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Derivation of the local two-phase model

e We will always think of two phases: water and ice.

e To simplify:

@ Transport of mass plays no role (no convection).

@ The transition region between two phases is an infinitely thin
surface.

@ The density is one, and the specific heats are also one (the
amount of energy needed to increase the temperature of one
mass unit of substance by one unit; lower in ice than in water
[ability to move]).

e The physical quantities that play a role are:

@ Latent heat L (the amount of energy needed to transform one
mass unit between phases; melting ice [heat required] versus
freezing water [heat released]).

@ Thermal conductivity k (a substance's ability to conduct heat;
higher in ice than in water [closeness of atoms])
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Derivation of the local two-phase model

QV&—RVR=L?
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Derivation of the local two-phase model

[N
n
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Let h be enthalpy (“energy”) density in Q C D. The rate of change
of the total quantity within Q equals the negative of the net flux
through 0 plus energy sources/sinks:

d/hdx:—/ F-nd5+/fdx.
dt Jq o0 Q
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Derivation of the local two-phase model

[N
n

oL

)

Let h be enthalpy (“energy”) density inside a region Q. The rate of
change of the total quantity within Q equals the negative of the net
flux through 99 plus energy sources/sinks:

d/hdx:—/didex+/fdx.
dt Jq Q Q
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Derivation of the local two-phase model

In many situations, F ~ —Du (flow from high to low
consentration). By the Fourier law:

d/hdx:/div(k(u)Du) dx+/ f dx
dt Jg Q Q

Oth = div(k(u)Du) + f.

or
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Derivation of the local two-phase model

In many situations, F ~ —Du (flow from high to low
consentration). By the Fourier law:

i/ﬂhdx:/ﬂdiv(k(u)Du) dx

Oth = div(k(u)Du).

or

Assume:
o hevy(u) = u=p(h).
o k(u) = k(B(h)) =: K'(8(u)) where K is the
Kirchhoff-transform.

Then
Och = div(DK(B(h))) = DK(B(h)).
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Derivation of the local two-phase model

Basically,
Oth = AK(B(h)) =: Ad(h)
where u := ®(h) ~ k x (h) is given as

iy
v
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Derivation of the local one-phase model

We keep the ice at critical temperature 0°C. That is, we get
8th = Au

where u := ®(h) is given as
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Derivation of the local one-phase model

We keep the ice at critical temperature 0°C.

KV kT - L2
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Theory for local one-phase model

e Modeling:

@ J. STEFAN. Uber die Theorie der Eisbildung (On the theory of ice formation). Monatsh. Math.
Phys., 1(1):1-6, 1890.

e Well-posedness:

@ S. L. KamenomosTskaJa (KAMIN). On Stefan's problem. Mat. Sh. (N.S.), 53 (95):489-514,
1961.

e The free boundary is smooth, and the temperature is smooth up
to the free boundary:

@ L. A. CaFrareLLI. The regularity of free boundaries in higher dimensions. Acta Math.,
139(3-4):155-184, 1977.

@ D. KINDERLEHRER AND L. NIRENBERG. The smoothness of the free boundary in the one phase
Stefan problem. Comm. Pure Appl. Math., 31(3):257-282, 1978.

e Continuity of the temperature (independent of the free boundary):

@ L. A. CAFrFarRELLI AND A. FRrRIEDMAN. Continuity of the temperature in the Stefan problem.
Indiana Univ. Math. J., 28(1):53-70, 1979.

e The selfsimilar solutions has the form H(xt~'/2), and a free
boundary given by x(t) = &t/2.

@ J. L. VAzQuUEz. The porous medium equation. Mathematical theory. Oxford Mathematical

Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
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@ L. A. CAFrFaRELLI AND A. FRIEDMAN. Continuity of the temperature in the Stefan problem.
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e The selfsimilar solutions has the form H(xt 1/?), and a free
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@ J. L. VAzQUEz. The porous medium equation. Mathematical theory. Oxford Mathematical

Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
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The nonlocal Cauchy problem

We will study the one-phase fractional Stefan problem

(FSP) oth+ (=A)°u=0 in Qr:=RNx(0,7),
h(-,0) = ho on RN,
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The nonlocal Cauchy problem

We will study the one-phase fractional Stefan problem

(FSP) Och+ (—A)°u=0 in Qr =RN x (0, T),
h(-,0) = ho on RN,
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The nonlocal Cauchy problem

We will study the one-phase fractional Stefan problem

o S — . — RN
(FSP) dth+ (—A)°u=0 in Qr =RV x (0, T),
h(-,0) = ho on RN

where s € (0,1), hy € L°(R") unsigned, and
u:= ®(h) := max{h — L,0}.

Note that ¢ is degenerate and Lipschitz.
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Previous work on one-phase nonlocal Stefan

e Nonsingular spatial-fractional operators:

@ C. BRANDLE, E. CHASSEIGNE, AND F. QUIRGS. Phase transitions with midrange interactions: a
nonlocal Stefan model. SIAM J. Math. Anal., 44(4):3071-3100, 2012.

e Temporal-fractional operators:

@ V. R. VoLLER. Fractional Stefan problems. International Journal of Heat and Mass Transfer,
74:269-277, 2014.

e Singular spatial-fractional operators (fractional Laplacian):

Continuity of the temperature:

@ I. ATHANAsOPOULOS AND L. A. CArrareLLI. Continuity of the temperature in boundary heat
control problems. Adv. Math., 224(1):293-315, 2010.

Well-posedness of weak and very weak solutions:

@ A. pE PaBLo, F. QUIRGs, A. RopriGUEz aND J. L. VAzQuUEz. A general fractional porous
medium equation. Comm. Pure Appl. Math., 65(9):1242-1284, 2012.

@ F. peEL Teso, JE, anDp E. R. JakoBseN. Uniqueness and properties of distributional solutions
of nonlocal equations of porous medium type. Adv. Math., 305:78-143, 2017. Etc...

Uniqueness of merely bounded very weak solutions:

@ G. GriLLo, M. MuraTORI, AND F. PuNnzo. Uniqueness of very weak solutions for a fractional
filtration equation. To appear in Adv. Math., 2020.
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Still water and ice?
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The numerical solution of the problem

8:h+ (—A)z max{h — 0.5,0} = 0.

@ F. peL Teso, JE, E. R. JAKOBSEN. Robust numerical methods for nonlocal (and local)
equations of porous medium type. Part |I: Schemes and experiments. SIAM J. Numer. Anal.,

56(6):3611-3647, 2018.
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Goals of the talk

e Free boundary of selfsimilar solution given by x(t) = &t/(2%).
e Construct a continuous solution (selfsimilar solution) of (FSP).
e Finite speed of propagation of u, and infinite of h.

e The support of u never recedes.

@ F. peEL Teso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

@ F. peEL Teso, JE, anp J. L. VAzQUEz. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Very weak solutions

Consider very weak solutions of

Och+(=AyPu=0 in  Qr:=RNVx(0,T),
h(-,0) = ho on RN.

For all ¢» € C*(RN x [0, T)),

-
/ / (hdp — u(—A)%y) dxdt + / ho(x)¥(x,0)dx = 0.
0 RN RN
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Immediate properties

A priori results (dPQuRoVal2, dTEnJal7-19):

o (L*-bound) |[A(-, t)[[e= < |[hol| 1o

e (Comparison principle) hy < hg = h<h

o (L*-contraction) [(h(-,t) — h(-, t))* < [(ho — ho)*
e (Conservation of mass) [ h(-,t) = [ ho

e (Time regularity) h € C([0, T] : L} (RN))

if [[ho(-+ &) — hOHLl(RN) — 0as |¢] — 0"

Continuity through approximation (AtCal0):

u € C(RN x (0, T)) with a uniform modulus of continuity for
t>7>0.

OBS: Ok, as long as e.g. hg € L*™.

Uniqueness (GrMuPu20): If hy € L*, then there exists a unique
very weak solution h of (FSP) in L*°.
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class
of solutions of the form
H(xt=")

with 5 :=1/(2s).

Note that 5 > 1/2, so that we always have superdiffusion.
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class

of solutions of the form
H(xt=?)

with 8 :=1/(2s).
Note that 5 > 1/2, so that we always have superdiffusion.

The proof follows from the scaling of the equation:
ho(x) = ho(ax) = h(x, t) = h(ax, a*t)

for all a > 0. In particular for a = t~1/(29) > 0.
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Which special solutions does the equation exhibit?

As the local equation, the nonlocal equation exhibit a special class
of solutions of the form

H(xt™?) =: h(xt7,1)
with 8 :=1/(2s).
Note that 5 > 1/2, so that we always have superdiffusion.
The proof follows from the scaling of the equation:
ho(x) = ho(ax) = h(x, t) = h(ax, a*t)

for all a > 0. In particular for a = t=1/(29) > 0.
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Which solutions do we search for?

When N = 1, we can easily choose initial data such that
ho = ho(-a). E.g.:

WOk ML
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Selfsimilar solutions: Elliptic problem in R

For now, fix N =1 and Py, P, > 0.
Let h solve (FSP) with initial condition

L+ P if x<0
ho(x) :== _
L— P> if x> 0.

Then H solves
EHOF(CAPUO =0 i D(R)

where U = (H — L) and & = xt—1/(39),

Immediately, we note that:

° L—PzSH(£)§L+P1 'FOI’&”fER.

° |im§_>_oo H(f) =L+ P; and |im§_>+oo H(g) =L—P;.
e H is nonincreasing.
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Selfsimilar solutions: Elliptic problem in RV

The multi-D selfsimilar solution is a constant extension of H in the
new spatial variables.

So let us focus on the 1-D case.
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Goals of the talk

e Free boundary of selfsimilar solution given by x(t) = &t1/(2%).
e Construct a continuous solution (selfsimilar solution) of (FSP).
e Finite speed of propagation of u, and infinite of h.

e The support of u never recedes.

@ F. peEL Teso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

@ F. peEL TEeso, JE, anp J. L. VAzQUEz. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Selfsimilar solutions: Free boundary

Theorem (Free boundary [del Teso & E. & Vazquez, 2019])

There exists a unique finite £y > 0 such that H({, ) = L.
This means that the free boundary of the space-time solution
h(x, t) at the level L is given by the curve

x(t) =&tz forall  te(0,T).

Moreover, &y = &o(s, P2/P1), but not on L.

OBS:

e Mathematically speaking, we could let L =0 and let {h < 0}
define the ice region.

e Kh also solves (FSP) with Khg, but with the same &;. Let
K=1/P:.
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Selfsimilar solutions: Free boundary
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Selfsimilar solutions: Free boundary; Proof

Let us argue that H is strictly decreasing in a certain set.

Define
D= {6€R: H() <L} = {€ € R: U(€) = 0}.

It is nonempty since H — L — P> as £ — 400 and closed since U
continuous.

Assume by contradiction that H is not strictly decreasing in D.
Then H is constant somewhere in D, and U = 0 on those parts.
l.e., H, U are regular, —L&H'(€) + (—A)*U(€) =0, and H' = 0.
However, U > 0 and cont. in R, U =0 in [0, +0c0), and
(=A)*U=0in (0,1) implies U =0 in (—o0,0). So, U =0.
But H—- L+ Pjas § — —oc.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.

H is strictly decreasing in

D:={¢eR:H(E) < L} ={¢ R : U(€) =0}

Again, H — L — P, < L as £ — +00, so, there is at least one
&1 < +oo such that H(&1) < L (U(&1) = 0).

Since U — P; >0 as £ — —oo and U = (H — L) is nonincreasing
and continuous, we have

& :=inf{{ eR : U(§) =0} < +o0.

Now, for all £ < & we have that U(£) > 0 and so H(&) > L.

This implies that H = U + L is continuous in (—o00,&p] . We
conclude then that H(&;) = L.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.

H is strictly decreasing in

D:={¢€R: H() < L} = {€ € R: U(€) = 0} = [0, +00).

Again, H — L — P, < L as £ — +00, so, there is at least one
&1 < 400 such that H(&1) < L (U(&1) = 0).

Since U — Py >0 as & — —oo and U = (H — L) is nonincreasing
and continuous, we have

& :=inf{{ eR : U(§) =0} < +o0.

Now, for all £ < & we have that U(&) > 0 and so H(§) > L.

This implies that H = U + L is continuous in (—o0,&p] . We
conclude then that H(&;) = L.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.

Mr. 1)
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.

Strategy: Argue by contradiction. If £, = 0, then U(&) 2 [¢]° for
all small enough & < 0. Which gives H not bounded in [0, +00):

Assume that U(&) 2 [£]|° for € < 0. Then, for £ > 0,

—(=A) U(g)—cl,a/_oom_g‘?l)%dnz/_%MgP%an €l

Moreover, for &5 > & > 0, solve —H'(£) = —2s(—A)°U(§)/&:

_ & _(CAPUMm) [ dn
H(g) = H(§2)+2s/£1 2 4y 2 1+/€1 T

Conclusion follows by sending &1 — 0.
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.

Strategy: Argue by contradiction. If £, = 0, then U(&) 2 [¢]° for
all small enough & < 0. Which gives H not bounded in [0, +00):

Assume that U(¢) = [£]° for € < 0. Then, for £ > 0,

—(=A) U(g)—cl,a/_oom_g‘?l)%dnz/_%MgP%an €l

Moreover, for &5 > & > 0, solve —H'(§) = —2s(—A)°U(§)/&:

&2 _(_A)U £ g
R e e
& n & "

Conclusion follows by sending &1 — 0.

Jgrgen Endal The one-phase fractional Stefan problem



Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.
If & =0, then U(§) 2 |£]° for £ < 0.
Fix é consider /| = [é, 0], and let U' solve

(—R)*U'(€) = 2:EH'(€) in €,
ul¢)=o0 in  £el°.
If H" is bounded, then the Hopf lemma gives

uley = 1gf forall  cel.

@ X. Ros-OToN AND J. SERRA. The Dirichlet problem for the fractional Laplacian: regularity up
to the boundary. J. Math. Pures Appl. (9), 101(3):275-302, 2014.

Unfortunately, we only have H' < 0 and |[H'|| j1((—o0 ¢0)) = P1-
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Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.
If & =0, then U(§) = |£]° for £ < 0.
Fix &, consider | := [£,0], and let U/ solve

(—A)UL(E) = 25 (EH'(E))n in el
ul¢)=o0 in  felc.

If H is bounded, then the Hopf lemma gives

Un&) Z 1€)F forall  Eel.

@ X. Ros-OToN AND J. SERRA. The Dirichlet problem for the fractional Laplacian: regularity up
to the boundary. J. Math. Pures Appl. (9), 101(3):275-302, 2014.

/ / _
Unfortunately, we only have H" < 0 and ||[H|| 11((—o0£0)) = P1-



Selfsimilar solutions: Free boundary; Proof

Let us argue that there is a unique interphase point & > 0.
If & =0, then U(&) 2 U'(€) Z UA(€) 2 [€]° for € < 0.

( ) = U'(€): Since U > 0 and satisfies (—A)*U(&) = =EH'(€)
nR, w:=U— U' >0 because

=0 in Eel,
in Eele.
U'(€) = UL(€): The respective right-hand sides satisfy
LEH'(&) > 2S(§H’( €))n > 0. Both of them are in !, and then the
solutions, which are given by “convolution” with a nonnegative

Green function, can be pointwise compared.

@ H. CHEN AND L. VERON. Semilinear fractional elliptic equations involving measures. J.
Differential Equations, 257(5):1457—-1486, 2014.

@ D. Gomez-CasTro AND J. L. VAzQuez. The fractional Schrédinger equation with singular
potential and measure data. Discrete Contin. Dyn. Syst., 39(12):7113-7139, 2019.
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Goals of the talk

e Free boundary of selfsimilar solution given by x(t) = &t/(2%).
e Construct a continuous solution (selfsimilar solution) of (FSP).
e Finite speed of propagation of u, and infinite of h.

e The support of u never recedes.

@ F. peEL Teso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

@ F. peEL TEeso, JE, anp J. L. VAzQUEz. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Selfsimilar solutions: Continuity

Theorem (Continuity [del Teso & E. & Vazquez, 2019])

H € Gy(R). Moreover, H € C1%((—00,&)) for some @ > 0,
H € C>*((&o, +00)), and

is satisfied in the classical sense in R\ {&o}.
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Selfsimilar solutions: Continuity; Proof

By known results, H € C1¥((—o0, &)) for some a > 0:

We already know that U € Cp((—00,&0)). So, u € Cp solves the
fractional heat equation there and is bounded in R. Then it is
Ca,a/(Zs)

.t away from &p.

@ L. SivesTRE. Hdlder estimates for advection fractional-diffusion equations. Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5), 11(4):843-855, 2012.

Then it is Ci*® also. Hence, H = U + L in (—o0, &) is CL@.

@ H. Cuanc-Lara, G. DAviLA. Regularity for solutions of non local parabolic equations. Calc.
Var. Partial Differential Equations, 49(1-2):139-172, 2014.

Let us prove H € C*((&o, +00)).

In [€0,4+00), U =0, and since 0 < U € L*°((—00,&p)), we have

(AU € C((€, +00)). Then
—A)*U
H'(&) = 25()5(@ holds pointwise in (&g, +00).



Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at £ = &p.

We already know that H(¢, ) = L. Assume H(&)) = L — A with
A €[0,L — Py]. Let us show that A= 0.

The equation reads EH'(§) = 2s(—A)°U or

So+e €o+e Eo+e
"d¢ = 2s —A)P¥Ud H(€) d€.
/€ (H(©)eY de / (“A)Ude + / (€)de

0—¢ §o—¢ §o—¢

The first term is equal to
H(éo +€)(6o +¢) — H(éo — €)(o —€) — Ay as € — 0T,
The third term is bounded by (L + P1)2e — 0 as ¢ — 0.

We are left with

Sot+e
A&y = 2s lim / (=AU dE.
&

e—0t 0—e
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at £ = &p.

We are left with

Eo+e
Ao = 2s lim / (—A)°*Ud¢E,
§

e=0% Jeg—e

where

Eote
/5 (~A)Ude

0—¢

/£Oo+5/+<>° U(f |1+2$)d de

[T e
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at £ = &p.

We are left with

Eo+e
Ao = 2s lim / (—A)*UdE.
§

e=0% Jeg—e

where

So+e
(—~A)YUdg
&o—¢

/€o+5 o 0_
a o

+o0 U )
+/§ / ’1-&-25 d df
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at £ = &p.

We are left with

Eo+e
Ao = 2s lim / (—A)*Ude.
g

e—0t 0—¢

where

Cote
/5 (~A)Ude

0—¢€

/€o+5 /Eo 0—U
dndé
€ ’1-1—25
o o U )
[
fo—¢
+oo U
+/ / dndé
fo-cte 16— ?7!”25
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at £ = &p.

We are left with
Cote
Ao = 2s lim / (—A)*Ude.
e—0* fo—¢
where

Sote
/5 (—AyUde

0—¢&

:£”f°:%&M%
/&’ E Ug 77)1+25 d d§+/£ /go . ‘5 ’1+25)d ¢
/

0
o
§o—
+oo U
+/ dnd
€o—e v &o §)1+2s nde
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at & = &p.

We are left with

go+e
Al = 2s lim / (—A)*Ude.
¢

e—0t 0—e

where
5o+z-:
(=AU dE
fo—e

< sy // U©) = U@ 4 e
~ £ gos|5* |1+2s

Under the assumption U(z) < (20 — z)® when z < z,.
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at & = &p.

We are left with

Co+e
A&y = 2s lim / (=AU dE.
&

e—0t 0—e

where

Under the assumption U(z) < (zp — z)® when z < z.
Under the assumption U € C1«.

We thus conclude that A¢; =0, i.e., A=0.
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at £ = &p.

Why do we have U(§) < (§o — &)° when & < &o?
Recall that U(x) = u(x, 1) where u satisfies

deu+ (—A)u=0 in  (—o0,&t2) x (0,1],
u=2~0 in [got%a +OO) X [0’ l]a
u(-,0) = uo in (—o0, &o).
Now, if v solves
Ov + (—A)°v=0 in (=00, &) x (0,1],
v=20 in [€0, +00) x [0, 1],
v(-,0) = uo i (—o0bo).

Then 0 < v(x,t) < |x — &of® for x < &.

@ X. FERNANDEZ-REAL AND X. Ros-OToN. Boundary regularity for the fractional heat equation.
Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 110(1):49-64, 2016.
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Selfsimilar solutions: Continuity; Proof

It remains to check that H is continuous at £ = &p.

Why do we have U(§) < (§o — &)° when & < &o?

Recall that U(x) = u(x, 1) where u satisfies
Oru+ (—A)°u=0 in (—oo,gotfls) x (0,1],
u=0 in  [¢t2s, +00) x [0,1],
u(-,0) = up in (—o0, o).
To finish, we consider w = v — u. It satisfies:
Ow + (—A)°w >0 in (—o00,&0) x (0,1],
w =0 in [€0, +00) x [0, 1],
w(-,0) =0 in (—o0,&).

In [€0tY/ (%) &] x (0,1], u=0and u >0 in R gives d;u = 0 and
(=A)°u <0 there. Thus, w > 0.

X. FERNANDEzZ-REAL AND X. Ros-OTonN. Boundary regularity for the fractional heat equation.
Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 110(1):49-64, 2016.
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Goals of the talk

e Free boundary of selfsimilar solution given by x(t) = &t/(2%).
e Construct a continuous solution (selfsimilar solution) of (FSP).
e Finite speed of propagation of u, and infinite of h.

e The support of u never recedes.

@ F. peEL Teso, JE, anp J. L. VAzQUEz. The one-phase fractional Stefan problem. Preprint,
arXiv:1912.00097 [math.AP], 2019.

@ F. peEL TEeso, JE, anp J. L. VAzQUEz. On the two-phase fractional Stefan problem. Preprint,
arXiv:2002.01386v1 [math.AP], 2020.
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Speeds of propagation

Theorem (Finite speed for u, [del Teso & E. & Vazquez, 2019])

Let h € L>°(Q7) be the very weak solution of (FSP) with

ho € L=(RN) as initial data and u := ®(h).

If supp{®(ho(x) +¢)} C Br(xo) for some e >0, R > 0, and
xo € RN then

supp{u(-,t)} C B

s (x0) for some & >0 and all t € (0, T).
0 S

Proof: Use the selfsimilar solution in any direction. Why &7

Theorem (Infinite speed for h, [del Teso & E. & Vazquez, 2019])

Let 0 < h € L*°(QT) be the very weak solution of (FSP) with

0 < hg € L=®(RN) as initial data.

If hg > L+e>LinB,(x1) for somee >0, p>0, and x; € RN,
then h(-,t) >0 for all t € (0, T).

Proof: Show h(-,t*) > 0, then all times > t* by comp.



Speeds of propagation

Free boundary: x(t) = &t1/(2%)
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The support of u never recedes

Theorem (Cons. of positivity, [del Teso & E. & Vazquez, 2019))

If u(x, t*) > 0 in an open set Q C RN for a given time t* € (0, T),
then

u(x,t) >0 for all (x,t) € Qx [t", T).

The same result holds for t* = 0 if ug = ®(ho) is continuous in .

Proof: Involved. Use the postive eigenfunction as subsolution.
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Thank you for your attention!

Jgrgen Endal The one-phase fractional Stefan problem



