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1. Introduction

• For each c ∈ R
`〈〈X〉〉, one can associate an m-input, `-output

operator Fc in the following manner:

I With t0, T ∈ R fixed and T > 0, define recursively for each

η ∈ X∗ the mapping Eη : Lm
1 [t0, t0 + T ] → C[t0, t0 + T ] by

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where E∅ = 1, xi ∈ X, η̄ ∈ X∗ and u0(t) ≡ 1.

I The input-output operator corresponding to c is the Fliess

operator

y = Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0).
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• If there exist real numbers Kc,Mc > 0 such that

|(c, η)| ≤ KcM
|η|
c |η|!, ∀ η ∈ X∗, (1)

where |η| denotes the number of symbols in η, then c is said to be

locally convergent. The set of all such series is denoted by R
`
LC〈〈X〉〉.

• If c ∈ R
`
LC〈〈X〉〉 then

Fc : Bm
p (R)[t0, t0 + T ] → B`

q(S)[t0, t0 + T ]

for sufficiently small R,T > 0, where the numbers p, q ∈ [1,∞] are

conjugate exponents, i.e., 1/p+ 1/q = 1 (Gray and Wang, 2002).

• In particular, when p = 1, the series defining y = Fc[u] converges

provided

max{R,T} <
1

Mc(m+ 1)

• Let π : R`
LC〈〈X〉〉 → R

+ take c to the smallest possible geometric

growth constant Mc satisfying (1).
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• In this case, R`
LC〈〈X〉〉 can be partitioned into equivalence classes,

and the number 1/Mc(m+ 1) will be referred to as the radius of

convergence for the class π−1(Mc).

• For example, c =
∑

n≥0 KcM
n
c n!x

n
1 , c̄ =

∑

η∈X∗ KcM
|η|
c |η|! η are in

the same equivalence class.

• This definition is in contrast to the usual situation where a radius of

convergence is assigned to individual series.

• In practice, it is not difficult to estimate the minimal Mc for many

series, in which case, the radius of convergence for π−1(Mc) can be

easily computed.

• If there exist real numbers Kc,Mc > 0 such that

|(c, η)| ≤ KcM
|η|
c , ∀ η ∈ X∗,

then c is said to be globally convergent. The set of all such series is

denoted by R
`
GC〈〈X〉〉.
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Fig. 1 The cascade and feedback interconnections
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• It is known that the cascade connection of two locally convergent

Fliess operators always yields another locally convergent Fliess

operator (Gray and Li, 2005).

• Every self-excited feedback interconnection (u = 0) of two locally

convergent Fliess operators has a locally convergent Fliess operator

representation (Gray and Li, 2005).

• Lower bounds on the radius of convergence were given by Gray and

Li (2005) for the cascade and self-excited feedback connections.
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Problem Statement

Compute the radius of convergence of the

• cascade

• self-excited feedback

• and unity feedback interconnection

of two input-output systems represented as locally convergent Fliess

operators.

Remarks:

• The Lambert W-function plays the key role throughout the

computations.

• The unity feedback system has the same generating series as the Faa

di Bruno compositional inverse, i.e., c@δ = (−c)−1.
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2. Mathematical Preliminaries

Definition 1: (Fliess, 1981) A series c ∈ R
`〈〈X〉〉 is said to be

exchangeable if for arbitrary η, ξ ∈ X∗

|η|
xi

= |ξ|
xi

, i = 0, 1, . . . ,m ⇒ (c, η) = (c, ξ).

Theorem 1: If c ∈ R
`〈〈X〉〉 is an exchangeable series and d ∈ R

m〈〈X〉〉

is arbitrary then the composition product can be written in the form

c ◦ d =

∞
∑

k=0

∑

r0,...,rm≥0

r0+···+rm=k

(c, xr0
0 · · ·xrm

m )Dr0
x0
(1) tt · · · tt Drm

xm
(1).
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Definition 2: A series c̄ ∈ R
`
LC〈〈X〉〉 is said to be a locally maximal

series with growth constants Kc,Mc > 0 if each component of (c̄, η) is

KcM
|η|
c |η|!, η ∈ X∗. An analougus definition holds when c̄ ∈ R

`
GC〈〈X〉〉.

Theorem 2: (Wilf, 1994) Let f(z) =
∑

n≥0 an/n! z
n be analytic in some

neighborhood of the origin in the complex plane. Suppose a singularity

of f(z) of smallest modulus be at a point z0 6= 0, and let ε > 0 be given.

Then there exists N such that for all n > N ,

|an| < (1/|z0|+ ε)n n!.

Furthermore, for infinitely many n,

|an| > (1/|z0| − ε)n n!.
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3. Radius of Convergence

3.1 The Cascade Connection

Theorem 3: Let X = {x0, x1, . . . , xm}. Let c ∈ R
`
LC〈〈X〉〉 and

d ∈ R
m
LC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0,

respectively. If b = c ◦ d then

|(b, ν)| ≤ KbM
|ν|
b |ν|!, ν ∈ X∗ (2)

for some Kb > 0, where

Mb =
Md

1−mKdW
(

1
mKd

exp
(

Mc−Md

mMcKd

)) ,

where W denotes the Lambert W -function, namely, the inverse of the

function

g(W ) = W exp(W ).

Furthermore, no smaller geometric growth constant can satisfy (2).
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Two lemmas are needed for the proof of Theorem 3. The following

lemma can be proved inductively.

Lemma 1: Let X = {x0, x1, . . . , xm} and c, d ∈ R
`〈〈X〉〉 such that

|c| ≤ d, where |c| :=
∑

η∈X∗ |(c, η)| η. Then for any fixed ξ ∈ X∗ it

follows that |ξ ◦ c| ≤ ξ ◦ d.

Remark: If c̄ and d̄ are maximal series with growth constants Kc,Mc

and Kd,Md, respectively, it can be shown through the left linearity of

the composition product and Lemma 1 that |c ◦ d| ≤ c̄ ◦ d̄.
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Lemma 2: Let X = {x0, x1, . . . , xm}. Let c̄ ∈ R
`
LC〈〈X〉〉 and

d̄ ∈ R
m
LC〈〈X〉〉 be locally maximal series with growth constants

Kc,Mc > 0 and Kd,Md > 0, respectively. If b̄ = c̄ ◦ d̄, then the sequence

(b̄i, x
k
0), k ≥ 0 has the exponential generating function

f(x0) =
Kc

1−Mcx0 + (mMcKd/Md) ln(1−Mdx0)

for any i = 1, 2, . . . , `. Moreover, the smallest possible geometric growth

constant for b̄ is

Mb =
Md

1−mKdW
(

1
mKd

exp
(

Mc−Md

mMcKd

)) .
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Proof of Lemma 2 (outline): There is no loss of generality in

assuming ` = 1. First observe that c̄ is exchangeable, and thus, from

Theorem 1 it follows that

b̄ =

∞
∑

k=0

KcM
k
c

∑

r0,...,rm≥0

r0+···+rm=k

k!
x tt r0
0

r0!
tt . . . tt

(xm ◦ d̄) tt rm

rm!

=
∞
∑

k=0

Kc

(

Mc(x0 +mx0d̄1)
) tt k

,

from which the following shuffle equation is obtained

b̄ = Kc +Mc[b̄ tt (x0 +mx0d̄1)]. (3)
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Let bn := max{(b̄, ν) : ν ∈ Xn}. Then it can be shown using (3) that bn

satisfies the following recursive formula

bn = Mc

n−2
∑

i=0

bimKdM
(n−i−1)
d (n− i− 1)!

(

n

i

)

+ bn−1Mc(1+mKd)n, (4)

n ≥ 2, where b0 = Kc and b1 = KcMc(1 +mKd).

Remark: When all the growth constants and m are unity, bn, n ≥ 0 is

the integer sequence shown in Table 1.

Table 1: Sequence satisfying (4) with all constants set to unity

sequence OEIS number n = 0, 1, 2, . . .

bn A052820 1, 2, 9, 62, 572, 6604, 91526, . . .

15



RPCCT 2011 Workshop

It is easily verified that the sequence bn, n ≥ 0 has the exponential

generating function

f(x0) =
Kc

1−Mcx0 + (mMcKd/Md) ln(1−Mdx0)
.

Since f is analytic at z0 = 0, by Theorem 2 the smallest geometric

growth constant is Mb = 1/|x′
0|, where x′

0 is the singularity nearest to

the origin

x′
0 =

1

Md

[

1−mKdW

(

1

mKd

exp

(

Mc −Md

mMcKd

))]

.

Thus, the lemma is proved.

Remark: The proof of Theorem 3 follows directly from Lemmas 1 and

2.
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Theorem 4: Let X = {x0, x1, . . . , xm}. Let c ∈ R
`
GC〈〈X〉〉 and

d ∈ R
m
GC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0,

respectively. Assume c̄ and d̄ are globally maximal series with growth

constants Kc,Mc > 0 and Kd,Md > 0, respectively . If b = c ◦ d and

b̄ = c̄ ◦ d̄ then

|(b, ν)| ≤ (b̄i, x
|ν|
0 ), ν ∈ X∗, i = 1, 2, . . . , `,

where the sequence (b̄i, x
k
0), k ≥ 0 has the exponential generating

function

f(x0) = Kc exp

(

mKd exp(Mdx0) +Mdx0 −mKd

Md/Mc

)

.

Therefore, the radius of convergence is infinity.

Remark: Consistent with the known fact that global convergence is not

preserved under the cascade connection.
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3.2 Self-excited Feedback Connection

Theorem 5: Let X = {x0, x1, . . . , xm} and c ∈ R
m
LC〈〈X〉〉 with growth

constants Kc,Mc > 0. If e ∈ R
m
LC〈〈X0〉〉 satisfies e = c ◦ e then

|(e, xn
0 )| ≤ Ke (A(Kc)Mc)

n n!, n ≥ 0,

for some Ke > 0 and

A(Kc) =
1

1−mKc ln (1 + 1/mKc)
.

Furthermore, no smaller geometric growth constant can satisfy the

inequality above.
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Two lemmas are needed for the proof of Theorem 5. The following

lemma is proved by induction.

Lemma 3: Let X = {x0, x1, . . . , xm}. Suppose c, c̄ ∈ R
m
LC〈〈X〉〉 have

growth constants Kc,Mc > 0, where c̄ is locally maximal. If

e, ē ∈ R
m〈〈X0〉〉 satisfy, respectively, e = c ◦ e and ē = c̄ ◦ ē then |ei| ≤ ēi,

i = 1, 2, . . . ,m.

Remark: Therefore, the radius of convergence of this interconnection is

determined by ē.
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Lemma 4: Let X = {x0, x1, . . . , xm}. Suppose c̄ ∈ R
m
LC〈〈X〉〉 is a

locally maximal series with growth constants Kc,Mc > 0. Then each

component of the solution ē ∈ R
m
LC〈〈X0〉〉 of the self-excited unity

feedback equation ē = c̄ ◦ ē has the exponential generating function

f(x0) =
−1

m
[

1 +W
(

− 1+mKc

mKc
exp

[

Mcx0−(1+mKc)
mKc

])] .

In addition, the smallest possible geometric growth constant for ē is

Me =
Mc

1−mKc ln(1 + 1/mKc)
.

20



RPCCT 2011 Workshop

Proof of Lemma 4 (outline): It is not hard to show that ē has the

following realization

ż =
Mc

Kc

(z2 + z3), z(0) = Kc

y = z.

Thus,

z(t) =
−1

m
[

1 +W
(

− 1+mKc

mKc
exp

[

Mct−(1+mKc)
mKc

])] .

However, z is the exponential generating function of the sequence (ē, xn
0 ),

n ≥ 0. Therefore, the smallest geometric constant is given by

Me =
Mc

1−mKc ln(1 + 1/mKc)
.

Thus, the lemma is proved.

Remark: The proof of Theorem 5 follows directly from lemmas 3 and 4.
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Theorem 6: Let X = {x0, x1, . . . , xm} and c ∈ R
m
GC〈〈X〉〉 with growth

constants Kc,Mc > 0. If e ∈ R
m〈〈X0〉〉 satisfies e = c ◦ e then

|(e, xn
0 )| ≤ Ke (B(Kc)Mc)

n n!, n ≥ 0, (5)

for some Ke > 0 and

B(Kc) =
1

ln (1 + 1/mKc)
.

Furthermore, no geometric growth constant smaller than B(Kc)Mc can

satisfy (5), and thus the radius of convergence is 1/(B(Kc)Mc).

Remark: Consistent with the known fact that global convergence is not

preserved under the self-excited feedback connection.
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Remark: The growth functions in Theorems 5 and 6 have series

expansion about Kc = ∞:

local case : A(Kc) =
4

3
+ 2Kc +O

(

1

Kc

)

global case : B(Kc) =
1

2
+Kc +O

(

1

Kc

)

.

Thus, the radius of convergence for the global case is about twice that

for the local case when Kc � 0.
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3.3 The Unity Feedback Connection

Theorem 7: Let X = {x0, x1, . . . , xm} and c ∈ R
m
LC〈〈X〉〉 with growth

constants Kc,Mc > 0. If e ∈ R
m〈〈X〉〉 satisfies e = c◦̃e then

|(e, η)| ≤ Ke(A(Kc)Mc)
|η||η|!, η ∈ X∗, (6)

for some Ke > 0, where

A(Kc) =
1

1−mKc ln (1 + 1/mKc)
.

Furthermore, no smaller geometric growth constant can satisfy the

inequality above.
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First the following lemma can be proven by an inductive argument.

Lemma 5: Let X = {x0, x1, . . . , xm}. Suppose c, c̄ ∈ R
m
LC〈〈X〉〉 have

growth constants Kc,Mc > 0, where c̄ is locally maximal. If e, ē satisfy,

respectively, e = c◦̃e and ē = c̄◦̃ē then |ei| ≤ ēi, i = 1, 2, . . . ,m.

Proof of Theorem 7 (outline): The proof has the following steps:

1. The Fliess operator Fē is shown to have the realization

ż =
Mc

Kc

(

z2 +mz3 + z2
m
∑

i=1

ui

)

, z(0) = Kc,

y = z.
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2. The coefficients of ē can be computed by taking the Lie derivatives of

h(z) = z with respect to the vector fields

g0(z) =
Mc

Kc

(z2 +mz3)

gi(z) =
Mc

Kc

z2, i = 1, 2, . . . ,m,

That is,

(ē, η) = Lgηh(z0), η ∈ X∗.

3. The series ē has coefficients satisfying

0 < (ē, η) ≤
(

ē, x
|η|
0

)

, η ∈ X∗.

4. The growth rate of (ē, x
|η|
0 ) is obtained by Theorem 4. Thus, the

result follows.
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Example 1: Suppose e satisfies e = c ◦ e with c =
∑

η∈X∗ |η|! η. Clearly

c is an exchangeable locally convergent series with Kc = Mc = 1.

Therefore, Me = 1/(1− ln(2)).

This self-excited unity feedback system has state space model

ż = z2(1 + z), z(0) = 1

y = z.

Remark: The singularity nearest to the origin of the generating

function formed by the self-excited feedback connection of a maximal

series is real and positive. Therefore, a finite escape time is observed.

The finite escape time should be tesc = 1/Me = 1− ln(2) ≈ 0.3069.
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Fig. 2: The output of the self-excited loop in Example 1.
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4. Conclusions and Future Research

• The radius of convergence for the cascade, self-excited feedback and

unity feedback connections of two convergent Fliess operators were

computed.

• It was found that the Lambert-W function plays a central role in

computing the radii of convergence for these connections. This

suggests some relationship to the combinatorics of rooted nonplanar

labeled trees (Corless, 1996; Flajolet and Sedgewick, 2009).

• Perhaps this might provide a more natural combinatoric

interpretation of the composition and feedback products of formal

power series.
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