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Motivation

The motivation of the talk is to present some results concerning
solutions of stochastic differential equations on Rn

X x
t = x +

∫ t

0
V0(X x

s )ds +
d∑

i=1

∫ t

0
Vi (X x

s )dB i
s (1)

where the Vi ’s are C∞-bounded vector fields on Rn and B is a
d -dimensional fractional Brownian motion.

More precisely, we shall be interested in the properties of the
distribution of X x

t :
Existence of a smooth density;
Small-time asymptotics;
Smoothing properties of the operator Pt f (x) = E(f (X x

t ));
Functional inequalities satisfied by the law of the solution and
upper Gaussian bounds for the density.
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Fractional Brownian motion

A fractional Brownian motion is a Gaussian process with mean 0
and covariance function

1
2

(
t2H + s2H + |t − s|2H

)
.

Stochastic differential equations driven by fractional Brownian
motions provide toy models for the study of non Markov random
dynamical systems.

Let H > 1/2. The equation is understood in the Young’s sense.
Existence and uniqueness of the solution of (1) have been discussed
by Nualart-Rascanu and Zähle.

Let H > 1/4. The equation is understood in the Lyons’ rough
paths sense. See Coutin-Qian.
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Hörmander’s type theorem

Let H > 1/2.

If I = (i1, . . . , ik) ∈ {0, . . . , d}k , we denote by VI the Lie
commutator defined by

VI = [Vi1 , [Vi2 , . . . , [Vik−1 ,Vik ] . . .]

and
d(I ) = k + n(I ),

where n(I ) is the number of 0 in the word I .

Theorem (Baudoin-Hairer, PTRF’07)

Assume that, at some x0 ∈ Rn, there exists N such that:

span{VI (x0), d(I ) ≤ N} = Rn. (2)

Then, for any t > 0, the law of the random variable X x0
t has a

smooth density with respect to the Lebesgue measure on Rn.
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Scheme of the proof

Since Malliavin (76), the scheme of the proof is quite standard but
here, it requires new estimation methods since we are in a
non-semimartingale setting.

The main difficulty is to prove a Norris
type lemma for stochastic integrals with respect to fBm.

Computation of the Malliavin matrix.
Proof of its invertibility and Lp estimates on its inverse.
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Recent developments

Existence of the density H > 1/4 by Cass-Friz (2010),

Smoothness with H > 1/3 in some particular cases by
Hu-Tindel (2011)
Smoothness with H > 1/3 in the general case by Hairer-Pillai
(2011) + Cass-Litterer-Lyons (2011).
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Operators associated with SDEs driven by fBms

Again, let us consider the stochastic differential equations on Rn

X x0
t = x0 +

d∑
i=1

∫ t

0
Vi (X x0

s )dB i
s (3)

where the Vi ’s are C∞-bounded vector fields on Rn and B is a d
dimensional fractional Brownian motion with Hurst parameter
H > 1

3 .

We denote by C∞b (Rn,R) the set of compactly supported smooth
functions Rn → R. If f ∈ C∞b (Rn,R), let us denote

Pt f (x0) = E (f (X x0
t )) , t ≥ 0,

where X x0
t is the solution of (3) at time t.
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Development in small times

Theorem (Baudoin-Coutin, SPA’07)

Assume H > 1
3 . There exists a family

(
ΓH

k

)
k≥0 of differential

operators such that:
If f ∈ C∞b (Rn,R) and x ∈ Rn, then for every N ≥ 0, when t → 0

Pt f (x) =
N∑

k=0

t2kH(ΓH
k f )(x) + o(t(2N+1)H).



Development in small times

1

ΓH
1 =

1
2

d∑
i=1

V 2
i ;

2

ΓH
2 =

H
4
β(2H, 2H)

d∑
i ,j=1

V 2
i V

2
j +

2H − 1
8(4H − 1)

d∑
i ,j=1

ViV 2
j Vi

+

(
H

4(4H − 1)
− H

4
β(2H, 2H)

) d∑
i ,j=1

(ViVj)
2,

where β(a, b) =
∫ 1
0 xa−1(1− x)b−1dx ;

3 More generally, ΓH
k is a homogeneous polynomial in the V ′i s of

degree 2k :
ΓH

k =
∑

I=(i1,...i2k)

aIVi1 ...Vi2k ,
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Development in small times

We conjecture that ΓH
k , k ≥ 2, has coefficients that are

meromorphic functions of H with poles in the set
{ 1

2j , 2 ≤ j ≤ k}.

It would be interesting to determine what is the smallest
algebra of vector fields that contains the family (ΓH

k )k≥1 ( In
the case of Brownian motion, this algebra is the algebra
generated by the operator

∑d
i=1 V

2
i ).
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Smoothing property

As already seen, under the ellipticity assumption

span {V1(x), · · · ,Vn(x)} = Rn,

the functional operator

Pt f (x) = E (f (X x
t ))

has a smooth integral kernel. We prove here the following
regularisation bounds, for q > 1,

|Vi1 · · ·VikPt f (x)| ≤
Ck,q(x)

tkH
(Pt |f |q)1/q (x), 0 < t < 1.

which implies

|Vi1 · · ·VikPt f (x)| ≤ Ck(x)

tkH
‖f ‖∞, 0 < t < 1.
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Integration by parts on the path space

The keypoint is to use integration by parts formulas obtained
through Malliavin calculus.

Since we assume ellipticity

[Vi ,Vj ] =
n∑

k=1

ωk
ijVk .

We first have the following commutation

Lemma

ViPt f (x) = E

(
n∑

k=1

αk
i (t, x)Vk f (X x

t )

)
,

where α solves the following system of SDEs:

dαj
i (t, x) =

n∑
k,l=1

αk
i (t, x)ωj

kl (X
x
t )dB l

t , αj
i (0, x) = δji .
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Integration by parts on the path space

Proof.
By the chain rule

ViPt f (x) =

E ((JtVi )f (X x
t )) = E ((Φt∗Vi )f (X x

t )) .

Then by ellipticity, we can find αj
i (t, x) such that

Φt∗Vi (X x
t ) =

n∑
j=1

αj
i (t, x)Vj(X x

t ).

The change of variable formula shows that α solves the above
system of SDEs.
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Integration by parts on the path space

We introduce the following scale of spaces:

Definition
For r ∈ R, let Kr be the set of mapping Φ : (0, 1]× Rn → D∞
such that:

1 Almost surely, Φ(t, x) is smooth with respect to x and ∂Φ
∂xν is

continuous in (t, x).
2 For every n, p > 1,

sup
0<t≤1

t−rH
∥∥∥∥ ∂Φ

∂xν

∥∥∥∥
Dk,p

<∞
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Integration by parts on the path space

The key step is then the following integration by parts on the path
space of fBm.

Theorem
If f is C∞-bounded and Φ ∈ Kr ,

E (Φ(t, x)Vi f (X x
t )) = E ((TVi Φ)(t, x)f (X x

t ))

for some TVi Φ ∈ Kr−1.
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Integration by parts on the path space

Dj
s f (Xt) = 〈∇f (Xt),Dj

sX
x
t 〉

= 〈∇f (Xt), JtJ−1
s Vj(X x

s )〉

=
n∑

k,l=1

hj
k(s, t, x)αk

l (t, x)(Vl f )(X x
t ).

where

hi (s, t, x) = (βk
i (s, x)I[0,t](s))k=1,...,n, i = 1, ..., n.

Introduce Mi ,j(t, x) given by

Mi ,j(t, x) =
1
t2H 〈hi (·, t, x), hj(·, t, x)〉H.

Hence

Vi f (X x
t ) =

1
t2H

n∑
j ,l=1

βi
j (t, x)M−1

jl (t)〈Df (X x
t ), hl (·, t)〉H.
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Integration by parts on the path space

Using then the integration by parts formula for the Malliavin
derivative, we obtain

T ∗Vi
Φ(t, x) =

n∑
k,l=1

[
1
t2H Φ(t, x)βi

k(t, x)M−1
kl (t)δhl (·, t)

− 1
t2H 〈D(Φ(t, x)βi

k(t, x)M−1
kl (t)), hl (·, t)〉H

]
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Regularizing bounds

Iterating the previous formulas and using Hölder’s inequality, we
finally conclude:

Theorem (Baudoin-Ouyang, 2011)

For q > 1,

|Vi1 · · ·VikPt f (x)| ≤
Ck,q(x)

tkH
(Pt |f |q)1/q (x), 0 < t < 1.
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Global bounds

In some geometric situations, it is possible to obtain global bounds
independent from x .
Assume the skew-symmetry condition

ωk
ij = −ωj

ik ,

then we have the global bound√√√√ n∑
i=1

(ViPt f )2(x) ≤ Pt

√√√√ n∑
i=1

(Vi f )2

 (x).
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Global bounds

In a recent work with C. Ouyang and S. Tindel, we proved that
under the same structure assumptions, we have the Gaussian
concentration

Theorem (Baudoin-Ouyang-Tindel, 2011)

There exists M such that for every T ≥ 0 and λ ≥ 0,

P

(
sup

0≤t≤T
‖X x

t ‖ − E

(
sup

0≤t≤T
‖X x

t ‖

)
≥ λ

)
≤ exp

(
− λ2

2MT 2H

)
.

and a corresponding Gaussian upper bound.
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Global bounds

Theorem (Baudoin-Ouyang-Tindel, 2011)

For any t ∈ R∗+, the random variable X x
t admits a smooth density

pX (t, ·).

Furthermore, there exist 3 positive constants
c(1)
t , c(2)

t , c(3)
t,x such that

pX (t, y) ≤ c(1)
t exp

(
−c(2)

t

(
‖y‖ − c(3)

t,x

)2
)
,

for any y ∈ Rd .
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Global bounds

Again, under the structure assumption we also have a global
Poincaré inequality:

Theorem (Baudoin-Ouyang-Tindel, 2011)

Pt(f 2)− (Pt f )2 ≤ Ct2HPt

(
n∑

i=1

(Vi f )2

)

a log-Sobolev inequality:

Theorem (Baudoin-Ouyang-Tindel, 2011)

Pt(f ln f )− (Pt f )(lnPt f ) ≤ 2Ct2HPt

(
n∑

i=1

(Vi ln f )2

f

)
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