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1. Introduction

1.1 Fliess Operators

• Most complex systems encountered in engineering applications can

be viewed in terms of interconnections of more elementary

subsystems.

• A natural class of nonlinear systems to consider is the set of analytic

input-output systems known as Fliess operators (Fliess, 1983).

• Such operators are described by convergent functional series which

are indexed by words over a noncommutative alphabet. Their

generating series are therefore specified in terms of noncommutative

formal power series.

• Fliess operators constitute a special case of Volterra operators

having analytic kernel functions.

3



RPCCT 2011

• Let X = {x0, x1, . . . , xm} be an alphabet and X∗ the free monoid

comprised of all words over X (including the empty word ∅) under

the catenation product.

• A formal power series in X is any mapping of the form c : X∗ → R
ℓ,

typically written as the formal sum c =
P

η∈X∗(c, η)η. The set of all

such mappings is denoted by R
ℓ〈〈X〉〉.

• For each c ∈ R
ℓ〈〈X〉〉, one can associate an m-input, ℓ-output

operator Fc in the following manner:

◮ With t0, T ∈ R fixed and T > 0, define recursively for each

η ∈ X∗ the mapping Eη : Lm
1 [t0, t0 + T ] → C[t0, t0 + T ] by

Exiη̄[u](t, t0) =

Z t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where E∅ = 1, xi ∈ X, η̄ ∈ X∗ and u0 := 1.
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◮ The input-output operator corresponding to c is the Fliess

operator

y = Fc[u](t) =
X

η∈X∗

(c, η)Eη[u](t, t0).

• If there exist real numbers Kc,Mc > 0 such that

|(c, η)| ≤ KcM
|η|
c |η|!, ∀ η ∈ X∗,

where |η| denotes the number of symbols in η, then c is said to be

locally convergent. The set of all such series is denoted by R
ℓ
LC〈〈X〉〉.

• If there exist real numbers Kc,Mc > 0 such that

|(c, η)| ≤ KcM
|η|
c , ∀ η ∈ X∗,

where |η| denotes the number of symbols in η, then c is said to be

globally convergent. The set of all such series is denoted by

R
ℓ
GC〈〈X〉〉.
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• If c ∈ R
ℓ
LC〈〈X〉〉 then

Fc : Bm
p (R)[t0, t0 + T ] → Bℓ

q(S)[t0, t0 + T ]

for sufficiently small R,S, T > 0, where the numbers p, q ∈ [1,∞] are

conjugate exponents, i.e., 1/p + 1/q = 1 (Gray & Wang, 2002).

• In particular, when p = 1, the series defining y = Fc[u] converges

provided

max{R, T} <
1

Mc(m+ 1)

(Duffaut-Espinosa et al., 2009).

• The number 1/Mc(m+ 1) will be referred to as the radius of

convergence for c when Mc is the infimum of all possible geometric

growth constants for which |(c, η)| ≤ KcM
|η|
c |η|!, ∀ η ∈ X∗.

• If c ∈ RGC〈〈X〉〉 then Fc : Lm
p,e(t0) → C[t0, t0 + T ] for any T > 0.
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Definition 1.1: For any u ∈ Lm
1 [0, T ] and 0 ≤ t0 ≤ t1 ≤ T , the

corresponding Chen series in R〈〈X〉〉 is

P [u](t1, t0) =
X

η∈X∗

η Eη[u](t1, t0).

Remarks:

• Every Chen series P [u](t, 0) is an exponential Lie series satisfying

d

dt
P [u] =

"

x0 +

mX

i=1

xiui

#

P [u], P [u](0) = 1.

• Chen’s Theorem: P [u](t2, t1)P [u](t1, t0) = P [u](t2, t0).

• The set of driftless Chen series is a group under the Cauchy product.

• Every Fliess operator can be written in terms of a Chen series:

Fc[u] =
X

η∈X∗

(c, η)Eη[u](t, 0) =
X

η∈X∗

(c, η)(P [u](t, 0), η)

=: (c, P [u](t, 0)).
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Definition 1.2: For any c ∈ R
ℓ〈〈X〉〉, its Hankel map is the R-linear

mapping Hc : R〈X〉 → R
ℓ〈〈X〉〉 uniquely specified by

(Hc(η), ξ) = (c, ξη), ∀ξ, η ∈ X∗.

Definition 1.3: The Lie rank of c ∈ R
ℓ〈〈X〉〉 is ρL(c) = dim(Hc(L(X))),

where L(X) ⊂ R〈X〉 denotes the free Lie algebra generated by X.

Theorem 1.1: (Fliess, 1983) A series c ∈ R
ℓ
LC〈〈X〉〉 has finite Lie rank

if and only if it is differentially generated, i.e., there exists a set of

analytic vectors fields g0, g1, . . . , gm and an analytic function h such that

(c, xik
· · ·xi1) = Lgi1

· · ·Lgik
h(z0) for some z0 ∈ R

n.

Remark: In which case, Fc : u 7→ y has the state space realization

ż = g0(z) +

mX

i=1

gi(z)ui, z(t0) = z0

y = h(z).
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1.2 Interconnections of Fliess Operators

yu

Fd

Fc

+

(a) parallel connection

yu

Fd

Fc

×

(b) product connection

u
v

yFd Fc

(c) cascade connection

u
v

y

Fd

Fc

(d) feedback connection

Fig. 1.1 Four elementary system interconnections
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Basic questions to consider for each interconnection type:

1. Does the composite input-output system u 7→ y have a Fliess

operator representation?

2. If so, what is its generating series?

3. On what class of inputs is the interconnection well-posed?

4. If all the subsystems are locally convergent, is the composite system

locally convergent?

5. If all the subsystems are globally convergent, is the composite

system globally convergent?

6. What is the corresponding radius of convergence for the

interconnections?

What is known about these questions:

1. All four interconnections have a Fliess operator representation

(Ferfera, 1980).
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2. The generating series for parallel, product and cascade connections

can be computed using Cauchy and shuffle products (Ferfera, 1980).

The generating series for feedback can be written using the antipode

of a Faà di Bruno Hopf algebra (Gray & Duffaut Espinosa, 2011).

3. All four connections are well-posed at least on Lm
1 [t0, t0 + T ] (Gray

& Wang, 2002; Gray & Li, 2005).

4. Local convergence is preserved: parallel (trivial), product (Wang,

1990), cascade (Gray & Li, 2005), feedback (Thitsa & Gray, 2011).

5. Global convergence is preserved by the parallel and product

connections but not by the cascade or feedback connection

(Gray et al. 2009).

6. The radius of convergence has been computed for all four

interconnection types (Thitsa & Gray, 2011).
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2. Nonrecursive System Interconnections

2.1 Parallel and Product Interconnections

yu

Fd

Fc

+

(a) parallel connection

yu

Fd

Fc

×

(b) product connection

Fig. 2.1 Parallel and product system interconnections

Theorem 2.1: Let X = {x0, x1, . . . , xm}. If c, d ∈ R
ℓ〈〈X〉〉 then:

1. Fc + Fd = Fc+d

2. Fc · Fd = Fc ⊔⊔ d.

Remark: It can be shown by integration by parts that the shuffle

product, denoted by ⊔⊔ , satisfies EηEξ = Eη ⊔⊔ ξ (Fliess, 1981).
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2.2 Cascade Interconnection

u
v

yFd Fc

Fig. 2.2 Cascade interconnection

For any xi ∈ X, η ∈ X∗ and d ∈ R
m〈〈X〉〉 observe

Exiη[Fd[u]](t, t0) =

Z t

t0

Fdi
[u](τ)Eη[Fd[u]](τ, t0)

| {z }

:=Fη◦d[u](τ)

dτ = Fx0(di ⊔⊔ η◦d)[u](t).

Define the corresponding family of mappings

Dxi : R〈〈X〉〉 → R〈〈X〉〉 : e 7→ x0(di ⊔⊔ e),

where i = 0, 1, . . . ,m and d0 := 1. D∅ is the identity map on R〈〈X〉〉.

Such maps can be composed in an obvious way, Dxixj := DxiDxj , to

produce an R-algebra.
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Definition 2.1: The composition product of a word η ∈ X∗ and a series

d ∈ R
m〈〈X〉〉 is defined as

(xik
xik−1 · · ·xi1

| {z }

η

) ◦ d = Dxik
Dxik−1

· · ·Dxi1
(1) = Dη(1).

For any c ∈ R
ℓ〈〈X〉〉 define

c ◦ d =
X

η∈X∗

(c, η)Dη(1).

Remarks:

• This product is always well defined (locally finite) and associative.

• The distributive property (c ⊔⊔ d) ◦ e = (c ◦ e) ⊔⊔ (d ◦ e) holds.

• This product is R-linear in the left argument by not the right.

Theorem 2.2: Let X = {x0, x1, . . . , xm}. If c ∈ R
ℓ〈〈X〉〉 and

d ∈ R
m〈〈X〉〉 then Fc ◦ Fd = Fc◦d.
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Lemma 2.1: (Berstel & Reutenauer, 1984) For any fixed real number σ

such that 0 < σ < 1, the R-vector space R
ℓ〈〈X〉〉 with mapping

dist : R
ℓ〈〈X〉〉 × R

ℓ〈〈X〉〉 → R

: (c, d) 7→ σord(c−d),

where ord(c) := min{|η| ∈ X∗ : η ∈ supp(c)}, is a complete ultrametric

space.

Remarks:

• The composition product is continuous in both arguments over the

ultrametric topology.

• For any c ∈ R
m〈〈X〉〉, the mapping d 7→ c ◦ d is a contraction on

R
m〈〈X〉〉 with the ultrametric.
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3.0 The Feedback Interconnection

3.1 Feedback Product Defined

u
v

y

Fd

Fc

Fig. 3.1 Feedback connection of Fc and Fd.

Given c, d ∈ R
m〈〈X〉〉, the output y satisfies the feedback equation

y = Fc[v] = Fc[u+ Fd[y]].

If there exists a generating series e so that y = Fe[u], then

Fe[u] = Fc[u+Fd◦e[u]] = Fc◦̃(d◦e)[u],

where ◦̃ denotes the modified composition product.
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Specifically, the modified composition product is defined as

c◦̃d =
X

η∈X∗

(c, η) D̃η(1),

where

D̃xi : R〈〈X〉〉 → R〈〈X〉〉 : e 7→ xie+x0(di ⊔⊔ e)

with d0 := 0.

Definition 3.1: The feedback product of c and d, namely c@d, is the

unique fixed point of the contractive iterated map

S̃ : ei 7→ ei+1 = c◦̃(d ◦ ei).

Remarks:

• For a unity feedback system (i.e., Fd = I), S̃ reduces to ei+1 = c◦̃ei.

• This approach yields no explicit way to compute c@d.
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3.2 Hopf Algebra Fundamentals

Let A be an R-vector space.

The triple (A,µ, σ) denotes an associative R-algebra with the R-bilinear

multiplication map and an R-linear unit map, respectively,

µ : A⊗A→ A, σ : R → A.

−−−−−−−−−−−−−−→
id⊗µ

−−
−
−
−
−
−
−→

µ⊗id

−−
−
−
−
−
−
−→

µ

−−−−−−−−−−−−−−−−−→
µ

A⊗A⊗A A⊗A

A⊗A A

(a) The associative property
−−−−−−−−−−−−→

∼

−−−−→
σ⊗id −−−−→id⊗σ

−−−−−−−−−−−−→

∼

−−
−
−
−
−
−
−→

µ

R ⊗A A⊗A A⊗ R

A

(b) The unitary property

Fig. 3.2 Defining properties of an R-algebra (A,µ, σ).

18



RPCCT 2011

The triple (A,∆, ǫ) is an R-coalgebra with the R-linear comultiplication

map and counit map, respectively,

∆ : A→ A⊗A, ǫ : A→ R.

−−−−−−−−−−−−−−→ id⊗∆

−−
−
−
−
−
−
−→

∆⊗id

−−
−
−
−
−
−
−→

∆

−−−−−−−−−−−−−−−−−→ ∆

A⊗A⊗A A⊗A

A⊗A A

(a) The coassociative property

−−
−−
−−
−−
−−
−−
→

∼

−−−−→ǫ⊗id
−−−−→

id⊗ǫ

−−
−−
−−
−−
−−
−−
→

∼

−−
−
−
−
−
−
−→

∆

R ⊗A A⊗A A⊗ R

A

(b) The counitary property

Fig. 3.3 Defining properties of an R-coalgebra (A,∆, ǫ).
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Definition 3.2: A morphism between two R-algebras (A1, µ1, σ1) and

(A2, µ2, σ2) is any R-linear map ψ : A1 → A2 such that

ψ ◦ µ1 = µ2 ◦ (ψ ⊗ ψ)

ψ ◦ σ1 = σ2.

Remark: An analogous definition exists for a R-coalgebra morphism.

Definition 3.3: The five-tuple (A,µ, σ,∆, ǫ) is called an R-bialgebra

when ∆ and ǫ are both R-algebra morphisms.

Thus, ∆ : A→ A⊗A must be an R-algebra morphism between the

R-algebras (A,µ, σ) and (A⊗A,µA⊗A, σA⊗A), where

µA⊗A : (A⊗A) ⊗ (A⊗A) → A⊗A

: (a1 ⊗ a2) ⊗ (a3 ⊗ a4) 7→ µ(a1 ⊗ a3) ⊗ µ(a2 ⊗ a4)

σA⊗A : R → A⊗A

: k 7→ σ(k) ⊗ 1A.
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In which case, it follows directly that

1. ∆ ◦ µ = µA⊗A ◦ (∆ ⊗ ∆) = (µ⊗ µ) ◦ (id ⊗ τ ⊗ id) ◦ (∆ ⊗ ∆)

2. ∆ ◦ σ = σA⊗A = σ ⊗ σ,

where τ : A⊗A→ A⊗A : a⊗ a′ 7→ a′ ⊗ a.

Similarly, ǫ : A→ R must be an R-algebra morphism between the

R-algebras (A,µ, σ) and (R, µR, σR). Therefore,

3. ǫ ◦ µ = µR ◦ (ǫ⊗ ǫ) = ǫ2

4. ǫ ◦ σ = σR = 1.

Remark: An equivalent characterization of a bialgebra is one where µ

and σ are both R-coalgebra morphisms, yielding properties 1 and 3, and

properties 2 and 4, respectively.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

µA⊗A

−−−−−−−−−−−−−−−−−−−→
id⊗τ⊗id

−−
−
−
−
−
−
−→

∆⊗∆
−−
−
−
−
−
−
−→

µ⊗µ

−−−−−−−−−−−−→
µ

−−−−−−−−−−−−→
∆

A⊗A⊗A⊗A A⊗A⊗A⊗A

A⊗A A A⊗A

(a) Property 1
−−−−−−−−−−−−−−−→ σ⊗σ

−−
−
−
−
−
−
−→

∆

−−
−
−
−
−
−
−→

∼

−−−−−−−−−−−−−−−−−−−→ σ

A⊗A R ⊗ R

A R

(b) Property 2

Fig. 3.4 Commutative diagrams describing ∆ as an R-algebra morphism
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−−−−−−−−−−−−−−−→
ǫ⊗ǫ

−−
−
−
−
−
−
−→

µ

−−
−
−
−
−
−
−→

µR

−−−−−−−−−−−−−−−−−−−→
ǫ

A⊗A R ⊗ R

A R

(c) Property 3
−−−−−−−−−→

ǫ

−−−−−−−−→ σ

−−−−−−−−−→

1

A R

R

(d) Property 4

Fig. 3.5 Commutative diagrams describing ǫ as an R-algebra morphism.

Consider the set of all R-endomorphisms on A, End(A).

Given two arbitrary f, g ∈ End(A), the Hopf convolution product is

f ∗ g := µ ◦ (f ⊗ g) ◦ ∆.

The triple (End(A), ∗, ϑ) forms an associative R-algebra with unit

ϑ = σ ◦ ǫ.
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An element α ∈ End(A) is an antipode of the bialgebra (A,µ, σ,∆, ǫ) if

id ∗ α = α ∗ id = ϑ,

where id is the identity map on A.

When it exists, the antipode is unique and and described by the series

α = id∗−1 = (ϑ− (ϑ− id))∗−1 =

∞X

k=0

(ϑ− id)∗k.

Definition 3.4: The six-tuple (A,µ, σ,∆, ǫ, α) is called an R-Hopf

algebra.

The set of R-vector subspaces of A, {An}n≥0, denotes a filtration of A.

The collection of R-vector subspaces {A(n)}n≥0 is a grading of A.
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3.3 A Faà di Bruno Hopf Algebra for Fliess Operators

For brevity, the treatment is restricted to the single-input, single-output

case, i.e., X = {x0, x1}.

Define the set of operators

Fδ = {I + Fc : c ∈ R〈〈X〉〉}.

It is convenient to introduce the Dirac symbol δ and the definition

Fδ = I such that I + Fc = Fδ+c = Fcδ
with cδ := δ + c.

In which case,

c ◦̃ d = c ◦ (δ + d).

The set of all such generating series for Fδ will be denoted by R〈〈Xδ〉〉.

25



RPCCT 2011

Consider the composition of two elements in Fδ:

Fcδ
◦ Fdδ

= (I + Fc) ◦ (I + Fd)

= I + Fd + Fc ◦̃ d

= Fδ+d+c ◦̃ d

=: Fcδ◦dδ
.

Remarks:

• The composition products on Fδ and R〈〈Xδ〉〉 are associative.

• The formal Laplace transform L : Fcδ
7→ cδ is a semigroup

isomorphism, i.e.,

Lf (Fcδ
◦ Fdδ

) = Lf (Fcδ
) ◦ Lf (Fdδ

)

and Lf (I) = δ.

Theorem 3.1: The triple (Fδ, ◦, I), or equivalently (R〈〈Xδ〉〉, ◦, δ),

forms a group.
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Example 3.1: A linear series c ∈ R〈〈X〉〉 has support in

L := {xn1
0 x1x

n0
0 : ni ≥ 0}.

When c is linear, the product c ◦ d is both left and right R-linear.

It follows directly in this case that

c−1
δ = (δ + c)−1 := δ + c−1 = δ − c+ c◦2 − c◦3 + · · · .

For example,

(δ + x1)
−1 = δ − x1 + x0x1 − x2

0x1 + · · · = δ − (−x0)
∗x1.

In contrast, the series x0 is not linear, and in this case

δ − x0 + x◦20 − x◦30 + · · · = δ − x0 + x0 − x0 + · · · ,

which is neither locally finite nor summable.

Nevertheless it can be verified directly that (δ + x0)
−1 = δ − x0.
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Example 3.2: Let c ∈ R〈〈X〉〉 have finite Lie rank and thus realizable

by (g0, g1, h, z0).

If Fc : u1 7→ y1 then I + Fc has a realization of the form

ż = g0(z) + g1(z)u1, z(0) = z0

ỹ1 = h(z) + u1.

The inverse (I + Fc)
−1 = I + Fc−1 : u2 7→ y2 is described by Fig. 3.6

u
2

y
2

Fcy
1 u

1

Fig. 3.6 Compositional inverse of I + Fc.

28



RPCCT 2011

A simple calculation shows Fc−1 is realizable by (g0 − g1h, g1,−h, z0).

Using this realization, one can compute as many coefficients of c−1 as

desired by iterated Lie derivatives:

(c−1, ∅) = −(c, ∅)

(c−1, x0) = −(c, x0) + (c, ∅)(c, x1)

(c−1, x1) = −(c, x1)

(c−1, x2
0) = −(c, x2

0) + (c, ∅)(c, x0x1) + (c, x0)(c, x1) + (c, ∅)(c, x1x0)−

(c, ∅)(c, x1)
2 − (c, ∅)2(c, x2

1)

(c−1, x0x1) = −(c, x0x1) + (c, x1)
2 + (c, ∅)(c, x2

1)

(c−1, x1x0) = −(c, x1x0) + (c, ∅)(c, x2
1)

(c−1, x2
1) = −(c, x2

1)

...
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The goal is to describe a Faà di Bruno Hopf algebra associated with the

group (R〈〈Xδ〉〉, ◦, δ), where the antipode, α, satisfies the identity

c−1
δ = δ + c−1 = δ +

X

η∈X∗

(αaη)(c) η,

with

aη : R〈〈X〉〉 → R : c 7→ (c, η)

and aδ(cδ) = 1.

Define the commutative R-algebra of polynomials denoted by

A = R[aη : η ∈ X∗ ∪ δ],

where the product µ : A⊗A→ A is defined so that

aηaξ(cδ) = aη(cδ)aξ(cδ).
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We seek a bialgebra with a coproduct ∆ : A→ A⊗A such that

µ(∆aν(dδ ⊗ cδ)) = aν(cδ ◦ dδ) = (cδ ◦ dδ, ν)

= (δ + d+ c ◦̃ d, ν)

= (δ, ν) + (d, ν) +
X

η∈X∗

(D̃η(1), ν)(c, η).

Observe that any word η ∈ X∗ can be uniquely factored as

η = x
nk
0 x1

| {z }

ξk

x
nk−1
0 x1

| {z }

ξk−1

· · ·xn1
0 x1

| {z }

ξ1

xn0
0

|{z}

ξ0

.

For each factor ξj , j ≥ 1 define two operators

Iξj
: R〈〈X〉〉 → R〈〈X〉〉 : e 7→ ξje

Dξj
: X∗ × R〈〈X〉〉 → R〈〈X〉〉 : (θ, e) 7→ x

nj+1

0 (θ ⊔⊔ e).
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It then follows for any ν 6= δ that

aν(cδ◦dδ) = aν(d)+

|ν|
X

k=1

X

η=ξk···ξ0

0

@

2

4

kY

j=1

Iξj
+

X

θj∈X∗

aθj
(d)Dξj ,θj

3

5 (ξ0), ν

1

A aη(c),

where Dξk,θj
(·) := Dξk

(θj , ·).

Expanding the product in j and suppressing the summations in θj gives

∆aν(dδ ⊗ cδ) =aν ⊗ 1 + 1 ⊗ aν +

|ν|
X

k=1

X

η=ξk···ξ0 6=ν

(Dξk,θk
Iξk−1 · · · Iξ1(ξ0), ν) aθk

⊗ aη+

· · · + (Iξk
· · · Iξ2Dξ1,θ1(ξ0), ν) aθ1 ⊗ aη+

(Dξk,θk
Dξk−1,θk−1Iξk−2 · · · Iξ1(ξ0), ν) aθk

aθk−1 ⊗ aη+

· · · + (Iξk
· · · Iξ3Dξ2,θ2Dξ1,θ1(ξ0), ν) aθ2aθ1 ⊗ aη+

· · · + (Dξk,θk
· · ·Dξ1,θ1(ξ0), ν) aθk

· · · aθ1 ⊗ aη.
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With the aid of this last expression and using the equivalence aδ ∼ 1, the

first eight coproducts are found to be:

∆1 = 1 ⊗ 1

∆a∅ = a∅ ⊗ 1 + 1 ⊗ a∅

∆ax0 = ax0 ⊗ 1 + 1 ⊗ ax0 + a∅ ⊗ ax1

∆ax1 = ax1 ⊗ 1 + 1 ⊗ ax1

∆ax2
0

= ax2
0
⊗ 1 + 1 ⊗ ax2

0
+ a∅ ⊗ ax0x1 + ax0 ⊗ ax1+

a∅ ⊗ ax1x0 + a2
∅ ⊗ ax2

1

∆ax0x1 = ax0x1 ⊗ 1 + 1 ⊗ ax0x1 + ax1 ⊗ ax1 + a∅ ⊗ ax2
1

∆ax1x0 = ax1x0 ⊗ 1 + 1 ⊗ ax1x0 + a∅ ⊗ ax2
1

∆ax2
1

= ax2
1
⊗ 1 + 1 ⊗ ax2

1

...
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Define the unit and counit, respectively, as

σ : R → A : λ 7→ λaδ

ǫ : A→ R : aη1aη2 · · · aηℓ
7→ aη1(δ)aη2(δ) · · · aηℓ

(δ).

Theorem 3.2: The six-tuple (A,µ, σ,∆, ǫ, α) with

αaν = −aν +

nX

k=1

(−1)k+1 µk∆′ kaν , ν ∈ Xn, ν 6= δ

and α 1 = 1 is a graded R-Hopf algebra with a grading given by

A(n) = span
R

(

aη1aη2 · · · aηl
∈ A :

lX

i=1

|ηi| = n

)

, n ≥ 0,

where the degree is given by #(aη) = |η| when η ∈ X∗ and #(δ) := 0.
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Remarks:

• The bialgebra is not connected unless restricted to proper series, i.e.,

series where a∅(c) = 0.

• The first few antipode terms are:

α 1 = 1

αa∅ = −a∅

αax0 = −ax0 + a∅ax1

αax1 = −ax1

αax2
0

= −ax2
0

+ a∅ax0x1 + ax0ax1 + a∅ax1x0 − a∅a
2
x1

− a2
∅ax2

1

αax0x1 = −ax0x1 + a2
x1

+ a∅ax2
1

αax1x0 = −ax1x0 + a∅ax2
1

αax2
1

= −ax2
1

...
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3.4 An Explicit Formula for the Feedback Product

u
v

y

Fd

Fc

Fig. 3.7: Feedback connection of Fc and Fd.

Observe that

v = u+ Fd◦c[v],

and therefore,

(I + F−d◦c) [v] = u.
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Simply apply the compositional inverse to both sides of this equation:

v = (I + F(−d)◦c)
−1[u]

=
`
I + F(−d◦c)−1

´
[u].

In which case,

Fc@d[u] = Fc[v] = Fc ◦̃ (−d◦c)−1 [u].

The new idea is that

c@d = c ◦̃ (−d ◦ c)−1 = c ◦ (δ − d ◦ c)−1,

where

(δ − d ◦ c)−1 = δ +
X

η∈X∗

(αaη)(−d ◦ c) η.
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Example 3.3: Consider the feedback connection of Fc and Fd, where

c =
P

η∈X∗ |η|! η and d = δ.

In which case, by definition c@δ = c ◦̃ (−c)−1 .

It is easy to show that in general, c ◦̃ (−c)−1 = (−c)−1.

The series (−c)−1 can be computed directly from the antipode formulas.

Table 3.1: Coefficients of the sequences in Example 3.2.

η ∅ x0 x1 x2
0 x0x1 x1x0 x2

1

(c, η) 1 1 1 2 2 2 2

((−c)−1, η) 1 2 1 10 5 4 2

(c@δ, η) 1 2 1 10 5 4 2

Lgηh(1) 1 2 1 10 5 4 2
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For this particular example, the Lie rank of c is finite. Hence, the state

space method is also available to compute c@δ

Recall that any Lie polynomial can be written in terms of a finite sum of

its homogenous components, namely, the polynomials

p1 = x0

p2 = x1

p3 = [x0, x1] = x0x1 − x1x0

p4 = [x1, x0] = −p3

p5 = [x0, [x0, x1]] = x2
0x1 − 2x0x1x0 + x1x

2
0

p6 = [x0, [x1, x0]] = −p5

p7 = [x1, [x1, x0]] = x2
1x0 − 2x1x0x1 + x0x

2
1

p8 = [x1, [x0, x1]] = −p7

...
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Observe that Hc(p1) = Hc(p2) =
P

η∈X∗(|η| + 1)! η. The specific claim is

that Hc(pi) = 0 for all i ≥ 3, and thus, the Lie rank of c is one.

Since each polynomial pi is homogeneous, it follows that

(Hc(pi), η) = (c, ηpi) =
X

ξ∈Xdeg(pi)

(pi, ξ)(c, ηξ) =
X

ξ∈Xdeg(pi)

(pi, ξ) |ηξ|!

= (|η| + deg(pi))!
X

ξ∈Xdeg(pi)

(pi, ξ).

But the latter summation is always zero for any pi with i ≥ 3. Why?

Every Lie polynomial p satisfies the identity (Ree, 1958)

(p, η ⊔⊔ ξ) = 0, η, ξ ∈ X+

and

char(Xk) =
X

r0,r1≥0
r0+r1=k

xr0
0 ⊔⊔ xr1

1 .
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Applying these facts in the current context gives

X

ξ∈Xdeg(pi)

(pi, ξ) =
“

pi, char
“

Xdeg(pi)
””

=
X

r0,r1≥0
r0+r1=deg(pi)

(pi, x
r0
0 ⊔⊔ xr1

1 )

= 0

when i ≥ 3, and the claim is established.

To construct a one dimensional state space realization, the identity

char(Xk) = char(X) ⊔⊔ k/k! is employed so that

c =

∞X

k=0

k! char(Xk) =

∞X

k=0

char(X) ⊔⊔ k.
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In which case,

Fc =

∞X

k=0

k!Echar(Xk) =

∞X

k=0

Echar(X) ⊔⊔ k

=

∞X

k=0

Ek
char(X) =

1

1 − Echar(X)

.

Defining z = Fc, it follows that

ż = z2(1 + u), z(0) = 1, y = z

realizes y = Fc[u], and with unity feedback u = z + v

ż = z2 + z3 + z2v, z(0) = 1, y = z

realizes y = Fc@δ[v].

So c@δ can also be computed by the iterated Lie derivatives Lgηh(z0),

where (g0, g1, h, z0) = (z2 + z3, z2, z, 1) as shown in Table 4.1.
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Since in general (−c)−1 = c@δ, the following theorem is proved using the

work of Thitsa (2011) on the radius of convergence of feedback systems.

Theorem 3.2: The triple (RLC〈〈Xδ〉〉, ◦, δ) is a subgroup of

(R〈〈Xδ〉〉, ◦, δ). In particular,

|(c−1, η)| ≤ K (A(Kc)Mc)
|η| |η|!, η ∈ X∗,

for some K > 0, where

A(Kc) =
1

1 −Kc ln (1 + 1/Kc)
.

Theorem 3.3: If c, d ∈ RLC〈〈X〉〉 then c@d ∈ RLC〈〈X〉〉.

Proof. The composition product, the modified composition product, and

the compositional inverse all preserve local convergence. Hence, the

claim follows directly from the expression

c@d = c ◦̃ (−d ◦ c)−1.
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4. Conclusions and Future Work

• The four basic interconnections of Fliess operators can be described

entirely in a formal power series setting.

• State space realizations (i.e., and therefore the need for local

coordinates) can be entirely avoided.

• The basic issues concerning convergence of composite systems have

been resolved for deterministic inputs. (More about this in Khin’s

talk today.)

• Open problems:

◮ Noisy inputs (Luis’s talk tomorrow), this is where rough path

theory may play a useful role.

◮ Computational issues

◮ Deeper combinatoric interpretations
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