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CONTROLLED AND OBSERVED SYSTEMS

System:

2 T = f($7u) - fu(w)a Yv = hv(w)7
where:
x(t) € M — state space,
u(t) € U — input space (a set, e.g. finite set),
yu(t) € R,
v € V — enumerates output components (observables).

The system is represented by I' = {M, {fu}ucv, {hu}vev}, Where:

M — real analytic manifold of dimension n;
{futuer — @ family of C¥ vector fields on M,
{hv}vey — a family of C¥ functions on M,

U and V will be assumed finite, #(U) > 2, #(V) > 1.



FORMAL POWER SERIES OF X~

A controlled and observed system is represented by a triple

= {M, {fu}uEUa {hU}UGV}'

For a given xg € M, the system [ defines a family of formal power series in
noncommuting formal variables u € U-:

SY = Z Sow, veYV,
weU*

where:
w = uq---ug are words in the alphabet U,
U* consists of all words, including empty word, and

S’LIL)) — Sgl--'uk L= (ful T fukhv)(a}O)?
are numbers (iterated derivatives at zg of h, along vect. fields f,,,..., fu.).

Question: Does the family {S"},cv represent "completely” system 7



REALIZATION PROBLEM

T his question can be stated as a realization problem:

e Given a family of formal power series S = {S"},cy, does there
exist a controlled and observed system I' = { M, { fu}tucv,{hutvev}
and a point xg € M such that its series at x, coincide with the
given ones?

e If so, in what sense is ' = {M, { fu}ucu, {Pu}vey} unique?



REALIZATION THEOREM

We impose two conditions on the family of formal power series S = {S"},ev:

Convergence condition: 4 C > 0, R > 0 such that, for any word w = u1 - - - ug,

Syl < CRMEL. (®
Rank condition:
rank .S < oo. (R)
THM Existence. A family
S ={S"} vev

of formal power series corresponds to a local analytic system

= {M, {fu}uEUa {hu}’UEV}
at a point zo € M iff it satisfies conditions (C) and (R).
Then there exists I with dim M = rankS.

Unigueness. If two systems I and I of dimension n = rank 1S correspond to
the same family S then they are related by a local C¥-diffeomorphism.



Remark Statement of a similar THM: M. Fliess, Inv. Math. 1983.
Proofs: [J86a] (see also [J0O0]), Sussmann 1989 (?7), unpublished.
Global versions: [J80] and [J86C].



THE LIE RANK

The Lie rank used in the theorem is (Fliess 83):

rank ;.S = sup rank (Szj,w,)szl
1%7)] )

where the supremum of ranks of k£ x kK matrices is taken:
over all k> 1,

over all Lie polynomials Lq,..., L € Lie{U},

over all words w1, ...,w, € U¥,

and over all elements vq,...,v € V.



PART II:

HAMILTONIAN REALIZATION PROBLEM



SYMPLECTIC AND POISSON STRUCTURES

Let (M,w) — symplectic manifold, with w — closed, nondegenerate 2-form
w € N°(T*M).
w defines Poisson bracket: for ¢ € C*°(M), ¥ € C>°(M),

0o 0
(6,4} = P(dp,dp) = 3 Pu o0,

where P = w™! € A2(TM) is the Poisson tensor corresponding to w:
w = Z aijda:i N dxj,
0 0
P=>r A —.
Z "ozt " ot
where (Py) = (ai;)~t. Poisson bracket is antisymmetric and satisfies

{0, {v,v}} +{v. {7, ¢}} +{v.{&.¥}} =0, (JACOBI)
{0, {v,7}} = {e,vh vy +{d, {7} (LEIBNIZ)

Poisson structure is defined in the same way by any antisymmetric tensor

P € N?(TM) so that the corresponding Poisson bracket satisfies (JACOBI).
9




HAMILTONIAN VECTOR FIELDS

Given a symplectic form w on M, or a Poisson tensor P, X is a Hamiltonian
vector field on M if, locally, there is a function H on M such that

w('JX) — dH7
or (equivalently),
X = PdH,
where we treat P as a linear operator T"M — T M.
Thus, any function H : M — R defines a Hamiltonian vector field
H = PdH.
Locally,
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HAMILTONIAN CONTROLLED AND OBSERVED SYSTEM

We take the input and output alphabets equal: U = V.

Def A system

[ = {M7 {fu}uEUa {hu}uEU}
is Hamiltonian if 4 Poisson tensor P on M such that

fu=Pdh,, ue€eU,
i.e., vector fields f, are Hamiltonian, with Hamiltonians h,,.

Remarks:

In physics h, would be called observables and f, — the corresponding
infinitesimal symmetries.

In control theory Hamiltonian systems appear e.g. in conservative electric
cirquits (A. Van der Schaft, P. Crouch), with a slightly changed definition.
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THE BRACKETING MAP

Let R(U) denote the free algebra generated by U (the algebra of formal
polynomials in noncommuting variables u € U). There is also a Lie algebra
structure in R(U), with the commutator product [P,Q] = PQ — QP.

Let Lie{U} C R(U) be the free Lie algebra generated by U (the smallest Lie
subalgebra in R(U) generated by the variables v € U C R(U)).

There is a canonical linear map
[ 1:RU) — Lie{U},
called here bracketing map, defined on words w = uj ---ur by
[utus . .. up_1ug] = [u1, [uz, - - - [ug—1, url]]
and extended to the free algebra R(U) by linearity.
This map is "onto”. We shall later use its kernel S = ker[ ].

A well known criterion says that a homogeneous polynomial W € Lie{U} of
degree K is a Lie polynomial iff

W] = EW.
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HAMILTONIAN C-O SYSTEM DEFINES A LIE SERIES
Let ' = {M,{fu}luecv,{hu}vev} be given. Denote
hougow yu, = Jui o fu Py
If I is Hamiltonian then we also have, for w = uy - - - ug,

hw = huyooyu, = $hugs {Puss -+ 5 {hu s b b - 1)

We can extend the definition of h, from words w = w1 ---u € U*
to polynomials W = %" .. Ayw by linearity:

hy = Z Awho.

welU*
Let x € M be fixed. For any word w = uq ---u; we define

Lo ([w]) = huw(x).
This map extends by linearity to a unique linear function
L, : Lie{U} — R.

L, can be identified with a Lie series in noncommuting formal variables v € U.

We call L, the Lie series of I' at «.
13



DOES A LIE SERIES DEFINE A HAMILTONIAN SYSTEM?

Consider now a linear function
L: Lie{U} — R,

which we call Lie series because such a function can be identified with a Lie
series in noncommuting formal variables v € U.

Question 1. When a Lie series L corresponds to a Hamiltonian system?

Question 2. When a formal power series S : R(U) — R has a realization

{M7 {fu}uEUa {hu}u€U7 xO}
which admits a Hamiltonian structure, i.e., 3 a Poisson tensor P such that
fu = Ph,?

Question 3. When I' = {M, { fu}uev, {hu}vev} admits a Hamiltonian structure?

14



ANSWER TO Q1

THM (2011) Existence. A Lie series L : Lie{U} — R corresponds to a C¥
Hamiltonian system {M,{fu.}ucv, {hu}ucv,zo} iff

IL([u1 - w])| < C(R)"K!, (A)
for some C >0, R > 0, and
rank kL < oo, (R)
where rank gL is the rank of the bilinear map
Lie{U} x Lie{U} — R
defined by
(X,Y) — L([X,Y]).
Then 9 such a system with dim M = rank gL and M symplectic.

Uniqueness. If two symplectic Hamiltonian systems of dimension n = rank gL
correspond to the same Lie series L then they are related by a symplectomor-
phism.
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REMARKS

e Therank rank gL corresponds to Kirillov's rank in the " method of orbits” in
representation theory and geometric quantization (Souriau, Kostant, Kirillov).

e In a global version of the above theorem a group acts on the dual free
Lie algebra (Lie{U})* (the space of Lie series). Finiteness of the rank means
that Orb(L) is a finite dimensional "submanifold” in (Lie{U})* and

M = Orb(L).

The natural symplectic structure on M corresponds to the symplectic struc-
ture in the method of orbits.

16



PART III:

When a controlled and observed system admits a Hamiltonian structure?
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CRITERIA FOR T TO ADMIT A HAMILTONIAN STRUCTURE
Consider a system I' = { M, { fu}tucv, {hu}vev}-

Question. When I admits a Hamiltonian structure, i.e., 34 Poisson tensor P
such that f, = Pdh,, for any u e U?

Define functions

hul"‘ukfluk — ful U fukflhuk7
for k> 1 and wui,...,ur € U. By linearity we extend the definition to

hw =) Awhw, for W= XuweRU).

THM [J86d] Equivalent:
(a) ' admits a Hamiltonian structure.

(b) hyw = 0 for any W € R(U) such that [W] = 0.
(C) h[ul---uk] = khy,..,, TOrany k> 2, uy,...,ux € U.
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CRITERIA FOR T TO ADMIT A HAMILTONIAN STRUCTURE

THM (repeated) Equivalent:

(a) ' admits a Hamiltonian structure.

(b) hy = 0 for any W € R(U) such that [W] = 0.
(c) h[m-'-uk] = khyq--u,, fOrany k> 2, uy,...,up € U.

(d) The linear map S : R(U) — C°°(M) given by

W — hy,

factorizes through a map M : Lie{U} — C°°(M)
via the bracketing map [ ]: R(U) — Lie{U}, i.e.,

S(W) = M([W]).

19



REMARKS
e The map M, : Lie{U} — R defined by
M,(W) = (M(W))(x)

can be regarded as a momentum map at x for the Hamiltonian system I =
{M,{fu}uev,{hu}vev}. More precisely, the family of Hamiltonian vector fields

{fu}ueU

defines a Poisson (symplectic) action of a co-dimensional group (pseudogroup)
generated by the (local) flows of all f,.

e The momentum M, can be identified with the Lie series of the system
{M, {fu}uEUa{hu}UeV} at z, i.e.,
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COMBINATORICS: CONDITION (B) MADE EFFECTIVE

Condition (b) for system ' = {M, {fu}ucv, {hu}vev} to admit a Hamiltonian
structure says:

(b) hyw = 0 for any W € R(U) such that [W] = 0.

It can be replaced by:

(b") hyw = 0 for any homogeneous polynomial W € R(U) such that [W] =0
and deg(W) < 3N, if I" is observable of order N (i.e., 1-forms dh,, with words
w € U* of length at most N span T*M at each z).

Denote:

S, = space of homogeneous polynomials W of deg. k such that [W] = 0.

Proposition [J86d] If I is observable of order N then the number of
independent conditions in (b") is po» + p3 + - - - 4+ p3n, With

T _ 1
pr=1—7 ) wdyrT— =% u(d)yrt/,
dlk—1 dlk

where p is the MoObius function on the positive integers: u(d) = 0 if d has
multiple divisors and u(d) = (—1)%, where s is the number of prime divisors.
21



NUMBER OF INDEPENDENT CONDITIONS

If r =4(U) = 2, then:

k : 123 4 5 6 7 3
dmS,: 0 3 6 13 26 55 110 226
Pr O30 1 0 3 O 6

and the independent conditions are given by the words W in the
alphabet U = {u,v}:

uu, vv, uv + vu, [uv]uwv,
[uuv]uuv, [vvu]vvu, [uv]uvuv + [uvuv]uo,
[uvuv]uvuv, [vvvu]vvvu, [uuv]vvvvu + [vvvvu]uu,

[vvu]uvuuy + [uvwuv]vvw, [uv]uvuwvuy + [uvuvuv]uv, [uvuv]uvuo.
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PART IV:

A global realization theorem
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A black box system

U — input space (a set or R™)
Y — output space (e.g. Y = RP). For simplicity we take Y = R.

t € [0,T) — time

input u(t) e U | output y(t) €Y
BLACK BOX

24



Input-output map
Convention: the black box maps input signals into output signals

u(-) — y(-).
This map is nonlinear and non-anticipating (causal), i.e.,

y(t) depends only on u|p 4.

Such a map is called input-output map and may be explicitly represented by
e causal functionals on a semigroup of inputs
e \olterra series
e Chen-Fliess series

e formal power series of noncommuting variables

25



Semigroup of piecewise constant inputs
Let (¢t,v) denote the constant function, equal to uw € U on [0, 1t).

Using concatenation, piecewise constant functionsa : [0,T,) — U
can be written as

a = (t1,u1)(t2,un) - (g, ug),
k>0,t >0, u; €U, with 1T, =t1 + -+ + t and
a(t) — Uy, for IS [Ti—17T’i)7
where Ig =0 and T, =t1 + --- + ;.
T hey form a semigroup Sgy, with multiplication = concatenation.

For k = 0 we get the empty domain function e (neutral element).
26



Causal function (input-output function)

Given semigroup of inputs
SU:{(tlaul)(tkauk)a k>0, t >0, U’ZEU}a
a function
F SU — R

is called a causal function(al) or input-output function.
F' is one of possible representations of the black box behavior.

In the analytic case it is equivalent to representation by a formal
power series S =Y, cy* Sww (see [J86Db]), where

d d
Sw = Suluk — 51 T d—th((tla ’U,]_) T (tkja uk))ltlz---zthO'
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Controlled and observed system
Consider an analytic control system
> o= f(z,u), =z(0)==z0, y=h(z),
where z(t) € M — a real analytic, connected manifold,
u(t) € U — a set (possibly infinite),
y(t) €Y =R,
h : M — R is an analytic function (observable).

Assume, the vector fields f, = f(-,u) are complete.
28



Input-output function of controlled and observed system

>: = f(zx,u), x(0)==2x9, y=h(x).

Given a piecewise constant control u =a : [0,7,) — U in Sy, let

Pa(zg) = za(Ta)

denote the final point, at t = T,, of the corresponding trajectory
of >. Put

y = h(®Pa(zo)).
The map Fy : Sy — R defined by
Fs: ar— h(Pg(zg))

IS a causal function, called input-output function of 2.
29



The realization problem

Each analytic, complete, controlled and observed system

> &= f(z,u), x(0)==z0, y=nh(z).
defines a causal function Fy : Sy — R.

Question: When a causal function F' : Sy — R comes from a
controlled and observed system 3.7

Note that, given the input space U and the output space ¥ = R,
the system X is defined by the 4-tuple X = (M, f, h, zg).

Thus, in order to construct the system from a causal function
F : Sy — R we have to construct this 4-tuple.

T he most difficult to construct is the manifold M. For 2 minimal
(i.e., transitive and observable), if it exists it is unique up to a
diffeomorphism (Sussmann 77) .
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A realization theorem
THM (B.J., SIAM J. Control & Optim. 1980)

A causal function
F SU — R

has an analytic, complete realization >~ = (M, f, h, xg) iff

(A) all functions

(t1,...,tg) — F((t1,u1)--- (tg,up)) €R

are analytic on R’fl_ and have analytic extensions to R¥, where

(B) rankF < oo.

rank F' will be defined below.
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Extendability and the input group

In the construction of the realization we use the input group:

GU:{(t17u1)<tkauk)a kZOa t’LGRa u’LGU}/ ~

which is the free semigroup of words, with alphabet R x U,
considered up to identifications

(O,U) ~ € (empty Word)7 (tl,U)(tQ,U) ~ (tl + tQ,U),

and the inverse

((t1,u1) - (b up)) ™t = (g, ug) - - (—t1,u1).

The extendability requirement in condition (A) is equivalent to
the fact that F: Sy — R has a (unique) extension to Gy.

32



Remarks

e If U is finite then one can remove the completeness
requirement and analytic extendability in (A)
([J86a], F. Celle and J.-P. Gauthier 87).

e A similar result holds in the differentiable category [J80].

e [he theorem can be extended to bounded measurable inputs
[J80].
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THE RANK
We define ([J80]):

k
0
rank F' = sup rank (8—tF(abj>>

t 1,7=1

where the supremum is taken over all

a:(tl,U1)"'(tk,uk)€SU, bla"'abkESU7 and k > 1.

The rank on the right is the usual rank of a k£ x &k matrix.

In the analytic case the above rank and the Lie rank used earlier
are equivalent ([J86b], [JOO]).
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