On the well-posedness of cascades of analytic nonlinear input-output systems driven by noise*

Luis A. Duffaut Espinosa

Department of Electrical and Computer Engineering
The Johns Hopkins University,
Baltimore, Maryland USA

* This research was supported in part by NSF grant DMS 0960589.

Overview*

1. Fliess Operators
1.1. Formal Power Series
1.2. Fliess Operators with Stochastic Inputs
2. Convergence of Fliess Operators with Stochastic Inputs
2.1. Global Convergence
2.2. Local Convergence
2.3. Solving a type of polynomial differential equations
3. System Interconnections with Stochastic Inputs

3.1. Formal Interconnections

3.2. Parallel and Product Interconnections
3.3. Cascade Interconnection

* See www.ece.odu.edu/~sgray/RPCCT2011/duffautespinosaslides.pdf

1. Fliess Operators

- Functional series expansions of nonlinear input-output operators have been utilized since the early 1900's in engineering, mathematics and physics (V. Volterra, N. Wiener, etc).
- A broad class of deterministic nonlinear systems can be described by Fliess operators, which are input-output maps constructed using the Chen-Fliess formalism (Fliess (1981)).
- Such operators are described by a summation of Lebesgue iterated integrals codified using the theory of noncommutative formal power series.

1.1 Formal Power Series

- Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ be an alphabet and X^{*} the set of all words over X (including the empty word \emptyset).
- A formal power series is any mapping $c: X^{*} \rightarrow \mathbb{R}^{\ell}$. Typically, c is written as a formal sum

$$
c=\sum_{\eta \in X^{*}}(c, \eta) \eta
$$

- The set of all such series is denoted by $\mathbb{R}^{\ell}\langle\langle X\rangle\rangle$, and the subset denoted by $\mathbb{R}^{\ell}\langle X\rangle$ is the set of polynomials.
- A series c is rational if it belongs to the rational closure of $\mathbb{R}^{\ell}\langle X\rangle$.
- A series c is rational if and only if $(c, \eta)=\lambda \mu(\eta) \gamma, \forall \eta \in X^{*}$, where $\mu: X^{*} \rightarrow \mathbb{R}^{n \times n}$ is a monoid morphism, and $\gamma, \lambda^{T} \in \mathbb{R}^{n \times 1}$.
- c is called globally convergent when $|(c, \eta)| \leq K M^{|\eta|}, \forall \eta \in X^{*}$.
- c is called locally convergent when $|(c, \eta)| \leq K M^{|\eta|}|\eta|!, \forall \eta \in X^{*}$.
- For a measurable function $u:[a, b] \rightarrow \mathbb{R}^{m}$ with finite L_{1}-norm, define $E_{\eta}: L_{1}^{m}\left[t_{0}, t_{0}+T\right] \rightarrow \mathcal{C}\left[t_{0}, t_{0}+T\right]$ by $E_{\emptyset}[u]=1$, and

$$
E_{x_{i} \eta^{\prime}}[u]\left(t, t_{0}\right)=\int_{t_{0}}^{t} u_{i}(\tau) E_{\eta^{\prime}}[u]\left(\tau, t_{0}\right) d \tau
$$

where $x_{i} \in X, \eta^{\prime} \in X^{*}$ and $u_{0}=1$.

- Note that to each letter x_{i} is assigned a function u_{i}.
- Each $c \in \mathbb{R}^{\ell}\langle\langle X\rangle\rangle$ is associated with an m-input, ℓ-output system,

$$
F_{c}[u](t)=\sum_{\eta \in X^{*}}(c, \eta) E_{\eta}[u]\left(t, t_{0}\right)
$$

called a Fliess operator (Fliess (1981)).

Example 1 A linear input-output system $F: u \rightarrow y$ with $u(t) \in \mathbb{R}^{m}$ and $y(t) \in \mathbb{R}^{\ell}$ can be described by a convolution integral involving its impulse response $H(t, \tau)=\left(H_{1}(t, \tau), \ldots, H_{m}(t, \tau)\right)^{\prime}$ and the system input

$$
\begin{equation*}
y(t)=F[u](t)=\int_{t_{0}}^{t} H(t, \tau) u(\tau) d \tau, t \geq t_{0} . \tag{2}
\end{equation*}
$$

If each H_{i} is real analytic on $D=\left\{(t, \tau) \in \mathbb{R}^{2}: t_{0} \leq \tau \leq t \leq t_{0}+T\right\}$, then its Taylor series at $\left(\tau, t_{0}\right)$ is

$$
\begin{equation*}
H_{i}(t, \tau)=\sum_{n_{1}, n_{2}=0}^{\infty} c\left(n_{2}, i, n_{1}\right) \frac{(t-\tau)^{n_{2}}}{n_{2}!} \frac{\left(\tau-t_{0}\right)^{n_{1}}}{n_{1}!} \tag{3}
\end{equation*}
$$

where $c\left(n_{2}, i, n_{1}\right) \in \mathbb{R}^{\ell}$.

Substituting (3) into (2) and using the uniform convergence of the series on D, it follows that

$$
\begin{equation*}
y(t)=\sum_{n_{1}, n_{2}=0, i=1}^{\infty, m} c\left(n_{2}, i, n_{1}\right) \underbrace{\int_{t_{0}}^{t} \frac{(t-\tau)^{n_{2}}}{n_{2}!} u_{i}(\tau) \frac{\left(\tau-t_{0}\right)^{n_{1}}}{n_{1}!} d \tau}_{E_{x_{0}^{n_{2}} x_{i} x_{0}^{n_{1}}}[u]\left(t, t_{0}\right)} . \tag{4}
\end{equation*}
$$

Thus, (4) can be written as

$$
y(t)=\sum_{n_{1}, n_{2}=0, i=1}^{\infty, m} c\left(n_{2}, i, n_{1}\right) E_{x_{0}^{n_{2}} x_{i} x_{0}^{n_{1}}[u]\left(t, t_{0}\right) . . ~ . ~}^{\text {. }}
$$

Observe that the formal power series associated with system (2) is

$$
(c, \eta)=\left\{\begin{array}{cl}
c\left(n_{2}, i, n_{1}\right) & : \eta=x_{0}^{n_{2}} x_{i} x_{0}^{n_{1}}, n_{1}, n_{2} \geq 0, i \neq 0 \\
0 & : \text { otherwise } .
\end{array}\right.
$$

1.2 Fliess Operators with Stochastic Inputs

- System inputs in applications usually have noise.
- Several authors have formulated approaches where Wiener processes are admissible inputs to a Fliess operators (G. B. Arous (1989), Fliess (1977, 1981), Fliess and Lamnabhi (1981), Sussmann (1988)).
- A suitable mathematical formulation will use Stratonovich integrals:
i. They obey the rules of ordinary differential calculus.
ii. When schemes for solving stochastic differential equations use smooth functions to approximate white Gaussian noise, the appropriate model will use Stratonovich integrals.

Example 2 Let W be a Wiener process. Consider a system modeled by the stochastic differential equation (SDE) in Stratonovich form

$$
\begin{equation*}
z_{t}=z_{0}+\int_{0}^{t} f\left(z_{s}\right) d s+\oint_{0}^{t} g\left(z_{s}\right) d W(s) \tag{5}
\end{equation*}
$$

where $f(z)$ and $g(z)$ are suitably defined functions. For a \mathcal{C}^{2} function F, the Stratonovich differential chain rule gives

$$
\begin{equation*}
F\left(z_{t}\right)=F\left(z_{t}\right)+\int_{0}^{t} f\left(z_{s}\right) \frac{\partial}{\partial z} F\left(z_{s}\right) d s+\oint_{0}^{t} g\left(z_{s}\right) \frac{\partial}{\partial z} F\left(z_{s}\right) d W(s) \tag{6}
\end{equation*}
$$

Identifying operators $L_{f}=f(z) \frac{\partial}{\partial z}$ and $L_{g}=g(z) \frac{\partial}{\partial z}$, (6) becomes

$$
F\left(z_{t}\right)=F\left(z_{0}\right)+\int_{0}^{t} L_{f} F\left(z_{s}\right) d s+\oint_{0}^{t} L_{g} F\left(z_{s}\right) d W(s)
$$

Now let $F(z)$ in (6) be replaced by either f or g from (5) and substitute $f\left(z_{t}\right)$ and $g\left(z_{t}\right)$ back into (5). This yields

$$
\begin{aligned}
z_{t}= & z_{0}+f\left(z_{0}\right) \int_{0}^{t} d s+g\left(z_{0}\right) \oint_{0}^{t} d W(s) \\
& +\int_{0}^{t} \int_{0}^{s} L_{f} f\left(z_{r}\right) d r d s+\int_{0}^{t} \oint_{0}^{s} L_{g} f\left(z_{r}\right) d W(r) d s \\
& +\oint_{0}^{t} \int_{0}^{s} L_{f} g\left(z_{r}\right) d r d W(s)+\oint_{0}^{\oint_{0}} L_{g}^{s} g\left(z_{r}\right) d W(r) d W(s) \\
z_{t}= & z_{0}+f\left(z_{0}\right) \underbrace{\int_{0}^{t} d s}_{E_{x_{0}}[0](t, 0)}+g\left(z_{0}\right) \underbrace{\oint_{0}^{t} d W(s)}_{E_{y_{0}}[0](t, 0)}+R_{1}(z(t)) .
\end{aligned}
$$

Continuing this way produces the usual Peano-Baker formula.

Let I be the identity map and define $X=\left\{x_{0}\right\}, Y=\left\{y_{0}\right\}, X Y=X \cup Y$, $L_{g_{x_{0} \eta}}=L_{g_{\eta}} L_{g_{x_{0}}}$ and $L_{g_{y_{0} \eta}}=L_{g_{\eta}} L_{g_{y_{0}}}$, where $g_{x_{0}}=f, g_{y_{0}}=g$ and $\eta \in X Y^{*}$. Thus, the solution of the $\operatorname{SDE}(5)$ in series form is

$$
\begin{equation*}
y(t) \triangleq z(t)=\sum_{\eta \in X Y^{*}} L_{g_{\eta}} I(z(0)) E_{\eta}[0](t) \tag{7}
\end{equation*}
$$

Here, $(f, g, I, z(0))$ realizes F_{c} when $(c, \eta)=L_{g_{\eta}} I(z(0)), \forall \eta \in X Y^{*}$.
Remarks:

- The output of this nonlinear input-output system is in general not a Wiener process. For example, equation (7) can be written as

$$
\begin{aligned}
y(t)=(c, \emptyset) & +\int_{0}^{t} \sum_{\eta \in X Y^{*}} L_{g_{x_{0} \eta}} I(z(0)) E_{x_{0} \eta}[0](s, 0) d s \\
& +\oint_{0}^{t} \sum_{\eta \in X Y^{*}} L_{g_{y_{0} \eta}} I(z(0)) E_{y_{0} \eta}[0](s, 0) d W(s) .
\end{aligned}
$$

- Note that $y(t)$ is not well-defined unless the integrands converge.
- Consider a Wiener process, denoted by $W(t)$, defined over (Ω, \mathcal{F}, P).
- Let $u: \Omega \times\left[t_{0}, t_{0}+T\right] \rightarrow \mathbb{R}^{m}$ be a predictable function, and $\|u\|_{p}=\max \left\{\left\|u_{i}\right\|_{L_{p}}: 1 \leq i \leq m\right\}$.

Definition 1 (Duffaut et al. 2009) Consider the set of all m-dimensional stochastic processes over $\left[t_{0}, t_{0}+T\right]$, denoted by $\widetilde{\mathcal{U V}}^{m}\left[t_{0}, t_{0}+T\right]$, which can be written as

$$
w(t)=\int_{t_{0}}^{t} u(s) d s+\oint_{t_{0}}^{t} v(s) d W(s)
$$

The set $\mathcal{U V}^{m}\left[t_{0}, t_{0}+T\right] \subset \widetilde{\mathcal{U}}^{m}\left[t_{0}, t_{0}+T\right]$ will refer to processes satisfying:
i. Each m-dimensional integrand has $\mathbf{E}\left[u_{i}(t)\right]<\infty, \mathbf{E}\left[v_{i}(t)\right]<\infty$, $t \in\left[t_{0}, t_{0}+T\right]$ and are mutually independents.
ii. Also, $\|u\|_{L_{2}},\|v\|_{L_{2}},\|v\|_{L_{4}} \leq R \in \mathbb{R}^{+}$.

Definition 2 (Duffaut et al. 2010) Let $X(t)=\oint_{0}^{t} v(s) d W(s)$, where v is an m-dimensional L_{2}-Itô process. The set $\mathcal{U} \mathcal{V}^{m}\left[0, \tau_{R}\right]$ is defined as the set of processes $w \in \mathcal{U}^{m}[0, T]$ stopped at

$$
\tau_{R} \triangleq \min _{i \in\{0,1, \cdots, m\}} \inf \left\{t \in \mathcal{T}:\left|\oint_{0}^{t} v_{i}(s) d W(s)\right|=R\right\}
$$

Figure 1: First time process $X(t)$ hits the barrier R.
Remark: τ_{R} is a strictly positive stopping time for any real $R>0$.

- Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}, Y=\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$ and $X Y=X \cup Y$.
- An iterated integral over $\mathcal{U} \mathcal{V}^{m}\left[t_{0}, t_{0}+T\right]$ is defined recursively by

$$
\begin{aligned}
& E_{x_{i} \eta^{\prime}}[w]\left(t, t_{0}\right)=\int_{t_{0}}^{t-} u_{i}(s) E_{\eta^{\prime}}[w](s) d s, x_{i} \in X \\
& E_{y_{i} \eta^{\prime}}[w]\left(t, t_{0}\right)=\oint_{t_{0}}^{t-} v_{i}(s) E_{\eta^{\prime}}[w](s) d W(s), y_{i} \in Y,
\end{aligned}
$$

where $\eta^{\prime} \in X Y^{*}, E_{\emptyset}=1$ and $u_{0}=v_{0}=1$.
Definition 3 (Duffaut et al. 2009) An m-input, ℓ-output Fliess operator $F_{c}, c \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$, driven by $w \in \mathcal{U} \mathcal{V}^{m}[0, T]$ is formally defined as

$$
\begin{equation*}
F_{c}[w](t)=\sum_{\eta \in X Y^{*}}(c, \eta) E_{\eta}[w]\left(t, t_{0}\right) . \tag{8}
\end{equation*}
$$

Definition 4 For any $T>0, w \in \mathcal{U} \mathcal{V}^{m}[0, T]$ and $t \in[0, T]$, the Chen series associated with a formal power series in $\mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ is defined as

$$
P[w]\left(t, t_{0}\right)=\sum_{\eta \in X Y^{*}} \eta E_{\eta}[w]\left(t, t_{0}\right) .
$$

- The Chen series satisfies the stochastic differential equation

$$
d P[w]\left(t, t_{0}\right)=\left(\sum_{i=0}^{m} x_{i} u_{i}(t) d t+y_{i} v_{i}(t) d W(t)\right) P[w]\left(t, t_{0}\right)
$$

- For any $t,(P[u], \xi ш \nu)=(P[u], \xi)(P[u], \nu), \forall \xi, \nu \in X Y^{*}$. Therefore, from Ree's theorem $P[u]$, is an exponential Lie series.
- The Fliess operator (8) can be written as

$$
F_{c}[w](t)=(c, P[w](t, 0))
$$

- $P[w]$ satisfies $P[w]\left(t, t_{0}\right)=P[w]\left(t, t^{\prime}\right) P[w]\left(t^{\prime}, t_{0}\right) \quad$ (Chen's identity).

2. Convergence of Fliess Operators with Stochastic Inputs

- It was shown by Gray and Wang (2002) that for $u \in L_{1}\left[t_{0}, t_{0}+T\right]$ and any $\eta \in X^{*}$

$$
\begin{equation*}
\left|E_{\eta}[u]\left(t, t_{0}\right)\right| \leq \prod_{i=0}^{m} \frac{\bar{U}_{i}^{\alpha_{i}}(t)}{\alpha_{i}!} \tag{9}
\end{equation*}
$$

where $\bar{U}_{i}(t)=\int_{t_{0}}^{t}\left|u_{i}(\tau)\right| d \tau$, and $\alpha_{i}=|\eta|_{x_{i}}$ is the number of x_{i} in η.

- If $|(c, \eta)| \leq K M^{|\eta|}, \forall \eta \in X^{*}$, then $F_{c}[u]$ converges absolutely on $\left[t_{0}, \infty\right)$ for $u \in L_{p, e}\left(t_{0}\right)$.
- If $|(c, \eta)| \leq K M^{|\eta|}|\eta|$!, $\forall \eta \in X^{*}$, then

$$
F_{c}: B_{p}^{m}(R)\left[t_{0}, t_{0}+T\right] \rightarrow B_{q}^{\ell}(S)\left[t_{0}, t_{0}+T\right]
$$

for sufficiently small $R, S, T>0$ and $1 / p+1 / q=1$.

Notation:

- Define the language $X^{k} Y^{n}=\left\{\eta \in X Y^{*} ;|\eta|_{X}=k,|\eta|_{Y}=n\right\}$.
- For a fixed word $\eta \in X^{k} Y^{n}$, define the vectors

$$
\begin{aligned}
& \boldsymbol{\alpha}=\left(\alpha_{m}, \cdots, \alpha_{0}\right) \in \mathbb{N}^{m+1} \text { and } \boldsymbol{\beta}=\left(\beta_{m}, \cdots, \beta_{0}\right) \in \mathbb{N}^{m+1}, \text { where } \\
& \alpha_{i}=|\eta|_{x_{i}}, \beta_{i}=|\eta|_{y_{i}}, k=\sum_{i=0}^{m} \alpha_{i} \text { and } n=\sum_{i=0}^{m} \beta_{i} .
\end{aligned}
$$

Remark: Convergence is not easy to characterize using Stratonovich integrals. So a formula for E_{η} in terms of Itô integrals is needed.
Theorem 1 (Duffaut et al. 2009) Let $\eta \in X^{k} Y^{n}$ and $w \in \mathcal{U}^{m}[0, T]$. Then

$$
E_{\eta}[w](t)=\sum_{r_{1}=0, r_{2}=0}^{n,\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{2^{r_{1} 2^{r_{2}}}} \sum_{\substack{s_{r_{1}} \in A_{n} \\ \bar{s}_{r_{2}} \\ \bar{s}_{r_{2}} \in \bar{A}_{n r_{2}}}} \mathbf{I}_{\eta}^{\bar{s}_{n} \bar{s}_{r_{2}}}[w](t),
$$

where $\bar{A}_{n r_{2}}$ and $A_{n r_{1}}^{\bar{s}_{r_{2}}}$ are subsets of indexes in η, and $\mathbf{I}_{\eta}^{\stackrel{s_{r_{1}}}{\bar{s}_{r_{2}}}}[w](t)$ is an Itô iterated integral.

Remarks:

- Recall Gray and Wang (2002) showed that for $u \in L_{1}\left[t_{0}, t_{0}+T\right]$ and any $\eta \in X^{*}$

$$
\left|E_{\eta}[u](t)\right| \leq \prod_{i=0}^{m} \frac{U_{i}^{\alpha_{i}}(t)}{\alpha_{i}!}
$$

where $U_{i}(t)=\int_{0}^{t}\left|u_{i}(\tau)\right| d \tau$, and $\alpha_{i}=|\eta|_{x_{i}}$ is the number of x_{i} in η.

- For the stochastic case, analogous bounds for Itô iterated integrals have been developed.

Theorem 2 (Duffaut et al. 2009) Let $\eta \in X^{k} Y^{n}$ and $w \in \mathcal{U} \mathcal{V}^{m}$ be arbitrary. Then for a fixed $t \in[0, T]$

$$
\begin{equation*}
\left\|E_{\eta}[w](t)\right\|_{2}<\frac{(R \sqrt{t})^{k}(\sqrt{2 R}(\sqrt{t}+2))^{2 n}}{(\alpha!)^{\frac{1}{2}}(\beta!)^{\frac{1}{4}}} \tag{10}
\end{equation*}
$$

where $\max \left\{\|u\|_{L_{2}},\|v\|_{L_{2}},\left\|v_{0}\right\|_{L_{2}},\|v\|_{L_{4}}\right\} \leq R, \alpha!\triangleq \alpha_{0}!\cdots \alpha_{m}!$ and $\beta!\triangleq \beta_{0}!\cdots \beta_{m}!$.

2.1 Global convergence

Example 3 Consider the following system driven by a Wiener process

$$
\begin{align*}
d z_{1}(t) & =M_{1} z_{1}(t) d W(t), z_{1}(0)=1 \tag{11}\\
y_{1}(t) & =K_{1} z_{1}(t) .
\end{align*}
$$

The generating series of (11) is $\left(c_{1}, x_{1}^{k}\right)=K_{1} M_{1}^{k}, k \geq 0$. Thus,

$$
y_{1}(t)=F_{c_{1}}[0](t)=\sum_{k=0}^{\infty} \underbrace{K_{1} M_{1}^{k}}_{\left(c_{1}, x_{1}^{k}\right)} \oint_{0}^{t} \cdots \oint_{0}^{t_{2}} d W\left(t_{1}\right) \cdots d W\left(t_{k}\right) .
$$

Since $\quad \oint_{0}^{t} \frac{W^{k}(s)}{k!} d W(s)=\frac{W^{k+1}(t)}{(k+1)!}, k \geq 0$. Then

$$
y_{1}(t)=F_{c_{1}}[0](t)=\sum_{k=0}^{\infty} K_{1} M_{1}^{k} \frac{W^{k}(t)}{k!}=K_{1} e^{M_{1} W(t)}, t \in[0, \infty) .
$$

Theorem 3 (Duffaut et al. 2009) Suppose for a series $c \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ there exists real numbers $K>0$ and $M>0$ such that

$$
|(c, \eta)| \leq K M^{|\eta|}, \quad \forall \eta \in X Y^{*}
$$

Then for any random process $w \in \mathcal{U}^{m}[0, T], T>0$, the Fliess operator defined by series (8) converges absolutely in the mean square sense to a well defined random vector $y(t)=F_{c}[w](t), t \in[0, T]$.

Remark: Recall that for any $w \in \mathcal{U V}^{m}[0, T], R$ is a bound for $\|u\|_{1}$, $\|v\|_{2}$ and $\|v\|_{4}$. This theorem is valid for all $t \in[0, T]$, where $T, R \geq 0$ are arbitrarily large but finite. Therefore, this theorem is viewed as a global convergence result.

2.2. Local convergence

Example 4 Consider the system

$$
\begin{equation*}
d z_{2}(t)=M_{2} z_{2}^{2}(t) d W(t), \quad z_{2}(0)=1, \quad y_{2}(t)=K_{2} z_{2}(t) . \tag{12}
\end{equation*}
$$

The generating series of (12) is $\left(c_{2}, x_{1}^{k}\right)=K_{2} M_{2}^{k} k!, k \geq 0$. Thus,

$$
y_{2}(t)=F_{c_{2}}[0](t)=\sum_{k=0}^{\infty} K_{2} M_{2}^{k} k!\oint_{0}^{t} \cdots \oint_{0}^{t_{2}} d W\left(t_{1}\right) \cdots d W\left(t_{k}\right)
$$

Then the output is written by the divergent series

$$
y_{2}(t)=F_{c_{2}}[0](t)=\sum_{k=0}^{\infty} K_{2} M_{2}^{k} W^{k}(t)
$$

But if $\tau=\inf \left\{t:\left|M_{2} W(t)\right|=R\right\}, R<1$, then $y_{2}(t)=\frac{K_{2}}{1-M_{2} W(t)}, t<\tau$.
Remarks:

- $[0, \tau]$ is random, i.e., $[0, \tau]=\left\{0 \leq t \leq \tau(\omega):(\tau, \omega) \in \mathbb{R}^{+} \times \Omega\right\}$.
- The solution by variable separation of (12) is $z_{2}(t)=\frac{K_{2}}{1-M_{2} W(t)}$.

Some Results and Notation: (Duffaut et al. 2009, 2010)

- Let $\eta, \xi \in X Y^{*}$ and $q_{i}, q_{j} \in X Y$. The shuffle product is

$$
q_{i} \eta ш q_{j} \xi=q_{i}\left[\eta ш q_{j} \xi\right]+q_{j}\left[q_{i} \eta ш \xi\right],
$$

where $\emptyset ш \emptyset=\emptyset$ and $\xi ш \emptyset=\emptyset ш \xi=\xi$.

- $\mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ with the shuffle product forms an \mathbb{R}-algebra.
- For any $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}^{m+1}$ define the polynomials $p_{\boldsymbol{\alpha}}=x_{0}^{\alpha_{0}} ш \cdots ш x_{m}^{\alpha_{m}}$ and $p_{\boldsymbol{\beta}}=y_{0}^{\beta_{0}} ш \cdots ш y_{m}^{\beta_{m}}$, respectively.
- Observe that $\boldsymbol{X}^{k} \boldsymbol{Y}^{\boldsymbol{n}} \triangleq \sum_{\eta \in X^{k} Y^{n}} \eta=\sum_{\|\alpha\|=k,\|\beta\|=n} p_{\boldsymbol{\alpha}} \amalg p_{\boldsymbol{\beta}}$.
- Define $\mathbf{S}_{\boldsymbol{\alpha}, \boldsymbol{\beta}}[w](t) \triangleq F_{p_{\boldsymbol{\alpha}} w p_{\boldsymbol{\beta}}}[w](t)=F_{p_{\boldsymbol{\alpha}}}[w](t) F_{p_{\boldsymbol{\beta}}}[w](t)$.
- Independence of the inputs gives

$$
\left\|\mathbf{S}_{\boldsymbol{\alpha}, \boldsymbol{\beta}}[w](t)\right\|_{2}^{2}=\left\|F_{p_{\boldsymbol{\alpha}}}[w](t)\right\|_{2}^{2}\left\|F_{p_{\boldsymbol{\beta}}}[w](t)\right\|_{2}^{2} .
$$

- The L_{2}-norm of $F_{p_{\alpha}}[w](t)$ is $\left\|F_{p_{\alpha}}[w](t)\right\|_{2}^{2} \leq \prod_{i=0}^{m} \frac{\bar{U}_{i}^{2 \alpha_{i}}(t)}{\left(\alpha_{i}!\right)^{2}} \leq \frac{R^{2 k}}{(\alpha!)^{2}}$.

Theorem 4 (Duffaut et al. 2010) Suppose that for a series $c \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$, there exists real numbers $K>0$ and $M>0$ such that

$$
|(c, \eta)| \leq K M^{|\eta|}|\eta|!, \quad \forall \eta \in X Y^{*}
$$

Then for any random process $w \in \mathcal{U}^{m}[0, T], T>0$, the series

$$
\begin{equation*}
F_{c}[w](t)=\sum_{j=0}^{\infty} \sum_{k=0}^{j} \sum_{\eta \in X^{k} Y^{j-k}}(c, \eta) E_{\eta}[w](t) \tag{13}
\end{equation*}
$$

converges in the mean square sense to a random vector $y(t), t \in\left[0, \tau_{R}\right]$, where

$$
\tau_{R} \triangleq \min _{i \in\{0, \ldots, m\}} \inf \left\{t \in[0, T]:\left|\oint_{0}^{t} v_{i}(s) d W(s)\right|=R\right\} .
$$

Remark: Note in (13) that there is an implied order to the summation over $X Y^{*}$. Thus, the current result is strictly speaking for conditional convergence.

Definition 5 (Fliess (1981)) Let $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}^{m+1}$ and define the language

$$
\boldsymbol{L}_{\boldsymbol{\alpha}, \boldsymbol{\beta}}=\left\{\eta \in X Y^{*},|\eta|_{x_{i}}=\alpha_{i},|\eta|_{y_{i}}=\beta_{i}, i=0,1, \ldots, m\right\} .
$$

A series $c \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ is called exchangeable if all the words in $\boldsymbol{L}_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$ have the same image under c for any given $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}^{m+1}$.

Corollary 1 (Duffaut et al. 2010) Let $c \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ be exchangeable and locally convergent. Then, for an arbitrary $w \in \mathcal{U} \mathcal{V}^{m}[0, T]$, there exist an $R>0$ and a stopping time $\tau_{R}>0$ such that $F_{c}[w]$ converges absolutely over $\left[0, \tau_{R}\right]$.

Remarks:

- Every process $y=F_{c}[w]$ is a well-defined L_{2}-Itô process. But the independence of the inputs is not preserved at the output.
- It is conjectured that there may exist a maximal exchangeable series which ensures absolute convergence for any locally convergent series.

2.3 Solving a type of polynomial differential equations

Consider an analytic input u and $X=\left\{x_{0}\right\}$,

$$
u(t)=\sum_{n=0}^{\infty} c_{u}(n) \frac{\left(t-t_{0}\right)^{n}}{n!} \quad \Rightarrow \quad c=\sum_{n \geq 0}\left(c, x_{0}^{n}\right) x_{0}^{n}
$$

Note $c_{u}(n)=\left(c, x_{0}^{n}\right)$. Thus, a transform $\mathfrak{L}_{f}: u \mapsto c$ can be defined.
Remark: For $t_{0}=0$, the one-sided Laplace transform of u will be

$$
\begin{aligned}
\mathfrak{L}[u](s) & =\int_{0}^{\infty} u(t) e^{s t} d t=\int_{0}^{\infty} \sum_{n \geq 0}\left(c, x_{0}^{n}\right) \frac{t^{n}}{n!} e^{s t} d t \\
& =\sum_{n \geq 0}\left(c, x_{0}^{n}\right) \int_{0}^{\infty} \frac{t^{n}}{n!} e^{s t} d t=s^{-1} \sum_{n \geq 0}\left(c, x_{0}^{n}\right)\left(s^{-1}\right)^{n} .
\end{aligned}
$$

Then

$$
\mathfrak{L}[u](s)=\left.x_{0} \mathfrak{L}_{f}[u]\right|_{x_{0} \rightarrow s^{-1}}
$$

Definition 6 (Gray \mathcal{G} Li 2006) Let $\mathfrak{F} \triangleq\left\{F_{c}: c \in \mathbb{R}^{\ell}\langle\langle X\rangle\rangle\right\}$. The formal Laplace and Borel transforms are, respectively,

$$
\begin{aligned}
& \mathfrak{L}_{f}: \\
& \mathfrak{F} \rightarrow \mathbb{R}^{\ell}\langle\langle X\rangle\rangle \\
&: F_{c} \mapsto c \\
& \mathfrak{B}_{f}: \\
& \mathbb{R}^{\ell}\langle\langle X\rangle\rangle \rightarrow \mathfrak{F} \\
&: c \mapsto F_{c} .
\end{aligned}
$$

Table 1: Some formal Laplace transforms.

F_{c}	$\mathfrak{L}_{f}\left[F_{c}\right]=c$
$u \rightarrow 1$	1
$u \rightarrow t^{n}$	$n!x_{0}^{n}$
$u \rightarrow\left(\sum_{i=0}^{n-1} \frac{\binom{n-1}{i}}{i!} a^{i} t^{i}\right) e^{a t}$	$\left(1-a x_{0}\right)^{-n}$
$u \rightarrow \exp \left(\int_{0}^{t} \sum_{j=1}^{k} u_{i_{j}}(\tau) d \tau\right)$	$\left(x_{i_{1}}+\cdots+x_{i_{k}}\right)^{*}$

Remarks:

- The star operation is related to the inverse of a series with respect to the Cauchy product. If c is not proper then $c=(c, \emptyset)\left(1-c^{\prime}\right)$ with c^{\prime} proper, and

$$
c^{-1}=\frac{1}{(c, \emptyset)}\left(1-c^{\prime}\right)^{-1}=\frac{1}{(c, \emptyset)}\left(c^{\prime}\right)^{*} .
$$

Observe $c c^{-1}=(c, \emptyset)\left(1-c^{\prime}\right) \frac{1}{(c, \emptyset)}\left(1+c^{\prime}+c^{\prime 2}+\cdots\right)=1$.

- Some properties of these transforms are:
i Linearity $\quad \mathfrak{L}_{f}\left[\alpha F_{c}+\beta F_{d}\right]=\alpha \mathfrak{L}_{f}\left[F_{c}\right]+\beta \mathfrak{L}_{f}\left[F_{d}\right]$

$$
\mathfrak{B}_{f}[\alpha c+\beta d]=\alpha \mathfrak{B}_{f}[c]+\beta \mathfrak{B}_{f}[d]
$$

ii Integration:

$$
\mathfrak{L}_{f}\left[I^{n} F_{c}\right]=x_{0}^{n} c, \quad \mathfrak{B}_{f}\left[x_{0}^{n} c\right]=I^{n} F_{c}
$$

iii Multiplication:

$$
\mathfrak{L}_{f}\left[F_{c} \cdot F_{d}\right]=\mathfrak{L}_{f}\left[F_{c}\right] ш \mathfrak{L}_{f}\left[F_{d}\right], \quad \mathfrak{B}_{f}[c ш d]=\mathfrak{B}_{f}[c] \cdot \mathfrak{B}_{f}[d]
$$

- If u admits an expansion in terms of x_{0} and y_{0}, then

$$
u \xrightarrow{\mathfrak{R}_{f}} c_{u}=\sum_{\eta \in X_{0} Y_{0}{ }^{*}}\left(c_{u}, \eta\right) \eta .
$$

Moreover, if c is globally convergent then u is a well-defined L_{2}-Itô process. This allows one to apply the formal-Laplace transform to stochastic processes (Duffaut 2009).

- By integration by parts for Stratonovich integrals,

$$
\begin{aligned}
F_{c} \cdot F_{d} & =\sum_{\eta, \in X Y^{*}}(c, \eta) E_{\eta} \sum_{\xi \in X^{*}}(d, \xi) E_{\xi} \\
& =\sum_{\eta, \xi \in X Y^{*}}(c, \eta)(d, \xi) E_{\eta} E_{\xi} \\
& =\sum_{\eta, \xi \in X Y^{*}}(c, \eta)(d, \xi) E_{\eta} \amalg \xi
\end{aligned}
$$

Consider the differential equation

$$
\begin{equation*}
\sum_{i=0}^{n} \ell_{i} \frac{d^{i}}{d t^{i}} y(t)+\beta \sum_{i=2}^{m} a_{i} y^{i}(t) u(t)=\sum_{i=0}^{n-1} q_{i} \frac{d^{i}}{d t^{i}} u(t) \tag{14}
\end{equation*}
$$

with initial conditions $y^{(i)}(0)=y_{i 0}, u^{(i)}(0)=u_{i 0}$.
Applying the formal Laplace Transform: $\left(y(t)=F_{c}[u](t) \Rightarrow \mathfrak{L}_{f}[y]=c\right)$
$\sum_{i=0}^{n} \ell_{i} x_{0}^{n-i} c+\beta \sum_{i=2}^{m} a_{i} x_{0}^{n-i} x_{1} c^{\amalg i}=\sum_{i=0}^{n-1} q_{i} x_{0}^{n-i-1} x_{1}+\sum_{i=0}^{n-1} \bar{\ell}_{i} x_{0}^{i}+\sum_{i=1}^{n-1} \bar{q}_{i} x_{0}^{i}$,
Example 5 Consider $y^{(i)}(0)=0, u^{(i)}(0)=0, \ell=1$ and $\beta=0$

$$
c=\left(1+\sum_{i=0}^{n} \ell_{i} x_{0}^{n-i}\right)^{-1} \sum_{i=0}^{n-1} q_{i} x_{0}^{n-i-1} x_{1} .
$$

Use $\mathfrak{L}[u](s)=\left.x_{0} \mathfrak{L}_{f}[u]\right|_{x_{0} \rightarrow s^{-1}} \quad \Rightarrow \quad \frac{Y(s)}{U(s)}=\frac{\sum_{i=0}^{n-1} q_{i} s^{i}}{s^{n}+\sum_{i=0}^{n} e_{i} s^{i}}$.

Remarks:

- If u is stochastic then $u=\frac{d}{d t} w=\dot{w}=\bar{u}+v \bar{w}$ (abusing notation), where \bar{w} is white Gaussian noise (Duffaut 2009). Therefore,

$$
\int u(s) d s \xrightarrow{\mathfrak{R}_{f}} x_{1}+y_{1}
$$

- The generating series c of (14) can be calculated as $c=\sum_{k=0}^{\infty} c_{k}$, where

$$
\begin{aligned}
& c_{0}=\left(1+\sum_{i=0}^{n} \ell_{i} x_{0}^{n-i}\right)^{-1}\left(\sum_{i=0}^{n-1} q_{i} x_{0}^{n-i-1} x_{1}+\sum_{i=0}^{n-1} \bar{\ell}_{i} x_{0}^{i}+\sum_{i=1}^{n-1} \bar{q}_{i} x_{0}^{i}\right), \\
& c_{k}=\left(1+\sum_{i=0}^{n} \ell_{i} x_{0}^{n-i}\right)^{-1} x_{0}^{n} x_{1} \beta \sum_{i=2}^{m} a_{i} \sum_{\substack{j_{1}+j_{2}+\cdots+j_{i}=k-1 \\
j_{1}, j_{2}, \cdots, j_{i}<k}} c_{j_{1}} ш c_{j_{2}} ш \cdots ш c_{j_{i}} .
\end{aligned}
$$

Example 6 Consider the following state space system

$$
\begin{equation*}
\frac{d}{d t} z(t)+k_{1} z(t)=k_{2} \bar{w}(t), \quad z(0)=z_{0}, \quad y(t)=z(t) \tag{15}
\end{equation*}
$$

Applying the formal Laplace transform to (15) gives

$$
c-1+k_{1} x_{0} c=k_{2} y_{1} \quad \Rightarrow \quad c=\frac{k_{2} y_{1}}{\left(1+k_{1} x_{0}\right)}+\frac{z_{0}}{\left(1+k_{1} x_{0}\right)}
$$

Remark: $\quad \oint_{0}^{t} \frac{(t-s)^{n}}{n!} d W(s)=\int \cdots \int \oint d W(s) \underbrace{d t \cdots d t}_{n \text { times }}$
Applying the Borel transform gives

$$
\begin{aligned}
y(t) & =F_{c}[u](t)=k_{2} \sum_{n \geq 0}\left(-k_{1}\right)^{n} E_{x_{0}^{n} y_{1}}[u](t)+z_{0} e^{-k_{1} t} \\
& =k_{2} \sum_{n \geq 0} \oint_{0}^{t} \frac{\left(-k_{1}(t-s)\right)^{n}}{n!} d W(s)+z_{0} e^{-k_{1} t} \\
& =k_{2} \oint_{0}^{t} e^{-k_{1}(t-s)} d W(s)+z_{0} e^{-k_{1} t} .
\end{aligned}
$$

Example 7 Consider the following state space system

$$
\begin{equation*}
\frac{d}{d t} z(t)=z^{3}(t) \bar{w}, \quad y(t)=z(t), \quad z(0)=1 \tag{16}
\end{equation*}
$$

Applying the formal Laplace transform to (16) gives

$$
c=1+\left(x_{1}+y_{1}\right) c^{\amalg 3} .
$$

Thus, c can be calculated as $c=\sum_{k=0}^{\infty} c_{k}$, where

$$
c_{0}=1, \quad c_{k}=\left(x_{1}+y_{1}\right) \sum_{\substack{i_{1}+i_{2}+i_{3}<k-1 \\ i_{1}, i_{2}, i_{3}<k}} c_{i_{1}} ш c_{i_{2}} ш c_{i_{3}} .
$$

The next three c_{k} 's are given below:

$$
c_{1}=\left(x_{1}+y_{1}\right), \quad c_{2}=3\left(x_{1}+y_{1}\right)^{2}, \quad c_{3}=15\left(x_{1}+y_{1}\right)^{3} .
$$

Note, $c_{k}=(2 k-1)!!\left(x_{1}+y_{1}\right)^{k}, k \geq 0$. Since $(2 k-1)!!=\frac{C_{k}^{2 k}}{2^{k}} k!\leq 2^{k} k!$.
Therefore, c is locally convergent and exchangeable.

Hence, c is the generating series of the input-output operator

$$
\begin{aligned}
y & =\sum_{k=0}^{\infty} \frac{C_{k}^{2 k} k!}{2^{k}} E_{\left(x_{1}+y_{1}\right)} w k \\
& =\sum_{k=0}^{\infty} \frac{C_{k}^{2 k}}{2^{k}} \underbrace{E_{\left(x_{1}+y_{1}\right)}^{k}[w](t)}_{w^{k}(t)}=\frac{1}{\sqrt{1-2 w(t)}}
\end{aligned}
$$

where $t \in\left[0, \tau_{\bar{R}}\right]$ with $\tau_{\bar{R}}=\inf \{t>0:|2 w(t)|=\bar{R}\}$ and $\bar{R}<1$.

Figure 2: Sample path of $y(t)$.

3. System Interconnections with Stochastic Inputs

Parallel connection

Product connection

Figure 3: Elementary system interconnections.

$$
\begin{aligned}
F_{c}[u]+F_{d}[u] & =F_{c+d}[u] \\
F_{c}[u] \cdot F_{d}[u] & =F_{c ゅ d}[u] \\
F_{c}\left[F_{d}[u]\right] & =F_{c \circ d}[u] .
\end{aligned}
$$

Let $X_{0} Y_{0}=\left\{x_{0}, y_{0}\right\}$. Any $\eta \in X Y^{*}$ can be written as

$$
\eta=\eta_{k} q_{i_{k}}^{l_{k}} \eta_{k-1} q_{i_{k-1}}^{l_{k-1}} \ldots \eta_{1} q_{i_{1}}^{l_{1}} \eta_{0}
$$

where $\eta_{i} \in X_{0} Y_{0}^{*}$ and $q_{i_{j}}^{l_{j}}=x_{i_{j}}$ when $l_{j}=1, q_{i_{j}}^{l_{j}}=y_{i_{j}}$ when $l_{j}=2$.
Definition 7 For $\eta \in X Y^{*}$ and $d \in \mathbb{R}^{m}\langle\langle X Y\rangle\rangle$ the composition product is

$$
\eta \circ d=\left\{\begin{array}{lll}
\eta & : & |\eta|_{x_{i}, y_{i}}=0, \forall i \neq 0 \\
\eta^{\prime} q_{0}^{l}\left[d_{i}^{j} ш(\bar{\eta} \circ d)\right]: & \eta=\eta^{\prime} q_{i}^{l} \bar{\eta}, i \neq 0, l \in\{1,2\}, \\
& \eta^{\prime} \in X_{0} Y_{0}^{*}, \bar{\eta} \in X Y^{*},
\end{array}\right.
$$

where $d_{i}^{l}: \xi \mapsto(d, \xi)_{i}^{l}$, and $(d, \xi)_{i}^{l}$ is the i-th component of $(d, \xi)^{l}$ with $l=1$ representing drifts and $l=2$ representing diffusions.

For $c \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ and $d \in \mathbb{R}^{m}\langle\langle X Y\rangle\rangle$,

$$
c \circ d=\sum_{\eta \in X Y^{*}}(c, \eta) \eta \circ d
$$

Remark: If $Y=\varnothing$, then \circ reduces to the usual deterministic definition.

The following questions can be formulated:

- Can each interconnection of two Fliess operators with stochastic inputs be represented by another Fliess operator?
- What is the nature of the generating series of the composite Fliess operator given that the component generating series are either globally convergent or locally convergent?
- What conditions need to be imposed to obtain a well-defined stochastic process at the output of the interconnected system?
- Are all the signals in the interconnected system well-defined?

3.1 Formal Interconnections

Definition 8 Let $c_{w} \in \mathbb{R}^{m}\left\langle\left\langle X_{0} Y_{0}\right\rangle\right\rangle$. A formal stochastic process w is defined by

$$
\begin{equation*}
w(t)=\sum_{\eta \in X_{0} Y_{0}^{*}}\left(c_{w}, \eta\right) E_{\eta}[0](t) . \tag{17}
\end{equation*}
$$

The set of all formal stochastic processes is denoted by \mathscr{W}.

Remarks:

- For any $w \in \mathscr{W}$, there exist a corresponding generating series $c_{w} \in \mathbb{R}\left\langle\left\langle X_{0} Y_{0}\right\rangle\right\rangle$.
- Since c_{w} is arbitrary, w is simply a formal summation of iterated integrals.

Theorem 5 Let $c_{w} \in \mathbb{R}\left\langle\left\langle X_{0} Y_{0}\right\rangle\right\rangle$ be the generating series for a given $w \in \mathscr{W}$.
i. If c_{w} is a globally convergent series then $w \in \widetilde{\mathcal{U V}}^{m}[0, T]$.
ii. If w is ordered in the sense that

$$
\begin{equation*}
w(t)=\sum_{j=0}^{\infty} \sum_{k=0}^{j} \sum_{\eta \in X_{0}^{k} Y_{0}^{j-k}}\left(c_{w}, \eta\right) E_{\eta}[0](t) \tag{18}
\end{equation*}
$$

and c_{w} is locally convergent then $w \in \widetilde{\mathcal{U V}}^{m}\left[0, \tau_{R}\right]$, where $\tau_{R}=\inf \{t \in[0, T]:|W(t)|=R\}$.
iii. If c_{w} is exchangeable and locally convergent then $w \in \widetilde{\mathcal{U V}}^{m}\left[0, \tau_{R}\right]$ regardless the order implied in (18).

Definition 9 The class of formal Fliess operators on $\mathbb{R}^{m}\left\langle\left\langle X_{0} Y_{0}\right\rangle\right\rangle$ is the collection of mappings
$\mathscr{F} \triangleq\left\{c \circ: \mathbb{R}^{m}\left\langle\left\langle X_{0} Y_{0}\right\rangle\right\rangle \rightarrow \mathbb{R}^{\ell}\left\langle\left\langle X_{0} Y_{0}\right\rangle\right\rangle: c_{w} \mapsto c_{y}=c \circ c_{w}, c \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle\right\}$.

Theorem 6 Let $c, d \in \mathbb{R}\langle\langle X Y\rangle\rangle$ and $c_{w} \in \mathbb{R}\left\langle\left\langle X_{0} Y_{0}\right\rangle\right\rangle$. The parallel, product and cascade connections of formal Fliess operators are characterized by the operations + , w, and \circ on $\mathbb{R}\langle\langle X Y\rangle\rangle$ as

$$
\begin{aligned}
c \circ c_{w}+d \circ c_{w} & =(c+d) \circ c_{w} \\
\left(c \circ c_{w}\right) ш\left(d \circ c_{w}\right) & =(c ゅ d) \circ c_{w} \\
c \circ\left(d \circ c_{w}\right) & =(c \circ d) \circ c_{w} .
\end{aligned}
$$

Remark: The operator $c o$ is a formal operator in that it acts on a formal input, i.e., one that has a series representation.

3.2 Parallel and Product Interconnections

Figure 4: The parallel and product connections

What are the generating series corresponding to these interconnections?

$$
\begin{aligned}
F_{c}[w]+F_{d}[w] & =F_{c+d}[w] ? \\
F_{c}[w] \cdot F_{d}[w] & =F_{c \amalg d}[w]
\end{aligned} ?
$$

Conditions for the series $c+d$ and $c ш d$ will establish the convergence of the product and parallel connections.

Theorem 7 If $c, d \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ are globally convergent then $c+d$ and $c ш d$ are globally convergent. Moreover, if $c, d \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ are locally convergent then $c+d$ and $c ш d$ are locally convergent.

Corollary 1 Let $c \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ and $d \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ be globally convergent series. For any $w \in \mathcal{U} \mathcal{V}^{m}[0, T], F_{c+d}[w]$ and $F_{c}{ }_{d}[w]$ produce well-defined L_{2}-Itô output processes over $[0, T]$ for any $T>0$.

Corollary 2 Let $c, d \in \mathbb{R}^{\ell}\langle\langle X Y\rangle\rangle$ be locally convergent series. For any $w \in \mathcal{U V}^{m}[0, T]$, there exist an $R>0$ and a stopping time τ_{R} such that $F_{c+d}[w]$ and $F_{c w d}[w]$, respectively, produce L_{2}-Itô processes over $\left[0, \tau_{R}\right]$ assuming the order of summation defined as in (13).

Remark: If $c+d$ and $c ш d$ are exchangeable, then $F_{c+d}[w]$ and $F_{c{ }^{\boldsymbol{w}}{ }_{d}}[w]$ will be convergent unconditionally.

3.3 Cascade interconnections

Figure 5: Cascade connection.

What is the generating series corresponding to the cascade connection?

$$
F_{c}\left[F_{d}[w]\right]=F_{c o d}[w] \quad ?
$$

Remark: For c and d in $\mathbb{R}\langle\langle X Y\rangle\rangle$ locally convergent, the series $c \circ d$ is also locally convergent.

To illustrate the problems encountered in the cascade of systems driven by stochastic processes, consider

$$
F_{c}[\tilde{y}]=F_{c}[f[u, v]](t),
$$

where $c \in \mathbb{R}\langle\langle X Y\rangle\rangle$, and $\tilde{y}=\left(\tilde{y}_{1}, \tilde{y}_{2}\right)^{T}$ is given by

$$
\begin{aligned}
& \tilde{y}_{1}(t)=f_{1}[u, v](t)=\int_{0}^{t} u(s) \oint_{0}^{s} v(r) d W(r) d s \\
& \tilde{y}_{2}(t)=f_{2}[u, v](t)=\oint_{0}^{t} v(s) \int_{0}^{s} u(r) d r d W(s),
\end{aligned}
$$

Figure 6: Cascade of input-output maps.

Even u and v are mutually independent, the intermediate signals \tilde{y}_{1} and \tilde{y}_{2} are correlated. Implying

$$
\mathbf{E}\left[\tilde{y}_{1} \tilde{y}_{2}\right] \neq \mathbf{E}\left[\tilde{y}_{1}\right] \mathbf{E}\left[\tilde{y}_{2}\right] .
$$

Since F_{c} is only defined for independent inputs, it cannot be driven by \tilde{y}.
Thus, the cascade connection is at present not well-posed because the inputs and outputs are not compatible.

Remarks:

- The formulation of Fliess operators on Banach spaces (for rough paths) is very likely to solve this obstacle. In that context, no requirement for independence is needed.
- It is believed that seeing input paths as rough paths may give better estimates of the mapping E_{η}.
- However, the so-called control function must be better understood in the systems terminology.

4. Conclusions

- An extension of the notion of a Fliess operators for L_{2}-Itô process inputs was presented.
- To consider system interconnections, the notion of global and local stochastic convergence for these operators was considered.
- Local absolute convergence over random intervals of time was not achieved in general. The same limitation is expected for rough paths.
- The generating series of the cascade connection of formal Fliess operators was presented.
- The cascade connection was shown not to be well-posed under the current setting since the inputs and outputs are not compatible.
- It is expected that the limitations found in the cascade connection, because of the way stochastic inputs were characterized, can be overcome by using Lyon's rough path theory. However, many concepts have to be adapted to the systems terminology.

