On the Radius of Convergence of Interconnected Analytic Nonlinear Systems^{*}

Makhin Thitsa

Department of Electrical and Computer Engineering Old Dominion University Norfolk, Virginia USA

> RPCCT 2011 San Diego, California

*This research is funded in part by the NSF grant DMS 0960589

$\mathbf{Overview}^*$

- **1.** Introduction
- **2.** Mathematical Preliminaries
- **3.** Radius of Convergence
 - **3.1** The Cascade Connection
 - **3.2** The Self-excited Feedback Connection
 - **3.3** The Unity Feedback Connection
- 4. Conclusions and Future Research

 *See www.ece.odu.edu/ \sim sgray/RPCCT2011/thitsaslides.pdf

1. Introduction

- For each $c \in \mathbb{R}^{\ell} \langle \langle X \rangle \rangle$, one can associate an *m*-input, ℓ -output operator F_c in the following manner:
 - ▶ With $t_0, T \in \mathbb{R}$ fixed and T > 0, define recursively for each $\eta \in X^*$ the mapping $E_\eta : L_1^m[t_0, t_0 + T] \to \mathcal{C}[t_0, t_0 + T]$ by

$$E_{x_i\bar{\eta}}[u](t,t_0) = \int_{t_0}^t u_i(\tau) E_{\bar{\eta}}[u](\tau,t_0) \, d\tau,$$

where $E_{\emptyset} = 1, x_i \in X, \ \bar{\eta} \in X^*$ and $u_0(t) \equiv 1$.

► The input-output operator corresponding to *c* is the Fliess operator

$$y = F_c[u](t) = \sum_{\eta \in X^*} (c, \eta) E_{\eta}[u](t, t_0).$$

• If there exist real numbers $K_c, M_c > 0$ such that

$$|(c,\eta)| \leq K_c M_c^{|\eta|} |\eta|!, \quad \forall \eta \in X^*,$$
(1)

where |η| denotes the number of symbols in η, then c is said to be locally convergent. The set of all such series is denoted by ℝ^ℓ_{LC} ⟨⟨X⟩⟩.
If c ∈ ℝ^ℓ_{LC} ⟨⟨X⟩⟩ then

$$F_c: B^m_{\mathfrak{p}}(R)[t_0, t_0 + T] \to B^\ell_{\mathfrak{q}}(S)[t_0, t_0 + T]$$

for sufficiently small R, T > 0, where the numbers $\mathfrak{p}, \mathfrak{q} \in [1, \infty]$ are conjugate exponents, i.e., $1/\mathfrak{p} + 1/\mathfrak{q} = 1$ (Gray and Wang, 2002).

• In particular, when $\mathfrak{p} = 1$, the series defining $y = F_c[u]$ converges provided

$$\max\{R,T\} < \frac{1}{M_c(m+1)}$$

• Let $\pi : \mathbb{R}_{LC}^{\ell} \langle \langle X \rangle \rangle \to \mathbb{R}^+$ take *c* to the smallest possible geometric growth constant M_c satisfying (1).

- In this case, $\mathbb{R}_{LC}^{\ell}\langle\langle X\rangle\rangle$ can be partitioned into equivalence classes, and the number $1/M_c(m+1)$ will be referred to as the radius of convergence for the class $\pi^{-1}(M_c)$.
- For example, $c = \sum_{n \ge 0} K_c M_c^n n! x_1^n$, $\bar{c} = \sum_{\eta \in X^*} K_c M_c^{|\eta|} |\eta|! \eta$ are in the same equivalence class.
- This definition is in contrast to the usual situation where a radius of convergence is assigned to individual series.
- In practice, it is not difficult to estimate the minimal M_c for many series, in which case, the radius of convergence for $\pi^{-1}(M_c)$ can be easily computed.
- If there exist real numbers $K_c, M_c > 0$ such that

$$|(c,\eta)| \leq K_c M_c^{|\eta|}, \ \forall \eta \in X^*,$$

then c is said to be globally convergent. The set of all such series is denoted by $\mathbb{R}^{\ell}_{GC}\langle\langle X \rangle\rangle$.

(a) cascade connection

(b) feedback connection

Fig. 1 The cascade and feedback interconnections

- It is known that the cascade connection of two locally convergent Fliess operators always yields another locally convergent Fliess operator (Gray and Li, 2005).
- Every self-excited feedback interconnection (u = 0) of two locally convergent Fliess operators has a locally convergent Fliess operator representation (Gray and Li, 2005).
- Lower bounds on the radius of convergence were given by Gray and Li (2005) for the cascade and self-excited feedback connections.

Problem Statement

Compute the radius of convergence of the

- cascade
- self-excited feedback
- and unity feedback interconnection

of two input-output systems represented as locally convergent Fliess operators.

Remarks:

- The Lambert W-function plays the key role throughout the computations.
- The unity feedback system has the same generating series as the Faa di Bruno compositional inverse, i.e., $c @ \delta = (-c)^{-1}$.

2. Mathematical Preliminaries

Definition 1: (Fliess, 1981) A series $c \in \mathbb{R}^{\ell} \langle \langle X \rangle \rangle$ is said to be exchangeable if for arbitrary $\eta, \xi \in X^*$

$$|\eta|_{x_i} = |\xi|_{x_i}, \ i = 0, 1, \dots, m \quad \Rightarrow \quad (c, \eta) = (c, \xi).$$

Theorem 1: If $c \in \mathbb{R}^{\ell} \langle \langle X \rangle \rangle$ is an exchangeable series and $d \in \mathbb{R}^m \langle \langle X \rangle \rangle$ is arbitrary then the composition product can be written in the form

$$c \circ d = \sum_{k=0}^{\infty} \sum_{\substack{r_0, \dots, r_m \ge 0 \\ r_0 + \dots + r_m = k}} (c, x_0^{r_0} \cdots x_m^{r_m}) D_{x_0}^{r_0}(1) \sqcup \cdots \sqcup D_{x_m}^{r_m}(1).$$

Definition 2: A series $\bar{c} \in \mathbb{R}_{LC}^{\ell} \langle \langle X \rangle \rangle$ is said to be a locally maximal series with growth constants $K_c, M_c > 0$ if each component of (\bar{c}, η) is $K_c M_c^{|\eta|} |\eta|!, \eta \in X^*$. An analougus definition holds when $\bar{c} \in \mathbb{R}_{GC}^{\ell} \langle \langle X \rangle \rangle$.

Theorem 2: (Wilf, 1994) Let $f(z) = \sum_{n\geq 0} a_n/n! z^n$ be analytic in some neighborhood of the origin in the complex plane. Suppose a singularity of f(z) of smallest modulus be at a point $z_0 \neq 0$, and let $\epsilon > 0$ be given. Then there exists N such that for all n > N,

$$|a_n| < (1/|z_0| + \epsilon)^n n!.$$

Furthermore, for infinitely many n,

$$|a_n| > (1/|z_0| - \epsilon)^n n!.$$

3. Radius of Convergence

3.1 The Cascade Connection

Theorem 3: Let $X = \{x_0, x_1, \ldots, x_m\}$. Let $c \in \mathbb{R}_{LC}^{\ell} \langle \langle X \rangle \rangle$ and $d \in \mathbb{R}_{LC}^m \langle \langle X \rangle \rangle$ with growth constants $K_c, M_c > 0$ and $K_d, M_d > 0$, respectively. If $b = c \circ d$ then

$$|(b,\nu)| \le K_b M_b^{|\nu|} |\nu|!, \ \nu \in X^*$$
 (2)

for some $K_b > 0$, where

$$M_b = \frac{M_d}{1 - mK_d W\left(\frac{1}{mK_d} \exp\left(\frac{M_c - M_d}{mM_c K_d}\right)\right)},$$

where W denotes the Lambert $W\mbox{-}function,$ namely, the inverse of the function

$$g(W) = W \exp(W).$$

Furthermore, no smaller geometric growth constant can satisfy (2).

Two lemmas are needed for the proof of Theorem 3. The following lemma can be proved inductively.

Lemma 1: Let $X = \{x_0, x_1, \ldots, x_m\}$ and $c, d \in \mathbb{R}^{\ell} \langle \langle X \rangle \rangle$ such that $|c| \leq d$, where $|c| := \sum_{\eta \in X^*} |(c, \eta)| \eta$. Then for any fixed $\xi \in X^*$ it follows that $|\xi \circ c| \leq \xi \circ d$.

Remark: If \bar{c} and \bar{d} are maximal series with growth constants K_c, M_c and K_d, M_d , respectively, it can be shown through the left linearity of the composition product and Lemma 1 that $|c \circ d| \leq \bar{c} \circ \bar{d}$.

Lemma 2: Let $X = \{x_0, x_1, \ldots, x_m\}$. Let $\bar{c} \in \mathbb{R}_{LC}^{\ell} \langle \langle X \rangle \rangle$ and $\bar{d} \in \mathbb{R}_{LC}^m \langle \langle X \rangle \rangle$ be locally maximal series with growth constants $K_c, M_c > 0$ and $K_d, M_d > 0$, respectively. If $\bar{b} = \bar{c} \circ \bar{d}$, then the sequence $(\bar{b}_i, x_0^k), k \ge 0$ has the exponential generating function

$$f(x_0) = \frac{K_c}{1 - M_c x_0 + (m M_c K_d / M_d) \ln(1 - M_d x_0)}$$

for any $i = 1, 2, ..., \ell$. Moreover, the smallest possible geometric growth constant for \bar{b} is

$$M_b = \frac{M_d}{1 - mK_d W\left(\frac{1}{mK_d} \exp\left(\frac{M_c - M_d}{mM_c K_d}\right)\right)}.$$

Proof of Lemma 2 (outline): There is no loss of generality in assuming $\ell = 1$. First observe that \bar{c} is exchangeable, and thus, from Theorem 1 it follows that

$$\bar{b} = \sum_{k=0}^{\infty} K_c M_c^k \sum_{\substack{r_0, \dots, r_m \ge 0\\r_0 + \dots + r_m = k}} k! \frac{x_0^{\sqcup \sqcup r_0}}{r_0!} \sqcup \dots \sqcup \frac{(x_m \circ \bar{d})^{\sqcup \sqcup r_m}}{r_m!}$$
$$= \sum_{k=0}^{\infty} K_c \left(M_c (x_0 + mx_0 \bar{d}_1) \right)^{\sqcup \sqcup k},$$

from which the following shuffle equation is obtained

$$\bar{b} = K_c + M_c [\bar{b} \sqcup (x_0 + m x_0 \bar{d}_1)].$$
(3)

Let $b_n := \max\{(\bar{b}, \nu) : \nu \in X^n\}$. Then it can be shown using (3) that b_n satisfies the following recursive formula

$$b_n = M_c \sum_{i=0}^{n-2} b_i m K_d M_d^{(n-i-1)} (n-i-1)! \binom{n}{i} + b_{n-1} M_c (1+mK_d) n, \quad (4)$$

 $n \ge 2$, where $b_0 = K_c$ and $b_1 = K_c M_c (1 + mK_d)$.

Remark: When all the growth constants and m are unity, b_n , $n \ge 0$ is the integer sequence shown in Table 1.

Table 1: Sequence satisfying (4) with all constants set to unity

sequence	OEIS number	$n=0,1,2,\ldots$
b_n	A052820	$1, 2, 9, 62, 572, 6604, 91526, \ldots$

It is easily verified that the sequence $b_n, n \ge 0$ has the exponential generating function

$$f(x_0) = \frac{K_c}{1 - M_c x_0 + (m M_c K_d / M_d) \ln(1 - M_d x_0)}.$$

Since f is analytic at $z_0 = 0$, by Theorem 2 the smallest geometric growth constant is $M_b = 1/|x'_0|$, where x'_0 is the singularity nearest to the origin

$$x'_{0} = \frac{1}{M_{d}} \left[1 - mK_{d}W\left(\frac{1}{mK_{d}}\exp\left(\frac{M_{c} - M_{d}}{mM_{c}K_{d}}\right)\right) \right].$$

Thus, the lemma is proved.

Remark: The proof of Theorem 3 follows directly from Lemmas 1 and 2.

Theorem 4: Let $X = \{x_0, x_1, \ldots, x_m\}$. Let $c \in \mathbb{R}^{\ell}_{GC}\langle\langle X \rangle\rangle$ and $d \in \mathbb{R}^m_{GC}\langle\langle X \rangle\rangle$ with growth constants $K_c, M_c > 0$ and $K_d, M_d > 0$, respectively. Assume \bar{c} and \bar{d} are globally maximal series with growth constants $K_c, M_c > 0$ and $K_d, M_d > 0$, respectively. If $b = c \circ d$ and $\bar{b} = \bar{c} \circ \bar{d}$ then

$$|(b,\nu)| \le (\bar{b}_i, x_0^{|\nu|}), \ \nu \in X^*, \ i = 1, 2, \dots, \ell,$$

where the sequence $(\bar{b}_i, x_0^k), k \ge 0$ has the exponential generating function

$$f(x_0) = K_c \exp\left(\frac{mK_d \exp(M_d x_0) + M_d x_0 - mK_d}{M_d/M_c}\right).$$

Therefore, the radius of convergence is infinity.

Remark: Consistent with the known fact that global convergence is **not** preserved under the cascade connection.

3.2 Self-excited Feedback Connection

Theorem 5: Let $X = \{x_0, x_1, \ldots, x_m\}$ and $c \in \mathbb{R}_{LC}^m \langle \langle X \rangle \rangle$ with growth constants $K_c, M_c > 0$. If $e \in \mathbb{R}_{LC}^m \langle \langle X_0 \rangle \rangle$ satisfies $e = c \circ e$ then

 $|(e, x_0^n)| \le K_e \left(\mathcal{A}(K_c)M_c\right)^n n!, \ n \ge 0,$

for some $K_e > 0$ and

$$\mathcal{A}(K_c) = \frac{1}{1 - mK_c \ln\left(1 + 1/mK_c\right)}.$$

Furthermore, no smaller geometric growth constant can satisfy the inequality above.

Two lemmas are needed for the proof of Theorem 5. The following lemma is proved by induction.

Lemma 3: Let $X = \{x_0, x_1, \ldots, x_m\}$. Suppose $c, \bar{c} \in \mathbb{R}_{LC}^m \langle \langle X \rangle \rangle$ have growth constants $K_c, M_c > 0$, where \bar{c} is locally maximal. If $e, \bar{e} \in \mathbb{R}^m \langle \langle X_0 \rangle \rangle$ satisfy, respectively, $e = c \circ e$ and $\bar{e} = \bar{c} \circ \bar{e}$ then $|e_i| \leq \bar{e}_i$, $i = 1, 2, \ldots, m$.

Remark: Therefore, the radius of convergence of this interconnection is determined by \bar{e} .

Lemma 4: Let $X = \{x_0, x_1, \ldots, x_m\}$. Suppose $\bar{c} \in \mathbb{R}_{LC}^m \langle \langle X \rangle \rangle$ is a locally maximal series with growth constants $K_c, M_c > 0$. Then each component of the solution $\bar{e} \in \mathbb{R}_{LC}^m \langle \langle X_0 \rangle \rangle$ of the self-excited unity feedback equation $\bar{e} = \bar{c} \circ \bar{e}$ has the exponential generating function

$$f(x_0) = \frac{-1}{m\left[1 + W\left(-\frac{1+mK_c}{mK_c}\exp\left[\frac{M_c x_0 - (1+mK_c)}{mK_c}\right]\right)\right]}.$$

In addition, the smallest possible geometric growth constant for \bar{e} is

$$M_e = \frac{M_c}{1 - mK_c \ln(1 + 1/mK_c)}.$$

Proof of Lemma 4 (outline): It is not hard to show that \bar{e} has the following realization

$$\dot{z} = \frac{M_c}{K_c}(z^2 + z^3), \quad z(0) = K_c$$

$$y = z.$$

Thus,

$$z(t) = \frac{-1}{m\left[1 + W\left(-\frac{1+mK_c}{mK_c}\exp\left[\frac{M_ct - (1+mK_c)}{mK_c}\right]\right)\right]}.$$

However, z is the exponential generating function of the sequence (\bar{e}, x_0^n) , $n \ge 0$. Therefore, the smallest geometric constant is given by

$$M_e = \frac{M_c}{1 - mK_c \ln(1 + 1/mK_c)}$$

Thus, the lemma is proved.

Remark: The proof of Theorem 5 follows directly from lemmas 3 and 4.

Theorem 6: Let $X = \{x_0, x_1, \ldots, x_m\}$ and $c \in \mathbb{R}^m_{GC}\langle\langle X \rangle\rangle$ with growth constants $K_c, M_c > 0$. If $e \in \mathbb{R}^m \langle\langle X_0 \rangle\rangle$ satisfies $e = c \circ e$ then

$$|(e, x_0^n)| \le K_e \left(\mathcal{B}(K_c)M_c\right)^n n!, \ n \ge 0,$$
 (5)

for some $K_e > 0$ and

$$\mathcal{B}(K_c) = \frac{1}{\ln\left(1 + 1/mK_c\right)}.$$

Furthermore, no geometric growth constant smaller than $\mathcal{B}(K_c)M_c$ can satisfy (5), and thus the radius of convergence is $1/(\mathcal{B}(K_c)M_c)$.

Remark: Consistent with the known fact that global convergence is **not** preserved under the self-excited feedback connection.

Remark: The growth functions in Theorems 5 and 6 have series expansion about $K_c = \infty$:

local case:
$$\mathcal{A}(K_c) = \frac{4}{3} + 2K_c + O\left(\frac{1}{K_c}\right)$$

global case: $\mathcal{B}(K_c) = \frac{1}{2} + K_c + O\left(\frac{1}{K_c}\right)$.

Thus, the radius of convergence for the global case is about twice that for the local case when $K_c \gg 0$.

3.3 The Unity Feedback Connection

Theorem 7: Let $X = \{x_0, x_1, \ldots, x_m\}$ and $c \in \mathbb{R}_{LC}^m \langle \langle X \rangle \rangle$ with growth constants $K_c, M_c > 0$. If $e \in \mathbb{R}^m \langle \langle X \rangle \rangle$ satisfies $e = c \tilde{\circ} e$ then

$$|(e,\eta)| \le K_e (\mathcal{A}(K_c)M_c)^{|\eta|} |\eta|!, \quad \eta \in X^*, \tag{6}$$

for some $K_e > 0$, where

$$\mathcal{A}(K_c) = \frac{1}{1 - mK_c \ln\left(1 + 1/mK_c\right)}.$$

Furthermore, no smaller geometric growth constant can satisfy the inequality above.

First the following lemma can be proven by an inductive argument.

Lemma 5: Let $X = \{x_0, x_1, \ldots, x_m\}$. Suppose $c, \bar{c} \in \mathbb{R}_{LC}^m \langle \langle X \rangle \rangle$ have growth constants $K_c, M_c > 0$, where \bar{c} is locally maximal. If e, \bar{e} satisfy, respectively, $e = c \tilde{o} e$ and $\bar{e} = \bar{c} \tilde{o} \bar{e}$ then $|e_i| \leq \bar{e}_i, i = 1, 2, \ldots, m$.

Proof of Theorem 7 (outline): The proof has the following steps:

1. The Fliess operator $F_{\bar{e}}$ is shown to have the realization

$$\dot{z} = \frac{M_c}{K_c} \left(z^2 + mz^3 + z^2 \sum_{i=1}^m u_i \right), \quad z(0) = K_c,$$

$$y = z.$$

2. The coefficients of \bar{e} can be computed by taking the Lie derivatives of h(z) = z with respect to the vector fields

$$g_0(z) = \frac{M_c}{K_c} (z^2 + mz^3)$$

$$g_i(z) = \frac{M_c}{K_c} z^2, \quad i = 1, 2, ..., m,$$

That is,

$$(\bar{e},\eta) = L_{g_{\eta}}h(z_0), \ \eta \in X^*.$$

3. The series \bar{e} has coefficients satisfying

$$0 < (\bar{e}, \eta) \le \left(\bar{e}, x_0^{|\eta|}\right), \ \eta \in X^*.$$

4. The growth rate of $(\bar{e}, x_0^{|\eta|})$ is obtained by Theorem 4. Thus, the result follows.

Example 1: Suppose *e* satisfies $e = c \circ e$ with $c = \sum_{\eta \in X^*} |\eta|! \eta$. Clearly *c* is an exchangeable locally convergent series with $K_c = M_c = 1$. Therefore, $M_e = 1/(1 - \ln(2))$.

This self-excited unity feedback system has state space model

$$\dot{z} = z^2(1+z), \ z(0) = 1$$

 $y = z.$

Remark: The singularity nearest to the origin of the generating function formed by the self-excited feedback connection of a maximal series is real and positive. Therefore, a finite escape time is observed.

The finite escape time should be $t_{esc} = 1/M_e = 1 - \ln(2) \approx 0.3069$.

Fig. 2: The output of the self-excited loop in Example 1.

4. Conclusions and Future Research

- The radius of convergence for the cascade, self-excited feedback and unity feedback connections of two convergent Fliess operators were computed.
- It was found that the Lambert-W function plays a central role in computing the radii of convergence for these connections. This suggests some relationship to the combinatorics of rooted nonplanar labeled trees (Corless, 1996; Flajolet and Sedgewick, 2009).
- Perhaps this might provide a more natural combinatoric interpretation of the composition and feedback products of formal power series.