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Geometry and Numerical Methods

� Dynamical equations preserve structure

•Many continuous systems of interest have properties that are con-
served by the flow:

◦ Energy

◦ Symmetries, Reversibility, Monotonicity

◦Momentum - Angular, Linear, Kelvin Circulation Theorem.

◦ Symplectic Form

◦ Integrability

• At other times, the equations themselves are defined on a mani-
fold, such as a Lie group, or more general configuration manifold
of a mechanical system, and the discrete trajectory we compute
should remain on this manifold, since the equations may not be
well-defined off the surface.
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Motivation: Geometric Integration

� Main Goal of Geometric Integration:

Structure preservation in order to reproduce long time behavior.

� Role of Discrete Structure-Preservation:
Discrete conservation laws impart long time numerical stability
to computations, since the structure-preserving algorithm exactly
conserves a discrete quantity that is always close to the continuous
quantity we are interested in.
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Geometric Integration: Energy Stability

� Energy stability for symplectic integrators

Continuous energy
Isosurface

Discrete energy
Isosurface

Control on global error
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Geometric Integration: Energy Stability

� Energy behavior for conservative and dissipative systems
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Geometric Integration: Energy Stability

� Solar System Simulation

• Forward Euler

qk+1 = qk + hq̇(qk,pk),

pk+1 = pk + hṗ(qk,pk).

• Inverse Euler

qk+1 = qk + hq̇(qk+1,pk+1),

pk+1 = pk + hṗ(qk+1,pk+1).

• Symplectic Euler

qk+1 = qk + hq̇(qk,pk+1),

pk+1 = pk + hṗ(qk,pk+1).
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Geometric Integration: Energy Stability

� Forward Euler
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Geometric Integration: Energy Stability

� Inverse Euler
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Geometric Integration: Energy Stability

� Symplectic Euler
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Introduction to Computational Geometric Mechanics

� Geometric Mechanics

• Differential geometric and symmetry techniques applied to the
study of Lagrangian and Hamiltonian mechanics.

� Computational Geometric Mechanics

• Constructing computational algorithms using ideas from geometric
mechanics.

• Variational integrators based on discretizing Hamilton’s principle,
automatically symplectic and momentum preserving.
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Symplecticity in the Planar Pendulum188 VI. Symplectic Integration of Hamiltonian Systems
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Fig. 3.1. Area preservation of numerical methods for the pendulum; same initial sets as in
Fig. 2.2; first order methods (left column): h = π/4; second order methods (right column):
h = π/3; dashed: exact flow

Example 3.2. We consider the pendulum problem of Example 2.5 with the same
initial sets as in Fig. 2.2. We apply six different numerical methods to this problem:
the explicit Euler method (I.1.5), the symplectic Euler method (I.1.9), and the im-
plicit Euler method (I.1.6), as well as the second order method of Runge (II.1.3)
(the right one), the Störmer–Verlet scheme (I.1.17), and the implicit midpoint rule
(I.1.7). For two sets of initial values (p0, q0) we compute several steps with step size
h = π/4 for the first order methods, and h = π/3 for the second order methods.
One clearly observes in Fig. 3.1 that the explicit Euler, the implicit Euler and the
second order explicit method of Runge are not symplectic (not area preserving). We
shall prove below that the other methods are symplectic. A different proof of their
symplecticity (using generating functions) will be given in Sect. VI.5.

In the following we show the symplecticity of various numerical methods from
Chapters I and II when they are applied to the Hamiltonian system in the vari-
ables y = (p, q),

ṗ = −Hq(p, q)

q̇ = Hp(p, q)
or equivalently ẏ = J−1∇H(y),

where Hp and Hq denote the column vectors of partial derivatives of the Hamil-
tonian H(p, q) with respect to p and q, respectively.

Images courtesy of Hairer, Lubich, Wanner, Geometric Numerical Integration, 2nd Edition, Springer, 2006.
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Lagrangian Variational Integrators

� Discrete Variational Principle

q a(  )

q b(  )

dq t( )

Q

q t( ) varied curve

q0

qN

dqi

Q

qi varied point

•Discrete Lagrangian

Ld(q0, q1) ≈ Lexact
d (q0, q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt,

where q0,1(t) satisfies the Euler–Lagrange equations for L and the
boundary conditions q0,1(0) = q0, q0,1(h) = q1.

• This is related to Jacobi’s solution of the Hamilton–Jacobi
equation.
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Lagrangian Variational Integrators

� Discrete Variational Principle

•Discrete Hamilton’s principle

δSd = δ
∑

Ld(qk, qk+1) = 0,

where q0, qN are fixed.

� Discrete Euler–Lagrange Equations

•Discrete Euler-Lagrange equation

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0.

• The associated discrete flow (qk−1, qk) 7→ (qk, qk+1) is automati-
cally symplectic, since it is equivalent to,

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1),

which is the Type I generating function characterization of
a symplectic map.
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Lagrangian Variational Integrators

� Main Advantages of Variational Integrators

•Discrete Noether’s Theorem
If the discrete Lagrangian Ld is (infinitesimally) G-invariant under
the diagonal group action on Q×Q,

Ld(gq0, gq1) = Ld(q0, q1)

then the discrete momentum map Jd : Q×Q→ g∗,

〈Jd (qk, qk+1) , ξ〉 ≡
〈
D1Ld (qk, qk+1) , ξQ (qk)

〉
is preserved by the discrete flow.
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Lagrangian Variational Integrators

� Main Advantages of Variational Integrators

•Variational Error Analysis
Since the exact discrete Lagrangian generates the exact solution
of the Euler–Lagrange equation, the exact discrete flow map is
formally expressible in the setting of variational integrators.

• This is analogous to the situation for B-series methods, where the
exact flow can be expressed formally as a B-series.

• If a computable discrete Lagrangian Ld is of order r, i.e.,

Ld(q0, q1) = Lexact
d (q0, q1) +O(hr+1)

then the discrete Euler–Lagrange equations yield an order r accu-
rate symplectic integrator.
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Constructing Discrete Lagrangians

� Systematic Approaches

• The theory of variational error analysis suggests that one should
aim to construct computable approximations of the exact discrete
Lagrangian.

• There are two equivalent characterizations of the exact discrete
Lagrangian:

◦ Euler–Lagrange boundary-value problem characterization,

◦ Variational characterization,

which lead to two general classes of computable discrete Lagrangians:

◦ Shooting-based discrete Lagrangians.

◦ Galerkin discrete Lagrangians,
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Shooting-Based Variational Integrators

� Boundary-Value Problem Characterization of Lexact
d

• The classical characterization of the exact discrete Lagrangian is
Jacobi’s solution of the Hamilton–Jacobi equation, and is given by,

Lexact
d (q0, q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt,

where q0,1(t) satisfies the Euler–Lagrange boundary-value problem.

� Shooting-Based Discrete Lagrangians

• Replaces the solution of the Euler–Lagrange boundary-value prob-
lem with the shooting-based solution from a one-step method.

• Replace the integral with a numerical quadrature formula.
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Shooting-Based Variational Integrators

� Shooting-Based Discrete Lagrangian

• Consider a one-step method Ψh : TQ → TQ, and a numerical
quadrature formula∫ h

0
f (x)dx ≈ h

n∑
i=0

bif (x(cih)),

with quadrature weights bi and quadrature nodes 0 = c0 < c1 <
. . . < cn−1 < cn = 1.

•We construct the shooting-based discrete Lagrangian,

Ld(q0, q1;h) = h
∑n

i=0
biL(qi, vi),

where

(qi+1, vi+1) = Ψ(ci+1−ci)h(qi, vi), q0 = q0, qn = q1.
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Shooting-Based Variational Integrators

� Implementation Issues

•While one can view the implicit definition of the discrete Lagrangian
separately from the implicit discrete Euler–Lagrange equations,

p0 = −D1Ld(q0, q1;h), p1 = D2Ld(q0, q1;h),

in practice, one typically considers the two sets of equations to-
gether to implicitly define a one-step method:

Ld(q0, q1;h) = h
∑n

i=0
biL(qi, vi),

(qi+1, vi+1) = Ψ(ci+1−ci)h(qi, vi), i = 0, . . . n− 1,

q0 = q0,

qn = q1,

p0 = −D1Ld(q0, q1;h),

p1 = D2Ld(q0, q1;h).
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Shooting-Based Variational Integrators

� Shooting-Based Implementation

• Given (q0, p0), we let q0 = q0, and guess an initial velocity v0.

•We obtain (qi, vi)ni=1 by setting (qi+1, vi+1) = Ψ(ci+1−ci)h(qi, vi).

•We let q1 = qn, and compute p1 = D2Ld(q0, q1;h).

• Unless the initial velocity v0 is chosen correctly, the equation p0 =
−D1Ld(q0, q1;h) will not be satisfied, and one needs to compute
the sensitivity of −D1Ld(q0, q1;h) on v0, and iterate on v0 so that
p0 = −D1Ld(q0, q1;h) is satisfied.

• This gives a one-step method (q0, p0) 7→ (q1, p1).

• In practice, a good initial guess for v0 can be obtained by inverting
the continuous Legendre transformation p = ∂L/∂v.
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Shooting-Based Variational Integrators: Inheritance

� Theorem: Order of accuracy

• Given a p-th order one-step method Ψh, a q-th order quadrature
formula, and a Lipschitz continuous Lagrangian L, the shooting-
based discrete Lagrangian has order of accuracy min(p, q).

� Theorem: Symmetric discrete Lagrangians

• Given a self-adjoint one-step method Ψh, and a symmetric quadra-
ture formula (ci + cn−i = 1, bi = bn−i), the associated shooting-
based discrete Lagrangian is self-adjoint.

� Theorem: Group-invariant discrete Lagrangians

• Given a G-equivariant one-step method Ψh : TQ→ TQ, and a G-
invariant Lagrangian L : TQ→ R, the associated shooting-based
discrete Lagrangian is G-invariant, and hence preserves a discrete
momentum map.
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Some related approaches

� Prolongation–Collocation variational integrators

• Intended to minimize the number of internal stages, while allowing
for high-order approximation.

• Allows for the efficient use of automatic differentiation coupled with
adaptive force evaluation techniques to increase efficiency.

� Taylor variational integrators

• Taylor variational integrators allow one to reuse the prolongation
of the Euler–Lagrange vector field at the initial time to compute
the approximation at the quadrature points.

• As such, these methods scale better when using higher-order quadra-
ture formulas, since the cost of evaluating the integrand is reduced
dramatically.
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Prolongation–Collocation Variational Integrators

� Euler–Maclaurin quadrature formula

• If f is sufficiently differentiable on (a, b), then for any m > 0,∫ b

a

f (x)dx =
θ

2

[
f (a) + 2

N−1∑
k=1

f (a + kθ) + f (b)

]

−
m∑
l=1

B2l

(2l)!
θ2l
(
f (2l−1)(b)− f (2l−1)(a)

)
− B2m+2

(2m + 2)!
Nθ2m+3f (2m+2)(ξ)

whereBk are the Bernoulli numbers, θ = (b−a)/N and ξ ∈ (a, b).

•When N = 1,

K(f ) =
h

2
[f (0) + f (h)]−

m∑
l=1

B2l

(2l)!
h2l
(
f (2l−1)(h)− f (2l−1)(0)

)
,

and the error of approximation is O(h2m+3).
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Prolongation–Collocation Variational Integrators

� Two-point Hermite Interpolant

• A two-point Hermite interpolant qd(t) of degree d = 2n− 1
can be used to approximate the curve. It has the form

qd(t) =

n−1∑
j=0

(
q(j)(0)Hn,j(t) + (−1)jq(j)(h)Hn,j(h− t)

)
,

where

Hn,j(t) =
tj

j!
(1− t/h)n

n−j−1∑
s=0

(
n + s− 1

s

)
(t/h)s

are the Hermite basis functions.

• By construction,

q
(r)
d (0) = q(r)(0), q

(r)
d (h) = q(r)(h), r = 0, 1, . . . n− 1.
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Prolongation–Collocation Variational Integrators

� Prolongation–Collocation Discrete Lagrangian
• The prolongation–collocation discrete Lagrangian is

Ld(q0, q1, h) =
h

2
(L(qd(0), q̇d(0)) + L(qd(h), q̇d(h)))

−
bn/2c∑
l=1

B2l

(2l)!
h2l
(
d2l−1

dt2l−1
L(qd(t), q̇d(t))

∣∣∣∣
t=h

− d2l−1

dt2l−1
L(qd(t), q̇d(t))

∣∣∣∣
t=0

)
,

where qd(t) ∈ Cs(Q) is determined by the boundary and prolongation-
collocation conditions,

qd(0) = q0 qd(h) = q1,

q̈d(0) = f (q0) q̈d(h) = f (q1),

q
(3)
d (0) = f ′(q0)q̇d(0) q

(3)
d (h) = f ′(q1)q̇d(h),

... ...

q
(n)
d (0) =

dn

dtn
f (qd(t))

∣∣∣∣
t=0

q
(n)
d (h) =

dn

dtn
f (qd(t))

∣∣∣∣
t=h
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Prolongation–Collocation Variational Integrators

� Numerical Experiments: Pendulum
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Prolongation–Collocation Variational Integrators

� Numerical Experiments: Duffing oscillator
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Galerkin Variational Integrators

� Variational Characterization of Lexact
d

• An alternative characterization of the exact discrete Lagrangian,

Lexact
d (q0, q1) ≡ ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt,

which naturally leads to Galerkin discrete Lagrangians.

� Galerkin Discrete Lagrangians

• Replace the infinite-dimensional function space C2([0, h], Q) with
a finite-dimensional function space.

• Replace the integral with a numerical quadrature formula.

• The element of the finite-dimensional function space that is chosen
depends on the choice of the quadrature formula.
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Galerkin Variational Integrators: Inheritence

� Theorem: Group-invariant discrete Lagrangians

• If the interpolatory function ϕ(gν; t) is G-equivariant, and the La-
grangian, L : TG→ R, is G-invariant, then the Galerkin discrete
Lagrangian, Ld : G×G→ R, given by

Ld(g0, g1) = ext
gν∈G;

g0=g0;gs=g1

h
∑s

i=1
biL(Tϕ(gν; cih)),

is G-invariant.
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Galerkin Variational Integrators

� Optimal Rates of Convergence

• Ideally, a Galerkin numerical method based on a finite-dimensional
space Fd ⊂ F should be optimally convergent, i.e., the nu-
merical solution qd ∈ Fd and the exact solution q ∈ F satisfies,

‖q − qd‖ ≤ c inf q̃∈Fd ‖q − q̃‖.
• For Galerkin variational integrators, this involves showing that the

extremizers of an approximating sequence of functionals,

Lid(q0, q1) ≡ extq∈Ci h
∑si

j=1
bijL(q(cijh), q̇(cijh)),

converges to the extremizer of the limiting functional at a rate
determined by the best approximation error,

|Lid(q0, q1)− Lexact
d (q0, q1)| ≤ c inf q̃∈Ci ‖q − q̃‖,

which is a refinement of Γ-convergence,
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Galerkin Variational Integrators

� Spectral Variational Integrators

• Spectral variational integrators are a class of Galerkin variational
integrators based on spectral basis functions, for example, the
Chebyshev polynomials.
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• This leads to variational integrators that increase accuracy by p-
refinement as opposed to h-refinement.

• By refining the proof of Γ-convergence by Müller and Ortiz, it can
be shown that they are geometrically convergent.
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Spectral Variational Integrators

� Numerical Experiments: Kepler 2-Body Problem
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• h = 1.5, T = 150, and 20 Chebyshev points per step.
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Spectral Variational Integrators

� Numerical Experiments: Kepler 2-Body Problem
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• h = 1.5, T = 150, and 20 Chebyshev points per step.
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Spectral Variational Integrators

� Numerical Experiments: Solar System Simulation
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• Comparison of inner solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.

• h = 100 days, T = 27 years, 25 Chebyshev points per step.



35

Spectral Variational Integrators

� Numerical Experiments: Solar System Simulation
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• Comparison of outer solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.
Inner solar system was aggregated, and h = 1825 days.
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Generalization to Discrete Hamiltonian Systems
� Generating Functions for Symplectic Transformations

Type I [
pk
pk+1

]
=

[
−1 0
0 1

]
DLd(qk, qk+1)

Type II [
pk
qk+1

]
=

[
1 0
0 1

]
DH+

d (qk, pk+1)

Type III [
qk
pk+1

]
=

[
−1 0
0 −1

]
DH−d (pk, qk+1)

Type IV [
qk
qk+1

]
=

[
1 0
0 −1

]
DRd(pk, pk+1)
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Degenerate Hamiltonian Systems

� Degenerate Hamiltonians

• A Hamiltonian H : T ∗Q → R is degenerate if the Legendre
transformation FH : T ∗Q → TQ, (q, p) 7→ (q, ∂H/∂p), is
non-invertible.

• This obstructs the construction of variational integrators for degen-
erate Hamiltonian systems by traversing via the Lagrangian side.

H(q, p) FH //

��

L(q, q̇)

��

H+
d (q0, p1) Ld(q0, q1)

FLdoo

• The goal is to construct discrete Hamiltonians directly,
so that the diagram commutes for hyperregular Hamiltonians.
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Degenerate Hamiltonian Systems

� Toy Motivating Example

• Consider the Hamiltonian,

H(q, p) = qp.

• The Legendre transformation is,

(q, p) 7→ (q, ∂H/∂p) = (q, q),

which is clearly non-invertible.

• Furthermore, the associated Lagrangian is identically zero,

L(q, q̇) = ext
p

[pq̇ −H(q, p)] = pq̇ − qp|q̇=∂H/∂p=q ≡ 0.
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Degenerate Hamiltonian Systems

� Toy Motivating Example (Boundary Data)

• The Hamilton’s equations are,

q̇ = ∂H/∂p = q,

ṗ = −∂H/∂q = −p.
• The exact solutions are,

q(t) = q(0) exp(t),

p(t) = p(0) exp(−t),
which are generally incompatible with the (q0, q1) boundary condi-
tions for discrete Lagrangians, but it is compatible with the (q0, p1)
boundary conditions for discrete Hamiltonians.
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Exact Discrete Hamiltonian

� Sketch of Approach

• The exact discrete Lagrangian is a Type I generating function,

Lexact
d (q0, q1) ≡ ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt,

expressed in terms of a continuous Lagrangian.

• Use the continuous Legendre transformation to obtain,

L(q, q̇) = pq̇ −H(q, p).
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Exact Discrete Hamiltonian

� Sketch of Approach

• Use the discrete Legendre transformation,

Ld(qk, qk+1) //

��

H+
d (qk, pk+1)

��

H−d (pk, qk+1) //Rd(pk, pk+1)

to obtain a Type II generating function,

H+
d,exact(qk, pk+1) =

ext
(q,p)∈C2([tk,tk+1],T ∗Q)
q(tk)=qk,p(tk+1)=pk+1

p(tk+1)q(tk+1)−
∫ tk+1

tk

[pq̇ −H(q, p)] dt.
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Type II Hamilton–Jacobi Equation and Jacobi’s Solution

� Proposition

• Consider the function,

S2(q0, p, t) =

ext
(q,p)∈C2([0,t],T ∗Q)
q(0)=q0,p(t)=p

(
p(t)q(t)−

∫ t

0
[p(s)q̇(s)−H(q(s), p(s))] ds

)
.

• This satisfies the Type II Hamilton–Jacobi equation,

∂S2(q0, p, t)

∂t
= H

(
∂S2

∂p
, p

)
.
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Discrete Type II Hamilton–Jacobi Equation

� Theorem

• Consider the discrete extremum function,

Skd (pk) = pkqk −
∑k−1

l=0

[
pl+1ql+1 −H+

d (ql, pl+1)
]
,

which is the discrete action sum up to time tk evaluated along a
solution of the discrete Hamilton’s equations, viewed as a function
of the momentum pk.

• This is essentially a discrete Type II Jacobi’s solution.

• Then, these satisfy the discrete Type II Hamilton–Jacobi
equation,

Sk+1
d (pk+1)− Skd (pk) = H+

d (DSkd (pk), pk+1)− pk ·DSkd (pk).
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Hamiltonian Mechanics

� Continuous and Discrete Time Correspondence

Cotangent Space

(q, p) ∈ T ∗Q

Disc. Cotangent Space

(qk, pk+1) ∈ Q × Q∗

Hamiltonian

H(q, p)

Disc. Right
Hamiltonian

H+
d (qk, pk+1)

Action Functional S
Disc. Action
Functional Sd

Extremum Function S Disc. Extremum
Function Sd

Hamilton’s Eqn.

q̇ = ∂H
∂p , ṗ = −∂H

∂q

Disc. Right
Hamilton’s Eqn.

qk = D2H
+
d (qk−1, pk)

pk = D1H
+
d (qk, pk+1)

qT = D2S(q0, pT )
p0 = D1S(q0, pT )

qN = D2Sd(q0, pN)
p0 = D1Sd(q0, pN)

Symplecticity
0 = ddS = dp0 ∧
dq0 − dpT ∧ dqT

Symplecticity
0 = ddSd = dp0 ∧
dq0 − dpN ∧ dqN
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Galerkin Hamiltonian Variational Integrator

� Generalized Representation

• The generalized Galerkin Hamiltonian variational integrator can
be written in the following compact form,

q1 = q0 + h
∑s

i=1
BiV

i,

p1 = p0 − h
∑s

i=1
bi
∂H

∂q
(Qi, P i),

Qi = q0 + h
∑s

j=1
AijV

j, i = 1, . . . , s,

0 =
∑s

i=1
biP

iψj(ci)− p0Bj + h
∑s

i=1
(biBj − biAij)

∂H

∂q
(Qi, P i), j = 1, . . . , s,

0 =
∑s

i=1
ψi(cj)V

i − ∂H

∂p
(Qj, P j), j = 1, . . . , s,

where (bi, ci) are the quadrature weights and quadrature points,

and Bi =
∫ 1

0 ψi(τ )dτ , Aij =
∫ ci

0 ψj(τ )dτ .
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Galerkin Lagrangian Variational Integrator

� Generalized Representation

• The generalized Galerkin Lagrangian variational integrator can be
written in the following compact form,
q1 = q0 + h

∑s

i=1
BiV

i,

p1 = p0 + h
∑s

i=1
bi
∂L

∂q
(Qi, Q̇i),

Qi = q0 + h
∑s

j=1
AijV

j, i = 1, . . . , s

0 =
∑s

i=1
bi
∂L

∂q̇
(Qi, Q̇i)ψj(ci)− p0Bj − h

∑s

i=1
(biBj − biAij)

∂L

∂q
(Qi, Q̇i), j = 1, . . . , s

0 =
∑s

i=1
ψi(cj)V

i − Q̇j, j = 1, . . . , s

where (bi, ci) are the quadrature weights and quadrature points,

and Bi =
∫ 1

0 ψi(τ )dτ , Aij =
∫ ci

0 ψj(τ )dτ .

•When either the Hamiltonian or Lagrangian are hyperregular, these
two methods are equivalent.
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PDE Generalization: Multisymplectic Geometry

� Ingredients
•Base space X . (n + 1)-spacetime.

•Configuration bundle. Given by π :
Y → X , with the fields as the fiber.

•Configuration q : X → Y . Gives the
field variables over each spacetime point.

• First jet J1Y . The first partials of the
fields with respect to spacetime.

� Variational Mechanics

• Lagrangian density L : J1Y → Ωn+1(X ).

•Action integral given by, S(q) =
∫
X L(j1q).

•Hamilton’s principle states, δS = 0.
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Multisymplectic Exact Discrete Lagrangian

� What is the PDE analogue of a generating function?

• Recall the implicit characterization of a symplectic map in terms
of generating functions:{

pk = −D1Ld(qk, qk+1)

pk+1 = D2Ld(qk, qk+1)

{
pk = D1H

+
d (qk, pk+1)

qk+1 = D2H
+
d (qk, pk+1)

• Symplecticity follows as a trivial consequence of these equations,
together with d2 = 0, as the following calculation shows:

d2Ld(qk, qk+1) = d(D1Ld(qk, qk+1)dqk + D2Ld(qk, qk+1)dqk+1)

= d(−pkdqk + pk+1dqk+1)

= −dpk ∧ dqk + dpk+1 ∧ dqk+1
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Multisymplectic Exact Discrete Lagrangian

� Analogy with the ODE case

•We consider a multisymplectic analogue of Jacobi’s solution:

Lexact
d (q0, q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt,

where q0,1(t) satisfies the Euler–Lagrange boundary-value problem.

• This is given by,

Lexact
d (ϕ|∂Ω) ≡

∫
Ω
L(j1ϕ̃)

where ϕ̃ satisfies the boundary conditions ϕ̃|∂Ω = ϕ|∂Ω, and ϕ̃
satisfies the Euler–Lagrange equation in the interior of Ω.
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Multisymplectic Exact Discrete Lagrangian

� Multisymplectic Relation

• If one takes variations of the multisymplectic exact discrete
Lagrangian with respect to the boundary conditions, we obtain,

∂ϕ(x,t)L
exact
d (ϕ|∂Ω) = p⊥(x, t),

where (x, t) ∈ ∂Ω, and p⊥ is the component of the multimomen-
tum that is normal to the boundary ∂Ω at the point (x, t).

• These equations, taken at every point on ∂Ω constitute a multi-
symplectic relation, which is the PDE analogue of,{

pk = −D1Ld(qk, qk+1)

pk+1 = D2Ld(qk, qk+1)

where the sign in the equations come from the orientation of the
boundary of the time interval.
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Multisymplectic Exact Discrete Hamiltonian

� Analogue of Type II and III generating functions

• Discrete Hamiltonian mechanics is described in terms of Type II
and III generating functions.

• In the PDE setting, the analogue of specifying (qk, pk+1) or (pk, qk+1)
is to specify:

◦ fields ϕ on A ⊂ ∂Ω;

◦ normal component of the multimomentum p⊥ on B = ∂Ω\A.

• Then, we have,

Hexact
d (ϕ|A, p⊥|B) =

∫
B
ϕp⊥ −

∫
Ω
L(j1ϕ̃),

where ϕ̃ satisfies the prescribed boundary conditions, and the Euler–
Lagrange equations.
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Exact Multisymplectic Generating Functions

� Implications for Geometric Integration

• The multisymplectic generating functions depend on boundary con-
ditions on an infinite set, and one needs to consider a finite-dimensional
subspace of allowable boundary conditions.

• Let π be a projection onto allowable boundary conditions.

• In the variational error order analysis, we need to compare:

◦ Lcomputable
d (πϕ|∂Ω)

◦ Lexact
d (πϕ|∂Ω)

◦ Lexact
d (ϕ|∂Ω)

• The comparison between the last two objects involves establishing
well-posedness of the boundary-value problem, and the approxima-
tion properties of the finite-dimensional boundary conditions.
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Summary

• The variational and boundary-value problem characteriza-
tion of the exact discrete Lagrangian naturally lead to Galerkin
variational integrators and shooting-based variational
integrators.

• These provide a systematic framework for constructing variational
integrators based on a choice of:

◦ one-step method;

◦ finite-dimensional approximation space;

◦ numerical quadrature formula.

• The resulting variational integrators can be shown to inherit prop-
erties like order of accuracy, and momentum preservation
from the properties of the chosen one-step method, approximation
space, or quadrature formula.
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Questions?
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