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Derivation of the local two-phase model

• We will always think of two phases: water and ice.

• To simplify:
Transport of mass plays no role (no convection).
The transition region between two phases is an infinitely thin
surface.
The density is one, and the specific heats are also one (the
amount of energy needed to increase the temperature of one
mass unit of substance by one unit; lower in ice than in water
[ability to move]).

• The physical quantities that play a role are:
Latent heat L (the amount of energy needed to transform one
mass unit between phases; melting ice [heat required] versus
freezing water [heat released]).
Thermal conductivity k (a substance’s ability to conduct heat;
higher in ice than in water [closeness of atoms])

Jørgen Endal The one-phase fractional Stefan problem



Derivation of the local two-phase model

Jørgen Endal The one-phase fractional Stefan problem



Derivation of the local two-phase model

Let h be enthalpy (“energy”) density in Ω ⊂ D. The rate of change
of the total quantity within Ω equals the negative of the net flux
through ∂Ω plus energy sources/sinks:

d
dt

ˆ
Ω
h dx = −

ˆ
∂Ω

F · n dS +

ˆ
Ω
f dx .
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Derivation of the local two-phase model

Let h be enthalpy (“energy”) density inside a region Ω. The rate of
change of the total quantity within Ω equals the negative of the net
flux through ∂Ω plus energy sources/sinks:

d
dt

ˆ
Ω
h dx = −

ˆ
Ω

divF dx +

ˆ
Ω
f dx .
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Derivation of the local two-phase model

In many situations, F ∼ −Du (flow from high to low
consentration). By the Fourier law:

d
dt

ˆ
Ω
h dx =

ˆ
Ω

div
(
k(u)Du

)
dx +

ˆ
Ω
f dx

or
∂th = div(k(u)Du) + f .
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Derivation of the local two-phase model

In many situations, F ∼ −Du (flow from high to low
consentration). By the Fourier law:

d
dt

ˆ
Ω
h dx =

ˆ
Ω

div
(
k(u)Du

)
dx

or
∂th = div(k(u)Du).

Assume:
h ∈ γ(u) =⇒ u = β(h).
k(u) = k(β(h)) =: K ′(β(u)) where K is the
Kirchhoff-transform.

Then
∂th = div(DK (β(h))) = ∆K (β(h)).
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Derivation of the local two-phase model

Basically,
∂th = ∆K (β(h)) =: ∆Φ(h)

where u := Φ(h) ∼ k × β(h) is given as
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Derivation of the local one-phase model

We keep the ice at critical temperature 0◦C. That is, we get

∂th = ∆u

where u := Φ(h) is given as
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Derivation of the local one-phase model

We keep the ice at critical temperature 0◦C.
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Theory for local one-phase model
• Modeling:

J. Stefan. Über die Theorie der Eisbildung (On the theory of ice formation). Monatsh. Math.
Phys., 1(1):1–6, 1890.

• Well-posedness:
S. L. Kamenomostskaja (Kamin). On Stefan’s problem. Mat. Sb. (N.S.), 53 (95):489–514,
1961.

• The free boundary is smooth, and the temperature is smooth up
to the free boundary:

L. A. Caffarelli. The regularity of free boundaries in higher dimensions. Acta Math.,
139(3–4):155–184, 1977.

D. Kinderlehrer and L. Nirenberg. The smoothness of the free boundary in the one phase
Stefan problem. Comm. Pure Appl. Math., 31(3):257–282, 1978.

• Continuity of the temperature (independent of the free boundary):
L. A. Caffarelli and A. Friedman. Continuity of the temperature in the Stefan problem.
Indiana Univ. Math. J., 28(1):53–70, 1979.

• The selfsimilar solutions has the form H(xt−1/2), and a free
boundary given by x(t) = ξ0t

1/2.
J. L. Vázquez. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
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The nonlocal Cauchy problem

We will study the one-phase fractional Stefan problem

(FSP)

{
∂th + (−∆)su = 0 in QT := RN × (0,T ),

h(·, 0) = h0 on RN ,
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The nonlocal Cauchy problem

We will study the one-phase fractional Stefan problem

(FSP)

{
∂th + (−∆)su = 0 in QT := RN × (0,T ),

h(·, 0) = h0 on RN ,

where s ∈ (0, 1), h0 ∈ L∞(RN) unsigned, and

u := Φ(h) := max{h − L, 0}.

Note that Φ is degenerate and Lipschitz.
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Previous work on one-phase nonlocal Stefan

• Nonsingular spatial-fractional operators:
C. Brändle, E. Chasseigne, and F. Quirós. Phase transitions with midrange interactions: a
nonlocal Stefan model. SIAM J. Math. Anal., 44(4):3071–3100, 2012.

• Temporal-fractional operators:
V. R. Voller. Fractional Stefan problems. International Journal of Heat and Mass Transfer,
74:269–277, 2014.

• Singular spatial-fractional operators (fractional Laplacian):
Continuity of the temperature:

I. Athanasopoulos and L. A. Caffarelli. Continuity of the temperature in boundary heat
control problems. Adv. Math., 224(1):293–315, 2010.

Well-posedness of weak and very weak solutions:
A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez. A general fractional porous
medium equation. Comm. Pure Appl. Math., 65(9):1242–1284, 2012.

F. del Teso, JE, and E. R. Jakobsen. Uniqueness and properties of distributional solutions
of nonlocal equations of porous medium type. Adv. Math., 305:78–143, 2017. Etc...

Uniqueness of merely bounded very weak solutions:
G. Grillo, M. Muratori, and F. Punzo. Uniqueness of very weak solutions for a fractional
filtration equation. To appear in Adv. Math., 2020.
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Still water and ice?

Jørgen Endal The one-phase fractional Stefan problem



Nonlocal: Initial guesses and thoughts

The numerical solution of the problem

∂th + (−∆)
1
2 max{h − 0.5, 0} = 0.

F. del Teso, JE, E. R. Jakobsen. Robust numerical methods for nonlocal (and local)
equations of porous medium type. Part II: Schemes and experiments. SIAM J. Numer. Anal.,
56(6):3611–3647, 2018.
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Goals of the talk

• Free boundary of selfsimilar solution given by x(t) = ξ0t
1/(2s).

• Construct a continuous solution (selfsimilar solution) of (FSP).

• Finite speed of propagation of u, and infinite of h.

• The support of u never recedes.

F. del Teso, JE, and J. L. Vázquez. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

F. del Teso, JE, and J. L. Vázquez. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Very weak solutions

Consider very weak solutions of{
∂th + (−∆)su = 0 in QT := RN × (0,T ),

h(·, 0) = h0 on RN .

m

For all ψ ∈ C∞c (RN × [0,T )),

ˆ T

0

ˆ
RN

(
h∂tψ − u(−∆)sψ

)
dx dt +

ˆ
RN

h0(x)ψ(x , 0) dx = 0.
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Immediate properties

A priori results (dPQuRoVa12, dTEnJa17–19):
• (L∞-bound) ‖h(·, t)‖L∞ ≤ ‖h0‖L∞
• (Comparison principle) h0 ≤ ĥ0 =⇒ h ≤ ĥ

• (L1-contraction)
´

(h(·, t)− ĥ(·, t))+ ≤
´

(h0 − ĥ0)+

• (Conservation of mass)
´
h(·, t) =

´
h0

• (Time regularity) h ∈ C ([0,T ] : L1
loc(RN))

if ‖h0(·+ ξ)− h0‖L1(RN) → 0 as |ξ| → 0+

Continuity through approximation (AtCa10):
u ∈ C (RN × (0,T )) with a uniform modulus of continuity for
t ≥ τ > 0.
OBS: Ok, as long as e.g. h0 ∈ L∞.
Uniqueness (GrMuPu20): If h0 ∈ L∞, then there exists a unique
very weak solution h of (FSP) in L∞.
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class
of solutions of the form

H(xt−β)

with β := 1/(2s).

Note that β > 1/2, so that we always have superdiffusion.
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class
of solutions of the form

H(xt−β)

with β := 1/(2s).

Note that β > 1/2, so that we always have superdiffusion.

The proof follows from the scaling of the equation:

h0(x) = h0(ax) =⇒ h(x , t) = h(ax , a2st)

for all a > 0. In particular for a = t−1/(2s) > 0.
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class
of solutions of the form

H(xt−β) =: h(xt−β, 1)

with β := 1/(2s).

Note that β > 1/2, so that we always have superdiffusion.

The proof follows from the scaling of the equation:

h0(x) = h0(ax) =⇒ h(x , t) = h(ax , a2st)

for all a > 0. In particular for a = t−1/(2s) > 0.
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Which solutions do we search for?

When N = 1, we can easily choose initial data such that
h0 = h0(·a). E.g.:
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Selfsimilar solutions: Elliptic problem in R

For now, fix N = 1 and P1,P2 > 0.
Let h solve (FSP) with initial condition

h0(x) :=

{
L + P1 if x ≤ 0
L− P2 if x > 0.

Then H solves

− 1
2s
ξH ′(ξ) + (−∆)sU(ξ) = 0 in D′(R)

where U = (H − L)+ and ξ = xt−1/(2s).
Immediately, we note that:
• L− P2 ≤ H(ξ) ≤ L + P1 for all ξ ∈ R.
• limξ→−∞H(ξ) = L + P1 and limξ→+∞H(ξ) = L− P2.
• H is nonincreasing.
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Selfsimilar solutions: Elliptic problem in RN

The multi-D selfsimilar solution is a constant extension of H in the
new spatial variables.

So let us focus on the 1-D case.
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Goals of the talk

• Free boundary of selfsimilar solution given by x(t) = ξ0t
1/(2s).

• Construct a continuous solution (selfsimilar solution) of (FSP).

• Finite speed of propagation of u, and infinite of h.

• The support of u never recedes.

F. del Teso, JE, and J. L. Vázquez. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

F. del Teso, JE, and J. L. Vázquez. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Selfsimilar solutions: Free boundary

Theorem (Free boundary [del Teso & E. & Vázquez, 2019])

There exists a unique finite ξ0 > 0 such that H(ξ−0 ) = L.
This means that the free boundary of the space-time solution
h(x , t) at the level L is given by the curve

x(t) = ξ0 t
1
2s for all t ∈ (0,T ).

Moreover, ξ0 = ξ0(s,P2/P1), but not on L.

OBS:
• Mathematically speaking, we could let L = 0 and let {h < 0}
define the ice region.
• Kh also solves (FSP) with Kh0, but with the same ξ0. Let
K = 1/P1.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that H is strictly decreasing in a certain set.

Define

D := {ξ ∈ R : H(ξ) ≤ L} = {ξ ∈ R : U(ξ) = 0}.

It is nonempty since H → L− P2 as ξ → +∞ and closed since U
continuous.

Assume by contradiction that H is not strictly decreasing in D.
Then H is constant somewhere in D, and U = 0 on those parts.
I.e., H,U are regular, − 1

2s ξH
′(ξ) + (−∆)sU(ξ) = 0, and H ′ = 0.

However, U ≥ 0 and cont. in R, U = 0 in [0,+∞), and
(−∆)sU = 0 in (0, 1) implies U = 0 in (−∞, 0). So, U ≡ 0.
But H → L + P1 as ξ → −∞.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point ξ0 ≥ 0.

H is strictly decreasing in

D := {ξ ∈ R : H(ξ) ≤ L} = {ξ ∈ R : U(ξ) = 0}.

Again, H → L− P2 < L as ξ → +∞, so, there is at least one
ξ1 < +∞ such that H(ξ1) < L (U(ξ1) = 0).
Since U → P1 > 0 as ξ → −∞ and U = (H − L)+ is nonincreasing
and continuous, we have

ξ0 := inf{ξ ∈ R : U(ξ) = 0} < +∞.

Now, for all ξ < ξ0 we have that U(ξ) > 0 and so H(ξ) > L.
This implies that H = U + L is continuous in (−∞, ξ0] . We
conclude then that H(ξ−0 ) = L.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point ξ0 ≥ 0.

H is strictly decreasing in

D := {ξ ∈ R : H(ξ) ≤ L} = {ξ ∈ R : U(ξ) = 0} = [ξ0,+∞).

Again, H → L− P2 < L as ξ → +∞, so, there is at least one
ξ1 < +∞ such that H(ξ1) < L (U(ξ1) = 0).
Since U → P1 > 0 as ξ → −∞ and U = (H − L)+ is nonincreasing
and continuous, we have

ξ0 := inf{ξ ∈ R : U(ξ) = 0} < +∞.

Now, for all ξ < ξ0 we have that U(ξ) > 0 and so H(ξ) > L.
This implies that H = U + L is continuous in (−∞, ξ0] . We
conclude then that H(ξ−0 ) = L.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point ξ0 ≥ 0.

L

L+P

L

L+P
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point ξ0 > 0.

Strategy: Argue by contradiction. If ξ0 = 0, then U(ξ) & |ξ|s for
all small enough ξ < 0. Which gives H not bounded in [0,+∞):

Assume that U(ξ) & |ξ|s for ξ < 0. Then, for ξ > 0,

−(−∆)sU(ξ) = c1,α

ˆ 0

−∞

U(η)

|η − ξ|1+2s dη &
ˆ −ξ
−2ξ

|η|s

|η − ξ|1+2s dη ∼ 1
|ξ|s

.

Moreover, for ξ2 > ξ1 > 0, solve −H ′(ξ) = −2s(−∆)sU(ξ)/ξ:

H(ξ1) = H(ξ2) + 2s
ˆ ξ2

ξ1

−(−∆)sU(η)

η
dη & 1 +

ˆ ξ2

ξ1

dη
η1+s

.

Conclusion follows by sending ξ1 → 0+.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point ξ0 > 0.

Strategy: Argue by contradiction. If ξ0 = 0, then U(ξ) & |ξ|s for
all small enough ξ < 0. Which gives H not bounded in [0,+∞):

Assume that U(ξ) & |ξ|s for ξ < 0. Then, for ξ > 0,

−(−∆)sU(ξ) = c1,α

ˆ 0

−∞

U(η)

|η − ξ|1+2s dη &
ˆ −ξ
−2ξ

|η|s

|η − ξ|1+2s dη ∼ 1
|ξ|s

.

Moreover, for ξ2 > ξ1 > 0, solve −H ′(ξ) = −2s(−∆)sU(ξ)/ξ:

L ≥ H(ξ1) = H(ξ2)+2s
ˆ ξ2

ξ1

−(−∆)sU(η)

η
dη & L−P2+

ˆ ξ2

ξ1

dη
η1+s

.

Conclusion follows by sending ξ1 → 0+.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point ξ0 > 0.

If ξ0 = 0, then U(ξ) & |ξ|s for ξ < 0.

Fix ξ̂, consider I := [ξ̂, 0], and let U I solve{
(−∆)sU I (ξ) = 1

2s ξH
′(ξ) in ξ ∈ I ,

U I (ξ) = 0 in ξ ∈ I c .

If H ′ is bounded, then the Hopf lemma gives

U I (ξ) & |ξ|s for all ξ ∈ I .

X. Ros-Oton and J. Serra. The Dirichlet problem for the fractional Laplacian: regularity up
to the boundary. J. Math. Pures Appl. (9), 101(3):275–302, 2014.

Unfortunately, we only have H ′ ≤ 0 and ‖H ′‖L1((−∞,ξ0)) = P1.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point ξ0 > 0.

If ξ0 = 0, then U(ξ) & |ξ|s for ξ < 0.

Fix ξ̂, consider I := [ξ̂, 0], and let U I
n solve{

(−∆)sU I
n(ξ) = 1

2s (ξH ′(ξ))n in ξ ∈ I ,

U I
n(ξ) = 0 in ξ ∈ I c .

If H ′ is bounded, then the Hopf lemma gives

U I
n(ξ) & |ξ|s for all ξ ∈ I .

X. Ros-Oton and J. Serra. The Dirichlet problem for the fractional Laplacian: regularity up
to the boundary. J. Math. Pures Appl. (9), 101(3):275–302, 2014.

Unfortunately, we only have H ′ ≤ 0 and ‖H ′‖L1((−∞,ξ0)) = P1.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point ξ0 > 0.

If ξ0 = 0, then U(ξ) & U I (ξ) & U I
n(ξ) & |ξ|s for ξ < 0.

U(ξ) & U I (ξ): Since U ≥ 0 and satisfies (−∆)sU(ξ) = 1
2s ξH

′(ξ)
in R, w := U − U I ≥ 0 because{

(−∆)sw(ξ) = 0 in ξ ∈ I ,

w(ξ) ≥ 0 in ξ ∈ I c .

U I (ξ) & U I
n(ξ): The respective right-hand sides satisfy

1
2s ξH

′(ξ) ≥ 1
2s (ξH ′(ξ))n ≥ 0. Both of them are in L1, and then the

solutions, which are given by “convolution” with a nonnegative
Green function, can be pointwise compared.

H. Chen and L. Véron. Semilinear fractional elliptic equations involving measures. J.
Differential Equations, 257(5):1457–1486, 2014.

D. Gómez-Castro and J. L. Vázquez. The fractional Schrödinger equation with singular
potential and measure data. Discrete Contin. Dyn. Syst., 39(12):7113–7139, 2019.
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Goals of the talk

• Free boundary of selfsimilar solution given by x(t) = ξ0t
1/(2s).

• Construct a continuous solution (selfsimilar solution) of (FSP).

• Finite speed of propagation of u, and infinite of h.

• The support of u never recedes.

F. del Teso, JE, and J. L. Vázquez. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

F. del Teso, JE, and J. L. Vázquez. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Selfsimilar solutions: Continuity

Theorem (Continuity [del Teso & E. & Vázquez, 2019])

H ∈ Cb(R). Moreover, H ∈ C 1,α((−∞, ξ0)) for some α > 0,
H ∈ C∞((ξ0,+∞)), and

(−∆)sU(ξ) =
1
2s
ξH ′(ξ)

is satisfied in the classical sense in R \ {ξ0}.
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Selfsimilar solutions: Continuity; Proof

By known results, H ∈ C 1,α((−∞, ξ0)) for some α > 0:

We already know that U ∈ Cb((−∞, ξ0)). So, u ∈ Cb solves the
fractional heat equation there and is bounded in R. Then it is
C
α,α/(2s)
x ,t away from ξ0.

L. Silvestre. Hölder estimates for advection fractional-diffusion equations. Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5), 11(4):843–855, 2012.

Then it is C 1,α
x also. Hence, H = U + L in (−∞, ξ0) is C 1,α.

H. Chang-Lara, G. Dávila. Regularity for solutions of non local parabolic equations. Calc.
Var. Partial Differential Equations, 49(1–2):139–172, 2014.

Let us prove H ∈ C∞((ξ0,+∞)).

In [ξ0,+∞), U ≡ 0, and since 0 < U ∈ L∞((−∞, ξ0)), we have
(−∆)sU ∈ C∞((ξ0,+∞)). Then

H ′(ξ) = 2s
(−∆)sU(ξ)

ξ
holds pointwise in (ξ0,+∞).
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

We already know that H(ξ−0 ) = L. Assume H(ξ+
0 ) = L− A with

A ∈ [0, L− P2]. Let us show that A = 0.

The equation reads ξH ′(ξ) = 2s(−∆)sU or
ˆ ξ0+ε

ξ0−ε
(H(ξ)ξ)′ dξ = 2s

ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ +

ˆ ξ0+ε

ξ0−ε
H(ξ) dξ.

The first term is equal to
H(ξ0 + ε)(ξ0 + ε)− H(ξ0 − ε)(ξ0 − ε)→ Aξ0 as ε→ 0+.
The third term is bounded by (L + P1)2ε→ 0 as ε→ 0+.
We are left with

Aξ0 = 2s lim
ε→0+

ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ.
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

We are left with

Aξ0 = 2s lim
ε→0+

ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ,

where
ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ

=

ˆ ξ0+ε

ξ0

ˆ +∞

−∞

U(ξ)− U(η)

|ξ − η|1+2s dη dξ

+

ˆ ξ0

ξ0−ε

ˆ +∞

−∞

U(ξ)− U(η)

|ξ − η|1+2s dη dξ
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

We are left with

Aξ0 = 2s lim
ε→0+

ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ.

where
ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ

=

ˆ ξ0+ε

ξ0

ˆ ξ0

−∞

0− U(η)

|ξ − η|1+2s dη dξ

+

ˆ ξ0

ξ0−ε

ˆ +∞

−∞

U(ξ)− U(η)

|ξ − η|1+2s dη dξ
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

We are left with

Aξ0 = 2s lim
ε→0+

ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ.

where ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ

=

ˆ ξ0+ε

ξ0

ˆ ξ0

−∞

0− U(η)

|ξ − η|1+2s dη dξ

+

ˆ ξ0

ξ0−ε

ˆ ξ0

−∞

U(ξ)− U(η)

|ξ − η|1+2s dη dξ

+

ˆ ξ0

ξ0−ε

ˆ +∞

ξ0

U(ξ)− 0
|ξ − η|1+2s dη dξ
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

We are left with

Aξ0 = 2s lim
ε→0+

ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ.

whereˆ ξ0+ε

ξ0−ε
(−∆)sU dξ

=

ˆ ξ0+ε

ξ0

ˆ ξ0

−∞

0− U(η)

(ξ − η)1+2s dη dξ

+

ˆ ξ0

ξ0−ε

ˆ ξ0−ε

−∞

U(ξ)− U(η)

(ξ − η)1+2s dη dξ +

ˆ ξ0

ξ0−ε

ˆ ξ0

ξ0−ε

U(ξ)− U(η)

|ξ − η|1+2s dη dξ

+

ˆ ξ0

ξ0−ε

ˆ +∞

ξ0

U(ξ)− 0
(η − ξ)1+2s dη dξ
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

We are left with

Aξ0 = 2s lim
ε→0+

ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ.

where
ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ

. ε1−s +

ˆ ξ0

ξ0−ε

ˆ ξ0

ξ0−ε

U(ξ)− U(η)

|ξ − η|1+2s dη dξ.

Under the assumption U(z) . (z0 − z)s when z ≤ z0.
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

We are left with

Aξ0 = 2s lim
ε→0+

ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ.

where
ˆ ξ0+ε

ξ0−ε
(−∆)sU dξ

. ε1−s + εα+2(1−s).

Under the assumption U(z) . (z0 − z)s when z ≤ z0.
Under the assumption U ∈ C 1,α.
We thus conclude that Aξ0 = 0, i.e., A = 0.
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

Why do we have U(ξ) . (ξ0 − ξ)s when ξ ≤ ξ0?
Recall that U(x) = u(x , 1) where u satisfies

∂tu + (−∆)su = 0 in (−∞, ξ0t
1
2s )× (0, 1],

u = 0 in [ξ0t
1
2s ,+∞)× [0, 1],

u(·, 0) = u0 in (−∞, ξ0).

Now, if v solves
∂tv + (−∆)sv = 0 in (−∞, ξ0)× (0, 1],

v = 0 in [ξ0,+∞)× [0, 1],

v(·, 0) = u0 in (−∞, ξ0).

Then 0 ≤ v(x , t) . |x − ξ0|s for x ≤ ξ0.
X. Fernández-Real and X. Ros-Oton. Boundary regularity for the fractional heat equation.
Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110(1):49–64, 2016.
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at ξ = ξ0.

Why do we have U(ξ) . (ξ0 − ξ)s when ξ ≤ ξ0?
Recall that U(x) = u(x , 1) where u satisfies

∂tu + (−∆)su = 0 in (−∞, ξ0t
1
2s )× (0, 1],

u = 0 in [ξ0t
1
2s ,+∞)× [0, 1],

u(·, 0) = u0 in (−∞, ξ0).

To finish, we consider w = v − u. It satisfies:
∂tw + (−∆)sw ≥ 0 in (−∞, ξ0)× (0, 1],

w = 0 in [ξ0,+∞)× [0, 1],

w(·, 0) = 0 in (−∞, ξ0).

In [ξ0t
1/(2s), ξ0]× (0, 1], u = 0 and u ≥ 0 in R gives ∂tu = 0 and

(−∆)su ≤ 0 there. Thus, w ≥ 0.
X. Fernández-Real and X. Ros-Oton. Boundary regularity for the fractional heat equation.
Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110(1):49–64, 2016.
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Goals of the talk

• Free boundary of selfsimilar solution given by x(t) = ξ0t
1/(2s).

• Construct a continuous solution (selfsimilar solution) of (FSP).

• Finite speed of propagation of u, and infinite of h.

• The support of u never recedes.

F. del Teso, JE, and J. L. Vázquez. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

F. del Teso, JE, and J. L. Vázquez. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Speeds of propagation

Theorem (Finite speed for u, [del Teso & E. & Vázquez, 2019])

Let h ∈ L∞(QT ) be the very weak solution of (FSP) with
h0 ∈ L∞(RN) as initial data and u := Φ(h).
If supp{Φ(h0(x) + ε)} ⊂ BR(x0) for some ε > 0, R > 0, and
x0 ∈ RN , then

supp{u(·, t)} ⊂ B
R+ξ0t

1
2s

(x0) for some ξ0 > 0 and all t ∈ (0,T ).

Proof: Use the selfsimilar solution in any direction. Why ε?

Theorem (Infinite speed for h, [del Teso & E. & Vázquez, 2019])

Let 0 ≤ h ∈ L∞(QT ) be the very weak solution of (FSP) with
0 ≤ h0 ∈ L∞(RN) as initial data.
If h0 ≥ L + ε > L in Bρ(x1) for some ε > 0, ρ > 0, and x1 ∈ RN ,
then h(·, t) > 0 for all t ∈ (0,T ).

Proof: Show h(·, t∗) > 0, then all times ≥ t∗ by comp.
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Speeds of propagation

Free boundary: x(t) = ξ0t
1/(2s)
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• Free boundary of selfsimilar solution given by x(t) = ξ0t
1/(2s).

• Construct a continuous solution (selfsimilar solution) of (FSP).

• Finite speed of propagation of u, and infinite of h.

• The support of u never recedes.
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arXiv:2002.01386v1 [math.AP], 2020.
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The support of u never recedes

Theorem (Cons. of positivity, [del Teso & E. & Vázquez, 2019])

If u(x , t∗) > 0 in an open set Ω ⊂ RN for a given time t∗ ∈ (0,T ),
then

u(x , t) > 0 for all (x , t) ∈ Ω× [t∗,T ).

The same result holds for t∗ = 0 if u0 = Φ(h0) is continuous in Ω.

Proof: Involved. Use the postive eigenfunction as subsolution.
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Thank you for your attention!
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