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PLAN

• Formal power series and a realization theorem

• Lie series and Hamiltonian realizations

• Algebraic criteria for existence of Hamiltonian realizations

• Global realization theorems

2



CONTROLLED AND OBSERVED SYSTEMS

System:

Σ : ẋ = f(x, u) = fu(x), yv = hv(x),

where:
x(t) ∈M – state space,
u(t) ∈ U – input space (a set, e.g. finite set),
yv(t) ∈ R,
v ∈ V – enumerates output components (observables).

The system is represented by Γ = {M, {fu}u∈U , {hu}v∈V }, where:

M – real analytic manifold of dimension n;
{fu}u∈U – a family of Cω vector fields on M ;
{hu}v∈V – a family of Cω functions on M ;

U and V will be assumed finite, ](U) ≥ 2, ](V ) ≥ 1.
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FORMAL POWER SERIES OF Σ

A controlled and observed system is represented by a triple

Γ = {M, {fu}u∈U , {hv}v∈V }.

For a given x0 ∈ M , the system Γ defines a family of formal power series in
noncommuting formal variables u ∈ U :

Sv =
∑
w∈U ∗

Svww, v ∈ V,

where:
. w = u1 · · ·uk are words in the alphabet U ,
. U∗ consists of all words, including empty word, and

Svw = Svu1···uk := (fu1 · · · fukhv)(x0),

are numbers (iterated derivatives at x0 of hv along vect. fields fuk, . . . , fu1).

Question: Does the family {Sv}v∈V represent ”completely” system Γ?
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REALIZATION PROBLEM

This question can be stated as a realization problem:

• Given a family of formal power series S = {Sv}v∈V , does there

exist a controlled and observed system Γ = {M, {fu}u∈U , {hu}v∈V }
and a point x0 ∈ M such that its series at xo coincide with the

given ones?

• If so, in what sense is Γ = {M, {fu}u∈U , {hu}v∈V } unique?
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REALIZATION THEOREM

We impose two conditions on the family of formal power series S = {Sv}v∈V :

Convergence condition: ∃ C > 0, R > 0 such that, for any word w = u1 · · ·uk,

|Svu1···uk| ≤ CRkk!. (C)

Rank condition:

rank LS < ∞. (R)

THM Existence. A family

S = {Sv}v∈V
of formal power series corresponds to a local analytic system

Γ = {M, {fu}u∈U , {hu}v∈V }
at a point x0 ∈M iff it satisfies conditions (C) and (R).
Then there exists Γ with dimM = rank LS.

Uniqueness. If two systems Γ and Γ̃ of dimension n = rank LS correspond to
the same family S then they are related by a local Cω-diffeomorphism.
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Remark Statement of a similar THM: M. Fliess, Inv. Math. 1983.

Proofs: [J86a] (see also [J00]), Sussmann 1989 (?), unpublished.

Global versions: [J80] and [J86c].



THE LIE RANK

The Lie rank used in the theorem is (Fliess 83):

rankLS = sup rank (S
vj
Liwj

)ki,j=1

where the supremum of ranks of k × k matrices is taken:

over all k ≥ 1,

over all Lie polynomials L1, . . . , Lk ∈ Lie{U},
over all words w1, . . . , wk ∈ U∗,
and over all elements v1, . . . , vk ∈ V .
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. .

PART II:

HAMILTONIAN REALIZATION PROBLEM
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SYMPLECTIC AND POISSON STRUCTURES

Let (M,ω) – symplectic manifold, with ω – closed, nondegenerate 2-form
ω ∈ Λ2(T ∗M).

ω defines Poisson bracket: for φ ∈ C∞(M), ψ ∈ C∞(M),

{φ, ψ} = P (dφ, dψ) =
∑

Pk`
∂φ

∂xk
∂ψ

∂x`
,

where P = ω−1 ∈ Λ2(TM) is the Poisson tensor corresponding to ω:

ω =
∑

aijdx
i ∧ dxj,

P =
∑

Pk`
∂

∂xk
∧

∂

∂x`
,

where (Pk`) = (aij)−1. Poisson bracket is antisymmetric and satisfies

{φ, {ψ, γ}}+ {ψ, {γ, φ}}+ {γ, {φ, ψ}} = 0, (JACOBI)

{φ, {ψ, γ}} = {{φ, ψ}, γ}+ {ψ, {φ, γ}}. (LEIBNIZ)

Poisson structure is defined in the same way by any antisymmetric tensor

P ∈ Λ2(TM) so that the corresponding Poisson bracket satisfies (JACOBI).
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HAMILTONIAN VECTOR FIELDS

Given a symplectic form ω on M , or a Poisson tensor P , X is a Hamiltonian
vector field on M if, locally, there is a function H on M such that

ω(·, X) = dH,

or (equivalently),

X = P dH,

where we treat P as a linear operator T ∗M → TM .

Thus, any function H : M → R defines a Hamiltonian vector field

~H = P dH.

Locally,

~H =
∑
i,j

Pij
∂H

∂xj
∂

∂xi
.
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HAMILTONIAN CONTROLLED AND OBSERVED SYSTEM

We take the input and output alphabets equal: U = V .

Def A system

Γ = {M, {fu}u∈U , {hu}u∈U}
is Hamiltonian if ∃ Poisson tensor P on M such that

fu = P dhu, u ∈ U,
i.e., vector fields fu are Hamiltonian, with Hamiltonians hu.

Remarks:

• In physics hu would be called observables and fu – the corresponding
infinitesimal symmetries.

• In control theory Hamiltonian systems appear e.g. in conservative electric

cirquits (A. Van der Schaft, P. Crouch), with a slightly changed definition.
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THE BRACKETING MAP

Let R〈U〉 denote the free algebra generated by U (the algebra of formal
polynomials in noncommuting variables u ∈ U). There is also a Lie algebra
structure in R〈U〉, with the commutator product [P,Q] = PQ−QP .

Let Lie{U} ⊂ R〈U〉 be the free Lie algebra generated by U (the smallest Lie
subalgebra in R〈U〉 generated by the variables u ∈ U ⊂ R〈U〉).
There is a canonical linear map

[ ] : R〈U〉 → Lie{U},
called here bracketing map, defined on words w = u1 · · ·uk by

[u1u2 . . . uk−1uk] = [u1, [u2, · · · [uk−1, uk]]]

and extended to the free algebra R〈U〉 by linearity.

This map is ”onto”. We shall later use its kernel S = ker[ ].

A well known criterion says that a homogeneous polynomial W ∈ Lie{U} of
degree k is a Lie polynomial iff

[W ] = kW.
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HAMILTONIAN C-O SYSTEM DEFINES A LIE SERIES

Let Γ = {M, {fu}u∈U , {hu}v∈V } be given. Denote

hu1···uk−1uk = fu1 · · · fuk−1huk.

If Γ is Hamiltonian then we also have, for w = u1 · · ·uk,

hw = hu1···uk−1uk = {hu1, {hu2, · · · , {huk−1, huk} · · · }}.
We can extend the definition of hw from words w = u1 · · ·uk ∈ U∗

to polynomials W =
∑

w∈U ∗ λww by linearity:

hW =
∑
w∈U ∗

λwhw.

Let x ∈M be fixed. For any word w = u1 · · ·uk we define

Lx([w]) = hw(x).

This map extends by linearity to a unique linear function

Lx : Lie{U} → R.

Lx can be identified with a Lie series in noncommuting formal variables u ∈ U .

We call Lx the Lie series of Γ at x.
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DOES A LIE SERIES DEFINE A HAMILTONIAN SYSTEM?

Consider now a linear function

L : Lie{U} → R,
which we call Lie series because such a function can be identified with a Lie
series in noncommuting formal variables u ∈ U .

Question 1. When a Lie series L corresponds to a Hamiltonian system?

Question 2. When a formal power series S : R〈U〉 → R has a realization

{M, {fu}u∈U , {hu}u∈U , x0}
which admits a Hamiltonian structure, i.e., ∃ a Poisson tensor P such that
fu = Phu?

Question 3. When Γ = {M, {fu}u∈U , {hu}v∈V } admits a Hamiltonian structure?
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ANSWER TO Q1

THM (2011) Existence. A Lie series L : Lie{U} → R corresponds to a Cω

Hamiltonian system {M, {fu}u∈U , {hu}u∈U , x0} iff

|L([u1 · · ·uk])| ≤ C(R)kk!, (A)

for some C > 0, R > 0, and

rankKL < ∞, (R)

where rankKL is the rank of the bilinear map

Lie{U} × Lie{U} → R
defined by

(X,Y ) 7→ L([X,Y ]).

Then ∃ such a system with dimM = rankKL and M symplectic.

Uniqueness. If two symplectic Hamiltonian systems of dimension n = rankKL

correspond to the same Lie series L then they are related by a symplectomor-

phism.
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REMARKS

• The rank rankKL corresponds to Kirillov’s rank in the ”method of orbits” in
representation theory and geometric quantization (Souriau, Kostant, Kirillov).

• In a global version of the above theorem a group acts on the dual free
Lie algebra (Lie{U})∗ (the space of Lie series). Finiteness of the rank means
that Orb(L) is a finite dimensional ”submanifold” in (Lie{U})∗ and

M = Orb(L).

The natural symplectic structure on M corresponds to the symplectic struc-

ture in the method of orbits.
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. .

PART III:

When a controlled and observed system admits a Hamiltonian structure?
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CRITERIA FOR Γ TO ADMIT A HAMILTONIAN STRUCTURE

Consider a system Γ = {M, {fu}u∈U , {hu}v∈V }.

Question. When Γ admits a Hamiltonian structure, i.e., ∃ Poisson tensor P
such that fu = P dhu, for any u ∈ U?

Define functions

hu1···uk−1uk = fu1 · · · fuk−1huk,

for k ≥ 1 and u1, . . . , uk ∈ U . By linearity we extend the definition to

hW :=
∑

λwhw, for W =
∑
w

λww ∈ R〈U〉.

THM [J86d] Equivalent:

(a) Γ admits a Hamiltonian structure.

(b) hW = 0 for any W ∈ R〈U〉 such that [W ] = 0.

(c) h[u1···uk] = khu1···uk, for any k ≥ 2, u1, . . . , uk ∈ U .
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CRITERIA FOR Γ TO ADMIT A HAMILTONIAN STRUCTURE

THM (repeated) Equivalent:

(a) Γ admits a Hamiltonian structure.

(b) hW = 0 for any W ∈ R〈U〉 such that [W ] = 0.

(c) h[u1···uk] = khu1···uk, for any k ≥ 2, u1, . . . , uk ∈ U .

(d) The linear map S : R〈U〉 → C∞(M) given by

W → hW

factorizes through a map M : Lie{U} → C∞(M)
via the bracketing map [ ] : R〈U〉 → Lie{U}, i.e.,

S(W ) = M([W ]).
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REMARKS

• The map Mx : Lie{U} → R defined by

Mx(W ) = (M(W ))(x)

can be regarded as a momentum map at x for the Hamiltonian system Γ =
{M, {fu}u∈U , {hu}v∈V }. More precisely, the family of Hamiltonian vector fields

{fu}u∈U
defines a Poisson (symplectic) action of a ∞-dimensional group (pseudogroup)
generated by the (local) flows of all fu.

• The momentum Mx can be identified with the Lie series of the system
{M, {fu}u∈U , {hu}v∈V } at x, i.e.,

Lx = Mx.
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COMBINATORICS: CONDITION (B) MADE EFFECTIVE

Condition (b) for system Γ = {M, {fu}u∈U , {hu}v∈V } to admit a Hamiltonian
structure says:

(b) hW = 0 for any W ∈ R〈U〉 such that [W ] = 0.

It can be replaced by:
(b’) hW = 0 for any homogeneous polynomial W ∈ R〈U〉 such that [W ] = 0
and deg(W ) ≤ 3N , if Γ is observable of order N (i.e., 1-forms dhw with words
w ∈ U∗ of length at most N span T ∗M at each x).

Denote:

Sk = space of homogeneous polynomials W of deg. k such that [W ] = 0.

Proposition [J86d] If Γ is observable of order N then the number of
independent conditions in (b’) is p2 + p3 + · · ·+ p3N , with

pk =
r

k − 1

∑
d|k−1

µ(d)r(k−1)/d −
1

k

∑
d|k

µ(d)rk/d,

where µ is the Möbius function on the positive integers: µ(d) = 0 if d has

multiple divisors and µ(d) = (−1)s, where s is the number of prime divisors.
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NUMBER OF INDEPENDENT CONDITIONS

If r = ](U) = 2, then:

k : 1 2 3 4 5 6 7 8
dimSk : 0 3 6 13 26 55 110 226
pk : 0 3 0 1 0 3 0 6

and the independent conditions are given by the words W in the
alphabet U = {u, v}:

uu, vv, uv+ vu, [uv]uv,

[uuv]uuv, [vvu]vvu, [uv]uvuv+ [uvuv]uv,

[uuuv]uuuv, [vvvu]vvvu, [uuv]vvvvu+ [vvvvu]uuv,

[vvu]uuuuv+ [uuuuv]vvu, [uv]uvuvuv+ [uvuvuv]uv, [uvuv]uvuv.
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PART IV:

A global realization theorem
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A black box system

U – input space (a set or Rm)

Y – output space (e.g. Y = Rp). For simplicity we take Y = R.

t ∈ [0, T ) – time

———————
. | |
input u(t) ∈ U | | output y(t) ∈ Y
. ————— | BLACK BOX | ——————–
. | |
. | |
. ———————–
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Input-output map

Convention: the black box maps input signals into output signals

u(·) 7−→ y(·).
This map is nonlinear and non-anticipating (causal), i.e.,

y(t) depends only on u|[0,t).

Such a map is called input-output map and may be explicitly represented by

• causal functionals on a semigroup of inputs

• Volterra series

• Chen-Fliess series

• formal power series of noncommuting variables
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Semigroup of piecewise constant inputs

Let (t, u) denote the constant function, equal to u ∈ U on [0, t).

Using concatenation, piecewise constant functions a : [0, Ta) → U

can be written as

a = (t1, u1)(t2, u2) · · · (tk, uk),

k ≥ 0, ti > 0, ui ∈ U , with Ta = t1 + · · ·+ tk and

a(t) = ui, for t ∈ [Ti−1, Ti),

where T0 = 0 and Ti = t1 + · · ·+ ti.

They form a semigroup SU , with multiplication = concatenation.

For k = 0 we get the empty domain function e (neutral element).
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Causal function (input-output function)

Given semigroup of inputs

SU = { (t1, u1) · · · (tk, uk), k ≥ 0, ti > 0, ui ∈ U },
a function

F : SU → R

is called a causal function(al) or input-output function.

F is one of possible representations of the black box behavior.

In the analytic case it is equivalent to representation by a formal
power series S =

∑
w∈U∗ Sww (see [J86b]), where

Sw = Su1···uk =
d

dt1
· · ·

d

dtk
F ((t1, u1) · · · (tk, uk))|t1=···=tk=0.
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Controlled and observed system

Consider an analytic control system

Σ : ẋ = f(x, u), x(0) = x0, y = h(x),

where x(t) ∈M – a real analytic, connected manifold,

u(t) ∈ U – a set (possibly infinite),

y(t) ∈ Y = R,

h : M → R is an analytic function (observable).

Assume, the vector fields fu = f(·, u) are complete.
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Input-output function of controlled and observed system

Σ : ẋ = f(x, u), x(0) = x0, y = h(x).

Given a piecewise constant control u = a : [0, Ta) → U in SU , let

Φa(x0) = xa(Ta)

denote the final point, at t = Ta, of the corresponding trajectory
of Σ. Put

y = h(Φa(x0)).

The map FΣ : SU → R defined by

FΣ : a 7→ h(Φa(x0))

is a causal function, called input-output function of Σ.
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The realization problem

Each analytic, complete, controlled and observed system

Σ : ẋ = f(x, u), x(0) = x0, y = h(x).

defines a causal function FΣ : SU → R.

Question: When a causal function F : SU → R comes from a
controlled and observed system Σ?

Note that, given the input space U and the output space Y = R,
the system Σ is defined by the 4-tuple Σ = (M, f, h, x0).
Thus, in order to construct the system from a causal function
F : SU → R we have to construct this 4-tuple.

The most difficult to construct is the manifold M . For Σ minimal
(i.e., transitive and observable), if it exists it is unique up to a
diffeomorphism (Sussmann 77) .
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A realization theorem

THM (B.J., SIAM J. Control & Optim. 1980)

A causal function

F : SU → R
has an analytic, complete realization Σ = (M, f, h, x0) iff

(A) all functions

(t1, . . . , tk) 7−→ F ((t1, u1) · · · (tk, uk)) ∈ R
are analytic on Rk+ and have analytic extensions to Rk, where
R+ = [0,∞);

(B) rankF < ∞.

rankF will be defined below.
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Extendability and the input group

In the construction of the realization we use the input group:

GU = { (t1, u1) · · · (tk, uk), k ≥ 0, ti ∈ R, ui ∈ U }/ ∼,

which is the free semigroup of words, with alphabet R× U ,

considered up to identifications

(0, u) ∼ e (empty word), (t1, u)(t2, u) ∼ (t1 + t2, u),

and the inverse

((t1, u1) · · · (tk, uk))−1 = (−tk, uk) · · · (−t1, u1).

The extendability requirement in condition (A) is equivalent to

the fact that F : SU → R has a (unique) extension to GU .
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Remarks

• If U is finite then one can remove the completeness

requirement and analytic extendability in (A)

([J86a], F. Celle and J.-P. Gauthier 87).

• A similar result holds in the differentiable category [J80].

• The theorem can be extended to bounded measurable inputs

[J80].
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THE RANK

We define ([J80]):

rankF = sup rank

(
∂

∂ti
F (abj)

)k
i,j=1

where the supremum is taken over all

a = (t1, u1) · · · (tk, uk) ∈ SU , b1, . . . , bk ∈ SU , and k ≥ 1.

The rank on the right is the usual rank of a k × k matrix.

In the analytic case the above rank and the Lie rank used earlier

are equivalent ([J86b], [J00]).
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