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Outline:

General mathematical framework: quasilinear system of reaction-diffusion equations
Typical ecological model - prey-predator interactions
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Numerical solutions
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The talk is based on the joint papers with the ERCIM scholar Purnedu Mishra (at present
in Norwegian University of Life Science)

1 Purnedu Mishra, D.W. Repulsive chemotaxis and predator evasion in predator prey models
with diffusion and prey taxis Math. Models. Methods. Appl. Sciences (M3AS) (2022)

2 Purnendu Mishra, D.W, Pursuit-evasion dynamics for Bazykin-type predator-prey model
with indirect predator taxis, J.D.E. (2023)
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Quasilinear parabolic system
System of N quasilinear reaction-diffusion equations :

ut = ∇ · (A(u)∇u) + f (u) in ΩT := Ω× (0,T ) ,

where u : ΩT 7→ RN and f : RN 7→ RN with BC & IC.
diffusion matrix (for r 6= s cross-diffusion terms )

A(u) = [a(u)r,s ]1¬r,s¬N

Example: the case N = 2

u1,t = ∇ · ((a(u)1,1∇u1 + (a(u)1,2∇u2) + f1(u1 , u2) ,

u2,t = ∇ · ((a(u)2,1∇u1 + (a(u)2,2∇u2) + f2(u1 , u2) .

setting a1,1 = d1Id , a1,2 = −u1ξId, , a2,1 = χu2Id , a2,2 = d2Id we obtain

a(u) =
( d1 −χu1
ξu2 d2

)
Id.

with d1 , d2 , χ , ξ > 0 and finally:

u1,t = d1∆u1 − ξ∇ · u1∇u2 + f1(u1 , u2) ,
u2,t = d2∆u2 + χ∇ · u2∇u1 + f2(u1 , u2) .
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Quasilinear parabolic system II
The following theory follows from the theory of Herbert Amann developed in the 80’

Theorem

Suppose that :
initial conditions uj,0 ∈ W 1,p(Ω), p > n are non-negative functions,
〈∇uj , ν〉 = 0 where ν is the outer normal vector on smooth boundary ∂Ω,

ar,s , fi = ui f̃ (u) are C∞smooth functions,
∇ · (A(u)∇u) is normally elliptic.

Then there exists Tmax > 0 such that there exists the unique local non-negative classical solution
u defined in Ω× (0,Tmax ). It satisfies the boundary and initial conditions and

u ∈ (C([0 ,Tmax ) : W 1,p(Ω)) ∩ C∞(Ω̄× (0 ,Tmax )))N .

Moreover, if A(u) = [a(u)r,s ]1¬r,s¬N is a triangular matrix then either

lim
t→Tmax

‖u(t)‖∞ = +∞ or Tmax =∞.

Basic problems are located about the question:
How does the interplay between f (u) and A(u) impact the properties of solutions ?
Existence of global classical solutions versus blow-up of solution in finite time
The prototype for the case of single semilinear equation is the Fujita problem (1966)

ut = ∆u + uq in Rn × (0,+∞). u(·, 0)  0 .

pattern formation - bifurcations from the constant steady state,
existence of global-in-time weak solutions.
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The Keller-Segel model of chemotaxis

Patlak (1953) - Keller-Segel model (1972)
W = W (x , t) density of some chemical released by the members of with density N(x , t),
x ∈ Ω ⊂ Rn with smooth boundary
χ-chemotactic sensitivity parameter

Nt = DN∆N + /−∇ · (χN∇W )
Wt = DW ∆W + γN − µW

with homogeneous Neumanna boundary condition
〈∇N , ν〉 = 〈∇W , ν〉 = 0, on ∂Ω, t > 0 .

(−) chemoattractant (+) chemorepellent
Early stages of the fruit body formation in slime mold Dictostelium Discoideum )
For n = 1 -global in time classical solution (Nagai, 1995)

For n = 2 - global solution for
∫

Ω
N0dx small enough, otherwise Tmax <∞.(Nagai, Senba,

Yosida; 1997, Biler, 1998)
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A typical prey-predator model (O.D.E. case)

N(t)—prey density,
P(t)—predator density

dP
dt

= bF (N)P − δP := RP (N,P) ,

dN
dt

= rN
(
1−

N
K

)
− F (N)P := RN (N,P)

F = F (N)-functional response e.g. -amount of food (prey) consumed per predator per unite
of time, Holling’s type II function:

F = FH (N) =
aN

1 + ThaN
a , b > 0 ,

1 The Rosenzweig-MacArthur prey-predator model (1963)
r - growth rate, δ - death rate, a-attack rate, Th- handling time.

For K =∞ and Th = 0 we get the Lotka-Volterra model.
b— efficiency of conversion of food into offspring

2 For some set of parameters there is a unique globally stable steady state which may lose
stability and limit cycle emerges via the Hopf bifurcation
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Chemical signalling

Many chemicals (e.g. pheromones, kairomones) released by animals are used as means of
inter and intraspecific communication - (chemical signaling) and sense of smell is a primary
means by which prey animals detect predators or prey and trigger suitable behavioral
responses .

The chemical signal my be released by predator/prey itself (odor of predator or prey) or it
may be released due to damage of prey captured
(e.g. blood in aquatic ecosystems).
Let W be a chemical released by prey or predator then the corresponding equation reads

Wt = d3∆W + g(N,P)− µW

where g = g(N,P) is the rate of chemical signal production and µ is the degradation rate

g(N,P) = γP or g(N,P) = γN or g(N,P) = βF (N)P ,
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Terminology: Direct/indirect prey taxis and/or
predator taxis

direct prey-taxis is a directed movement of predator toward the gradient of prey density,
indirect prey-taxis is a directed movement of predator toward the density gradient of a
chemical released by prey,
direct repulsive predator taxis is the directed movement of prey in the opposite direction to
the gradient of predator density.
indirect repulsive predator taxis is a directed movement of prey in the opposite direction to
the density gradient of a chemical released by predator.
pursuit- evasion model includes both direct/indirect prey taxis (pursuit) and repulsive
direct/indirect predator taxis (evasion).

In the context of predator-prey models the term indirect taxis was first used for a simplistic
model in J.I. Tello, D.W. (M3AS, 2016).
Similar idea was also used in in a different context in K. Fujie, T.Senba, (JDE, 2017)
Tao, M. Winkler (J.Eur.Math. Soc., 2017)
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The prey-predator model with prey taxis (direct)

Pt = dP∆P−ξ∇ · P∇N + bF (N)P − δP ,

Nt = dN∆N + rN
(
1−

N
K

)
− F (N)P .

with homogeneous Neumann boundary conditions (no-flux) and initial conditions

on smooth boundary ∂Ω, Ω ⊂ Rn and initial conditions. (ξ > 0)
P.Kareiva, G.T. Odel (Am. Naturalist 1987),
Prey-taxis was found to stabilize prey-predator interactions, no pattern formation is possible
if (ξ > 0!)-J.M. Lee, T. Hillen and M.A. Lewis (J. Biol. Dyn., 2009)
Global-in-time existence of solutions:
n  1 (with volume filling effect) B. Ainseba, at.al.(NARWA, 2008), Y. Tao (NARWA,
2010)
n  1 (classical sol., for small ξ with F (N) bounded) - S. Wu, J.Shi, B.Wu (JDE 2016);
D.Li (DCDS 2021)
n ¬ 2 (classical sol.)- H.-Y Jin, Z.Wang (JDE, 2017), T. Xiang (Nonlin Anal, 2018), D. Li
(DCDS, 2021)
n ¬ 5 (weak solutions) M. Winkler (JDE, 2017)
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Pursuit-evasion predator-prey model with direct
taxis

{
Pt = dP∆P − ξ∇ · P ∇N + RP (P,N) ,
Nt = dN∆N + χ∇ · N ∇P + RN (P,N) ,

with homogeneous Neumann boundary conditions (no flux)

The main part of the system is not upper triangular (full cross diffusion system)
Formal stability/instability analysis, travelling waves)- Y. Tyutyunov, L. Titova, R.Arditi
(Math. Mod.. Nat. Phenom., 2007)
Global-in-time existence of solutions
n ¬ 3- (class. sol. in a neighbourhood of the constant steady state)
M. Fuest (SIAM J. MAth. Anal, 2020)
n = 1 - ( no restriction on the size of initial data, approximation by 6-th order operators)
Y.Tao, M. Winkler (J.F.A, 2021) , (Nonliner Anal. RWA, 2022)
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Pursuit evasion model - indirect taxis for both prey
and predator

Pt = dP∆P − χ∇ · (P∇U) + RP (P,N)−δ1P2
,

Nt = dN∆N + ξ∇ · (N∇W ) + RN (P,N)−r1N2
,

Wt = dW ∆W + αwP − µwW ,

Ut = dU∆U + αuN − µUU ,
with homogeneous Neumann boundary conditions (no-flux)

The main part of the system is upper triangular
Global-in-time existence of solutions:
n ¬ 3 (with χ and ξ small enough or δ1 , r1 big enough ) - S. Wu (JMAA, 2022)
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Pursuit -evasion prey-predator model with indirect
repulsive predator taxis and prey taxis

Pt = DP∆P −∇ · (ξP∇N)− δP + bF (N)P ,

Nt = DN∆N +∇ · (χN∇W ) + rN
(
1−

N
K

)
− F (N)P ,

Wt = DW ∆W + γP − µW .

Model B : (χ > 0 ξ = 0) indirect repulsive predator taxis

Model A :(χ > 0 ξ > 0 ) pursuit-evasion model
Basic L1(Ω) estimate :

d
dt

(∫
Ω

P(x , t)dx + b

∫
Ω

N(x , t)dx

)
+ C1

(∫
Ω

P(x , t)dx + b

∫
Ω

N(x , t)dx

)
¬ C2

where C1 and C2 are positive constants.
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Global existence in time

Theorem

Suppose that P0 ,N0 ,W0 ∈ W 1,r (Ω), r > n are non-negative functions.
For Model A and Model B there exists the unique local non-negative classical solution (N,P,W )
satisfying boundary and initial defined on Ω̄× [0 ,Tmax ) such that

(N,P,W ) ∈ (C([0 ,Tmax ) : W 1,r (Ω)) ∩ C2,1(Ω̄× (0 ,Tmax )))3 .

Moreover, Tmax =∞ and the solution is uniformly L∞- bounded in the case of

Model B (χ > 0, ξ = 0) for all n  1

Model A (χ > 0, ξ > 0) in the case of n = 1.

P. Mishra, D.W. (Math. Mod. & Methods in Appl. Sc. (M3AS), 2022)
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Linear stability analysis for Model B and Hopf
bifurcation

The coexistence steady state to Model B is of form

Ē = (N̄, P̄, W̄ ) where W̄ =
µ

γ
P̄ .

A complex number belongs to the spectrum of the linearization of Model B at Ē iff it is an
eigenvalue of the following stability matrix :

Mj =

(
−D1hj + a11 a12 −χN̄hj

a21 −D2hj + a22 0
0 a32 −D3hj + a33

)
.

where {hj}∞j=0 denotes the eigenvalues of the Laplace operator −∆ with homogeneous
Neumann boundary condition and [ai,j ] is the Jacobian matrix for O.D.E. case.

a11 < 0 , a12 < 0 , a21 > 0 , a22 ¬ 0 a32 > 0 a33 < 0 .

For any χ > 0 considered as a bifurcation parameter: detMj < 0 and trMj < 0 .
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Linear stability analysis for Model B and Hopf
bifurcation

The dispersal equation of stability matrix Mj is following

λ
3 + ρ

(1)
j λ

2 + ρ
(2)
j λ + ρ

(3)
j (χ) = 0

where

ρ
(1)
j = −trMj = −(a11 + a22 + a33) + (D1 + D2 + D3)hj ,

:= α0 + α1hj ,

ρ
(2)
j = a11a22 − a12a21 + a11a33 + a22a33

+ hj (−a22D1 − a33D1 − a11D2 − a22D3 − a11D3 − a33D2)

+ h2j (D1D2 + D1D3 + D2D3)

:= β0 + β1hj + β2h2j ,

ρ
(3)
j (χ) = −detMj = −a11a22a33 + a12a21a33

+ hj (a22a33D1 + a11a22D3 − a12a21D3 + a11a33d2)

+ h2j (−a22D1D3 − a33D1D2 − a11D2D3) + D1D2D3h3j + χa21a32N̄hj ,

= (γ0 + γ1hj + γ2h2j + γ3h3j ) + χ(γ4hj ) := ρ
(3,1)
j + χρ

(3,2)
j > 0

where we have denoted ρ(3)
j (χ) = ρ

(3,1)
j + χρ

(3,2)
j . It can be checked that all coefficients

αj , βj , γj are positive.
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Linear stability analysis for Model B and Hopf
bifurcation

1 Ē is linearly stable if and only if for each j  0 matrices Mj have eigenvalues with negative
real parts which according to the Routh-Hurtwitz stability criterion is equivalent to the
conditions

ρ
(1)
j > 0, ρ(3)

j > 0,

and Qj := ρ
(1)
j ρ

(2)
j − ρ

(3)
j (χ) = ρ

(1)
j ρ

(2)
j − ρ

(3,1)
j − χρ(3,2)

j > 0 for all j  0 .

2 There exists χH > 0 such that

χ
H = min

j∈N+
Ψ̃(hj ) :=

{ρ(1)
j ρ

(2)
j − ρ

(3,1)
j

ρ
(3,2)
j

}
(1)

and the steady state Ē is stable if χ < χH .
3 If

Ψ̃(hj ) 6= Ψ̃(hk ) for j 6= k
then the minimum is attained for a singe j = j0.

4 Since trMj0 < 0 and detMj0<0 there is one real negative eigenvalue and a pair of conjugate
eigenvalues which cross imaginary axis for χ = χH with the transversality condition being
satisfied.

Theorem

There exist χH > 0 such that steady state Ē in model B is locally asymptotically stable if
χ < χH . Morrover, at χH a solution periodic in space and time emerges according to the Hopf
bifurcation mechanism.

5 based on result of Amann, 1991
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Numerical solutions of models A and B
Non-dimensional Rosenzweig-MacArthur model in the frame of model A

Nt = ∆N +∇ · (χN∇W ) + rN
(
1− N

)
−

aNP
(1 + βN)

,

Pt = dp∆P −∇ · (ξP∇N)− δP +
cNP

(1 + βN)
,

Wt = dw∆W + γP − µW ,

with non-negative initial and no-flux boundary condition.
1D simulations with the help of MATLAB PDEPE tool (∆t = 0.01,∆x = 0.1)
2D simulations with the help of FreeFem++ solver (∆t = 0.01,∆x = ∆y = 0.1)
Values of model parameters are assumed to be{

r = 0.25, β = 2, c = 0.85, a = 0.95, δ = 0.17 ,
µ = 0.5, γ = 10, dp = 0.01, dw = 0.01. (2)

Unique coexistence steady state E = (0.3333; 0.2924; 5.8490) and χH = 6.889.
Initial data : perturbation of the steady state e.g.

N(x , 0) = N̄ + 0.1 cos
( jπx

L

)
, P(x , 0) = P̄ + 0.1 cos

( jπx
L

)
, W (x , 0) = W̄ + cos

( jπx
L

)
(3)
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Model B; convergence to the steady state (1D
simulations)

(a) (b)

(c)

Figure 1: Model B: Perturbation in model B approaches the constant
steady state Ē for χ < χH with j = 1
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Model B; transition of perturbation (1D simulation)

Initial data N(x , 0) = N̄,P(x , 0) = P̄ + 0.1e−( x−0.5
0.2 )2 , W (x , 0) = W̄
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Figure 2: Model B: spatio-temporal patterns for χ > χH .
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Model A; periodic solutions (1D simulations)
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Figure 3: Model A: space-time patterns in unit domain when
χ = 5, ξ = 0.2 and symmetrical initial data with j = 4.
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Model B; separation regions (2D surface plot)
Gaussian initial data for predator centered in the middle of the square with constant initial
data for the prey N = N̄ and for the chemical W = W̄

(a) (b)

(c)

Figure 4: Model B (ξ = 0): 2D separation regions for χ = 10 at time step
t = 1500 .
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Model A; spike solution
Gaussian initial data for predator and prey centered in the middle of the square with
constant initial data W̄ for the chemical.
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Figure 5: Model A: 2D simulation result for model A at time t = 10 for
χ = 0.5, ξ = 10.0
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Model A; spike solution
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Figure 6: Model A: numerical indication of blowup at time t = 134 for
model A for χ = 0.5, ξ = 10.0
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How to modify model A to prevent blow-up?—>
Model C

In Model C a minimal modification with respect to model A is made for prevention of
blow-up in finite time.
The kinetic part is as in the classical Bazykin model ( 1976).
Density-dependent suppression of velocity in predators is interpreted as the result of
interference (kind of regularisation)

Pt = dP∆P − ξ∇ · P
(
∇N

1 + σP

)
+ bF (N)− δP−δ1P2

,

Nt = dN∆N + χ∇ · N ∇W − F (N)P + rN − r1N2
,

Wt = dW ∆W + γP − µW ,
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Model C

Theorem

If P0 ,N0 ,W0 ∈ W 1,r (Ω), r > n are non-negative functions then there exist global in-time,
non-negative classical solution to Model C satisfying boundary and initial condition provided n ¬ 3
and the following restrictions on parameters are satisfied

Q


δ1 

(
γ2(16 + n)

dW
+ dW

)
,

r1 
(
χ2AN

(dN )2
+

2χ2

dW
+ dW

)
,

with AN =
2
(

(dN )2 + (dW )2 + ξ2σ−2
)

dW
.

P.Mishra, D.W., JDE. 361 (2023)391-416 .

25 / 35



Numerical solutions to Model C

Set of parameters

r = 2, r1 = 1.8, a = 0.7, b = 0.9, β = 2, µ = 0.01, δ = 0.1, δ1 = 0.15,
γ = 0.015, dn = 1, dp = 0.1, dw = 0.05.

For this choice of parameters values the restriction Q holds if and only if σ > σc := 19.7
For σ < σc , num. sol. to Model C exhibits finite-time blow-up of solution
For σ > σc there is prevention of blow-up (global solutions) .
Initial data: perturbation of the constant steady state
E? = (P?,N?,W ?) = (0.741, 1.016, 0.74)

P0(x , y) = P? + 500e−100((x−2.5)2+(y−2.5)2)
,

N0(x , y) = N? + 800e−100((x−2.5)2+(y−2.5)2)
,

W0(x , y) = W ? + 100e−100((x−2.5)2+(y−2.5)2)

where (x , y) ∈ Ω = (0 , 5)× (0 , 5)
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Figure 1

(a)

(b)

Figure 7: (a) Approximated blowup solution at time t = 1.5 × 10−4 for
σ = 0.0 (b) Approximated blowup solution at time t = 2.3 × 10−4 for
σ = 5.0 subject to initial conditions. It was assumed χ = 0.1, ξ = 30 .
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(a)

(b)

Figure 8: Snapshots for σ = 25 at different time steps. (a) t = 13, (b)
t = 50
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(a)

(b)

Figure 9: Snapshots for σ = 25 at different time steps. (a) t = 100, (b)
t = 500. All other parameter values and initial condition is same as in
figure (7).
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Sketch of proof of the global existence for Model C
1 There is a local smooth solution defined on [τ ,Tmax ) satisfying L1(Ω)-bound.
2 We begin with the N-equation

Nt = dN∆N + χ∇ · N ∇W − F (N)P + rN − r1N2

3 Using the Gagliardo-Nirenberg inequality and L1(Ω)-bound one proves that for n ¬ 3

sup
t∈[τ ,Tmax )

‖N(·, t)‖k ¬ CN (k) for any k  1

provided
sup

t∈[τ ,Tmax )
‖∇W (·, t)‖4 ¬ C ′W .

Then
sup

t∈[τ ,Tmax
‖N(·, t)∇W (·, t)‖4−ε ¬ C ′′W

4 Using properties of the heat semigroup we infer that

sup
t∈[τ ,Tmax )

‖N(·, t)‖∞ ¬ CN .

5 Using Lp − Lq estimates for analytic semigroups (n ¬ 3) we get

sup
t∈[τ ,Tmax )

‖∇N(·, t)‖p ¬ C ′N for p < 4

Next it is easy to deduce by parabolic regularity that

sup
t∈[τ ,Tmax )

‖∇P(·, t)‖∞ ¬ CP , sup
t∈[τ ,Tmax )

‖∇W (·, t)‖∞ ¬ CW
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Sketch of proof of the global existence for Model C

The most complicated part of the proof is to find estimate on ‖∇W (·, t)‖4. To this end we
derive differential inequality

y ′(t) + y(t) ¬ Const. for t ∈ [τ ,Tmax )

where for suitable constants A1 and A2

y(t) =

∫
Ω

|∇W |4 +

∫
Ω

P|∇W |2 +

∫
Ω

N|∇W |2 + A1

∫
Ω

N2 + A2

∫
Ω

P2
.

We use Bochner’s type inequality : For W ∈ C2(Ω̄) there holds

2∇W∇∆W = ∆|∇W |2 − 2|D2W |2

and
Mizoguchi-Souplet inequality : for u ∈ C2(Ω̄) satisfying ∂u

∂ν = 0 on ∂Ω and Ω there holds
the following pointwise inequality

∂|∇u|2

∂ν
¬ K |∇u|2 on ∂Ω

where K depends on the curvature of ∂Ω.
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Lemma

Let (P ,N ,W ) be a solution to Model C . Then there exists a constant C > 0 such that for
t ∈ (0,Tmax ).

d
dt

∫
Ω

|∇W |4 + dW

∫
Ω

∣∣∇(|∇W |2)
∣∣2 + 4µ

∫
Ω

|∇W |4

¬ γ2
(
16 + n
dW

)∫
Ω

|∇W |2P2 + C .
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Corollaries and open questions

Chemical signalling may destabilize a space-homogeneous steady state in a prey -predator
model and gives rise to space-time dependent pattern formation.

When an O.D.E. model is extended to a P.D.E model with taxis terms some mechanism of
blow-up prevention might be necessary to be built in the model.

None of the two taxis mechanisms studied in Model C alone can lead to the blow-up for
n = 2. Their cumulative effect leading to blow-up demands farther investigation.

Are there any weak solutions for for Model C when σ = 0, weak enough to grasp the
singular solutions?

Thank you.
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The explanation of spiky solution formation

Cumulative effect of prey taxis and indirect predator taxis leads to aggregation .
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