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1. Fliess Operators

e Functional series expansions of nonlinear input-output operators
have been utilized since the early 1900’s in engineering, mathematics

and physics (V. Volterra, N. Wiener, etc).

e A broad class of deterministic nonlinear systems can be described by

Fliess operators, which are input-output maps constructed using the
Chen-Fliess formalism (Fliess (1981)).

e Such operators are described by a summation of Lebesgue iterated
integrals codified using the theory of noncommutative formal power

series.
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1.1 Formal Power Series

o Let X ={xo,71,...,Tm} be an alphabet and X™ the set of all words
over X (including the empty word ().

e A formal power series is any mapping ¢ : X* — Rf. Typically, ¢ is

written as a formal sum

o The set of all such series is denoted by R*((X)), and the subset
denoted by R“(X) is the set of polynomials.

o A series c is rational if it belongs to the rational closure of R*(X).

e A series c is rational if and only if (¢,n) = Au(n)y, Vn € X*, where
p: X* — R™ ™ is a monoid morphism, and y,A\* € R™**,

e cis called globally convergent when |(¢,n)| < KMl ¥n e X*.
e cis called locally convergent when |(c,n)| < KM |n|!, Vn € X*.
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e For a measurable function u : [a,b] — R"" with finite L;-norm,
define E, : LT"[to,to + T| — Clto,to + T] by Ey[u] =1, and

t

Beulul(t,t0) = [ us(r) By lul(r, to) dr,

to

where z; € X, n' € X* and up = 1.
e Note that to each letter x; is assigned a function w;.

e Each ¢ € RY({X)) is associated with an m-input, f-output system,

called a Fliess operator (Fliess (1981)).
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Example 1 A linear input-output system F' : v — y with u(t) € R™ and
y(t) € R¢ can be described by a convolution integral involving its impulse
response H(t,7) = (H1(t,7),...,Hn(t,7))" and the system input

y(t) = /HtT dr b > to, (2)

If each H; is real analytic on D = {(t,7) € R® : tg < 7 <t < to+ T},

then its Taylor series at (7,to) is

Z (2, i, 1) (t—7)"2 (1 —to)™ | (3)

?7,2! 7?,1!

n1,n2=0

where ¢(na,i,n1) € R
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Substituting (3) into (2) and using the uniform convergence of the series
on D, it follows that

o0, MM

y(t) = c(na, i, m1) /t (t;;)mui(f)“;f?)mdm (4)

- 7

Bynag gm o [ul(t, to)

ni,no9=0,1=1

Thus, (4) can be written as

Observe that the formal power series associated with system (2) is

c(na,i,n1) n=axy’x;xit, ni,ne >0, i #0
(¢,m) =

0 : otherwise.
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1.2 Fliess Operators with Stochastic Inputs

e System inputs in applications usually have noise.

e Several authors have formulated approaches where Wiener processes

are admissible inputs to a Fliess operators (G. B. Arous (1989),
Fliess (1977,1981), Fliess and Lamnabhi (1981), Sussmann (1988)).

e A suitable mathematical formulation will use Stratonovich integrals:

1.

They obey the rules of ordinary differential calculus.

When schemes for solving stochastic differential equations use
smooth functions to approximate white GGaussian noise, the

appropriate model will use Stratonovich integrals.
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Example 2 Let W be a Wiener process. Consider a system modeled by
the stochastic differential equation (SDE) in Stratonovich form

2t = 20 + /Ot f(zs) ds + ]éotg(zs) dW (s), (5)

where f(z) and g(z) are suitably defined functions. For a C? function F,

the Stratonovich differential chain rule gives

F(z) = Flz) + / Fles) o F(z2) ds +]€ 9(20) 2 F(z0) AW (s). (6)

Identifying operators Ly = f(z)2 and Ly = g(2)2, (6) becomes

F(z¢) = F(20) —I—/O LiF(zs)ds —I—%O LyF(zs) dW (s).
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Now let F'(z) in (6) be replaced by either f or g from (5) and substitute
f(z¢) and g(z¢) back into (5). This yields

zt = 20 + f(zo)/ot ds—l—g(zo)]ét dW (s)

—I—/t /S Lif(zr) drds—l—/tfs Lyf(z,) dW(r)ds
f / Lyg(zr) drdW (s ]gf Lyg(zr) dW (r)dW (s)

2 = 20+ f(0) / ds  +g(z0) f AW (s) +Ri(=(1)).

0
N\ 7 N\ 7

B, [0](t,0) By, [0](t, 0)

Continuing this way produces the usual Peano-Baker formula.

10
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Let I be the identity map and define X = {zo}, Y ={yo}, XY =X UY,
Lgyyn, = Lg, Lg,, and Ly, , = Lg, Ly, , where gz, = f, gy, = g and
n € XY™. Thus, the solution of the SDE (5) in series form is

y(t) = 2(t) = > Ly, I(2(0)) En[0](£)

neEXY*

(7)
Here, (f,g,1,2(0)) realizes F. when (c,n) = Ly, I(2(0)), Vn € XY".
Remarks:

e The output of this nonlinear input-output system is in general not a

Wiener process. For example, equation (7) can be written as

y(t) = (c.0)+ / S° Lyuy 1(2(0)) Eag[0](5,0) ds

neEXY *

+]£o Z LgyonI(2(0)) Eyoy[0](s,0) dW (s).

neEXY *

e Note that y(t) is not well-defined unless the integrands converge.

11
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e Consider a Wiener process, denoted by W (t), defined over (€2, F, P).

o Let u:Q X [to,to +T] — R™ be a predictable function, and

lull, = max{|Juill,, : 1 <7< mj}.

Definition 1 (Duffaut et al. 2009) Consider the set of all m-dimensional
stochastic processes over [to,to + T'], denoted by uy' [to, to + T'], which

can be written as
¢ ¢

w(t) = /u(s) ds +]£v(s> dW (s).

to to

The set UV [to,to + T| C Z//{T/m[to, to + T will refer to processes
satisfying:

i. Each m-dimensional integrand has E[u;(t)] < oo, E[v;(t)] < oo,
t € [to,to + T and are mutually independents.

ii. Also, [[ull,.,,vll,., s lloll,, < R € R".

12
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¢
Definition 2 (Duffaut et al. 2010) Let X () :]é v(s) dW (s), where v is
0

an m-dimensional Lo-Itd process. The set UV™ |0, Tr] is defined as the
set of processes w € UV™[0, T] stopped at

TR = min inf {t eT
i€{0,1,--- ,m}

]é Con(s) AW (s)

R t
Figure 1: First time process X (t) hits the barrier R.

Remark: 7r is a strictly positive stopping time for any real R > 0.

13
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o Let X ={zo,z1,...,2m}, Y ={yo,91,...,ym} and XY = X UY.

e An iterated integral over UV [to,to + T is defined recursively by

t—

to
t_

Byt to) = $os(9) By wl(s) AW (s), ws € Y,

where n’ € XY™*, Ey =1 and up = vo = 1.

Definition 3 (Duffaut et al. 2009) An m-input, ¢-output Fliess operator
F., c € R*({XY)), driven by w € UV™]0, T] is formally defined as

14
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Definition 4 For any 7' > 0, w € UV™[0,T] and t € [0,T7], the Chen

series associated with a formal power series in R*((XY)) is defined as

Plw](t,to) = > nEyw](t, to).

neEXY*

e The Chen series satisfies the stochastic differential equation

dP[w](t, to) <szuz dt—l—yzvz()dW(t)> P[w](t, to).

e For any t, (Plu],£ wv) = (Plu],§) (Plul,v), V{ve XY™

Therefore, from Ree’s theorem Plu], is an exponential Lie series.

e The Fliess operator (8) can be written as
Felw](t) = (¢, Plw](t,0))

e P[w] satisfies Plw|(t,to) = Plw](t,t")Plw](t',to) (Chen’s identity).

15
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2. Convergence of Fliess Operators with Stochastic Inputs

e It was shown by Gray and Wang (2002) that for u € Li[to,to + T
and any n € X~

(9)

where U;(t) = [ |ui(7)|d7, and a; = nl,, is the number of z; in 7.

o If |(c,n)| < KM'" Ve X* then F.[u] converges absolutely on
[to, 00) for u € Ly . (to).

e If |(¢c,n)| < KM |p|l, Vi € X*, then

F.: B)'(R)[to, to + T] — By(S)[to, to + T],

for sufficiently small R, S, T >0 and 1/p+1/q = 1.

16
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Notation:

e Define the language X*Y™ = {n € XY*;|n|y, = k,|n|, = n}.
e For a fixed word n € X*Y™, define the vectors
o= (am, - ,00) EN" and B8 = (Bm, -+ ,Bo) € N1 where
ai = nl,,, Bi=1nl, . k=>"ga andn=>37",Bi.
Remark: Convergence is not easy to characterize using Stratonovich
integrals. So a formula for E),, in terms of It integrals is needed.

Theorem 1 (Duffaut et al. 2009) Let n € X*Y™ and w € UV™[0,T].
Then

e L%J 1 Sry
ET] [w] (t) — Z OT1 972 Z IT] "2 [w] (t) ’
7“1:0,’)"2:0 S'r-l EAfL’I;%
Sry €EAnry

_ Sry
where A,.,., and A,}2 are subsets of indexes in 7, and I, "2 [w](t) is an

[to iterated integral.

17
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Remarks:

e Recall Gray and Wang (2002) showed that for u € Li[to,to + T and

any 1 € X U (1)
Bpo) < [T 95,
1=0

where U, (t) = f(f lui(T)| d7, and a; = [n[, is the number of z; in n.

e For the stochastic case, analogous bounds for Ito iterated integrals

have been developed.

Theorem 2 (Duffaut et al. 2009) Let n € X* Y™ and w € UV™ be
arbitrary. Then for a fixed t € [0, T

(RV1)"(V2R(Vt + 2))*"
()2 (8Y)1

1By [w] ()]l <

Y

(10)

where max{Jull 1ol > ool 0]} < R, 0 £ ol - ! and

BLL Bol -+ .

18
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2.1 Global convergence

Example 3 Consider the following system driven by a Wiener process

dzl (t) = Mlzl (t) dW(t), <1 (O) =1

11
Y1 (t) = Kiz (t) ( )

The generating series of (11) is (c1,2Y) = K1 MY, k > 0. Thus,

y1(t) = ZKlle ]5 dW (t1) - - - dW ().

(c1, xl

t ”rk(s) ”rk—l—l(t)
' W = — > 0. Th
Since ]é I dW (s) 1) k>0 en

19
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Theorem 3 (Duffaut et al. 2009) Suppose for a series ¢ € R ((XY))
there exists real numbers K > 0 and M > 0 such that

l(e,n)| < KM, wne XY™

Then for any random process w € UV™[0,T], T > 0, the Fliess operator
defined by series (8) converges absolutely in the mean square sense to a
well defined random vector y(t) = F.[w](t), t € [0,T].

Remark: Recall that for any w € UV™[0,T], R is a bound for ||u||,,
|v]|, and ||v]|,. This theorem is valid for all ¢ € [0,7], where T, R > 0 are
arbitrarily large but finite. Therefore, this theorem is viewed as a global

convergence result.

20
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2.2. Local convergence

Example 4 Consider the system
ng(t) = Mgzg(t) dW(t), 22(0) = 1, yg(t) — KQZQ(t). (12)
The generating series of (12) is (c2,2}) = KoaM5k!, k > 0. Thus,

Bat) = F[0)(0) = 5 KaMER ]ét y .]étg AW (t1) - - - dW ().

Then the output is written by the divergent series

But if 7 = inf{t: |[M2W (t)|= R}, R < 1, then y2(t) = 1—MI§2VV(t)’ t<T.

Remarks:

e [0,7] is random, i.e., [0,7] = {0 <t < 7(w) : (T,w) € RT x Q}.

e The solution by variable separation of (12) is z2(t) =

21
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Some Results and Notation: (Duffaut et al. 2009, 2010)
o Let n,6 € XY™ and ¢;,q; € XY . The shuffle product is
qin w q;§ = qi[n w qi€] + q5(qin w &,
where ) ) =0 and E LD =0 L& =&
o RY((XY)) with the shuffle product forms an R-algebra.

e For any o, 3 € N™*! define the polynomials po = z5° i - -+ w 2™
and pg = yg O Ly v wyPm respectively.

e Observe that X*Y™ 2 Y p= > Do L DB
nexkyn lall=k,l|Bl|l=n

o Define Sa g[w](t) £ Fpa 1 pg [W](t) = Fpo [w] (1) Fpp [w] (2).

e Independence of the inputs gives

sl ()12 = 1| Foa [ ()13 || Fop ] 1)

. S U)o R
e The Le-norm of Fy, [w](t) is ||Fp. [w](®)|5 < (a~')(2) < ok
-0 (! !

22
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Theorem 4 (Duffaut et al. 2010) Suppose that for a series
c € RE({XY)), there exists real numbers K > 0 and M > 0 such that

(e,n)] < KM n|t, v e XY™,

Then for any random process w € UV [0,T], T > 0, the series

Flw]) =) > >  (cn)BEyw](t)

j=0 k=0 e xkyi—k

(13)

converges in the mean square sense to a random vector y(t), t € [0, Tr],

~ R},

Remark: Note in (13) that there is an implied order to the summation

where

TR £ min inf {t € 10,T]:
1€40,...,m}

]é t vi(s)dW (s)

over XY ™. Thus, the current result is strictly speaking for conditional

convergence.

23
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A series ¢ € RY((XY)) is called exchangeable if all the words in L. s
have the same image under ¢ for any given o, 3 € N1,

Corollary 1 (Duffaut et al. 2010) Let ¢ € R*((XY)) be exchangeable
and locally convergent. Then, for an arbitrary w € UV [0, T], there exist
an R > 0 and a stopping time 7r > 0 such that F.[w]| converges
absolutely over [0, 7r].

Remarks:

e Every process y = F.|w]| is a well-defined Ls-1t6 process. But the

independence of the inputs is not preserved at the output.

e It is conjectured that there may exist a maximal exchangeable series

which ensures absolute convergence for any locally convergent series.

24
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2.3 Solving a type of polynomial differential equations

Consider an analytic input v and X = {z¢},

u(t) = Z cu(n)(t_n# = c= Z(c, TH )T

Note ¢, (n) = (¢, zg). Thus, a transform £ : u +— ¢ can be defined.

Remark: For ¢ty = 0, the one-sided Laplace transform of v will be

Sl(s) = /0 T u(t)estdt = /0 TS (e et

n!

n>0
©.) n
= Yo [ Letdt=sT Y (b))
n>0 0 | n>0

then 2lul(s) = z0Ls[u]

a:o—>8_1.

25
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Ly

By

F — RY((X))
F.—c
RY((X)) = §

c— F..

Table 1: Some formal Laplace transforms.

Definition 6 (Gray & Li 2006) Let § £ {F. : c € R*((X))}. The formal
Laplace and Borel transforms are, respectively,

Fc Ef[Fc]:C
u— 1 1
u—t" nlxy

(1—axo)™ "

(@i + -+ xiy,)”

26
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Remarks:

e The star operation is related to the inverse of a series with respect
to the Cauchy product. If ¢ is not proper then ¢ = (¢,0)(1 — ¢') with
¢’ proper, and

c :(c,(b)(l_C)_ = ()"

1
(¢, 0)
e Some properties of these transforms are:

i Linearity  L£flaF.+ BF4] = oafly|F:]+ BLs|[F4
Brlac+ pBd] = aBylc] + Byld]

Observe cc™ ' = (¢, 0)(1 — ¢)

A+ +7+--)=1

11 Integration: n n n n
LrI"Fe| = xgc, Bylxge] =1"F,

111 Multiplication:

LrlFe - Fa] = L¢[Fe] w L£¢[Fa], Byrlcwd] =Bylc| - Byld]

27
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e If u admits an expansion in terms of xy and yg, then
L
U —> Cy = Z (cu,m)n.
neXoYp™

Moreover, if c is globally convergent then u is a well-defined Ls-Ito
process. This allows one to apply the formal-Laplace transform to
stochastic processes (Duffaut 2009).

e By integration by parts for Stratonovich integrals,

Fe-Fq = Z (¢, n)Ey Z(da§>E£

n,eXY* fexr

— Z (C7 n)(d7 f)EnEﬁ

n,eXY "

— Z (C7 n)(d7€>E?7|—l—'£

n,eXY "

28
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Consider the differential equation

n i m ' n—1 dz
Nz iyt + 6 D ay Wult) =) ¢ S ult), (14)
1=0 1=2 1=0

with initial conditions y(i)(O) = Y0, u(i)(O) = Ui0-

Applying the formal Laplace Transform: (y(t) = F.[u|(t) = £L¢[y] = c)
n ‘ m ‘ ‘ n—1 ' n—1 o n—1 .
Z bixg 'c+ B Z a;xy ‘Tic = Z gixg " Tlal + Z lixgy + Z qiTo,

i=0 i=2 i=0 i=0 i=1

Example 5 Consider ¥ (0) =0, v'Y(0) =0,4=1and 8 =0

n 1,1
c= (1 + Zﬁix3i> Z qz-a:g’_i_lazl.
i=0 i=0

n—1
Y(s) ';0 G
Use Llu)(s) = xoLys|u] B = T = i
To—S s”—i—'Z:O £;s?

29
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Remarks:

e If u is stochastic then u = £w = 1 = % + vw (abusing notation),

where w is white Gaussian noise (Duffaut 2009). Therefore,

I
[ u(s)ds s+

e The generating series ¢ of (14) can be calculated as ¢ =) _,_, cx,

where

n -1 /n—1 n—1 n—1
co = (1 ~+ Zéix8i> <Z qixg_i_lxl + Z lixh + Z qixf)) ;
i=0 i=0 i=0 i=1

n —1 m
n—i n
ck = |1+ E lixg xox1p E a; g Cj, L Cjp LI =+ + LI Cj, .
i=0 i=2

— j1tde+-tii=k—1
J1,J2, 3 <k

30
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Example 6 Consider the following state space system

d
Do)+ kaz) = koi(t), (0= 20, y()=2() (15
Applying the formal Laplace transform to (15) gives
kay1 20
—1+k =k
& + K1ZoC = R2Y1 = = (1 k1zo) =+ (1 F10)
t
Remark: ]g (t—s) / /]g dW (s dt
0 n!
n tlmes
Applying the Borel transform gives
y(t) = Feful(t) =ka Y (—k1)" Eapy, [u](t) + 20e” "
n>0
_ kzZ]g Ll 25D g (s) 4 zoe

n>0

¢
kg]é e "9 g (s) + zpe F1Y
0

31
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Example 7 Consider the following state space system

Ca) = Sw, ) ==(), 2(0)=1 (16)

Applying the formal Laplace transform to (16) gives

L 3

c=1+(z1+y1)c

Thus, ¢ can be calculated as ¢ = )_,_, cx, where

Co = 1, Cr = (CL‘1 -+ y1) E Ci; L Ciy LU Cig.
i1 +ig2+iz=k—1
11,12,13<k

The next three ci’s are given below:
c1 = (z1+y1), c2=3(x1+y1)°, c3=15(z1+y1)°.
k : o2k k
Note, cx = (2k — 1)!!(z1 +31)", k > 0. Since (2k — 1)!! = 25 k! < 2%kl

Therefore, c is locally convergent and exchangeable.

32
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Hence, c is the generating series of the input-output operator

= CEFE!
y = ZQ—E(x1+y1)qu[w](t)
k=0
C 1
= Eglj w
kz_o 9k ( 1+y1)[ ]() \/1_2w
wk(t)

where t € [0, 73] with 7z = inf{t > 0: |2w(t)] = R} and R < 1.

y(t) ssp
o

.l

)

g

1

0.5

| | : | | L |
0 0.5 1 TR 15 2 Th 25 ¢

Figure 2: Sample path of y(t).

33



RPCCT 2011

3. System Interconnections with Stochastic Inputs

F F

Parallel connection Product connection

v
!
4

"

A 4

u — F

A\ 4

Eo

Cascade connection

Figure 3: Elementary system interconnections.

Felu] + Falu] = Fetalu]
F.lu] - Fglul = F._ qlu]
F.|Fy|ul] = Fooqlul.

34
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Let XoYo = {zo,y0}. Any n € XY " can be written as
l L — !
M= NkG;k Me—1;, ) - - - M1d;, 70;
. L L
where 1; € XoYy and qi; = x;; when [; =1, qi; = yi; when [; = 2.

Definition 7 For n € XY ™" and d € R™((XY)) the composition product
1S

(

n : |77|337;,yz' =0, Vi#0
nod=19 n'qld w(God)] : n=n'¢gq i#0, le{1,2},
77/ EXOYE)*7 ﬁEXY*a

\

where d; : € — (d, €)%, and (d, €)} is the i-th component of (d, ¢)" with
[ = 1 representing drifts and [ = 2 representing diffusions.

For ¢ € R*((XY)) and d € R™((XY)),
cod= > (c,mnod.

neEXY *

Remark: If Y = @, then o reduces to the usual deterministic definition.

35
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The following questions can be formulated:

e Can each interconnection of two Fliess operators with stochastic

inputs be represented by another Fliess operator?
e What is the nature of the generating series of the composite Fliess
operator given that the component generating series are either

globally convergent or locally convergent?

e What conditions need to be imposed to obtain a well-defined

stochastic process at the output of the interconnected system?

e Are all the signals in the interconnected system well-defined?

36
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3.1 Formal Interconnections

Definition 8 Let ¢, € R™({XYy)). A formal stochastic process w is
defined by

wt) =Y (cw,n)Ey[0](1). (17)

nEXOYO*

The set of all formal stochastic processes is denoted by #'.

Remarks:

e For any w € #, there exist a corresponding generating series
cw € R{(X0Y0)).

e Since ¢y, is arbitrary, w is simply a formal summation of iterated

integrals.

37
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Theorem 5 Let ¢, € R{({X0Y0)) be the generating series for a given
weW.

1. If ¢y is a globally convergent series then w € uv" 10,T].
1. If w is ordered in the sense that
oo J
wt) =D D> (cw,m)Ey[0](1), (18)
3=0 k=0 nEXng_k

and c,, is locally convergent then w € Uy [0, Tr], where
tr =inf{t € [0,T]: |W(t)| = R}.

111. If ¢y is exchangeable and locally convergent then w & Uy 0, Tr]

regardless the order implied in (18).

38
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Definition 9 The class of formal Fliess operators on R™ ({XoYp)) is the
collection of mappings

F £ {co: R™((XoY0)) = R ((XoY0)) : cw — ¢y = cocuw,c € REUXY))

Theorem 6 Let ¢,d € R((XY)) and ¢, € R((X0Y0s)). The parallel,
product and cascade connections of formal Fliess operators are
characterized by the operations 4+, w, and o on R{({XY)) as

Remark: The operator co is a formal operator in that it acts on a

formal input, i.e., one that has a series representation.

39
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3.2 Parallel and Product Interconnections

u —> Oy u—> Y
— F —T —» F

Figure 4: The parallel and product connections

What are the generating series corresponding to these interconnections?

Felw] + Falw] = Fepalw] 7
Folw] - Falw] = Feooqw] 7

40
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Conditions for the series ¢ + d and c w d will establish the convergence of

the product and parallel connections.

Theorem 7 If ¢, d € R*((XY)) are globally convergent then c + d and
¢ . d are globally convergent. Moreover, if ¢,d € R*((XY)) are locally

convergent then ¢ + d and c w d are locally convergent.

Corollary 1 Let ¢ € R*((XY)) and d € R*((XY)) be globally
convergent series. For any w € UV™[0,T], Feqa|w] and Fe .\, q[w]
produce well-defined L2-It6 output processes over [0,7] for any T > 0.

Corollary 2 Let ¢,d € R*((XY)) be locally convergent series. For any
w € UV™|0,T], there exist an R > 0 and a stopping time 7r such that
F.iqlw] and F. ., 4|w], respectively, produce L2-It6 processes over [0, Tr|

assuming the order of summation defined as in (13).

Remark: If ¢+ d and c i d are exchangeable, then Fi.4lw] and

F. ., q[w] will be convergent unconditionally.
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3.3 Cascade interconnections

2m Inputs 2m Intermediate /Outout
utputs
signals P
u, — - o .
. : 3
w o F 5 o F
v = d - ¥ > ¢
’ R
Y 7 > J. o

Figure 5: Cascade connection.

What is the generating series corresponding to the cascade connection?

F.Falw]] = Feoalw] 7

Remark: For c and d in R({XY)) locally convergent, the series co d is

also locally convergent.
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To illustrate the problems encountered in the cascade of systems driven

by stochastic processes, consider

Fely] = Fe[f[u, v]](2),

where ¢ € R({XY)), and § = (§1,72)" is given by
Bt) = fuluol(t) = / u(s) f o(r) W (r) ds
Got) = folu,vl(t) = f o(s) / “u(r) dr dW(s),

U —p ]i(t) —> §1—> F[gl] _>y1

UV —> f;(t) L 372 —> —» y2

Figure 6: Cascade of input-output maps.
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Even v and v are mutually independent, the intermediate signals 31 and

y2 are correlated. Implying
E[7192] # E[§:1]E[gs].

Since F. is only defined for independent inputs, it cannot be driven by .

Thus, the cascade connection is at present not well-posed because the

inputs and outputs are not compatible.
Remarks:

e The formulation of Fliess operators on Banach spaces (for rough
paths) is very likely to solve this obstacle. In that context, no

requirement for independence is needed.

e It is believed that seeing input paths as rough paths may give better
estimates of the mapping E,,.

e However, the so-called control function must be better understood

in the systems terminology.
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4. Conclusions

An extension of the notion of a Fliess operators for Ls-1td process

inputs was presented.

To consider system interconnections, the notion of global and local

stochastic convergence for these operators was considered.

Local absolute convergence over random intervals of time was not

achieved in general. The same limitation is expected for rough paths.

The generating series of the cascade connection of formal Fliess

operators was presented.

The cascade connection was shown not to be well-posed under the

current setting since the inputs and outputs are not compatible.

It is expected that the limitations found in the cascade connection,
because of the way stochastic inputs were characterized, can be
overcome by using Lyon’s rough path theory. However, many

concepts have to be adapted to the systems terminology.
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