HAMILTONIAN VECTOR FIELDS, OBSERVABLES AND LIE SERIES

Bronistaw Jakubczyk

Institute of Mathematics
Polish Academy of Sciences, Warsaw
Rough Paths and Combinatorics in Control Theory
San Diego, 25-27. 07. 2011

PLAN

- Formal power series and a realization theorem
- Lie series and Hamiltonian realizations
- Algebraic criteria for existence of Hamiltonian realizations
- Global realization theorems

CONTROLLED AND OBSERVED SYSTEMS

System:

$$
\Sigma: \quad \dot{x}=f(x, u)=f_{u}(x), \quad y_{v}=h_{v}(x),
$$

where:
$x(t) \in M$ - state space,
$u(t) \in U$ - input space (a set, e.g. finite set),
$y_{v}(t) \in \mathbb{R}$,
$v \in V$ - enumerates output components (observables).
The system is represented by $\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$, where:
M - real analytic manifold of dimension n ; $\left\{f_{u}\right\}_{u \in U}$ - a family of C^{ω} vector fields on M; $\left\{h_{u}\right\}_{v \in V}-$ a family of C^{ω} functions on M;
U and V will be assumed finite, $\sharp(U) \geq 2, \quad \sharp(V) \geq 1$.

FORMAL POWER SERIES OF Σ

A controlled and observed system is represented by a triple

$$
\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{v}\right\}_{v \in V}\right\} .
$$

For a given $x_{0} \in M$, the system 「 defines a family of formal power series in noncommuting formal variables $u \in U$:

$$
S^{v}=\sum_{w \in U^{*}} S_{w}^{v} w, \quad v \in V
$$

where:
$w=u_{1} \cdots u_{k}$ are words in the alphabet U, U^{*} consists of all words, including empty word, and

$$
S_{w}^{v}=S_{u_{1} \cdots u_{k}}^{v}:=\left(f_{u_{1}} \cdots f_{u_{k}} h_{v}\right)\left(x_{0}\right),
$$

are numbers (iterated derivatives at x_{0} of h_{v} along vect. fields $f_{u_{k}}, \ldots, f_{u_{1}}$).
Question: Does the family $\left\{S^{v}\right\}_{v \in V}$ represent "completely" system 「?

REALIZATION PROBLEM

This question can be stated as a realization problem:

- Given a family of formal power series $S=\left\{S^{v}\right\}_{v \in V}$, does there exist a controlled and observed system $\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$ and a point $x_{0} \in M$ such that its series at x_{o} coincide with the given ones?
- If so, in what sense is $\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$ unique?

REALIZATION THEOREM

We impose two conditions on the family of formal power series $S=\left\{S^{v}\right\}_{v \in V}$:
Convergence condition: $\exists C>0, R>0$ such that, for any word $w=u_{1} \cdots u_{k}$,

$$
\begin{equation*}
\left|S_{u_{1} \cdots u_{k}}^{v}\right| \leq C R^{k} k!. \tag{C}
\end{equation*}
$$

Rank condition:

$$
\begin{equation*}
\operatorname{rank}_{L} S<\infty \tag{R}
\end{equation*}
$$

THM Existence. A family

$$
S=\left\{S^{v}\right\}_{v \in V}
$$

of formal power series corresponds to a local analytic system

$$
\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}
$$

at a point $x_{0} \in M$ iff it satisfies conditions (C) and (R).
Then there exists Γ with $\operatorname{dim} M=\operatorname{rank}_{L} S$.
Uniqueness. If two systems Γ and $\tilde{\Gamma}$ of dimension $n=\operatorname{rank}_{L} S$ correspond to the same family S then they are related by a local C^{ω}-diffeomorphism.

Remark Statement of a similar THM: M. Fliess, Inv. Math. 1983. Proofs: [J86a] (see also [J00]), Sussmann 1989 (?), unpublished. Global versions: [J80] and [J86c].

THE LIE RANK

The Lie rank used in the theorem is (Fliess 83):

$$
\operatorname{rank}_{L} S=\sup \operatorname{rank}\left(S_{L_{i} w_{j}}^{v_{j}}\right)_{i, j=1}^{k}
$$

where the supremum of ranks of $k \times k$ matrices is taken:
over all $k \geq 1$,
over all Lie polynomials $L_{1}, \ldots, L_{k} \in \operatorname{Lie}\{U\}$, over all words $w_{1}, \ldots, w_{k} \in U^{*}$, and over all elements $v_{1}, \ldots, v_{k} \in V$.

PART II:

HAMILTONIAN REALIZATION PROBLEM

SYMPLECTIC AND POISSON STRUCTURES

Let (M, ω) - symplectic manifold, with ω - closed, nondegenerate 2-form $\omega \in \wedge^{2}\left(T^{*} M\right)$.
ω defines Poisson bracket: for $\phi \in C^{\infty}(M), \psi \in C^{\infty}(M)$,

$$
\{\phi, \psi\}=P(d \phi, d \psi)=\sum P_{k \ell} \frac{\partial \phi}{\partial x^{k}} \frac{\partial \psi}{\partial x^{\ell}},
$$

where $P=\omega^{-1} \in \Lambda^{2}(T M)$ is the Poisson tensor corresponding to ω :

$$
\begin{aligned}
\omega & =\sum a_{i j} d x^{i} \wedge d x^{j}, \\
P & =\sum P_{k \ell} \frac{\partial}{\partial x^{k}} \wedge \frac{\partial}{\partial x^{\ell}},
\end{aligned}
$$

where $\left(P_{k \ell}\right)=\left(a_{i j}\right)^{-1}$. Poisson bracket is antisymmetric and satisfies

$$
\begin{gather*}
\{\phi,\{\psi, \gamma\}\}+\{\psi,\{\gamma, \phi\}\}+\{\gamma,\{\phi, \psi\}\}=0 \tag{JACOBI}\\
\{\phi,\{\psi, \gamma\}\}=\{\{\phi, \psi\}, \gamma\}+\{\psi,\{\phi, \gamma\}\} \tag{LEIBNIZ}
\end{gather*}
$$

Poisson structure is defined in the same way by any antisymmetric tensor $P \in \wedge^{2}(T M)$ so that the corresponding Poisson bracket satisfies (JACOBI).

HAMILTONIAN VECTOR FIELDS

Given a symplectic form ω on M, or a Poisson tensor P, X is a Hamiltonian vector field on M if, locally, there is a function H on M such that

$$
\omega(\cdot, X)=d H,
$$

or (equivalently),

$$
X=P d H
$$

where we treat P as a linear operator $T^{*} M \rightarrow T M$.
Thus, any function $H: M \rightarrow \mathbb{R}$ defines a Hamiltonian vector field

$$
\vec{H}=P d H
$$

Locally,

$$
\vec{H}=\sum_{i, j} P_{i j} \frac{\partial H}{\partial x^{j}} \frac{\partial}{\partial x^{i}} .
$$

HAMILTONIAN CONTROLLED AND OBSERVED SYSTEM

We take the input and output alphabets equal: $U=V$.
Def A system

$$
\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{u \in U}\right\}
$$

is Hamiltonian if \exists Poisson tensor P on M such that

$$
f_{u}=P d h_{u}, \quad u \in U,
$$

i.e., vector fields f_{u} are Hamiltonian, with Hamiltonians h_{u}.

Remarks:

- In physics h_{u} would be called observables and f_{u} - the corresponding infinitesimal symmetries.
- In control theory Hamiltonian systems appear e.g. in conservative electric cirquits (A. Van der Schaft, P. Crouch), with a slightly changed definition.

THE BRACKETING MAP

Let $\mathbb{R}\langle U\rangle$ denote the free algebra generated by U (the algebra of formal polynomials in noncommuting variables $u \in U$). There is also a Lie algebra structure in $\mathbb{R}\langle U\rangle$, with the commutator product $[P, Q]=P Q-Q P$.

Let $\operatorname{Lie}\{U\} \subset \mathbb{R}\langle U\rangle$ be the free Lie algebra generated by U (the smallest Lie subalgebra in $\mathbb{R}\langle U\rangle$ generated by the variables $u \in U \subset \mathbb{R}\langle U\rangle$).
There is a canonical linear map

$$
[]: \mathbb{R}\langle U\rangle \rightarrow \operatorname{Lie}\{U\}
$$

called here bracketing map, defined on words $w=u_{1} \cdots u_{k}$ by

$$
\left[u_{1} u_{2} \ldots u_{k-1} u_{k}\right]=\left[u_{1},\left[u_{2}, \cdots\left[u_{k-1}, u_{k}\right]\right]\right]
$$

and extended to the free algebra $\mathbb{R}\langle U\rangle$ by linearity.
This map is "onto". We shall later use its kernel $S=\operatorname{ker}[$].
A well known criterion says that a homogeneous polynomial $W \in L i e\{U\}$ of degree k is a Lie polynomial iff

$$
[W]=k W
$$

HAMILTONIAN C-O SYSTEM DEFINES A LIE SERIES

Let $\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$ be given. Denote

$$
h_{u_{1} \cdots u_{k-1} u_{k}}=f_{u_{1}} \cdots f_{u_{k-1}} h_{u_{k}} .
$$

If Γ is Hamiltonian then we also have, for $w=u_{1} \cdots u_{k}$,

$$
h_{w}=h_{u_{1} \cdots u_{k-1} u_{k}}=\left\{h_{u_{1}},\left\{h_{u_{2}}, \cdots,\left\{h_{u_{k-1}}, h_{u_{k}}\right\} \cdots\right\}\right\} .
$$

We can extend the definition of h_{w} from words $w=u_{1} \cdots u_{k} \in U^{*}$ to polynomials $W=\sum_{w \in U^{*}} \lambda_{w} w$ by linearity:

$$
h_{W}=\sum_{w \in U^{*}} \lambda_{w} h_{w}
$$

Let $x \in M$ be fixed. For any word $w=u_{1} \cdots u_{k}$ we define

$$
L_{x}([w])=h_{w}(x) .
$$

This map extends by linearity to a unique linear function

$$
L_{x}: \operatorname{Lie}\{U\} \rightarrow \mathbb{R}
$$

L_{x} can be identified with a Lie series in noncommuting formal variables $u \in U$. We call L_{x} the Lie series of Γ at x.

DOES A LIE SERIES DEFINE A HAMILTONIAN SYSTEM?

Consider now a linear function

$$
L: \operatorname{Lie}\{U\} \rightarrow \mathbb{R},
$$

which we call Lie series because such a function can be identified with a Lie series in noncommuting formal variables $u \in U$.

Question 1. When a Lie series L corresponds to a Hamiltonian system?
Question 2. When a formal power series $S: \mathbb{R}\langle U\rangle \rightarrow \mathbb{R}$ has a realization

$$
\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{u \in U}, x_{0}\right\}
$$

which admits a Hamiltonian structure, i.e., \exists a Poisson tensor P such that $f_{u}=P h_{u}$?

Question 3. When $\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$ admits a Hamiltonian structure?

ANSWER TO Q1

THM (2011) Existence. A Lie series $L: \operatorname{Lie}\{U\} \rightarrow \mathbb{R}$ corresponds to a C^{ω} Hamiltonian system $\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{u \in U}, x_{0}\right\}$ iff

$$
\begin{equation*}
\left|L\left(\left[u_{1} \cdots u_{k}\right]\right)\right| \leq C(R)^{k} k! \tag{A}
\end{equation*}
$$

for some $C>0, R>0$, and

$$
\begin{equation*}
\operatorname{rank}_{K} L<\infty, \tag{R}
\end{equation*}
$$

where rank $_{K} L$ is the rank of the bilinear map

$$
\operatorname{Lie}\{U\} \times \operatorname{Lie}\{U\} \rightarrow \mathbb{R}
$$

defined by

$$
(X, Y) \mapsto L([X, Y]) .
$$

Then \exists such a system with $\operatorname{dim} M=\operatorname{rank}_{K} L$ and M symplectic.
Uniqueness. If two symplectic Hamiltonian systems of dimension $n=\operatorname{rank}_{K} L$ correspond to the same Lie series L then they are related by a symplectomorphism.

REMARKS

- The rank rank ${ }_{K} L$ corresponds to Kirillov's rank in the " method of orbits" in representation theory and geometric quantization (Souriau, Kostant, Kirillov).
- In a global version of the above theorem a group acts on the dual free Lie algebra (Lie\{U\})* (the space of Lie series). Finiteness of the rank means that $\operatorname{Orb}(L)$ is a finite dimensional "submanifold" in (Lie\{U\})* and

$$
M=\operatorname{Orb}(L)
$$

The natural symplectic structure on M corresponds to the symplectic structure in the method of orbits.

PART III:

When a controlled and observed system admits a Hamiltonian structure?

CRITERIA FOR 「 TO ADMIT A HAMILTONIAN STRUCTURE

Consider a system $\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$.
Question. When 「 admits a Hamiltonian structure, i.e., \exists Poisson tensor P such that $f_{u}=P d h_{u}$, for any $u \in U$?

Define functions

$$
h_{u_{1} \cdots u_{k-1} u_{k}}=f_{u_{1}} \cdots f_{u_{k-1}} h_{u_{k}},
$$

for $k \geq 1$ and $u_{1}, \ldots, u_{k} \in U$. By linearity we extend the definition to

$$
h_{W}:=\sum \lambda_{w} h_{w}, \quad \text { for } \quad W=\sum_{w} \lambda_{w} w \in \mathbb{R}\langle U\rangle .
$$

THM [J86d] Equivalent:
(a) Γ admits a Hamiltonian structure.
(b) $h_{W}=0$ for any $W \in \mathbb{R}\langle U\rangle$ such that $[W]=0$.
(c) $h_{\left[u_{1} \cdots u_{k}\right]}=k h_{u_{1} \cdots u_{k}}$, for any $k \geq 2, u_{1}, \ldots, u_{k} \in U$.

CRITERIA FOR 「 TO ADMIT A HAMILTONIAN STRUCTURE

THM (repeated) Equivalent:
(a) Γ admits a Hamiltonian structure.
(b) $h_{W}=0$ for any $W \in \mathbb{R}\langle U\rangle$ such that $[W]=0$.
(c) $h_{\left[u_{1} \cdots u_{k}\right]}=k h_{u_{1} \cdots u_{k}}$, for any $k \geq 2, u_{1}, \ldots, u_{k} \in U$.
(d) The linear map $S: \mathbb{R}\langle U\rangle \rightarrow C^{\infty}(M)$ given by

$$
W \rightarrow h_{W}
$$

factorizes through a map $M: \operatorname{Lie}\{U\} \rightarrow C^{\infty}(M)$
via the bracketing map []: $\mathbb{R}\langle U\rangle \rightarrow \operatorname{Lie}\{U\}$, i.e.,

$$
S(W)=M([W]) .
$$

REMARKS

- The map $M_{x}: \operatorname{Lie}\{U\} \rightarrow \mathbb{R}$ defined by

$$
M_{x}(W)=(M(W))(x)
$$

can be regarded as a momentum map at x for the Hamiltonian system $\Gamma=$ $\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$. More precisely, the family of Hamiltonian vector fields

$$
\left\{f_{u}\right\}_{u \in U}
$$

defines a Poisson (symplectic) action of a ∞-dimensional group (pseudogroup) generated by the (local) flows of all f_{u}.

- The momentum M_{x} can be identified with the Lie series of the system $\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$ at x, i.e.,

$$
L_{x}=M_{x} .
$$

COMBINATORICS: CONDITION (B) MADE EFFECTIVE

Condition (b) for system $\Gamma=\left\{M,\left\{f_{u}\right\}_{u \in U},\left\{h_{u}\right\}_{v \in V}\right\}$ to admit a Hamiltonian structure says:
(b) $h_{W}=0$ for any $W \in \mathbb{R}\langle U\rangle$ such that $[W]=0$.

It can be replaced by:
(b') $h_{W}=0$ for any homogeneous polynomial $W \in \mathbb{R}\langle U\rangle$ such that $[W]=0$ and $\operatorname{deg}(W) \leq 3 N$, if Γ is observable of order N (i.e., 1-forms $d h_{w}$ with words $w \in U^{*}$ of length at most N span $T^{*} M$ at each x).

Denote:

$S_{k}=$ space of homogeneous polynomials W of deg. k such that $[W]=0$.
Proposition [J86d] If Γ is observable of order N then the number of independent conditions in (b^{\prime}) is $p_{2}+p_{3}+\cdots+p_{3 N}$, with

$$
p_{k}=\frac{r}{k-1} \sum_{d \mid k-1} \mu(d) r^{(k-1) / d}-\frac{1}{k} \sum_{d \mid k} \mu(d) r^{k / d}
$$

where μ is the Möbius function on the positive integers: $\mu(d)=0$ if d has multiple divisors and $\mu(d)=(-1)^{s}$, where s is the number of prime divisors.

NUMBER OF INDEPENDENT CONDITIONS

If $r=\sharp(U)=2$, then:

$$
\begin{array}{ccccccccc}
k: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\operatorname{dim} S_{k}: & 0 & 3 & 6 & 13 & 26 & 55 & 110 & 226 \\
p_{k}: & 0 & 3 & 0 & 1 & 0 & 3 & 0 & 6
\end{array}
$$

and the independent conditions are given by the words W in the alphabet $U=\{u, v\}$:
$u u, v v, u v+v u,[u v] u v$,
$[$ uuv] uuv, $[v v u] v v u,[u v] u v u v+[u v u v] u v$,
[uuuv]uuuv, [vvvu]vvvu, [uuv]vvvvu + [vvvvu] $u u v$,
$[v v u] u u u u v+[$ uuuuv $] v v u,[$ uv $] u v u v u v+[$ uvuvuv $] u v,[u v u v] u v u v$.

PART IV:

A global realization theorem

A black box system

```
U - input space (a set or }\mp@subsup{\mathbb{R}}{}{m}\mathrm{ )
```

Y - output space (e.g. $Y=\mathbb{R}^{p}$). For simplicity we take $Y=\mathbb{R}$.
$t \in[0, T)$ - time

Input-output map

Convention: the black box maps input signals into output signals

$$
u(\cdot) \longmapsto y(\cdot) .
$$

This map is nonlinear and non-anticipating (causal), i.e.,

$$
y(t) \text { depends only on }\left.u\right|_{[0, t)} .
$$

Such a map is called input-output map and may be explicitly represented by

- causal functionals on a semigroup of inputs
- Volterra series
- Chen-Fliess series
- formal power series of noncommuting variables

Semigroup of piecewise constant inputs

Let (t, u) denote the constant function, equal to $u \in U$ on $[0, t)$.

Using concatenation, piecewise constant functions $a:\left[0, T_{a}\right) \rightarrow U$ can be written as

$$
a=\left(t_{1}, u_{1}\right)\left(t_{2}, u_{2}\right) \cdots\left(t_{k}, u_{k}\right)
$$

$k \geq 0, t_{i}>0, u_{i} \in U$, with $T_{a}=t_{1}+\cdots+t_{k}$ and

$$
a(t)=u_{i}, \quad \text { for } \quad t \in\left[T_{i-1}, T_{i}\right)
$$

where $T_{0}=0$ and $T_{i}=t_{1}+\cdots+t_{i}$.

They form a semigroup S_{U}, with multiplication $=$ concatenation. For $k=0$ we get the empty domain function e (neutral element).

Causal function (input-output function)

Given semigroup of inputs

$$
S_{U}=\left\{\left(t_{1}, u_{1}\right) \cdots\left(t_{k}, u_{k}\right), \quad k \geq 0, \quad t_{i}>0, \quad u_{i} \in U\right\}
$$

a function

$$
F: S_{U} \rightarrow \mathbb{R}
$$

is called a causal function(al) or input-output function.
F is one of possible representations of the black box behavior.

In the analytic case it is equivalent to representation by a formal power series $S=\sum_{w \in U^{*}} S_{w} w$ (see [J86b]), where

$$
S_{w}=S_{u_{1} \cdots u_{k}}=\left.\frac{d}{d t_{1}} \cdots \frac{d}{d t_{k}} F\left(\left(t_{1}, u_{1}\right) \cdots\left(t_{k}, u_{k}\right)\right)\right|_{t_{1}=\cdots=t_{k}=0 .}
$$

Controlled and observed system

Consider an analytic control system

$$
\Sigma: \quad \dot{x}=f(x, u), \quad x(0)=x_{0}, \quad y=h(x),
$$

where $x(t) \in M$ - a real analytic, connected manifold,
$u(t) \in U-$ a set (possibly infinite),
$y(t) \in Y=\mathbb{R}$,
$h: M \rightarrow \mathbb{R}$ is an analytic function (observable).

Assume, the vector fields $f_{u}=f(\cdot, u)$ are complete.

Input-output function of controlled and observed system

$$
\Sigma: \quad \dot{x}=f(x, u), \quad x(0)=x_{0}, \quad y=h(x)
$$

Given a piecewise constant control $u=a:\left[0, T_{a}\right) \rightarrow U$ in S_{U}, let

$$
\Phi_{a}\left(x_{0}\right)=x_{a}\left(T_{a}\right)
$$

denote the final point, at $t=T_{a}$, of the corresponding trajectory of Σ. Put

$$
y=h\left(\Phi_{a}\left(x_{0}\right)\right)
$$

The $\operatorname{map} F_{\Sigma}: S_{U} \rightarrow \mathbb{R}$ defined by

$$
F_{\Sigma}: a \mapsto h\left(\Phi_{a}\left(x_{0}\right)\right)
$$

is a causal function, called input-output function of Σ.

The realization problem

Each analytic, complete, controlled and observed system

$$
\Sigma: \quad \dot{x}=f(x, u), \quad x(0)=x_{0}, \quad y=h(x)
$$

defines a causal function $F_{\Sigma}: S_{U} \rightarrow \mathbb{R}$.
Question: When a causal function $F: S_{U} \rightarrow \mathbb{R}$ comes from a controlled and observed system Σ ?

Note that, given the input space U and the output space $Y=\mathbb{R}$, the system Σ is defined by the 4-tuple $\Sigma=\left(M, f, h, x_{0}\right)$.
Thus, in order to construct the system from a causal function $F: S_{U} \rightarrow \mathbb{R}$ we have to construct this 4-tuple.

The most difficult to construct is the manifold M. For Σ minimal (i.e., transitive and observable), if it exists it is unique up to a diffeomorphism (Sussmann 77) .

A realization theorem

THM (B.J., SIAM J. Control \& Optim. 1980)
A causal function

$$
F: S_{U} \rightarrow \mathbb{R}
$$

has an analytic, complete realization $\Sigma=\left(M, f, h, x_{0}\right)$ iff
(A) all functions

$$
\left(t_{1}, \ldots, t_{k}\right) \longmapsto F\left(\left(t_{1}, u_{1}\right) \cdots\left(t_{k}, u_{k}\right)\right) \in \mathbb{R}
$$

are analytic on \mathbb{R}_{+}^{k} and have analytic extensions to \mathbb{R}^{k}, where $R_{+}=[0, \infty)$;
(B) rank $F<\infty$.
rank F will be defined below.

Extendability and the input group

In the construction of the realization we use the input group:

$$
G_{U}=\left\{\left(t_{1}, u_{1}\right) \cdots\left(t_{k}, u_{k}\right), \quad k \geq 0, \quad t_{i} \in \mathbb{R}, \quad u_{i} \in U\right\} / \sim
$$

which is the free semigroup of words, with alphabet $\mathbb{R} \times U$, considered up to identifications

$$
(0, u) \sim e \quad(\text { empty word }), \quad\left(t_{1}, u\right)\left(t_{2}, u\right) \sim\left(t_{1}+t_{2}, u\right)
$$

and the inverse

$$
\left(\left(t_{1}, u_{1}\right) \cdots\left(t_{k}, u_{k}\right)\right)^{-1}=\left(-t_{k}, u_{k}\right) \cdots\left(-t_{1}, u_{1}\right)
$$

The extendability requirement in condition (A) is equivalent to the fact that $F: S_{U} \rightarrow \mathbb{R}$ has a (unique) extension to G_{U}.

Remarks

- If U is finite then one can remove the completeness requirement and analytic extendability in (A) ([J86a], F. Celle and J.-P. Gauthier 87).
- A similar result holds in the differentiable category [J80].
- The theorem can be extended to bounded measurable inputs [J80].

THE RANK

We define ([J80]):

$$
\operatorname{rank} F=\sup \operatorname{rank}\left(\frac{\partial}{\partial t_{i}} F\left(a b_{j}\right)\right)_{i, j=1}^{k}
$$

where the supremum is taken over all

$$
a=\left(t_{1}, u_{1}\right) \cdots\left(t_{k}, u_{k}\right) \in S_{U}, \quad b_{1}, \ldots, b_{k} \in S_{U}, \quad \text { and } \quad k \geq 1
$$

The rank on the right is the usual rank of a $k \times k$ matrix.

In the analytic case the above rank and the Lie rank used earlier are equivalent ([J86b], [J00]).
[CG87] F. Celle, J.-P. Gauthier, Realizations of nonlinear analytic input-output maps, Mathematical System Theory 19 (1987), 227-237.
[F83] M. Fliess, Realisation locale des systémes non linéaires, algébres de Lie filtrée transitives at séries géneratrices non commutatives, Inventiones Math. 71 (1983), 521-533.
[J80] B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems, SIAM J. Control and Optimiz. Vol.18, No. 4 (1980), 455-471.
[J86a] -, Local realizations of nonlinear causal operators, SIAM J. Control and Optimiz. Vol.24, No. 2 (1986), 230-242.
[J86b] -, Realizations of Nonlinear Systems; Three Approaches, in Algebraic and Geometric Methods in Nonlin. Control Theory, M. Fliess, M. Hazewinkel eds., Reidel 1986, 3-31.
[J86c] -, Existence of global analytic realizations of nonlinear causal operators, Bull. of the Polish Acad. of Sci., ser. Mathematics 34, No. 11-12 (1986), 729-735.
[J86d] -, Poisson structures and relations on vector fields and their Hamiltonians, Bull. of the Polish Acad. of Sci., ser. Mathematics 34, No. 11-12 (1986), 713-721.
[J00] -, Convergence of power series along vector fields and their commutators; a CartanKähler type theorem, Annales Polonici Mathematici 74 (2000), 117-132.
[S77] H.J. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems, Math. Systems Theory 10 (1977), 263-284.
[S89] H.J. Sussmann, Unpublished manuscript.

