{c} M_{c}^{|\eta|}|\eta|!, \quad \forall \eta \in X^{*} \tag{1}
\end{equation*}
$$

where $|\eta|$ denotes the number of symbols in η, then c is said to be locally convergent. The set of all such series is denoted by $\mathbb{R}_{L C}^{\ell}\langle\langle X\rangle\rangle$.

- If $c \in \mathbb{R}_{L C}^{\ell}\langle\langle X\rangle\rangle$ then

$$
F_{c}: B_{\mathfrak{p}}^{m}(R)\left[t_{0}, t_{0}+T\right] \rightarrow B_{\mathfrak{q}}^{\ell}(S)\left[t_{0}, t_{0}+T\right]
$$

for sufficiently small $R, T>0$, where the numbers $\mathfrak{p}, \mathfrak{q} \in[1, \infty]$ are conjugate exponents, i.e., $1 / \mathfrak{p}+1 / \mathfrak{q}=1$ (Gray and Wang, 2002).

- In particular, when $\mathfrak{p}=1$, the series defining $y=F_{c}[u]$ converges provided

$$
\max \{R, T\}<\frac{1}{M_{c}(m+1)}
$$

- Let $\pi: \mathbb{R}_{L C}^{\ell}\langle\langle X\rangle\rangle \rightarrow \mathbb{R}^{+}$take c to the smallest possible geometric growth constant M_{c} satisfying (1).
- In this case, $\mathbb{R}_{L C}^{\ell}\langle\langle X\rangle\rangle$ can be partitioned into equivalence classes, and the number $1 / M_{c}(m+1)$ will be referred to as the radius of convergence for the class $\pi^{-1}\left(M_{c}\right)$.
- For example, $c=\sum_{n \geq 0} K_{c} M_{c}^{n} n!x_{1}^{n}, \bar{c}=\sum_{\eta \in X^{*}} K_{c} M_{c}^{|\eta|}|\eta|!\eta$ are in the same equivalence class.
- This definition is in contrast to the usual situation where a radius of convergence is assigned to individual series.
- In practice, it is not difficult to estimate the minimal M_{c} for many series, in which case, the radius of convergence for $\pi^{-1}\left(M_{c}\right)$ can be easily computed.
- If there exist real numbers $K_{c}, M_{c}>0$ such that

$$
|(c, \eta)| \leq K_{c} M_{c}^{|\eta|}, \quad \forall \eta \in X^{*}
$$

then c is said to be globally convergent. The set of all such series is denoted by $\mathbb{R}_{G C}^{\ell}\langle\langle X\rangle\rangle$.

(a) cascade connection

(b) feedback connection

Fig. 1 The cascade and feedback interconnections

- It is known that the cascade connection of two locally convergent Fliess operators always yields another locally convergent Fliess operator (Gray and Li, 2005).
- Every self-excited feedback interconnection $(u=0)$ of two locally convergent Fliess operators has a locally convergent Fliess operator representation (Gray and Li, 2005).
- Lower bounds on the radius of convergence were given by Gray and Li (2005) for the cascade and self-excited feedback connections.

Problem Statement

Compute the radius of convergence of the

- cascade
- self-excited feedback
- and unity feedback interconnection
of two input-output systems represented as locally convergent Fliess operators.

Remarks:

- The Lambert W-function plays the key role throughout the computations.
- The unity feedback system has the same generating series as the Faa di Bruno compositional inverse, i.e., $c @ \delta=(-c)^{-1}$.

2. Mathematical Preliminaries

Definition 1: (Fliess, 1981) A series $c \in \mathbb{R}^{\ell}\langle\langle X\rangle\rangle$ is said to be exchangeable if for arbitrary $\eta, \xi \in X^{*}$

$$
|\eta|_{x_{i}}=|\xi|_{x_{i}}, i=0,1, \ldots, m \Rightarrow(c, \eta)=(c, \xi) .
$$

Theorem 1: If $c \in \mathbb{R}^{l}\langle\langle X\rangle\rangle$ is an exchangeable series and $d \in \mathbb{R}^{m}\langle\langle X\rangle\rangle$ is arbitrary then the composition product can be written in the form

$$
c \circ d=\sum_{k=0}^{\infty} \sum_{\substack{r_{0}, \ldots, r_{m} \geq 0 \\ r_{0}+\cdots+r_{m}=k}}\left(c, x_{0}^{r_{0}} \cdots x_{m}^{r_{m}}\right) D_{x_{0}}^{r_{0}}(1) ш \cdots ш D_{x_{m}}^{r_{m}}(1) .
$$

Definition 2: A series $\bar{c} \in \mathbb{R}_{L C}^{\ell}\langle\langle X\rangle\rangle$ is said to be a locally maximal series with growth constants $K_{c}, M_{c}>0$ if each component of (\bar{c}, η) is $K_{c} M_{c}^{|\eta|}|\eta|!, \eta \in X^{*}$. An analougus definition holds when $\bar{c} \in \mathbb{R}_{G C}^{\ell}\langle\langle X\rangle\rangle$.

Theorem 2: (Wilf, 1994) Let $f(z)=\sum_{n \geq 0} a_{n} / n!z^{n}$ be analytic in some neighborhood of the origin in the complex plane. Suppose a singularity of $f(z)$ of smallest modulus be at a point $z_{0} \neq 0$, and let $\epsilon>0$ be given. Then there exists N such that for all $n>N$,

$$
\left|a_{n}\right|<\left(1 /\left|z_{0}\right|+\epsilon\right)^{n} n!\text {. }
$$

Furthermore, for infinitely many n,

$$
\left|a_{n}\right|>\left(1 /\left|z_{0}\right|-\epsilon\right)^{n} n!.
$$

3. Radius of Convergence

3.1 The Cascade Connection

Theorem 3: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$. Let $c \in \mathbb{R}_{L C}^{\ell}\langle\langle X\rangle\rangle$ and $d \in \mathbb{R}_{L C}^{m}\langle\langle X\rangle\rangle$ with growth constants $K_{c}, M_{c}>0$ and $K_{d}, M_{d}>0$, respectively. If $b=c \circ d$ then

$$
\begin{equation*}
|(b, \nu)| \leq K_{b} M_{b}^{|\nu|}|\nu|!, \quad \nu \in X^{*} \tag{2}
\end{equation*}
$$

for some $K_{b}>0$, where

$$
M_{b}=\frac{M_{d}}{1-m K_{d} W\left(\frac{1}{m K_{d}} \exp \left(\frac{M_{c}-M_{d}}{m M_{c} K_{d}}\right)\right)}
$$

where W denotes the Lambert W-function, namely, the inverse of the function

$$
g(W)=W \exp (W)
$$

Furthermore, no smaller geometric growth constant can satisfy (2).

Two lemmas are needed for the proof of Theorem 3. The following lemma can be proved inductively.

Lemma 1: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ and $c, d \in \mathbb{R}^{\ell}\langle\langle X\rangle\rangle$ such that $|c| \leq d$, where $|c|:=\sum_{\eta \in X^{*}}|(c, \eta)| \eta$. Then for any fixed $\xi \in X^{*}$ it follows that $|\xi \circ c| \leq \xi \circ d$.

Remark: If \bar{c} and \bar{d} are maximal series with growth constants K_{c}, M_{c} and K_{d}, M_{d}, respectively, it can be shown through the left linearity of the composition product and Lemma 1 that $|c \circ d| \leq \bar{c} \circ \bar{d}$.

Lemma 2: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$. Let $\bar{c} \in \mathbb{R}_{L C}^{\ell}\langle\langle X\rangle\rangle$ and $\bar{d} \in \mathbb{R}_{L C}^{m}\langle\langle X\rangle\rangle$ be locally maximal series with growth constants $K_{c}, M_{c}>0$ and $K_{d}, M_{d}>0$, respectively. If $\bar{b}=\bar{c} \circ \bar{d}$, then the sequence $\left(\bar{b}_{i}, x_{0}^{k}\right), k \geq 0$ has the exponential generating function

$$
f\left(x_{0}\right)=\frac{K_{c}}{1-M_{c} x_{0}+\left(m M_{c} K_{d} / M_{d}\right) \ln \left(1-M_{d} x_{0}\right)}
$$

for any $i=1,2, \ldots, \ell$. Moreover, the smallest possible geometric growth constant for \bar{b} is

$$
M_{b}=\frac{M_{d}}{1-m K_{d} W\left(\frac{1}{m K_{d}} \exp \left(\frac{M_{c}-M_{d}}{m M_{c} K_{d}}\right)\right)} .
$$

Proof of Lemma 2 (outline): There is no loss of generality in assuming $\ell=1$. First observe that \bar{c} is exchangeable, and thus, from Theorem 1 it follows that

$$
\begin{aligned}
\bar{b} & =\sum_{k=0}^{\infty} K_{c} M_{c}^{k} \sum_{\substack{r_{0}, \ldots, r_{m} \geq 0 \\
r_{0}+\cdots+r_{m}=k}} k!\frac{x_{0}^{\amalg r_{0}}}{r_{0}!} ш \ldots ш \frac{\left(x_{m} \circ \bar{d}\right)^{\amalg r_{m}}}{r_{m}!} \\
& =\sum_{k=0}^{\infty} K_{c}\left(M_{c}\left(x_{0}+m x_{0} \bar{d}_{1}\right)\right)^{\varpi k},
\end{aligned}
$$

from which the following shuffle equation is obtained

$$
\begin{equation*}
\bar{b}=K_{c}+M_{c}\left[\bar{b} ш\left(x_{0}+m x_{0} \bar{d}_{1}\right)\right] . \tag{3}
\end{equation*}
$$

Let $b_{n}:=\max \left\{(\bar{b}, \nu): \nu \in X^{n}\right\}$. Then it can be shown using (3) that b_{n} satisfies the following recursive formula

$$
\begin{equation*}
b_{n}=M_{c} \sum_{i=0}^{n-2} b_{i} m K_{d} M_{d}^{(n-i-1)}(n-i-1)!\binom{n}{i}+b_{n-1} M_{c}\left(1+m K_{d}\right) n \tag{4}
\end{equation*}
$$

$n \geq 2$, where $b_{0}=K_{c}$ and $b_{1}=K_{c} M_{c}\left(1+m K_{d}\right)$.
Remark: When all the growth constants and m are unity, $b_{n}, n \geq 0$ is the integer sequence shown in Table 1.

Table 1: Sequence satisfying (4) with all constants set to unity

sequence	OEIS number	$n=0,1,2, \ldots$
b_{n}	A052820	$1,2,9,62,572,6604,91526, \ldots$

It is easily verified that the sequence $b_{n}, n \geq 0$ has the exponential generating function

$$
f\left(x_{0}\right)=\frac{K_{c}}{1-M_{c} x_{0}+\left(m M_{c} K_{d} / M_{d}\right) \ln \left(1-M_{d} x_{0}\right)} .
$$

Since f is analytic at $z_{0}=0$, by Theorem 2 the smallest geometric growth constant is $M_{b}=1 /\left|x_{0}^{\prime}\right|$, where x_{0}^{\prime} is the singularity nearest to the origin

$$
x_{0}^{\prime}=\frac{1}{M_{d}}\left[1-m K_{d} W\left(\frac{1}{m K_{d}} \exp \left(\frac{M_{c}-M_{d}}{m M_{c} K_{d}}\right)\right)\right] .
$$

Thus, the lemma is proved.

Remark: The proof of Theorem 3 follows directly from Lemmas 1 and 2.

Theorem 4: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$. Let $c \in \mathbb{R}_{G C}^{\ell}\langle\langle X\rangle\rangle$ and $d \in \mathbb{R}_{G C}^{m}\langle\langle X\rangle\rangle$ with growth constants $K_{c}, M_{c}>0$ and $K_{d}, M_{d}>0$, respectively. Assume \bar{c} and \bar{d} are globally maximal series with growth constants $K_{c}, M_{c}>0$ and $K_{d}, M_{d}>0$, respectively. If $b=c \circ d$ and $\bar{b}=\bar{c} \circ \bar{d}$ then

$$
|(b, \nu)| \leq\left(\bar{b}_{i}, x_{0}^{|\nu|}\right), \nu \in X^{*}, i=1,2, \ldots, \ell
$$

where the sequence $\left(\bar{b}_{i}, x_{0}^{k}\right), k \geq 0$ has the exponential generating function

$$
f\left(x_{0}\right)=K_{c} \exp \left(\frac{m K_{d} \exp \left(M_{d} x_{0}\right)+M_{d} x_{0}-m K_{d}}{M_{d} / M_{c}}\right) .
$$

Therefore, the radius of convergence is infinity.

Remark: Consistent with the known fact that global convergence is not preserved under the cascade connection.

3.2 Self-excited Feedback Connection

Theorem 5: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ and $c \in \mathbb{R}_{L C}^{m}\langle\langle X\rangle\rangle$ with growth constants $K_{c}, M_{c}>0$. If $e \in \mathbb{R}_{L C}^{m}\left\langle\left\langle X_{0}\right\rangle\right\rangle$ satisfies $e=c \circ e$ then

$$
\left|\left(e, x_{0}^{n}\right)\right| \leq K_{e}\left(\mathcal{A}\left(K_{c}\right) M_{c}\right)^{n} n!, \quad n \geq 0
$$

for some $K_{e}>0$ and

$$
\mathcal{A}\left(K_{c}\right)=\frac{1}{1-m K_{c} \ln \left(1+1 / m K_{c}\right)} .
$$

Furthermore, no smaller geometric growth constant can satisfy the inequality above.

Two lemmas are needed for the proof of Theorem 5. The following lemma is proved by induction.

Lemma 3: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$. Suppose $c, \bar{c} \in \mathbb{R}_{L C}^{m}\langle\langle X\rangle\rangle$ have growth constants $K_{c}, M_{c}>0$, where \bar{c} is locally maximal. If $e, \bar{e} \in \mathbb{R}^{m}\left\langle\left\langle X_{0}\right\rangle\right\rangle$ satisfy, respectively, $e=c \circ e$ and $\bar{e}=\bar{c} \circ \bar{e}$ then $\left|e_{i}\right| \leq \bar{e}_{i}$, $i=1,2, \ldots, m$.

Remark: Therefore, the radius of convergence of this interconnection is determined by \bar{e}.

Lemma 4: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$. Suppose $\bar{c} \in \mathbb{R}_{L C}^{m}\langle\langle X\rangle\rangle$ is a locally maximal series with growth constants $K_{c}, M_{c}>0$. Then each component of the solution $\bar{e} \in \mathbb{R}_{L C}^{m}\left\langle\left\langle X_{0}\right\rangle\right\rangle$ of the self-excited unity feedback equation $\bar{e}=\bar{c} \circ \bar{e}$ has the exponential generating function

$$
f\left(x_{0}\right)=\frac{-1}{m\left[1+W\left(-\frac{1+m K_{c}}{m K_{c}} \exp \left[\frac{M_{c} x_{0}-\left(1+m K_{c}\right)}{m K_{c}}\right]\right)\right]} .
$$

In addition, the smallest possible geometric growth constant for \bar{e} is

$$
M_{e}=\frac{M_{c}}{1-m K_{c} \ln \left(1+1 / m K_{c}\right)} .
$$

Proof of Lemma 4 (outline): It is not hard to show that \bar{e} has the following realization

$$
\begin{aligned}
\dot{z} & =\frac{M_{c}}{K_{c}}\left(z^{2}+z^{3}\right), \quad z(0)=K_{c} \\
y & =z .
\end{aligned}
$$

Thus,

$$
z(t)=\frac{-1}{m\left[1+W\left(-\frac{1+m K_{c}}{m K_{c}} \exp \left[\frac{M_{c} t-\left(1+m K_{c}\right)}{m K_{c}}\right]\right)\right]}
$$

However, z is the exponential generating function of the sequence $\left(\bar{e}, x_{0}^{n}\right)$, $n \geq 0$. Therefore, the smallest geometric constant is given by

$$
M_{e}=\frac{M_{c}}{1-m K_{c} \ln \left(1+1 / m K_{c}\right)} .
$$

Thus, the lemma is proved.
Remark: The proof of Theorem 5 follows directly from lemmas 3 and 4.

Theorem 6: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ and $c \in \mathbb{R}_{G C}^{m}\langle\langle X\rangle\rangle$ with growth constants $K_{c}, M_{c}>0$. If $e \in \mathbb{R}^{m}\left\langle\left\langle X_{0}\right\rangle\right\rangle$ satisfies $e=c \circ e$ then

$$
\begin{equation*}
\left|\left(e, x_{0}^{n}\right)\right| \leq K_{e}\left(\mathcal{B}\left(K_{c}\right) M_{c}\right)^{n} n!, \quad n \geq 0 \tag{5}
\end{equation*}
$$

for some $K_{e}>0$ and

$$
\mathcal{B}\left(K_{c}\right)=\frac{1}{\ln \left(1+1 / m K_{c}\right)} .
$$

Furthermore, no geometric growth constant smaller than $\mathcal{B}\left(K_{c}\right) M_{c}$ can satisfy (5), and thus the radius of convergence is $1 /\left(\mathcal{B}\left(K_{c}\right) M_{c}\right)$.

Remark: Consistent with the known fact that global convergence is not preserved under the self-excited feedback connection.

Remark: The growth functions in Theorems 5 and 6 have series expansion about $K_{c}=\infty$:

$$
\begin{aligned}
\text { local case: } \mathcal{A}\left(K_{c}\right) & =\frac{4}{3}+2 K_{c}+O\left(\frac{1}{K_{c}}\right) \\
\text { global case: } \mathcal{B}\left(K_{c}\right) & =\frac{1}{2}+K_{c}+O\left(\frac{1}{K_{c}}\right) .
\end{aligned}
$$

Thus, the radius of convergence for the global case is about twice that for the local case when $K_{c} \gg 0$.

3.3 The Unity Feedback Connection

Theorem 7: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ and $c \in \mathbb{R}_{L C}^{m}\langle\langle X\rangle\rangle$ with growth constants $K_{c}, M_{c}>0$. If $e \in \mathbb{R}^{m}\langle\langle X\rangle\rangle$ satisfies $e=c o ̃ e ~ t h e n ~$

$$
\begin{equation*}
|(e, \eta)| \leq K_{e}\left(\mathcal{A}\left(K_{c}\right) M_{c}\right)^{|\eta|}|\eta|!, \quad \eta \in X^{*} \tag{6}
\end{equation*}
$$

for some $K_{e}>0$, where

$$
\mathcal{A}\left(K_{c}\right)=\frac{1}{1-m K_{c} \ln \left(1+1 / m K_{c}\right)} .
$$

Furthermore, no smaller geometric growth constant can satisfy the inequality above.

First the following lemma can be proven by an inductive argument.

Lemma 5: Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$. Suppose $c, \bar{c} \in \mathbb{R}_{L C}^{m}\langle\langle X\rangle\rangle$ have growth constants $K_{c}, M_{c}>0$, where \bar{c} is locally maximal. If e, \bar{e} satisfy, respectively, $e=c \tilde{o} e$ and $\bar{e}=\bar{c} \tilde{o} \bar{e}$ then $\left|e_{i}\right| \leq \bar{e}_{i}, i=1,2, \ldots, m$.

Proof of Theorem 7 (outline): The proof has the following steps:

1. The Fliess operator $F_{\bar{e}}$ is shown to have the realization

$$
\begin{aligned}
\dot{z} & =\frac{M_{c}}{K_{c}}\left(z^{2}+m z^{3}+z^{2} \sum_{i=1}^{m} u_{i}\right), \quad z(0)=K_{c}, \\
y & =z .
\end{aligned}
$$

2. The coefficients of \bar{e} can be computed by taking the Lie derivatives of $h(z)=z$ with respect to the vector fields

$$
\begin{aligned}
g_{0}(z) & =\frac{M_{c}}{K_{c}}\left(z^{2}+m z^{3}\right) \\
g_{i}(z) & =\frac{M_{c}}{K_{c}} z^{2}, \quad i=1,2, \ldots, m
\end{aligned}
$$

That is,

$$
(\bar{e}, \eta)=L_{g_{\eta}} h\left(z_{0}\right), \quad \eta \in X^{*} .
$$

3. The series \bar{e} has coefficients satisfying

$$
0<(\bar{e}, \eta) \leq\left(\bar{e}, x_{0}^{|\eta|}\right), \quad \eta \in X^{*}
$$

4. The growth rate of $\left(\bar{e}, x_{0}^{|\eta|}\right)$ is obtained by Theorem 4. Thus, the result follows.

Example 1: Suppose e satisfies $e=c \circ e$ with $c=\sum_{\eta \in X^{*}}|\eta|$! η. Clearly c is an exchangeable locally convergent series with $K_{c}=M_{c}=1$. Therefore, $M_{e}=1 /(1-\ln (2))$.

This self-excited unity feedback system has state space model

$$
\begin{aligned}
\dot{z} & =z^{2}(1+z), \quad z(0)=1 \\
y & =z
\end{aligned}
$$

Remark: The singularity nearest to the origin of the generating function formed by the self-excited feedback connection of a maximal series is real and positive. Therefore, a finite escape time is observed.

The finite escape time should be $t_{e s c}=1 / M_{e}=1-\ln (2) \approx 0.3069$.

RPCCT 2011 Workshop

Fig. 2: The output of the self-excited loop in Example 1.

4. Conclusions and Future Research

- The radius of convergence for the cascade, self-excited feedback and unity feedback connections of two convergent Fliess operators were computed.
- It was found that the Lambert-W function plays a central role in computing the radii of convergence for these connections. This suggests some relationship to the combinatorics of rooted nonplanar labeled trees (Corless, 1996; Flajolet and Sedgewick, 2009).
- Perhaps this might provide a more natural combinatoric interpretation of the composition and feedback products of formal power series.

