Some aspects of stochastic differential equations driven by fractional Brownian motions

Fabrice Baudoin
Purdue University

Based on joint works with L. Coutin, M. Hairer, C. Ouyang and S. Tindel

Motivation

The motivation of the talk is to present some results concerning solutions of stochastic differential equations on \mathbb{R}^{n}

$$
\begin{equation*}
X_{t}^{x}=x+\int_{0}^{t} V_{0}\left(X_{s}^{x}\right) d s+\sum_{i=1}^{d} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i} \tag{1}
\end{equation*}
$$

where the V_{i} 's are C^{∞}-bounded vector fields on \mathbb{R}^{n} and B is a d-dimensional fractional Brownian motion.

Motivation

The motivation of the talk is to present some results concerning solutions of stochastic differential equations on \mathbb{R}^{n}

$$
\begin{equation*}
X_{t}^{x}=x+\int_{0}^{t} V_{0}\left(X_{s}^{x}\right) d s+\sum_{i=1}^{d} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i} \tag{1}
\end{equation*}
$$

where the V_{i} 's are C^{∞}-bounded vector fields on \mathbb{R}^{n} and B is a d-dimensional fractional Brownian motion.

More precisely, we shall be interested in the properties of the distribution of X_{t}^{x} :

- Existence of a smooth density;

Motivation

The motivation of the talk is to present some results concerning solutions of stochastic differential equations on \mathbb{R}^{n}

$$
\begin{equation*}
X_{t}^{x}=x+\int_{0}^{t} V_{0}\left(X_{s}^{x}\right) d s+\sum_{i=1}^{d} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i} \tag{1}
\end{equation*}
$$

where the V_{i} 's are C^{∞}-bounded vector fields on \mathbb{R}^{n} and B is a d-dimensional fractional Brownian motion.

More precisely, we shall be interested in the properties of the distribution of X_{t}^{x} :

- Existence of a smooth density;
- Small-time asymptotics;

Motivation

The motivation of the talk is to present some results concerning solutions of stochastic differential equations on \mathbb{R}^{n}

$$
\begin{equation*}
X_{t}^{x}=x+\int_{0}^{t} V_{0}\left(X_{s}^{x}\right) d s+\sum_{i=1}^{d} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i} \tag{1}
\end{equation*}
$$

where the V_{i} 's are C^{∞}-bounded vector fields on \mathbb{R}^{n} and B is a d-dimensional fractional Brownian motion.

More precisely, we shall be interested in the properties of the distribution of X_{t}^{x} :

- Existence of a smooth density;
- Small-time asymptotics;
- Smoothing properties of the operator $P_{t} f(x)=\mathbb{E}\left(f\left(X_{t}^{x}\right)\right)$;

Motivation

The motivation of the talk is to present some results concerning solutions of stochastic differential equations on \mathbb{R}^{n}

$$
\begin{equation*}
X_{t}^{x}=x+\int_{0}^{t} V_{0}\left(X_{s}^{x}\right) d s+\sum_{i=1}^{d} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i} \tag{1}
\end{equation*}
$$

where the V_{i} 's are C^{∞}-bounded vector fields on \mathbb{R}^{n} and B is a d-dimensional fractional Brownian motion.

More precisely, we shall be interested in the properties of the distribution of X_{t}^{x} :

- Existence of a smooth density;
- Small-time asymptotics;
- Smoothing properties of the operator $P_{t} f(x)=\mathbb{E}\left(f\left(X_{t}^{x}\right)\right)$;
- Functional inequalities satisfied by the law of the solution and upper Gaussian bounds for the density.

Fractional Brownian motion

A fractional Brownian motion is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}+|t-s|^{2 H}\right) .
$$

Fractional Brownian motion

A fractional Brownian motion is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}+|t-s|^{2 H}\right) .
$$

Stochastic differential equations driven by fractional Brownian motions provide toy models for the study of non Markov random dynamical systems.

Fractional Brownian motion

A fractional Brownian motion is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}+|t-s|^{2 H}\right) .
$$

Stochastic differential equations driven by fractional Brownian motions provide toy models for the study of non Markov random dynamical systems.

Let $H>1 / 2$. The equation is understood in the Young's sense.

Fractional Brownian motion

A fractional Brownian motion is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}+|t-s|^{2 H}\right) .
$$

Stochastic differential equations driven by fractional Brownian motions provide toy models for the study of non Markov random dynamical systems.

Let $H>1 / 2$. The equation is understood in the Young's sense. Existence and uniqueness of the solution of (1) have been discussed by Nualart-Rascanu and Zähle.

Fractional Brownian motion

A fractional Brownian motion is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}+|t-s|^{2 H}\right) .
$$

Stochastic differential equations driven by fractional Brownian motions provide toy models for the study of non Markov random dynamical systems.

Let $H>1 / 2$. The equation is understood in the Young's sense. Existence and uniqueness of the solution of (1) have been discussed by Nualart-Rascanu and Zähle.

Let $H>1 / 4$. The equation is understood in the Lyons' rough paths sense.

Fractional Brownian motion

A fractional Brownian motion is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}+|t-s|^{2 H}\right) .
$$

Stochastic differential equations driven by fractional Brownian motions provide toy models for the study of non Markov random dynamical systems.

Let $H>1 / 2$. The equation is understood in the Young's sense. Existence and uniqueness of the solution of (1) have been discussed by Nualart-Rascanu and Zähle.

Let $H>1 / 4$. The equation is understood in the Lyons' rough paths sense. See Coutin-Qian.

Hörmander's type theorem

Let $H>1 / 2$.

Hörmander's type theorem

Let $H>1 / 2$.
If $I=\left(i_{1}, \ldots, i_{k}\right) \in\{0, \ldots, d\}^{k}$, we denote by V_{I} the Lie commutator defined by

$$
V_{I}=\left[V_{i_{1}},\left[V_{i_{2}}, \ldots,\left[V_{i_{k-1}}, V_{i_{k}}\right] \ldots\right]\right.
$$

and

$$
d(I)=k+n(I),
$$

where $n(I)$ is the number of 0 in the word I.

Theorem (Baudoin-Hairer, PTRF'07)

Assume that, at some $x_{0} \in \mathbb{R}^{n}$, there exists N such that:

$$
\boldsymbol{\operatorname { s p a n }}\left\{V_{l}\left(x_{0}\right), d(I) \leq N\right\}=\mathbb{R}^{n}
$$

Hörmander's type theorem

Let $H>1 / 2$.
If $I=\left(i_{1}, \ldots, i_{k}\right) \in\{0, \ldots, d\}^{k}$, we denote by V_{I} the Lie commutator defined by

$$
V_{I}=\left[V_{i_{1}},\left[V_{i_{2}}, \ldots,\left[V_{i_{k-1}}, V_{i_{k}}\right] \ldots\right]\right.
$$

and

$$
d(I)=k+n(I),
$$

where $n(I)$ is the number of 0 in the word I.

Theorem (Baudoin-Hairer, PTRF'07)

Assume that, at some $x_{0} \in \mathbb{R}^{n}$, there exists N such that:

$$
\begin{equation*}
\operatorname{span}\left\{V_{l}\left(x_{0}\right), d(I) \leq N\right\}=\mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Then, for any $t>0$, the law of the random variable $X_{t}^{x_{0}}$ has a smooth density with respect to the Lebesgue measure on \mathbb{R}^{n}.

Scheme of the proof

Since Malliavin (76), the scheme of the proof is quite standard but here, it requires new estimation methods since we are in a non-semimartingale setting.

Scheme of the proof

Since Malliavin (76), the scheme of the proof is quite standard but here, it requires new estimation methods since we are in a non-semimartingale setting. The main difficulty is to prove a Norris type lemma for stochastic integrals with respect to fBm.

Scheme of the proof

Since Malliavin (76), the scheme of the proof is quite standard but here, it requires new estimation methods since we are in a non-semimartingale setting. The main difficulty is to prove a Norris type lemma for stochastic integrals with respect to fBm.

Scheme of the proof

Since Malliavin (76), the scheme of the proof is quite standard but here, it requires new estimation methods since we are in a non-semimartingale setting. The main difficulty is to prove a Norris type lemma for stochastic integrals with respect to fBm.

- Computation of the Malliavin matrix.

Scheme of the proof

Since Malliavin (76), the scheme of the proof is quite standard but here, it requires new estimation methods since we are in a non-semimartingale setting. The main difficulty is to prove a Norris type lemma for stochastic integrals with respect to fBm.

- Computation of the Malliavin matrix.
- Proof of its invertibility and L^{p} estimates on its inverse.

Scheme of the proof

Since Malliavin (76), the scheme of the proof is quite standard but here, it requires new estimation methods since we are in a non-semimartingale setting. The main difficulty is to prove a Norris type lemma for stochastic integrals with respect to fBm.

- Computation of the Malliavin matrix.
- Proof of its invertibility and L^{p} estimates on its inverse.

Recent developments

- Existence of the density $H>1 / 4$ by Cass-Friz (2010),

Recent developments

- Existence of the density $H>1 / 4$ by Cass-Friz (2010),
- Smoothness with $H>1 / 3$ in some particular cases by Hu-Tindel (2011)

Recent developments

- Existence of the density $H>1 / 4$ by Cass-Friz (2010),
- Smoothness with $H>1 / 3$ in some particular cases by Hu-Tindel (2011)
- Smoothness with $H>1 / 3$ in the general case by Hairer-Pillai (2011) + Cass-Litterer-Lyons (2011).

Operators associated with SDEs driven by fBms

Again, let us consider the stochastic differential equations on \mathbb{R}^{n}

$$
\begin{equation*}
X_{t}^{x_{0}}=x_{0}+\sum_{i=1}^{d} \int_{0}^{t} V_{i}\left(X_{s}^{x_{0}}\right) d B_{s}^{i} \tag{3}
\end{equation*}
$$

where the V_{i} 's are C^{∞}-bounded vector fields on \mathbb{R}^{n} and B is a d dimensional fractional Brownian motion with Hurst parameter $H>\frac{1}{3}$.

Operators associated with SDEs driven by fBms

Again, let us consider the stochastic differential equations on \mathbb{R}^{n}

$$
\begin{equation*}
X_{t}^{x_{0}}=x_{0}+\sum_{i=1}^{d} \int_{0}^{t} V_{i}\left(X_{s}^{x_{0}}\right) d B_{s}^{i} \tag{3}
\end{equation*}
$$

where the V_{i} 's are C^{∞}-bounded vector fields on \mathbb{R}^{n} and B is a d dimensional fractional Brownian motion with Hurst parameter $H>\frac{1}{3}$.
We denote by $\mathcal{C}_{b}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ the set of compactly supported smooth functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$. If $f \in \mathcal{C}_{b}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, let us denote

$$
\mathbf{P}_{t} f\left(x_{0}\right)=\mathbb{E}\left(f\left(X_{t}^{x_{0}}\right)\right), t \geq 0
$$

where $X_{t}^{x_{0}}$ is the solution of (3) at time t.

Development in small times

Theorem (Baudoin-Coutin, SPA'07)

Assume $H>\frac{1}{3}$. There exists a family $\left(\Gamma_{k}^{H}\right)_{k \geq 0}$ of differential operators such that:
If $f \in \mathcal{C}_{b}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and $x \in \mathbb{R}^{n}$, then for every $N \geq 0$, when $t \rightarrow 0$

$$
\mathrm{P}_{t} f(x)=\sum_{k=0}^{N} t^{2 k H}\left(\Gamma_{k}^{H} f\right)(x)+o\left(t^{(2 N+1) H}\right)
$$

Development in small times

(1)

$$
\Gamma_{1}^{H}=\frac{1}{2} \sum_{i=1}^{d} V_{i}^{2}
$$

Development in small times

(1)

$$
\Gamma_{1}^{H}=\frac{1}{2} \sum_{i=1}^{d} V_{i}^{2}
$$

(2)

$$
\begin{aligned}
\Gamma_{2}^{H}= & \frac{H}{4} \beta(2 H, 2 H) \sum_{i, j=1}^{d} V_{i}^{2} V_{j}^{2}+\frac{2 H-1}{8(4 H-1)} \sum_{i, j=1}^{d} V_{i} V_{j}^{2} V_{i} \\
& +\left(\frac{H}{4(4 H-1)}-\frac{H}{4} \beta(2 H, 2 H)\right) \sum_{i, j=1}^{d}\left(V_{i} V_{j}\right)^{2}
\end{aligned}
$$

where $\beta(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x$;

Development in small times

(1)

$$
\Gamma_{1}^{H}=\frac{1}{2} \sum_{i=1}^{d} V_{i}^{2}
$$

(2)

$$
\begin{aligned}
\Gamma_{2}^{H}= & \frac{H}{4} \beta(2 H, 2 H) \sum_{i, j=1}^{d} V_{i}^{2} V_{j}^{2}+\frac{2 H-1}{8(4 H-1)} \sum_{i, j=1}^{d} V_{i} V_{j}^{2} V_{i} \\
& +\left(\frac{H}{4(4 H-1)}-\frac{H}{4} \beta(2 H, 2 H)\right) \sum_{i, j=1}^{d}\left(V_{i} V_{j}\right)^{2},
\end{aligned}
$$

where $\beta(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x$;
(3) More generally, Γ_{k}^{H} is a homogeneous polynomial in the $V_{i}^{\prime} s$ of degree $2 k$:

$$
\Gamma_{k}^{H}=\sum_{I=\left(i_{1}, \ldots i_{2 k}\right)} a_{l} V_{i_{1}} \ldots V_{i_{2 k}},
$$

Development in small times

- We conjecture that $\Gamma_{k}^{H}, k \geq 2$, has coefficients that are meromorphic functions of H with poles in the set $\left\{\frac{1}{2 j}, 2 \leq j \leq k\right\}$.

Development in small times

- We conjecture that $\Gamma_{k}^{H}, k \geq 2$, has coefficients that are meromorphic functions of H with poles in the set $\left\{\frac{1}{2 j}, 2 \leq j \leq k\right\}$.
- It would be interesting to determine what is the smallest algebra of vector fields that contains the family $\left(\Gamma_{k}^{H}\right)_{k \geq 1}$ (In the case of Brownian motion, this algebra is the algebra generated by the operator $\left.\sum_{i=1}^{d} V_{i}^{2}\right)$.

Smoothing property

As already seen, under the ellipticity assumption

$$
\operatorname{span}\left\{V_{1}(x), \cdots, V_{n}(x)\right\}=\mathbb{R}^{n},
$$

Smoothing property

As already seen, under the ellipticity assumption

$$
\operatorname{span}\left\{V_{1}(x), \cdots, V_{n}(x)\right\}=\mathbb{R}^{n},
$$

the functional operator

$$
P_{t} f(x)=\mathbb{E}\left(f\left(X_{t}^{x}\right)\right)
$$

has a smooth integral kernel.

Smoothing property

As already seen, under the ellipticity assumption

$$
\operatorname{span}\left\{V_{1}(x), \cdots, V_{n}(x)\right\}=\mathbb{R}^{n},
$$

the functional operator

$$
P_{t} f(x)=\mathbb{E}\left(f\left(X_{t}^{x}\right)\right)
$$

has a smooth integral kernel. We prove here the following regularisation bounds, for $q>1$,

$$
\left|V_{i_{1}} \cdots V_{i_{k}} P_{t} f(x)\right| \leq \frac{C_{k, q}(x)}{t^{k H}}\left(P_{t}|f|^{q}\right)^{1 / q}(x), \quad 0<t<1
$$

Smoothing property

As already seen, under the ellipticity assumption

$$
\operatorname{span}\left\{V_{1}(x), \cdots, V_{n}(x)\right\}=\mathbb{R}^{n},
$$

the functional operator

$$
P_{t} f(x)=\mathbb{E}\left(f\left(X_{t}^{x}\right)\right)
$$

has a smooth integral kernel. We prove here the following regularisation bounds, for $q>1$,

$$
\left|V_{i_{1}} \cdots V_{i_{k}} P_{t} f(x)\right| \leq \frac{C_{k, q}(x)}{t^{k H}}\left(P_{t}|f|^{q}\right)^{1 / q}(x), \quad 0<t<1 .
$$

which implies

$$
\left|V_{i_{1}} \cdots V_{i_{k}} P_{t} f(x)\right| \leq \frac{C_{k}(x)}{t^{k H}}\|f\|_{\infty}, \quad 0<t<1
$$

Integration by parts on the path space

The keypoint is to use integration by parts formulas obtained through Malliavin calculus.

Integration by parts on the path space

The keypoint is to use integration by parts formulas obtained through Malliavin calculus. Since we assume ellipticity

$$
\left[V_{i}, V_{j}\right]=\sum_{k=1}^{n} \omega_{i j}^{k} V_{k}
$$

Integration by parts on the path space

The keypoint is to use integration by parts formulas obtained through Malliavin calculus. Since we assume ellipticity

$$
\left[V_{i}, V_{j}\right]=\sum_{k=1}^{n} \omega_{i j}^{k} V_{k}
$$

We first have the following commutation

Lemma

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\sum_{k=1}^{n} \alpha_{i}^{k}(t, x) V_{k} f\left(X_{t}^{x}\right)\right)
$$

where α solves the following system of SDEs:

$$
d \alpha_{i}^{j}(t, x)=\sum_{k, l=1}^{n} \alpha_{i}^{k}(t, x) \omega_{k l}^{j}\left(X_{t}^{x}\right) d B_{t}^{l}, \quad \alpha_{i}^{j}(0, x)=\delta_{i}^{j}
$$

Integration by parts on the path space

Proof.
By the chain rule

$$
V_{i} P_{t} f(x)=
$$

Integration by parts on the path space

Proof.
By the chain rule

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\left(\mathrm{J}_{t} V_{i}\right) f\left(X_{t}^{x}\right)\right)
$$

Integration by parts on the path space

Proof.

By the chain rule

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\left(\mathrm{J}_{t} V_{i}\right) f\left(X_{t}^{x}\right)\right)=\mathbb{E}\left(\left(\Phi_{t *} V_{i}\right) f\left(X_{t}^{x}\right)\right)
$$

Integration by parts on the path space

Proof.

By the chain rule

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\left(\mathrm{J}_{t} V_{i}\right) f\left(X_{t}^{x}\right)\right)=\mathbb{E}\left(\left(\Phi_{t *} V_{i}\right) f\left(X_{t}^{x}\right)\right)
$$

Then by ellipticity, we can find $\alpha_{i}^{j}(t, x)$ such that

$$
\Phi_{t *} V_{i}\left(X_{t}^{\times}\right)=\sum_{j=1}^{n} \alpha_{i}^{j}(t, x) V_{j}\left(X_{t}^{x}\right)
$$

Integration by parts on the path space

Proof.

By the chain rule

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\left(J_{t} V_{i}\right) f\left(X_{t}^{x}\right)\right)=\mathbb{E}\left(\left(\Phi_{t *} V_{i}\right) f\left(X_{t}^{x}\right)\right)
$$

Then by ellipticity, we can find $\alpha_{i}^{j}(t, x)$ such that

$$
\Phi_{t *} V_{i}\left(X_{t}^{\times}\right)=\sum_{j=1}^{n} \alpha_{i}^{j}(t, x) V_{j}\left(X_{t}^{\times}\right)
$$

The change of variable formula shows that α solves the above system of SDEs.

Integration by parts on the path space

We introduce the following scale of spaces:

Integration by parts on the path space

We introduce the following scale of spaces:

Definition

For $r \in \mathbb{R}$, let \mathcal{K}_{r} be the set of mapping $\Phi:(0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{D}^{\infty}$ such that:
(1) Almost surely, $\Phi(t, x)$ is smooth with respect to x and $\frac{\partial \Phi}{\partial x^{\nu}}$ is continuous in (t, x).

Integration by parts on the path space

We introduce the following scale of spaces:

Definition

For $r \in \mathbb{R}$, let \mathcal{K}_{r} be the set of mapping $\Phi:(0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{D}^{\infty}$ such that:
(1) Almost surely, $\Phi(t, x)$ is smooth with respect to x and $\frac{\partial \Phi}{\partial x^{\nu}}$ is continuous in (t, x).
(2) For every $n, p>1$,

$$
\sup _{0<t \leq 1} t^{-r H}\left\|\frac{\partial \Phi}{\partial x^{\nu}}\right\|_{\mathbb{D}^{k, p}}<\infty
$$

Integration by parts on the path space

We introduce the following scale of spaces:

Definition

For $r \in \mathbb{R}$, let \mathcal{K}_{r} be the set of mapping $\Phi:(0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{D}^{\infty}$ such that:
(1) Almost surely, $\Phi(t, x)$ is smooth with respect to x and $\frac{\partial \Phi}{\partial x^{\nu}}$ is continuous in (t, x).
(2) For every $n, p>1$,

$$
\sup _{0<t \leq 1} t^{-r H}\left\|\frac{\partial \Phi}{\partial x^{\nu}}\right\|_{\mathbb{D}^{k, p}}<\infty
$$

Integration by parts on the path space

The key step is then the following integration by parts on the path space of fBm .

Integration by parts on the path space

The key step is then the following integration by parts on the path space of fBm.

Theorem

If f is C^{∞}-bounded and $\Phi \in \mathcal{K}_{r}$,

$$
\mathbb{E}\left(\Phi(t, x) V_{i} f\left(X_{t}^{\chi}\right)\right)=\mathbb{E}\left(\left(T_{V_{i}} \Phi\right)(t, x) f\left(X_{t}^{\chi}\right)\right)
$$

for some $T_{V_{i}} \Phi \in \mathcal{K}_{r-1}$.

Integration by parts on the path space

$$
\begin{aligned}
\mathbf{D}_{s}^{j} f\left(X_{t}\right) & =\left\langle\nabla f\left(X_{t}\right), \mathbf{D}_{s}^{j} X_{t}^{\times}\right\rangle \\
& =\left\langle\nabla f\left(X_{t}\right), \mathbf{J}_{t} \mathbf{J}_{s}^{-1} V_{j}\left(X_{s}^{x}\right)\right\rangle \\
& =\sum_{k, l=1}^{n} h_{k}^{j}(s, t, x) \alpha_{l}^{k}(t, x)\left(V_{l} f\right)\left(X_{t}^{x}\right)
\end{aligned}
$$

where

$$
h_{i}(s, t, x)=\left(\beta_{i}^{k}(s, x) \mathbb{I}_{[0, t]}(s)\right)_{k=1, \ldots, n}, \quad i=1, \ldots, n
$$

Integration by parts on the path space

$$
\begin{aligned}
\mathbf{D}_{s}^{j} f\left(X_{t}\right) & =\left\langle\nabla f\left(X_{t}\right), \mathbf{D}_{s}^{j} X_{t}^{x}\right\rangle \\
& =\left\langle\nabla f\left(X_{t}\right), \mathbf{J}_{t} \mathbf{J}_{s}^{-1} V_{j}\left(X_{s}^{x}\right)\right\rangle \\
& =\sum_{k, l=1}^{n} h_{k}^{j}(s, t, x) \alpha_{l}^{k}(t, x)\left(V_{l} f\right)\left(X_{t}^{x}\right)
\end{aligned}
$$

where

$$
h_{i}(s, t, x)=\left(\beta_{i}^{k}(s, x) \mathbb{I}_{[0, t]}(s)\right)_{k=1, \ldots, n}, \quad i=1, \ldots, n
$$

Introduce $M_{i, j}(t, x)$ given by

$$
M_{i, j}(t, x)=\frac{1}{t^{2 H}}\left\langle h_{i}(\cdot, t, x), h_{j}(\cdot, t, x)\right\rangle_{\mathcal{H}}
$$

Hence

$$
V_{i} f\left(X_{t}^{\times}\right)=\frac{1}{t^{2 H}} \sum_{j, l=1}^{n} \beta_{j}^{i}(t, x) M_{j l}^{-1}(t)\left\langle\mathbf{D} f\left(X_{t}^{\times}\right), h_{l}(\cdot, t)\right\rangle_{\mathcal{H}}
$$

Integration by parts on the path space

Using then the integration by parts formula for the Malliavin derivative, we obtain

Integration by parts on the path space

Using then the integration by parts formula for the Malliavin derivative, we obtain

$$
\begin{aligned}
T_{V_{i}}^{*} \Phi(t, x)= & \sum_{k, l=1}^{n}\left[\frac{1}{t^{2 H}} \Phi(t, x) \beta_{k}^{i}(t, x) M_{k l}^{-1}(t) \delta h_{l}(\cdot, t)\right. \\
& \left.-\frac{1}{t^{2 H}}\left\langle\mathbf{D}\left(\Phi(t, x) \beta_{k}^{i}(t, x) M_{k l}^{-1}(t)\right), h_{l}(\cdot, t)\right\rangle_{\mathcal{H}}\right]
\end{aligned}
$$

Regularizing bounds

Iterating the previous formulas and using Hölder's inequality, we finally conclude:

Regularizing bounds

Iterating the previous formulas and using Hölder's inequality, we finally conclude:

Theorem (Baudoin-Ouyang, 2011)

For $q>1$,

$$
\left|V_{i_{1}} \cdots V_{i_{k}} P_{t} f(x)\right| \leq \frac{C_{k, q}(x)}{t^{k H}}\left(P_{t}|f|^{q}\right)^{1 / q}(x), \quad 0<t<1
$$

Global bounds

Global bounds

In some geometric situations, it is possible to obtain global bounds independent from x.

Global bounds

In some geometric situations, it is possible to obtain global bounds independent from x.
Assume the skew-symmetry condition

$$
\omega_{i j}^{k}=-\omega_{i k}^{j}
$$

Global bounds

In some geometric situations, it is possible to obtain global bounds independent from x.
Assume the skew-symmetry condition

$$
\omega_{i j}^{k}=-\omega_{i k}^{j}
$$

then we have the global bound

$$
\sqrt{\sum_{i=1}^{n}\left(V_{i} P_{t} f\right)^{2}(x)} \leq P_{t}\left(\sqrt{\sum_{i=1}^{n}\left(V_{i} f\right)^{2}}\right)(x)
$$

Global bounds

In a recent work with C. Ouyang and S. Tindel, we proved that under the same structure assumptions, we have the Gaussian concentration

Global bounds

In a recent work with C. Ouyang and S. Tindel, we proved that under the same structure assumptions, we have the Gaussian concentration

Theorem (Baudoin-Ouyang-Tindel, 2011)

There exists M such that for every $T \geq 0$ and $\lambda \geq 0$,

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T}\left\|X_{t}^{x}\right\|-\mathbb{E}\left(\sup _{0 \leq t \leq T}\left\|X_{t}^{x}\right\|\right) \geq \lambda\right) \leq \exp \left(-\frac{\lambda^{2}}{2 M T^{2 H}}\right)
$$

Global bounds

In a recent work with C. Ouyang and S. Tindel, we proved that under the same structure assumptions, we have the Gaussian concentration

Theorem (Baudoin-Ouyang-Tindel, 2011)

There exists M such that for every $T \geq 0$ and $\lambda \geq 0$,

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T}\left\|X_{t}^{x}\right\|-\mathbb{E}\left(\sup _{0 \leq t \leq T}\left\|X_{t}^{x}\right\|\right) \geq \lambda\right) \leq \exp \left(-\frac{\lambda^{2}}{2 M T^{2 H}}\right)
$$

and a corresponding Gaussian upper bound.

Global bounds

Theorem (Baudoin-Ouyang-Tindel, 2011)

For any $t \in \mathbb{R}_{+}^{*}$, the random variable X_{t}^{x} admits a smooth density $p_{X}(t, \cdot)$.

Global bounds

Theorem (Baudoin-Ouyang-Tindel, 2011)

For any $t \in \mathbb{R}_{+}^{*}$, the random variable X_{t}^{x} admits a smooth density $p_{X}(t, \cdot)$. Furthermore, there exist 3 positive constants $c_{t}^{(1)}, c_{t}^{(2)}, c_{t, x}^{(3)}$ such that

$$
p_{X}(t, y) \leq c_{t}^{(1)} \exp \left(-c_{t}^{(2)}\left(\|y\|-c_{t, x}^{(3)}\right)^{2}\right)
$$

for any $y \in \mathbb{R}^{d}$.

Global bounds

Again, under the structure assumption we also have a global Poincaré inequality:

Global bounds

Again, under the structure assumption we also have a global Poincaré inequality:

Theorem (Baudoin-Ouyang-Tindel, 2011)

$$
P_{t}\left(f^{2}\right)-\left(P_{t} f\right)^{2} \leq C t^{2 H} P_{t}\left(\sum_{i=1}^{n}\left(V_{i} f\right)^{2}\right)
$$

Global bounds

Again, under the structure assumption we also have a global Poincaré inequality:

Theorem (Baudoin-Ouyang-Tindel, 2011)

$$
P_{t}\left(f^{2}\right)-\left(P_{t} f\right)^{2} \leq C t^{2 H} P_{t}\left(\sum_{i=1}^{n}\left(V_{i} f\right)^{2}\right)
$$

a log-Sobolev inequality:
Theorem (Baudoin-Ouyang-Tindel, 2011)

$$
P_{t}(f \ln f)-\left(P_{t} f\right)\left(\ln P_{t} f\right) \leq 2 C t^{2 H} P_{t}\left(\sum_{i=1}^{n} \frac{\left(V_{i} \ln f\right)^{2}}{f}\right)
$$

