General Techniques for Constructing Variational Integrators

Melvin Leok

Mathematics, University of California, San Diego

Joint work with James Hall, Cuicui Liao, Tatiana Shingel, Joris Vankerschaver, Jingjing Zhang.

Rough Paths and Combinatorics in Control Theory, UCSD, July, 2011.

arXiv:1001.1408 arXiv:1101.1995 arXiv:1102.2685

Supported in part by NSF DMS-0726263, DMS-1001521, DMS-1010687 (CAREER).

Geometry and Numerical Methods

Dynamical equations preserve structure

- Many continuous systems of interest have properties that are conserved by the flow:
 - Energy
 - Symmetries, Reversibility, Monotonicity
 - Momentum Angular, Linear, Kelvin Circulation Theorem.
 - Symplectic Form
 - Integrability

• At other times, the equations themselves are defined on a manifold, such as a Lie group, or more general configuration manifold of a mechanical system, and the discrete trajectory we compute should remain on this manifold, since the equations may not be well-defined off the surface.

Motivation: Geometric Integration

Main Goal of Geometric Integration:

Structure preservation in order to reproduce long time behavior.

Role of Discrete Structure-Preservation:

Discrete conservation laws impart long time numerical stability to computations, since the structure-preserving algorithm exactly conserves a discrete quantity that is always close to the continuous quantity we are interested in. Geometric Integration: Energy Stability Energy stability for symplectic integrators

Geometric Integration: Energy Stability

Energy behavior for conservative and dissipative systems

Geometric Integration: Energy Stability

Solar System Simulation

• Forward Euler

$$\mathbf{q}_{k+1} = \mathbf{q}_k + h\dot{\mathbf{q}}(\mathbf{q}_k, \mathbf{p}_k),$$

$$\mathbf{p}_{k+1} = \mathbf{p}_k + h\dot{\mathbf{p}}(\mathbf{q}_k, \mathbf{p}_k).$$

• Inverse Euler

$$\mathbf{q}_{k+1} = \mathbf{q}_k + h\dot{\mathbf{q}}(\mathbf{q}_{k+1}, \mathbf{p}_{k+1}),$$

$$\mathbf{p}_{k+1} = \mathbf{p}_k + h\dot{\mathbf{p}}(\mathbf{q}_{k+1}, \mathbf{p}_{k+1}).$$

• Symplectic Euler

$$\mathbf{q}_{k+1} = \mathbf{q}_k + h\dot{\mathbf{q}}(\mathbf{q}_k, \mathbf{p}_{k+1}),$$

$$\mathbf{p}_{k+1} = \mathbf{p}_k + h\dot{\mathbf{p}}(\mathbf{q}_k, \mathbf{p}_{k+1}).$$

Geometric Integration: Energy Stability Forward Euler

Geometric Integration: Energy Stability Inverse Euler

Geometric Integration: Energy Stability Symplectic Euler

Introduction to Computational Geometric Mechanics

Geometric Mechanics

• Differential geometric and symmetry techniques applied to the study of Lagrangian and Hamiltonian mechanics.

Computational Geometric Mechanics

- Constructing computational algorithms using ideas from geometric mechanics.
- Variational integrators based on discretizing Hamilton's principle, automatically symplectic and momentum preserving.

Symplecticity in the Planar Pendulum

Images courtesy of Hairer, Lubich, Wanner, Geometric Numerical Integration, 2nd Edition, Springer, 2006.

Discrete Variational Principle

• Discrete Lagrangian

$$L_d(q_0, q_1) \approx L_d^{\text{exact}}(q_0, q_1) \equiv \int_0^h L\left(q_{0,1}(t), \dot{q}_{0,1}(t)\right) dt,$$

where $q_{0,1}(t)$ satisfies the Euler–Lagrange equations for L and the boundary conditions $q_{0,1}(0) = q_0$, $q_{0,1}(h) = q_1$.

• This is related to **Jacobi's solution** of the **Hamilton–Jacobi** equation.

Discrete Variational Principle

• Discrete Hamilton's principle

$$\delta \mathbb{S}_d = \delta \sum L_d(q_k, q_{k+1}) = 0,$$

where q_0 , q_N are fixed.

- Discrete Euler–Lagrange Equations
 - Discrete Euler-Lagrange equation

$$D_2L_d(q_{k-1}, q_k) + D_1L_d(q_k, q_{k+1}) = 0.$$

• The associated discrete flow $(q_{k-1}, q_k) \mapsto (q_k, q_{k+1})$ is automatically symplectic, since it is equivalent to,

 $p_k = -D_1 L_d(q_k, q_{k+1}), \quad p_{k+1} = D_2 L_d(q_k, q_{k+1}),$ which is the **Type I generating function** characterization of a symplectic map.

Main Advantages of Variational Integrators

• Discrete Noether's Theorem

If the discrete Lagrangian L_d is (infinitesimally) *G*-invariant under the diagonal group action on $Q \times Q$,

$$L_d(gq_0, gq_1) = L_d(q_0, q_1)$$

then the **discrete momentum map** $J_d: Q \times Q \to \mathfrak{g}^*$,

$$\left\langle J_{d}\left(q_{k},q_{k+1}\right),\xi\right\rangle \equiv\left\langle D_{1}L_{d}\left(q_{k},q_{k+1}\right),\xi_{Q}\left(q_{k}\right)\right\rangle$$

is preserved by the discrete flow.

Main Advantages of Variational Integrators

• Variational Error Analysis

Since the exact discrete Lagrangian generates the exact solution of the Euler–Lagrange equation, the exact discrete flow map is *formally* expressible in the setting of variational integrators.

- This is analogous to the situation for B-series methods, where the exact flow can be expressed formally as a B-series.
- If a computable discrete Lagrangian L_d is of order r, i.e.,

$$L_d(q_0, q_1) = L_d^{\text{exact}}(q_0, q_1) + \mathcal{O}(h^{r+1})$$

then the discrete Euler–Lagrange equations yield an order r accurate symplectic integrator.

Constructing Discrete Lagrangians

Systematic Approaches

- The theory of variational error analysis suggests that one should aim to construct computable approximations of the exact discrete Lagrangian.
- There are two equivalent characterizations of the exact discrete Lagrangian:
 - Euler–Lagrange boundary-value problem characterization,
 - Variational characterization,

which lead to two general classes of computable discrete Lagrangians:

- Shooting-based discrete Lagrangians.
- Galerkin discrete Lagrangians,

Boundary-Value Problem Characterization of L_d^{exact}

• The classical characterization of the exact discrete Lagrangian is Jacobi's solution of the Hamilton–Jacobi equation, and is given by,

$$L_d^{\text{exact}}(q_0, q_1) \equiv \int_0^h L\left(q_{0,1}(t), \dot{q}_{0,1}(t)\right) dt,$$

where $q_{0,1}(t)$ satisfies the Euler–Lagrange boundary-value problem.

Shooting-Based Discrete Lagrangians

- Replaces the solution of the Euler–Lagrange boundary-value problem with the shooting-based solution from a **one-step method**.
- Replace the integral with a **numerical quadrature formula**.

Shooting-Based Discrete Lagrangian

• Consider a one-step method $\Psi_h : TQ \to TQ$, and a numerical quadrature formula

$$\int_0^h f(x)dx \approx h \sum_{i=0}^n b_i f(x(c_i h)),$$

with quadrature weights b_i and quadrature nodes $0 = c_0 < c_1 < \ldots < c_{n-1} < c_n = 1$.

• We construct the **shooting-based discrete Lagrangian**,

$$L_d(q_0, q_1; h) = h \sum_{i=0}^n b_i L(q^i, v^i),$$

where

$$(q^{i+1}, v^{i+1}) = \Psi_{(c_{i+1} - c_i)h}(q^i, v^i), \qquad q^0 = q_0, \qquad q^n = q_1$$

Implementation Issues

• While one can view the implicit definition of the discrete Lagrangian separately from the implicit discrete Euler–Lagrange equations,

$$p_0 = -D_1 L_d(q_0, q_1; h), \qquad p_1 = D_2 L_d(q_0, q_1; h),$$

in practice, one typically considers the two sets of equations together to implicitly define a one-step method:

$$\begin{split} L_d(q_0, q_1; h) &= h \sum_{i=0}^n b_i L(q^i, v^i), \\ (q^{i+1}, v^{i+1}) &= \Psi_{(c_{i+1} - c_i)h}(q^i, v^i), \qquad i = 0, \dots n - 1, \\ q^0 &= q_0, \\ q^n &= q_1, \\ p_0 &= -D_1 L_d(q_0, q_1; h), \\ p_1 &= D_2 L_d(q_0, q_1; h). \end{split}$$

Shooting-Based Implementation

• Given (q_0, p_0) , we let $q^0 = q_0$, and guess an initial velocity v^0 .

- We obtain $(q^i, v^i)_{i=1}^n$ by setting $(q^{i+1}, v^{i+1}) = \Psi_{(c_{i+1}-c_i)h}(q^i, v^i)$.
- We let $q_1 = q^n$, and compute $p_1 = D_2 L_d(q_0, q_1; h)$.
- Unless the initial velocity v^0 is chosen correctly, the equation $p_0 = -D_1L_d(q_0, q_1; h)$ will not be satisfied, and one needs to compute the sensitivity of $-D_1L_d(q_0, q_1; h)$ on v^0 , and iterate on v^0 so that $p_0 = -D_1L_d(q_0, q_1; h)$ is satisfied.
- This gives a one-step method $(q_0, p_0) \mapsto (q_1, p_1)$.
- In practice, a good initial guess for v^0 can be obtained by inverting the continuous Legendre transformation $p = \partial L / \partial v$.

Shooting-Based Variational Integrators: InheritanceTheorem: Order of accuracy

• Given a *p*-th order one-step method Ψ_h , a *q*-th order quadrature formula, and a Lipschitz continuous Lagrangian *L*, the shooting-based discrete Lagrangian has order of accuracy $\min(p, q)$.

Theorem: Symmetric discrete Lagrangians

• Given a self-adjoint one-step method Ψ_h , and a symmetric quadrature formula $(c_i + c_{n-i} = 1, b_i = b_{n-i})$, the associated shootingbased discrete Lagrangian is self-adjoint.

Theorem: Group-invariant discrete Lagrangians

• Given a G-equivariant one-step method $\Psi_h: TQ \to TQ$, and a G-invariant Lagrangian $L: TQ \to \mathbb{R}$, the associated shooting-based discrete Lagrangian is G-invariant, and hence preserves a discrete momentum map.

Some related approaches

Prolongation–Collocation variational integrators

- Intended to minimize the number of internal stages, while allowing for high-order approximation.
- Allows for the efficient use of automatic differentiation coupled with adaptive force evaluation techniques to increase efficiency.

Taylor variational integrators

- Taylor variational integrators allow one to reuse the prolongation of the Euler–Lagrange vector field at the initial time to compute the approximation at the quadrature points.
- As such, these methods scale better when using higher-order quadrature formulas, since the cost of evaluating the integrand is reduced dramatically.

Prolongation–Collocation Variational Integrators Euler–Maclaurin quadrature formula

• If f is sufficiently differentiable on (a, b), then for any m > 0,

$$\begin{split} \int_{a}^{b} f(x)dx &= \frac{\theta}{2} \left[f(a) + 2\sum_{k=1}^{N-1} f(a+k\theta) + f(b) \right] \\ &- \sum_{l=1}^{m} \frac{B_{2l}}{(2l)!} \theta^{2l} \left(f^{(2l-1)}(b) - f^{(2l-1)}(a) \right) - \frac{B_{2m+2}}{(2m+2)!} N \theta^{2m+3} f^{(2m+2)}(\xi) \end{split}$$

where B_k are the Bernoulli numbers, $\theta = (b-a)/N$ and $\xi \in (a, b)$. • When N = 1,

$$K(f) = \frac{h}{2} \left[f(0) + f(h) \right] - \sum_{l=1}^{m} \frac{B_{2l}}{(2l)!} h^{2l} \left(f^{(2l-1)}(h) - f^{(2l-1)}(0) \right),$$

and the error of approximation is $\mathcal{O}(h^{2m+3})$.

Prolongation–Collocation Variational Integrators

Two-point Hermite Interpolant

• A two-point Hermite interpolant $q_d(t)$ of degree d = 2n - 1can be used to approximate the curve. It has the form

$$q_d(t) = \sum_{j=0}^{n-1} \left(q^{(j)}(0) H_{n,j}(t) + (-1)^j q^{(j)}(h) H_{n,j}(h-t) \right),$$

where

$$H_{n,j}(t) = \frac{t^j}{j!} (1 - t/h)^n \sum_{s=0}^{n-j-1} \binom{n+s-1}{s} (t/h)^s$$

are the Hermite basis functions.

• By construction,

$$q_d^{(r)}(0) = q^{(r)}(0), \qquad q_d^{(r)}(h) = q^{(r)}(h), \qquad r = 0, 1, \dots, n-1.$$

Prolongation–Collocation Variational Integrators

Prolongation–Collocation Discrete Lagrangian

• The prolongation–collocation discrete Lagrangian is

$$\begin{split} L_d(q_0, q_1, h) &= \frac{h}{2} (L(q_d(0), \dot{q}_d(0)) + L(q_d(h), \dot{q}_d(h))) \\ &- \sum_{l=1}^{\lfloor n/2 \rfloor} \frac{B_{2l}}{(2l)!} h^{2l} \left(\frac{d^{2l-1}}{dt^{2l-1}} L(q_d(t), \dot{q}_d(t)) \bigg|_{t=h} - \frac{d^{2l-1}}{dt^{2l-1}} L(q_d(t), \dot{q}_d(t)) \bigg|_{t=0} \right), \end{split}$$

where $q_d(t) \in \mathcal{C}^s(Q)$ is determined by the boundary and prolongationcollocation conditions,

$$\begin{aligned} q_d(0) &= q_0 & q_d(h) = q_1, \\ \ddot{q}_d(0) &= f(q_0) & \ddot{q}_d(h) = f(q_1), \\ q_d^{(3)}(0) &= f'(q_0)\dot{q}_d(0) & q_d^{(3)}(h) = f'(q_1)\dot{q}_d(h), \\ \vdots & \vdots \\ q_d^{(n)}(0) &= \frac{d^n}{dt^n}f(q_d(t))\Big|_{t=0} & q_d^{(n)}(h) = \frac{d^n}{dt^n}f(q_d(t))\Big|_{t=h} \end{aligned}$$

Prolongation–Collocation Variational Integrators Numerical Experiments: Pendulum

Prolongation–Collocation Variational Integrators Numerical Experiments: Duffing oscillator

Galerkin Variational Integrators

Variational Characterization of L_d^{exact}

• An alternative characterization of the exact discrete Lagrangian,

$$L_d^{\text{exact}}(q_0, q_1) \equiv \underset{\substack{q \in C^2([0,h],Q) \\ q(0) = q_0, q(h) = q_1}}{\text{ext}} \int_0^h L(q(t), \dot{q}(t)) dt,$$

which naturally leads to Galerkin discrete Lagrangians.

- Galerkin Discrete Lagrangians
 - Replace the infinite-dimensional function space $C^2([0, h], Q)$ with a **finite-dimensional function space**.
 - Replace the integral with a **numerical quadrature formula**.
 - The element of the finite-dimensional function space that is chosen depends on the choice of the quadrature formula.

Galerkin Variational Integrators: Inheritence

Theorem: Group-invariant discrete Lagrangians

• If the interpolatory function $\varphi(g^{\nu}; t)$ is *G*-equivariant, and the Lagrangian, $L: TG \to \mathbb{R}$, is *G*-invariant, then the Galerkin discrete Lagrangian, $L_d: G \times G \to \mathbb{R}$, given by

$$L_d(g_0, g_1) = \underset{\substack{g^{\nu} \in G;\\g^0 = g_0; g^s = g_1}}{\operatorname{ext}} h \sum_{i=1}^s b_i L(T\varphi(g^{\nu}; c_i h)),$$

is G-invariant.

Galerkin Variational Integrators

Optimal Rates of Convergence

- Ideally, a Galerkin numerical method based on a finite-dimensional space $F_d \subset F$ should be **optimally convergent**, i.e., the numerical solution $q_d \in F_d$ and the exact solution $q \in F$ satisfies, $\|q - q_d\| \le c \inf_{\tilde{q} \in F_d} \|q - \tilde{q}\|.$
- For Galerkin variational integrators, this involves showing that the extremizers of an approximating sequence of functionals,

$$L_{d}^{i}(q_{0}, q_{1}) \equiv \operatorname{ext}_{q \in \mathcal{C}_{i}} h \sum_{j=1}^{s_{i}} b_{j}^{i} L(q(c_{j}^{i}h), \dot{q}(c_{j}^{i}h)),$$

converges to the extremizer of the limiting functional at a rate determined by the best approximation error,

$$|L_d^i(q_0, q_1) - L_d^{\text{exact}}(q_0, q_1)| \le c \inf_{\tilde{q} \in \mathcal{C}_i} \|q - \tilde{q}\|,$$

to is a refinement of Γ -convergence

which is a refinement of Γ -convergence,

Galerkin Variational Integrators

Spectral Variational Integrators

 Spectral variational integrators are a class of Galerkin variational integrators based on spectral basis functions, for example, the Chebyshev polynomials.

- This leads to variational integrators that increase accuracy by p-refinement as opposed to h-refinement.
- By refining the proof of Γ-convergence by Müller and Ortiz, it can be shown that they are geometrically convergent.

Spectral Variational Integrators

Numerical Experiments: Kepler 2-Body Problem

• h = 1.5, T = 150, and 20 Chebyshev points per step.

Spectral Variational Integrators

Numerical Experiments: Kepler 2-Body Problem

• h = 1.5, T = 150, and 20 Chebyshev points per step.

Spectral Variational Integrators Numerical Experiments: Solar System Simulation

- Comparison of inner solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group.
- h = 100 days, T = 27 years, 25 Chebyshev points per step.

Spectral Variational Integrators Numerical Experiments: Solar System Simulation

• Comparison of outer solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group. Inner solar system was aggregated, and h = 1825 days.

Generalization to Discrete Hamiltonian Systems
Generating Functions for Symplectic Transformations
Type I

$$\begin{bmatrix} p_k \\ p_{k+1} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} DL_d(q_k, q_{k+1})$$

Type II

$$\begin{bmatrix} p_k \\ q_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} DH_d^+(q_k, p_{k+1})$$

Type III

$$\begin{bmatrix} q_k \\ p_{k+1} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} DH_d^-(p_k, q_{k+1})$$

Type IV

$$\begin{bmatrix} q_k \\ q_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} DR_d(p_k, p_{k+1})$$

Degenerate Hamiltonian Systems

Degenerate Hamiltonians

- A Hamiltonian $H : T^*Q \to \mathbb{R}$ is **degenerate** if the **Legendre transformation** $\mathbb{F}H : T^*Q \to TQ$, $(q, p) \mapsto (q, \partial H/\partial p)$, is non-invertible.
- This obstructs the construction of variational integrators for degenerate Hamiltonian systems by traversing via the Lagrangian side.

$$\begin{array}{c} H(q,p) \xrightarrow{\mathbb{F}H} L(q,\dot{q}) \\ \downarrow \\ H_{d}^{+}(q_{0},p_{1}) \xleftarrow{\mathbb{F}L_{d}} L_{d}(q_{0},q_{1}) \end{array}$$

• The goal is to **construct discrete Hamiltonians directly**, so that the diagram commutes for hyperregular Hamiltonians.

Degenerate Hamiltonian Systems

- **Toy Motivating Example**
- Consider the Hamiltonian,

H(q,p) = qp.

• The Legendre transformation is,

$$(q,p)\mapsto (q,\partial H/\partial p)=(q,q),$$

which is clearly non-invertible.

• Furthermore, the associated Lagrangian is identically zero,

$$L(q, \dot{q}) = \exp_{p} \left[p\dot{q} - H(q, p) \right] = p\dot{q} - qp|_{\dot{q} = \partial H/\partial p = q} \equiv 0.$$

Degenerate Hamiltonian Systems

Toy Motivating Example (Boundary Data)

• The Hamilton's equations are,

$$\dot{q} = \partial H / \partial p = q,$$

$$\dot{p} = -\partial H / \partial q = -p$$

• The exact solutions are,

$$\begin{aligned} q(t) &= q(0) \exp(t), \\ p(t) &= p(0) \exp(-t), \end{aligned}$$

which are generally incompatible with the (q_0, q_1) boundary conditions for discrete Lagrangians, but it is compatible with the (q_0, p_1) boundary conditions for discrete Hamiltonians.

Exact Discrete Hamiltonian

Sketch of Approach

• The exact discrete Lagrangian is a Type I generating function,

$$L_d^{\text{exact}}(q_0, q_1) \equiv \underset{\substack{q \in C^2([0,h],Q) \\ q(0) = q_0, q(h) = q_1}}{\text{ext}} \int_0^h L(q(t), \dot{q}(t)) dt,$$

expressed in terms of a continuous Lagrangian.

• Use the continuous Legendre transformation to obtain,

$$L(q, \dot{q}) = p\dot{q} - H(q, p).$$

Exact Discrete Hamiltonian

Sketch of Approach

• Use the discrete Legendre transformation,

$$\begin{array}{c|c} L_d(q_k, q_{k+1}) & \longrightarrow H_d^+(q_k, p_{k+1}) \\ & & \downarrow \\ & & \downarrow \\ H_d^-(p_k, q_{k+1}) & \longrightarrow R_d(p_k, p_{k+1}) \end{array}$$

to obtain a Type II generating function,

$$\begin{aligned} H_{d,\text{exact}}^+(q_k,p_{k+1}) &= \\ & \underset{(q,p)\in C^2([t_k,t_{k+1}],T^*Q)}{\text{ext}} p(t_{k+1})q(t_{k+1}) - \int_{t_k}^{t_{k+1}} \left[p\dot{q} - H(q,p)\right] dt. \end{aligned}$$

Type II Hamilton–Jacobi Equation and Jacobi's Solution Proposition

• Consider the function,

$$\begin{split} S_2(q_0, p, t) &= \\ & \underset{(q, p) \in C^2([0, t], T^*Q)}{\text{ext}} \left(p(t)q(t) - \int_0^t \left[p(s)\dot{q}(s) - H(q(s), p(s)) \right] ds \right) \end{split}$$

• This satisfies the **Type II Hamilton–Jacobi equation**,

$$\frac{\partial S_2(q_0, p, t)}{\partial t} = H\left(\frac{\partial S_2}{\partial p}, p\right).$$

Discrete Type II Hamilton–Jacobi Equation Theorem

• Consider the **discrete extremum function**,

$$\mathcal{S}_{d}^{k}(p_{k}) = p_{k}q_{k} - \sum_{l=0}^{k-1} \left[p_{l+1}q_{l+1} - H_{d}^{+}(q_{l}, p_{l+1}) \right],$$

which is the discrete action sum up to time t_k evaluated along a solution of the discrete Hamilton's equations, viewed as a function of the momentum p_k .

- This is essentially a **discrete Type II Jacobi's solution**.
- Then, these satisfy the **discrete Type II Hamilton–Jacobi** equation,

$$\mathcal{S}_d^{k+1}(p_{k+1}) - \mathcal{S}_d^k(p_k) = H_d^+(D\mathcal{S}_d^k(p_k), p_{k+1}) - p_k \cdot D\mathcal{S}_d^k(p_k).$$

Hamiltonian Mechanics

Continuous and Discrete Time Correspondence

Galerkin Hamiltonian Variational Integrator

Generalized Representation

• The generalized Galerkin Hamiltonian variational integrator can be written in the following compact form,

$$q_{1} = q_{0} + h \sum_{i=1}^{s} B_{i}V^{i},$$

$$p_{1} = p_{0} - h \sum_{i=1}^{s} b_{i}\frac{\partial H}{\partial q}(Q^{i}, P^{i}),$$

$$Q^{i} = q_{0} + h \sum_{j=1}^{s} A_{ij}V^{j}, \qquad i = 1, \dots, s,$$

$$0 = \sum_{i=1}^{s} b_{i}P^{i}\psi_{j}(c_{i}) - p_{0}B_{j} + h \sum_{i=1}^{s} (b_{i}B_{j} - b_{i}A_{ij})\frac{\partial H}{\partial q}(Q^{i}, P^{i}), \qquad j = 1, \dots, s,$$

$$0 = \sum_{i=1}^{s} \psi_{i}(c_{j})V^{i} - \frac{\partial H}{\partial p}(Q^{j}, P^{j}), \qquad j = 1, \dots, s,$$

where (b_i, c_i) are the quadrature weights and quadrature points, and $B_i = \int_0^1 \psi_i(\tau) d\tau$, $A_{ij} = \int_0^{c_i} \psi_j(\tau) d\tau$.

Galerkin Lagrangian Variational Integrator Generalized Representation

• The generalized Galerkin Lagrangian variational integrator can be written in the following compact form,

$$q_{1} = q_{0} + h \sum_{i=1}^{s} B_{i}V^{i},$$

$$p_{1} = p_{0} + h \sum_{i=1}^{s} b_{i}\frac{\partial L}{\partial q}(Q^{i}, \dot{Q}^{i}),$$

$$Q^{i} = q_{0} + h \sum_{j=1}^{s} A_{ij}V^{j},$$

$$i = 1, \dots, s$$

$$0 = \sum_{i=1}^{s} b_{i}\frac{\partial L}{\partial \dot{q}}(Q^{i}, \dot{Q}^{i})\psi_{j}(c_{i}) - p_{0}B_{j} - h \sum_{i=1}^{s} (b_{i}B_{j} - b_{i}A_{ij})\frac{\partial L}{\partial q}(Q^{i}, \dot{Q}^{i}),$$

$$j = 1, \dots, s$$

$$0 = \sum_{i=1}^{s} \psi_{i}(c_{j})V^{i} - \dot{Q}^{j},$$

$$j = 1, \dots, s$$

where (b_i, c_i) are the quadrature weights and quadrature points, and $B_i = \int_0^1 \psi_i(\tau) d\tau$, $A_{ij} = \int_0^{c_i} \psi_j(\tau) d\tau$.

• When either the Hamiltonian or Lagrangian are hyperregular, these two methods are equivalent.

PDE Generalization: Multisymplectic Geometry

Ingredients

- **Base space** \mathcal{X} . (n + 1)-spacetime.
- Configuration bundle. Given by π : $Y \to \mathcal{X}$, with the fields as the fiber.
- Configuration $q : \mathcal{X} \to Y$. Gives the field variables over each spacetime point.
- First jet J^1Y . The first partials of the fields with respect to spacetime.

Variational Mechanics

- Lagrangian density $L: J^1Y \to \Omega^{n+1}(\mathcal{X}).$
- Action integral given by, $\mathcal{S}(q) = \int_{\mathcal{X}} L(j^1 q).$
- Hamilton's principle states, $\delta S = 0$.

Multisymplectic Exact Discrete Lagrangian

What is the PDE analogue of a generating function?

• Recall the implicit characterization of a symplectic map in terms of generating functions:

$$\begin{cases} p_k = -D_1 L_d(q_k, q_{k+1}) \\ p_{k+1} = D_2 L_d(q_k, q_{k+1}) \end{cases} \begin{cases} p_k = D_1 H_d^+(q_k, p_{k+1}) \\ q_{k+1} = D_2 H_d^+(q_k, p_{k+1}) \end{cases}$$

• Symplecticity follows as a trivial consequence of these equations, together with $\mathbf{d}^2 = 0$, as the following calculation shows:

$$\begin{split} \mathbf{d}^2 L_d(q_k, q_{k+1}) &= \mathbf{d} (D_1 L_d(q_k, q_{k+1}) dq_k + D_2 L_d(q_k, q_{k+1}) dq_{k+1}) \\ &= \mathbf{d} (-p_k dq_k + p_{k+1} dq_{k+1}) \\ &= -dp_k \wedge dq_k + dp_{k+1} \wedge dq_{k+1} \end{split}$$

Multisymplectic Exact Discrete Lagrangian Analogy with the ODE case

• We consider a multisymplectic analogue of Jacobi's solution:

$$L_d^{\text{exact}}(q_0, q_1) \equiv \int_0^h L\left(q_{0,1}(t), \dot{q}_{0,1}(t)\right) dt,$$

where $q_{0,1}(t)$ satisfies the Euler–Lagrange boundary-value problem. • This is given by,

$$L_d^{\text{exact}}(\varphi|_{\partial\Omega}) \equiv \int_{\Omega} L(j^1 \tilde{\varphi})$$

where $\tilde{\varphi}$ satisfies the boundary conditions $\tilde{\varphi}|_{\partial\Omega} = \varphi|_{\partial\Omega}$, and $\tilde{\varphi}$ satisfies the Euler-Lagrange equation in the interior of Ω .

Multisymplectic Exact Discrete Lagrangian Multisymplectic Relation

• If one takes variations of the **multisymplectic exact discrete Lagrangian** with respect to the boundary conditions, we obtain,

$$\partial_{\varphi(x,t)} L_d^{\text{exact}}(\varphi|_{\partial\Omega}) = p_{\perp}(x,t),$$

where $(x,t) \in \partial\Omega$, and p_{\perp} is the component of the multimomentum that is normal to the boundary $\partial\Omega$ at the point (x,t).

• These equations, taken at every point on $\partial\Omega$ constitute a **multisymplectic relation**, which is the PDE analogue of,

$$\begin{cases} p_k = -D_1 L_d(q_k, q_{k+1}) \\ p_{k+1} = D_2 L_d(q_k, q_{k+1}) \end{cases}$$

where the sign in the equations come from the orientation of the boundary of the time interval.

Multisymplectic Exact Discrete Hamiltonian

Analogue of Type II and III generating functions

- Discrete Hamiltonian mechanics is described in terms of Type II and III generating functions.
- In the PDE setting, the analogue of specifying (q_k, p_{k+1}) or (p_k, q_{k+1}) is to specify:
 - fields φ on $A \subset \partial \Omega$;
 - normal component of the multimomentum p_{\perp} on $B = \partial \Omega \setminus A$.
- Then, we have,

$$H_d^{\text{exact}}(\varphi|_A, p_\perp|_B) = \int_B \varphi p_\perp - \int_\Omega L(j^1 \tilde{\varphi}),$$

where $\tilde{\varphi}$ satisfies the prescribed boundary conditions, and the Euler–Lagrange equations.

Exact Multisymplectic Generating Functions Implications for Geometric Integration

- The multisymplectic generating functions depend on boundary conditions on an infinite set, and one needs to consider a finite-dimensional subspace of allowable boundary conditions.
- Let π be a projection onto allowable boundary conditions.
- In the variational error order analysis, we need to compare:

 ^{computable}(πφ|_{∂Ω})
 ^{cmact}(πφ|_{∂Ω})
 ^{cmact}(πφ|_{∂Ω})
 ^{cmact}(φ|_{∂Ω})
 ^{cmact}(φ|_Δ)
 ^{cmatt}(φ|_Δ)
 ^{cmatt}
- The comparison between the last two objects involves establishing well-posedness of the boundary-value problem, and the approximation properties of the finite-dimensional boundary conditions.

Summary

- The variational and boundary-value problem characterization of the exact discrete Lagrangian naturally lead to Galerkin variational integrators and shooting-based variational integrators.
- These provide a systematic framework for constructing variational integrators based on a choice of:
 - one-step method;
 - finite-dimensional approximation space;
 - o numerical quadrature formula.
- The resulting variational integrators can be shown to inherit properties like **order of accuracy**, and **momentum preservation** from the properties of the chosen one-step method, approximation space, or quadrature formula.

Questions?

