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1. Fliess Operators

• Functional series expansions of nonlinear input-output operators

have been utilized since the early 1900’s in engineering, mathematics

and physics (V. Volterra, N. Wiener, etc).

• A broad class of deterministic nonlinear systems can be described by

Fliess operators, which are input-output maps constructed using the

Chen-Fliess formalism (Fliess (1981)).

• Such operators are described by a summation of Lebesgue iterated

integrals codified using the theory of noncommutative formal power

series.
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1.1 Formal Power Series

• Let X = {x0, x1, . . . , xm} be an alphabet and X∗ the set of all words

over X (including the empty word ∅).
• A formal power series is any mapping c : X∗ → R

ℓ. Typically, c is

written as a formal sum

c =
∑

η∈X∗

(c, η)η.

• The set of all such series is denoted by R
ℓ〈〈X〉〉, and the subset

denoted by R
ℓ〈X〉 is the set of polynomials.

• A series c is rational if it belongs to the rational closure of Rℓ〈X〉.
• A series c is rational if and only if (c, η) = λµ(η)γ, ∀η ∈ X∗, where

µ : X∗ → R
n×n is a monoid morphism, and γ,λT ∈ R

n×1.

• c is called globally convergent when |(c, η)| ≤ KM |η|, ∀ η ∈ X∗.

• c is called locally convergent when |(c, η)| ≤ KM |η| |η|!, ∀ η ∈ X∗.
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• For a measurable function u : [a, b] → R
m with finite L1-norm,

define Eη : Lm
1 [t0, t0 + T ] → C[t0, t0 + T ] by E∅[u] = 1, and

Exiη
′ [u](t, t0) =

t∫

t0

ui(τ)Eη′ [u](τ, t0) dτ,

(1)

where xi ∈ X, η′ ∈ X∗ and u0 = 1.

• Note that to each letter xi is assigned a function ui.

• Each c ∈ R
ℓ〈〈X〉〉 is associated with an m-input, ℓ-output system,

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0),

called a Fliess operator (Fliess (1981)).
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Example 1 A linear input-output system F : u → y with u(t) ∈ R
m and

y(t) ∈ R
ℓ can be described by a convolution integral involving its impulse

response H(t, τ) = (H1(t, τ), . . . , Hm(t, τ))′ and the system input

y(t) = F [u](t) =

∫ t

t0

H(t, τ)u(τ) dτ, t ≥ t0. (2)

If each Hi is real analytic on D = {(t, τ) ∈ R
2 : t0 ≤ τ ≤ t ≤ t0 + T},

then its Taylor series at (τ, t0) is

Hi(t, τ) =
∞∑

n1,n2=0

c(n2, i, n1)
(t− τ)n2

n2!

(τ − t0)
n1

n1!
, (3)

where c(n2, i, n1) ∈ R
ℓ.
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Substituting (3) into (2) and using the uniform convergence of the series

on D, it follows that

y(t) =

∞,m∑

n1,n2=0,i=1

c(n2, i, n1)

∫ t

t0

(t− τ)n2

n2!
ui(τ)

(τ − t0)
n1

n1!
dτ

︸ ︷︷ ︸
Ex

n2
0

xix
n1
0

[u](t, t0)

. (4)

Thus, (4) can be written as

y(t) =
∞,m∑

n1,n2=0,i=1

c(n2, i, n1)Ex
n2
0

xix
n1
0

[u](t, t0).

Observe that the formal power series associated with system (2) is

(c, η) =





c(n2, i, n1) : η = xn2
0 xix

n1
0 , n1, n2 ≥ 0, i 6= 0

0 : otherwise.
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1.2 Fliess Operators with Stochastic Inputs

• System inputs in applications usually have noise.

• Several authors have formulated approaches where Wiener processes

are admissible inputs to a Fliess operators (G. B. Arous (1989),

Fliess (1977, 1981), Fliess and Lamnabhi (1981), Sussmann (1988)).

• A suitable mathematical formulation will use Stratonovich integrals:

i. They obey the rules of ordinary differential calculus.

ii. When schemes for solving stochastic differential equations use

smooth functions to approximate white Gaussian noise, the

appropriate model will use Stratonovich integrals.
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Example 2 Let W be a Wiener process. Consider a system modeled by

the stochastic differential equation (SDE) in Stratonovich form

zt = z0 +

∫ t

0

f(zs) ds+ S
∫ t

0

g(zs) dW (s), (5)

where f(z) and g(z) are suitably defined functions. For a C2 function F ,

the Stratonovich differential chain rule gives

F (zt) = F (zt) +

∫ t

0

f(zs)
∂

∂z
F (zs) ds+ S

∫ t

0

g(zs)
∂

∂z
F (zs) dW (s). (6)

Identifying operators Lf = f(z) ∂
∂z

and Lg = g(z) ∂
∂z

, (6) becomes

F (zt) = F (z0) +

∫ t

0

LfF (zs) ds+ S
∫ t

0

LgF (zs) dW (s).
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Now let F (z) in (6) be replaced by either f or g from (5) and substitute

f(zt) and g(zt) back into (5). This yields

zt = z0 + f(z0)

∫ t

0

ds+ g(z0) S
∫ t

0

dW (s)

+

∫ t

0

∫ s

0

Lff(zr) drds+

∫ t

0

S
∫ s

0

Lgf(zr) dW (r)ds

+ S
∫ t

0

∫ s

0

Lfg(zr) drdW (s) + S
∫ t

0

S
∫ s

0

Lgg(zr) dW (r)dW (s)

zt = z0 + f(z0)

∫ t

0

ds

︸ ︷︷ ︸
Ex0 [0](t, 0)

+g(z0) S
∫ t

0

dW (s)

︸ ︷︷ ︸
Ey0 [0](t, 0)

+R1(z(t)).

Continuing this way produces the usual Peano-Baker formula.
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Let I be the identity map and define X = {x0}, Y = {y0}, XY = X ∪ Y ,

Lgx0η = LgηLgx0
and Lgy0η = LgηLgy0

, where gx0 = f , gy0 = g and

η ∈ XY ∗. Thus, the solution of the SDE (5) in series form is

y(t) , z(t) =
∑

η∈XY ∗

Lgη I(z(0)) Eη[0](t)

(7)

Here, (f, g, I, z(0)) realizes Fc when (c, η) = LgηI(z(0)), ∀η ∈ XY ∗.

Remarks:

• The output of this nonlinear input-output system is in general not a

Wiener process. For example, equation (7) can be written as

y(t) = (c, ∅) +
∫ t

0

∑

η∈XY ∗

Lgx0ηI(z(0)) Ex0η[0](s, 0) ds

+ S
∫ t

0

∑

η∈XY ∗

Lgy0ηI(z(0)) Ey0η[0](s, 0) dW (s).

• Note that y(t) is not well-defined unless the integrands converge.
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• Consider a Wiener process, denoted by W (t), defined over (Ω,F , P ).

• Let u : Ω× [t0, t0 + T ] → R
m be a predictable function, and

‖u‖p = max{‖ui‖Lp
: 1 ≤ i ≤ m}.

Definition 1 (Duffaut et al. 2009) Consider the set of all m-dimensional

stochastic processes over [t0, t0 + T ], denoted by ŨVm
[t0, t0 + T ], which

can be written as

w(t) =

t∫

t0

u(s) ds+ S
t∫

t0

v(s) dW (s).

The set UVm[t0, t0 + T ] ⊂ ŨVm
[t0, t0 + T ] will refer to processes

satisfying:

i. Each m-dimensional integrand has E[ui(t)] < ∞, E[vi(t)] < ∞,

t ∈ [t0, t0 + T ] and are mutually independents.

ii. Also, ‖u‖L2
, ‖v‖L2

, ‖v‖L4
≤ R ∈ R

+.
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Definition 2 (Duffaut et al. 2010) Let X(t) = S
∫ t

0

v(s) dW (s), where v is

an m-dimensional L2-Itô process. The set UVm[0, τR] is defined as the

set of processes w ∈ UVm[0, T ] stopped at

τR , min
i∈{0,1,··· ,m}

inf

{
t ∈ T :

∣∣∣∣S
∫ t

0

vi(s) dW (s)

∣∣∣∣ = R

}
.

R 

R!

( )X t

t
R
 

Figure 1: First time process X(t) hits the barrier R.

Remark: τR is a strictly positive stopping time for any real R > 0.
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• Let X = {x0, x1, . . . , xm}, Y = {y0, y1, . . . , ym} and XY = X ∪ Y .

• An iterated integral over UVm[t0, t0 + T ] is defined recursively by

Exiη
′ [w](t, t0) =

t−∫

t0

ui(s)Eη′ [w](s) ds, xi ∈ X,

Eyiη
′ [w](t, t0) = S

t−∫

t0

vi(s)Eη′ [w](s) dW (s), yi ∈ Y,

where η′ ∈ XY ∗, E∅ = 1 and u0 = v0 = 1.

Definition 3 (Duffaut et al. 2009) An m-input, ℓ-output Fliess operator

Fc, c ∈ R
ℓ〈〈XY 〉〉, driven by w ∈ UVm[0, T ] is formally defined as

Fc[w](t) =
∑

η∈XY ∗

(c, η)Eη[w](t, t0).

(8)
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Definition 4 For any T > 0, w ∈ UVm[0, T ] and t ∈ [0, T ], the Chen

series associated with a formal power series in R
ℓ〈〈XY 〉〉 is defined as

P [w](t, t0) =
∑

η∈XY ∗

η Eη[w](t, t0).

• The Chen series satisfies the stochastic differential equation

dP [w](t, t0) =

(
m∑

i=0

xiui(t) dt+ yivi(t) dW (t)

)
P [w](t, t0).

• For any t, (P [u], ξ ⊔⊔ ν) = (P [u], ξ) (P [u], ν) , ∀ξ, ν ∈ XY ∗.

Therefore, from Ree’s theorem P [u], is an exponential Lie series.

• The Fliess operator (8) can be written as

Fc[w](t) = (c, P [w](t, 0))

• P [w] satisfies P [w](t, t0) = P [w](t, t′)P [w](t′, t0) (Chen’s identity).
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2. Convergence of Fliess Operators with Stochastic Inputs

• It was shown by Gray and Wang (2002) that for u ∈ L1[t0, t0 + T ]

and any η ∈ X∗

|Eη[u](t, t0)| ≤
m∏

i=0

Ūαi
i (t)

αi!
,

(9)

where Ūi(t) =
t∫

t0

|ui(τ)| dτ , and αi = |η|xi
is the number of xi in η.

• If |(c, η)| ≤ KM |η|, ∀ η ∈ X∗, then Fc[u] converges absolutely on

[t0,∞) for u ∈ Lp,e(t0).

• If |(c, η)| ≤ KM |η| |η|!, ∀ η ∈ X∗, then

Fc : Bm
p (R)[t0, t0 + T ] → Bℓ

q(S)[t0, t0 + T ],

for sufficiently small R,S, T > 0 and 1/p+ 1/q = 1.
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Notation:

• Define the language XkY n = {η ∈ XY ∗; |η|X = k, |η|Y = n}.
• For a fixed word η ∈ XkY n, define the vectors

α = (αm, · · · , α0) ∈ N
m+1 and β = (βm, · · · , β0) ∈ N

m+1, where

αi = |η|xi
, βi = |η|yi , k =

∑m

i=0 αi and n =
∑m

i=0 βi.

Remark: Convergence is not easy to characterize using Stratonovich

integrals. So a formula for Eη in terms of Itô integrals is needed.

Theorem 1 (Duffaut et al. 2009) Let η ∈ XkY n and w ∈ UVm[0, T ].

Then

Eη[w](t) =

n,⌊n
2 ⌋∑

r1=0,r2=0

1

2r12r2

∑

sr1∈A
s̄r2
nr1

s̄r2∈Ānr2

I

sr1
s̄r2
η [w](t) ,

where Ānr2 and A
s̄r2
nr1 are subsets of indexes in η, and I

sr1
s̄r2
η [w](t) is an

Itô iterated integral.
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Remarks:

• Recall Gray and Wang (2002) showed that for u ∈ L1[t0, t0 + T ] and

any η ∈ X∗

|Eη[u](t)| ≤
m∏

i=0

Uαi
i (t)

αi!
,

where Ui(t) =
∫ t

0
|ui(τ)| dτ , and αi = |η|xi

is the number of xi in η.

• For the stochastic case, analogous bounds for Itô iterated integrals

have been developed.

Theorem 2 (Duffaut et al. 2009) Let η ∈ XkY n and w ∈ UVm be

arbitrary. Then for a fixed t ∈ [0, T ]

‖Eη[w](t)‖2 <
(R

√
t)k(

√
2R(

√
t+ 2))2n

(α!)
1
2 (β!)

1
4

,

(10)

where max{‖u‖L2
, ‖v‖L2

, ‖v0‖L2
, ‖v‖L4

} ≤ R, α! , α0! · · ·αm! and

β! , β0! · · ·βm!.
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2.1 Global convergence

Example 3 Consider the following system driven by a Wiener process

dz1(t) = M1z1(t) dW (t), z1(0) = 1

y1(t) = K1z1(t).
(11)

The generating series of (11) is (c1, x
k
1) = K1M

k
1 , k ≥ 0. Thus,

y1(t) = Fc1 [0](t) =

∞∑

k=0

K1M
k
1︸ ︷︷ ︸

(c1,x
k
1
)

S
∫ t

0

· · · S
∫ t2

0

dW (t1) · · · dW (tk).

Since S
∫ t

0

W k(s)

k!
dW (s) =

W k+1(t)

(k + 1)!
, k ≥ 0. Then

y1(t) = Fc1 [0](t) =
∞∑

k=0

K1M
k
1
W k(t)

k!
= K1e

M1W (t), t ∈ [0,∞).
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Theorem 3 (Duffaut et al. 2009) Suppose for a series c ∈ R
ℓ〈〈XY 〉〉

there exists real numbers K > 0 and M > 0 such that

|(c, η)| ≤ KM |η|, ∀η ∈ XY ∗.

Then for any random process w ∈ UVm[0, T ], T > 0, the Fliess operator

defined by series (8) converges absolutely in the mean square sense to a

well defined random vector y(t) = Fc[w](t), t ∈ [0, T ].

Remark: Recall that for any w ∈ UVm[0, T ], R is a bound for ‖u‖1,
‖v‖2 and ‖v‖4. This theorem is valid for all t ∈ [0, T ], where T,R ≥ 0 are

arbitrarily large but finite. Therefore, this theorem is viewed as a global

convergence result.
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2.2. Local convergence

Example 4 Consider the system

dz2(t) = M2z
2
2(t) dW (t), z2(0) = 1, y2(t) = K2z2(t). (12)

The generating series of (12) is (c2, x
k
1) = K2M

k
2 k!, k ≥ 0. Thus,

y2(t) = Fc2 [0](t) =
∞∑

k=0

K2M
k
2 k! S

∫ t

0

· · · S
∫ t2

0

dW (t1) · · · dW (tk).

Then the output is written by the divergent series

y2(t) = Fc2 [0](t) =

∞∑

k=0

K2M
k
2 W

k(t).

But if τ = inf{t : |M2W (t)|= R}, R < 1, then y2(t) =
K2

1−M2W (t)
, t < τ .

Remarks:

• [0, τ ] is random, i.e., [0, τ ] = {0 ≤ t ≤ τ(ω) : (τ, ω) ∈ R
+ × Ω}.

• The solution by variable separation of (12) is z2(t) =
K2

1−M2W (t)
.
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Some Results and Notation: (Duffaut et al. 2009, 2010)

• Let η, ξ ∈ XY ∗ and qi, qj ∈ XY . The shuffle product is

qiη ⊔⊔ qjξ = qi[η ⊔⊔ qjξ] + qj [qiη ⊔⊔ ξ],

where ∅ ⊔⊔ ∅ = ∅ and ξ ⊔⊔ ∅ = ∅ ⊔⊔ ξ = ξ.

• R
ℓ〈〈XY 〉〉 with the shuffle product forms an R-algebra.

• For any α,β ∈ N
m+1 define the polynomials pα = xα0

0 ⊔⊔ · · · ⊔⊔ xαm
m

and pβ = yβ0
0 ⊔⊔ · · · ⊔⊔ yβm

m , respectively.

• Observe that XkY n ,
∑

η∈XkY n

η =
∑

‖α‖=k,‖β‖=n

pα ⊔⊔ pβ.

• Define Sα,β[w](t) , Fpα ⊔⊔ pβ [w](t) = Fpα [w](t)Fpβ [w](t).

• Independence of the inputs gives

‖Sα,β[w](t)‖22 = ‖Fpα [w](t)‖22
∥∥Fpβ [w](t)

∥∥2
2
.

• The L2-norm of Fpα [w](t) is ‖Fpα [w](t)‖22 ≤
m∏

i=0

Ū2αi
i (t)

(αi!)2
≤ R2k

(α!)2
.
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Theorem 4 (Duffaut et al. 2010) Suppose that for a series

c ∈ R
ℓ〈〈XY 〉〉, there exists real numbers K > 0 and M > 0 such that

|(c, η)| ≤ KM |η| |η|!, ∀η ∈ XY ∗.

Then for any random process w ∈ UVm[0, T ], T > 0, the series

Fc[w](t) =
∞∑

j=0

j∑

k=0

∑

η∈XkY j−k

(c, η)Eη[w](t)

(13)

converges in the mean square sense to a random vector y(t), t ∈ [0, τR],

where

τR , min
i∈{0,...,m}

inf

{
t ∈ [0, T ] :

∣∣∣∣ S
∫ t

0

vi(s)dW (s)

∣∣∣∣ = R

}
.

Remark: Note in (13) that there is an implied order to the summation

over XY ∗. Thus, the current result is strictly speaking for conditional

convergence.
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Definition 5 (Fliess (1981)) Let α,β ∈ N
m+1 and define the language

Lα,β =
{
η ∈ XY ∗, |η|xi

= αi, |η|yi = βi, i = 0, 1, . . . ,m
}
.

A series c ∈ R
ℓ〈〈XY 〉〉 is called exchangeable if all the words in Lα,β

have the same image under c for any given α,β ∈ N
m+1.

Corollary 1 (Duffaut et al. 2010) Let c ∈ R
ℓ〈〈XY 〉〉 be exchangeable

and locally convergent. Then, for an arbitrary w ∈ UVm[0, T ], there exist

an R > 0 and a stopping time τR > 0 such that Fc[w] converges

absolutely over [0, τR].

Remarks:

• Every process y = Fc[w] is a well-defined L2-Itô process. But the

independence of the inputs is not preserved at the output.

• It is conjectured that there may exist a maximal exchangeable series

which ensures absolute convergence for any locally convergent series.
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2.3 Solving a type of polynomial differential equations

Consider an analytic input u and X = {x0},

u(t) =

∞∑

n=0

cu(n)
(t− t0)

n

n!
⇒ c =

∑

n≥0

(c, xn
0 )x

n
0

Note cu(n) = (c, xn
0 ). Thus, a transform Lf : u 7→ c can be defined.

Remark: For t0 = 0, the one-sided Laplace transform of u will be

L[u](s) =

∫ ∞

0

u(t)estdt =

∫ ∞

0

∑

n≥0

(c, xn
0 )

tn

n!
estdt

=
∑

n≥0

(c, xn
0 )

∫ ∞

0

tn

n!
estdt = s−1

∑

n≥0

(c, xn
0 )(s

−1)n.

Then
L[u](s) = x0Lf [u]

∣∣∣
x0→s−1.
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Definition 6 (Gray & Li 2006) Let F , {Fc : c ∈ R
ℓ〈〈X〉〉}. The formal

Laplace and Borel transforms are, respectively,

Lf : F → R
ℓ〈〈X〉〉

: Fc 7→ c

Bf : R
ℓ〈〈X〉〉 → F

: c 7→ Fc.

Table 1: Some formal Laplace transforms.

Fc Lf [Fc] = c

u → 1 1

u → tn n!xn
0

u →
(

n−1∑

i=0

(
n−1
i

)

i!
aiti
)
eat (1− ax0)

−n

u → exp

(∫ t

0

k∑

j=1

uij (τ) dτ

)
(xi1 + · · ·+ xik )

∗
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Remarks:

• The star operation is related to the inverse of a series with respect

to the Cauchy product. If c is not proper then c = (c, ∅)(1− c′) with

c′ proper, and

c−1 =
1

(c, ∅) (1− c′)−1 =
1

(c, ∅)
(
c′
)∗

.

Observe cc−1 = (c, ∅)(1− c′)
1

(c, ∅) (1 + c′ + c′2 + · · · ) = 1.

• Some properties of these transforms are:

i Linearity Lf [αFc + βFd] = αLf [Fc] + βLf [Fd]

Bf [αc+ βd] = αBf [c] + βBf [d]

ii Integration:
Lf [I

nFc] = xn
0 c, Bf [x

n
0 c] = InFc

iii Multiplication:

Lf [Fc · Fd] = Lf [Fc] ⊔⊔ Lf [Fd], Bf [c ⊔⊔ d] = Bf [c] ·Bf [d]

27



RPCCT 2011

• If u admits an expansion in terms of x0 and y0, then

u
Lf−−→ cu =

∑

η∈X0Y0
∗

(cu, η)η.

Moreover, if c is globally convergent then u is a well-defined L2-Itô

process. This allows one to apply the formal-Laplace transform to

stochastic processes (Duffaut 2009).

• By integration by parts for Stratonovich integrals,

Fc · Fd =
∑

η,∈XY ∗

(c, η)Eη

∑

ξ∈X∗

(d, ξ)Eξ

=
∑

η,ξ∈XY ∗

(c, η)(d, ξ)EηEξ

=
∑

η,ξ∈XY ∗

(c, η)(d, ξ)Eη ⊔⊔ ξ
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Consider the differential equation
n∑

i=0

ℓi
di

dti
y(t) + β

m∑

i=2

aiy
i(t)u(t) =

n−1∑

i=0

qi
di

dti
u(t), (14)

with initial conditions y(i)(0) = yi0, u(i)(0) = ui0.

Applying the formal Laplace Transform: (y(t) = Fc[u](t) ⇒ Lf [y] = c)

n∑

i=0

ℓix
n−i
0 c+ β

m∑

i=2

aix
n−i
0 x1c

⊔⊔ i =

n−1∑

i=0

qix
n−i−1
0 x1 +

n−1∑

i=0

ℓ̄ix
i
0 +

n−1∑

i=1

q̄ix
i
0,

Example 5 Consider y(i)(0) = 0, u(i)(0) = 0, ℓ = 1 and β = 0

c =

(
1 +

n∑

i=0

ℓix
n−i
0

)−1 n−1∑

i=0

qix
n−i−1
0 x1.

Use L[u](s) = x0Lf [u]
∣∣∣
x0→s−1

⇒ Y (s)
U(s)

=

n−1∑

i=0

qis
i

sn+
n∑

i=0

ℓis
i
.
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Remarks:

• If u is stochastic then u = d
dt
w = ẇ = ū+ vw̄ (abusing notation),

where w̄ is white Gaussian noise (Duffaut 2009). Therefore,

∫
u(s) ds

Lf−−→ x1 + y1

• The generating series c of (14) can be calculated as c =
∑∞

k=0 ck,

where

c0 =

(
1 +

n∑

i=0

ℓix
n−i
0

)−1(n−1∑

i=0

qix
n−i−1
0 x1 +

n−1∑

i=0

ℓ̄ix
i
0 +

n−1∑

i=1

q̄ix
i
0

)
,

ck =

(
1 +

n∑

i=0

ℓix
n−i
0

)−1

xn
0x1β

m∑

i=2

ai

∑

j1+j2+···+ji=k−1
j1,j2,··· ,ji<k

cj1 ⊔⊔ cj2 ⊔⊔ · · · ⊔⊔ cji .

30



RPCCT 2011

Example 6 Consider the following state space system

d

dt
z(t) + k1z(t) = k2w̄(t), z(0) = z0, y(t) = z(t) (15)

Applying the formal Laplace transform to (15) gives

c− 1 + k1x0c = k2y1 ⇒ c =
k2y1

(1 + k1x0)
+

z0
(1 + k1x0)

Remark: S
∫ t

0

(t− s)n

n!
dW (s) =

∫
· · ·
∫

S
∫

dW (s) dt · · · dt︸ ︷︷ ︸
n times

Applying the Borel transform gives

y(t) = Fc[u](t) = k2
∑

n≥0

(−k1)
nExn

0
y1 [u](t) + z0e

−k1t

= k2
∑

n≥0

S
∫ t

0

(−k1(t− s))n

n!
dW (s) + z0e

−k1t

= k2 S
∫ t

0

e−k1(t−s) dW (s) + z0e
−k1t.
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Example 7 Consider the following state space system

d

dt
z(t) = z3(t) w̄, y(t) = z(t), z(0) = 1. (16)

Applying the formal Laplace transform to (16) gives

c = 1 + (x1 + y1) c
⊔⊔ 3.

Thus, c can be calculated as c =
∑∞

k=0 ck, where

c0 = 1, ck = (x1 + y1)
∑

i1+i2+i3=k−1
i1,i2,i3<k

ci1 ⊔⊔ ci2 ⊔⊔ ci3 .

The next three ck’s are given below:

c1 = (x1 + y1), c2 = 3 (x1 + y1)
2, c3 = 15 (x1 + y1)

3.

Note, ck = (2k − 1)!!(x1 + y1)
k, k ≥ 0. Since (2k − 1)!! =

C2k
k

2k
k! ≤ 2kk!.

Therefore, c is locally convergent and exchangeable.
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Hence, c is the generating series of the input-output operator

y =

∞∑

k=0

C2k
k k!

2k
E(x1+y1) ⊔⊔ k [w](t)

=

∞∑

k=0

C2k
k

2k
Ek

(x1+y1)[w](t)
︸ ︷︷ ︸

wk(t)

=
1√

1− 2w(t)
,

where t ∈ [0, τR̄] with τR̄ = inf{t > 0 : |2w(t)| = R̄} and R̄ < 1.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5y(t)

tτR τR̄

R = 1

8

−

R̄ = 1

2

−

Figure 2: Sample path of y(t).
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3. System Interconnections with Stochastic Inputs

c
F

d
F

 u y

c
F

d
F

!u y

d
F

c
Fu y

Parallel connection Product connection

Cascade connection

Figure 3: Elementary system interconnections.

Fc[u] + Fd[u] = Fc+d[u]

Fc[u] · Fd[u] = Fc ⊔⊔ d[u]

Fc[Fd[u]] = Fc◦d[u].
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Let X0Y0 = {x0, y0}. Any η ∈ XY ∗ can be written as

η = ηkq
lk
ik
ηk−1q

lk−1

ik−1
. . . η1q

l1
i1
η0,

where ηi ∈ X0Y
∗
0 and q

lj
ij

= xij when lj = 1, q
lj
ij

= yij when lj = 2.

Definition 7 For η ∈ XY ∗ and d ∈ R
m〈〈XY 〉〉 the composition product

is

η ◦ d =





η : |η|xi,yi = 0, ∀ i 6= 0

η′ql0[d
j
i ⊔⊔ (η̄ ◦ d)] : η = η′qliη̄, i 6= 0, l ∈ {1, 2},

η′ ∈ X0Y
∗
0 , η̄ ∈ XY ∗,

where dli : ξ 7→ (d, ξ)li, and (d, ξ)li is the i-th component of (d, ξ)l with

l = 1 representing drifts and l = 2 representing diffusions.

For c ∈ R
ℓ〈〈XY 〉〉 and d ∈ R

m〈〈XY 〉〉,

c ◦ d =
∑

η∈XY ∗

(c, η)η ◦ d.

Remark: If Y = ∅, then ◦ reduces to the usual deterministic definition.
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The following questions can be formulated:

• Can each interconnection of two Fliess operators with stochastic

inputs be represented by another Fliess operator?

• What is the nature of the generating series of the composite Fliess

operator given that the component generating series are either

globally convergent or locally convergent?

• What conditions need to be imposed to obtain a well-defined

stochastic process at the output of the interconnected system?

• Are all the signals in the interconnected system well-defined?
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3.1 Formal Interconnections

Definition 8 Let cw ∈ R
m〈〈X0Y0〉〉. A formal stochastic process w is

defined by

w(t) =
∑

η∈X0Y
∗

0

(cw, η)Eη[0](t). (17)

The set of all formal stochastic processes is denoted by W .

Remarks:

• For any w ∈ W , there exist a corresponding generating series

cw ∈ R〈〈X0Y0〉〉.

• Since cw is arbitrary, w is simply a formal summation of iterated

integrals.
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Theorem 5 Let cw ∈ R〈〈X0Y0〉〉 be the generating series for a given

w ∈ W .

i. If cw is a globally convergent series then w ∈ ŨVm
[0, T ].

ii. If w is ordered in the sense that

w(t) =

∞∑

j=0

j∑

k=0

∑

η∈Xk
0
Y

j−k
0

(cw, η)Eη[0](t), (18)

and cw is locally convergent then w ∈ ŨVm
[0, τR], where

τR = inf{t ∈ [0, T ] : |W (t)| = R}.

iii. If cw is exchangeable and locally convergent then w ∈ ŨVm
[0, τR]

regardless the order implied in (18).
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Definition 9 The class of formal Fliess operators on R
m〈〈X0Y0〉〉 is the

collection of mappings

F , {c◦ : Rm〈〈X0Y0〉〉 → R
ℓ〈〈X0Y0〉〉 : cw 7→ cy = c ◦ cw, c ∈ R

ℓ〈〈XY 〉〉}.

Theorem 6 Let c, d ∈ R〈〈XY 〉〉 and cw ∈ R〈〈X0Y0〉〉. The parallel,

product and cascade connections of formal Fliess operators are

characterized by the operations +, ⊔⊔ , and ◦ on R〈〈XY 〉〉 as

c ◦ cw + d ◦ cw = (c+ d) ◦ cw
(c ◦ cw) ⊔⊔ (d ◦ cw) = (c ⊔⊔ d) ◦ cw

c ◦ (d ◦ cw) = (c ◦ d) ◦ cw.

Remark: The operator c◦ is a formal operator in that it acts on a

formal input, i.e., one that has a series representation.

39



RPCCT 2011

3.2 Parallel and Product Interconnections

c
F

d
F

 u y

c
F

d
F

!u y

Figure 4: The parallel and product connections

What are the generating series corresponding to these interconnections?

Fc[w] + Fd[w] = Fc+d[w] ?

Fc[w] · Fd[w] = Fc ⊔⊔ d[w] ?
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Conditions for the series c+ d and c ⊔⊔ d will establish the convergence of

the product and parallel connections.

Theorem 7 If c, d ∈ R
ℓ〈〈XY 〉〉 are globally convergent then c+ d and

c ⊔⊔ d are globally convergent. Moreover, if c, d ∈ R
ℓ〈〈XY 〉〉 are locally

convergent then c+ d and c ⊔⊔ d are locally convergent.

Corollary 1 Let c ∈ R
ℓ〈〈XY 〉〉 and d ∈ R

ℓ〈〈XY 〉〉 be globally

convergent series. For any w ∈ UVm[0, T ], Fc+d[w] and Fc ⊔⊔ d[w]

produce well-defined L2-Itô output processes over [0, T ] for any T > 0.

Corollary 2 Let c, d ∈ R
ℓ〈〈XY 〉〉 be locally convergent series. For any

w ∈ UVm[0, T ], there exist an R > 0 and a stopping time τR such that

Fc+d[w] and Fc ⊔⊔ d[w], respectively, produce L2-Itô processes over [0, τR]

assuming the order of summation defined as in (13).

Remark: If c+ d and c ⊔⊔ d are exchangeable, then Fc+d[w] and

Fc ⊔⊔ d[w] will be convergent unconditionally.
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3.3 Cascade interconnections
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Figure 5: Cascade connection.

What is the generating series corresponding to the cascade connection?

Fc[Fd[w]] = Fc◦d[w] ?

Remark: For c and d in R〈〈XY 〉〉 locally convergent, the series c ◦ d is

also locally convergent.
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To illustrate the problems encountered in the cascade of systems driven

by stochastic processes, consider

Fc[ỹ] = Fc[f [u, v]](t),

where c ∈ R〈〈XY 〉〉, and ỹ = (ỹ1, ỹ2)
T is given by

ỹ1(t) = f1[u, v](t) =

∫ t

0

u(s) S
∫ s

0

v(r) dW (r) ds

ỹ2(t) = f2[u, v](t) = S
∫ t

0

v(s)

∫ s

0

u(r) dr dW (s),

1

2

( )

( )

f t

f t

u

v
1

2

y

y

 

 

1

2

y

y
[ ]
c
F y 

Figure 6: Cascade of input-output maps.
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Even u and v are mutually independent, the intermediate signals ỹ1 and

ỹ2 are correlated. Implying

E[ỹ1ỹ2] 6= E[ỹ1]E[ỹ2].

Since Fc is only defined for independent inputs, it cannot be driven by ỹ.

Thus, the cascade connection is at present not well-posed because the

inputs and outputs are not compatible.

Remarks:

• The formulation of Fliess operators on Banach spaces (for rough

paths) is very likely to solve this obstacle. In that context, no

requirement for independence is needed.

• It is believed that seeing input paths as rough paths may give better

estimates of the mapping Eη.

• However, the so-called control function must be better understood

in the systems terminology.
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4. Conclusions

• An extension of the notion of a Fliess operators for L2-Itô process

inputs was presented.

• To consider system interconnections, the notion of global and local

stochastic convergence for these operators was considered.

• Local absolute convergence over random intervals of time was not

achieved in general. The same limitation is expected for rough paths.

• The generating series of the cascade connection of formal Fliess

operators was presented.

• The cascade connection was shown not to be well-posed under the

current setting since the inputs and outputs are not compatible.

• It is expected that the limitations found in the cascade connection,

because of the way stochastic inputs were characterized, can be

overcome by using Lyon’s rough path theory. However, many

concepts have to be adapted to the systems terminology.
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