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The porous medium equation (PME)

For an open set Ω ⊂ Rn, 0 < T <∞, and a parameter m > 0
consider

(PME) ∂tu−∆
(
|u|m−1u

)
= 0 in ΩT := Ω× (0, T )

▶ Special case m = 1: (PME) is the heat equation

▶ Formally, (PME) ⇔ ∂tu−mdiv
(
|u|m−1∇u

)
= 0

▶ Thus, (PME) is degenerate if m > 1 and singular if
0 < m < 1

▶ In the singular case, (PME) is also known as the fast diffusion
equation
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Properties of local weak solutions

singular case degenerate case

Propagation of perturbations infinite speed finite speed

Compact support impossible possible

Locally bounded if m > (n−2)+
n+2 yes
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Weak sub-/super-solutions

Definition
We say that u is a local weak sub-/super-solution to (PME) if

|u|m−1u ∈ L2
loc(0, T ;H

1
loc(Ω))

and ∫∫
ΩT

−u∂tφ+∇
(
|u|m−1u

)
· ∇φdxdt≤/≥ 0

holds for all non-negative test functions φ ∈ C∞
0 (ΩT ). It is a local

weak solution if it is both a local weak sub- and super-solution.
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Example worse than local weak super-solution

▶ For m > (n−2)+
n the Barenblatt solution is defined by

B(x, t) =

t−λ
(
C − λ(m−1)

2mn
|x|2

t
2λ
n

) 1
m−1

+
, t > 0,

0, t ≤ 0,

in which λ = n
n(m−1)+2 and C > 0.

▶ B is a local weak solution to (PME) in the upper half-space
Rn × (0,∞).

▶ However, B is not a local weak super-solution in any domain
containing the origin, since then |∇Bm| /∈ L2.

▶ Even worse examples exist.
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A more general notion of super-solutions I

The Barenblatt solution is a super-solution to (PME) in the
following sense:

Definition (m-supercaloric functions)

A function u : ΩT → (−∞,∞] is called m-supercaloric if

(i) u is lower semicontinuous in ΩT

(ii) u is finite in a dense subset of ΩT

(iii) u satisfies the comparison principle in interior cylinders, i.e. if
Ω′
t1,t2 ⋐ ΩT and h ∈ C(Ω′

t1,t2) is a continuous solution with
u ≥ h on ∂pΩ

′
t1,t2 , then u ≥ h in Ω′

t1,t2 .
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A more general notion of super-solutions II

We want to study

▶ Integrability properties

▶ Sobolev space properties

▶ Classification of these functions

▶ etc...
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Connection between notions of super-solution

In the degenerate case m > 1:

Theorem (Kinnunen & Lindqvist 2008)

If u is a locally bounded m-supercaloric function in ΩT , then it is a
weak super-solution in ΩT .
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Proof sketch

1) Since u is lower semicontinuous, there exists sequence of
smooth functions (ψk)k∈N such that ψk < ψk+1 < u for every
k and ψk → u pointwise.

2) Use ψk as an obstacle in order to find a weak super-solution
uk above ψk, with uk = ψk on the parabolic boundary.

3) Prove that u1 ≤ u2 ≤ . . . ≤ u. To this end, we want uk to be
continuous and that uk is a weak solution in {uk > ψk} so
that we can use a comparison principle.

4) Show that ∇|uk|m−1uk → ∇|u|m−1u by a compactness
argument which is available due to the local boundedness of u.
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Motivation Hölder continuity result Some proof ideas

Proof sketch

1) Since u is lower semicontinuous, there exists sequence of
smooth functions (ψk)k∈N such that ψk < ψk+1 < u for every
k and ψk → u pointwise.

2) Use ψk as an obstacle in order to find a weak super-solution
uk above ψk, with uk = ψk on the parabolic boundary.

3) Prove that u1 ≤ u2 ≤ . . . ≤ u. To this end, we want uk to be
continuous and that uk is a weak solution in {uk > ψk} so
that we can use a comparison principle.

4) Show that ∇|uk|m−1uk → ∇|u|m−1u by a compactness
argument which is available due to the local boundedness of u.

Leah Schätzler PLUS

Continuity results for the obstacle problem to porous medium type equations
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Question

Are solutions to the obstacle problem to (PME) continuous up to
the boundary if the obstacle function is continuous?
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Known Hölder continuity results - obstacle free case
Local regularity:

▶ DiBenedetto & Friedman 1985: non-negative solutions,
degenerate case

▶ DiBenedetto, Gianazza & Vespri 2012: non-negative solutions,
singular case

▶ Liao 2020: signed solutions, degenerate & singular case

Regularity up to the parabolic boundary:

▶ DiBenedetto 1986: degenerate case

▶ Kinnunen, Lindqvist & Lukkari 2016: degenerate case,
non-negative solutions, Perron’s method

▶ Björn, Björn, Gianazza & Siljander 2018: non-cylindrical
domains, degenerate case, non-negative solutions, barrier
characterization of regular boundary points
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Known Hölder continuity results - obstacle problems

Obstacle problems to quasilinear equations:

▶ Struwe & Vivaldi 1985: variational inequalities involving
quasilinear operators with quadratic growth, Hölder regularity
(interior and up to the parabolic boundary)

▶ Choe 1993: quasilinear equations involving operators with
quadratic growth, interior C1,α-regularity

Obstacle problems to porous medium type equations: Interior
Hölder continuity, non-negative solutions

▶ Bögelein, Lukkari & Scheven 2017: degenerate case

▶ Cho & Scheven 2020: singular case
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Motivation Hölder continuity result Some proof ideas

Equations of porous medium type

Setting v = |u|m−1u, (PME) is equivalent to

∂t
(
|v|q−1v

)
−∆v = 0 in ΩT ,

where q = 1
m ⇝ degenerate case 0 < q < 1, singular case q > 1

More generally, consider

∂t
(
|u|q−1u

)
−A(x, t, u,∇u) = 0 in ΩT

with a Carathéodory function A : ΩT × R× Rn → Rn,{
A(x, t, u, ζ) · ζ ≥ Co|ζ|2,
|A(x, t, u, ζ)| ≤ C1|ζ|
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Local solutions I
For an obstacle function ψ define

Kψ(ΩT ) :=
{
v ∈ C0((0, T );Lq+1

loc (Ω)) ∩ L2
loc(0, T ;H

1
loc(Ω)) :

v ≥ ψ a.e. in ΩT
}

Definition
u ∈ Kψ(ΩT ) is a local weak solution to the obstacle problem if

⟨⟨∂t
(
|u|q−1u

)
,φ(v − u)⟩⟩

+

∫∫
ΩT

A(x, t, u,∇u) · ∇ (φ(v − u)) dxdt ≥ 0

holds true for all comparison maps v ∈ Kψ(ΩT ) with time

derivative ∂tv ∈ Lq+1
loc (ΩT ) and cutoff functions φ ∈ C∞

0 (ΩT ;R≥0).
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Local solutions II

The time term is defined by

⟨⟨∂t
(
|u|q−1u

)
, φ(v − u)⟩⟩

:=

∫∫
ΩT

[
∂tφ

(
q
q+1 |u|

q+1 − |u|q−1uv
)
− φ|u|q−1u∂tv

]
dxdt.
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Boundary values

Assumptions:

▶ Boundary values g ∈ C0((0, T );Lq+1(Ω)) ∩ L2(0, T ;H1(Ω))
with ∂tg ∈ Lq+1(Ω)

▶ Initial values go ∈ Lq+1(Ω)

▶ Compatibility conditions g ≥ ψ, go ≥ ψ(·, 0) a.e.

Solutions attaining the initial/boundary values: Local solution
u ∈ C0((0, T );Lq+1(Ω)) ∩ L2(0, T ;H1(Ω)) such that

▶ u− g ∈ L2(0, T ;H1
0 (Ω))

▶
1

h

∫ h

0

∫
Ω
|u− go|q+1 dxdt→ 0 as h ↓ 0
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Interior Hölder continuity

Theorem (Moring & S. 2022)

Let u be a (signed) bounded local weak solution to the obstacle
problem to the porous medium type equation with q ∈ (0,∞) and

a Hölder continuous obstacle function ψ ∈ C0,β,β
2 (ΩT ) for some

β ∈ (0, 1). Then u is locally Hölder continuous.
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Continuity up to the parabolic boundary

Additional assumptions:

▶ Positive geometric density condition: there exist α∗ ∈ (0, 1)
and ρo > 0, such that for all xo ∈ ∂Ω and ρ ∈ (0, ρo] there
holds |Ω ∩Bρ(xo)| ≤ (1− α∗)|Bρ(xo)|.

▶ ψ ∈ C0(ΩT ) with modulus of continuity ωψ
▶ g ∈ C0(ΩT ), go ∈ C0(Ω) with moduli of continuity ωg, ωgo

Theorem (Moring & S. 2023)

Let u be a (signed) weak solution to the obstacle problem to the
porous medium type equation with q ∈ (0,∞) and the obstacle
function and initial/boundary values as above. Then u is
continuous up to the parabolic boundary with a modulus of
continuity depending on n, q, Co, C1, ∥u∥∞, α∗, ωψ, ωg/ωgo .
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The linear elliptic case

Consider weak solutions to

(LE) div(A ·Du) = 0 in E,

where x 7→ A(x) = (ai,j(x))1≤i,j≤N is measurable and

0 < λ|ζ|2 ≤
N∑

i,j=1

ai,j(x)ζiζj ≤ Λ|ζ|2 ∀ζ ∈ RN \ {0}.

Hölder continuity: Independent results by De Giorgi (1957) and
Nash (1958; + parabolic version), new proof by Moser (1960).
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Structure of De Giorgi’s proof

1. From L2 to L∞:

sup
Bϱ(xo)

|u| ≤ C

(
−
∫
B2ϱ(xo)

|u|2 dx

) 1
2

2. From L∞ to C0,α:

ess osc
Bϱ(xo)

u ≤ C
(
ess osc
BR(xo)

u
)( ϱ

R

)α
for any 0 < ϱ < R, BR(xo) ⋐ E
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From L∞ to C0,α

u ∈ C0,α means that the oscillation is reduced in a “dyadic” way if
the radius is reduced in a “dyadic” way:

∃ c, η ∈ (0, 1) : ess osc
BcR(xo)

u ≤ η ess osc
BR(xo)

u,

because by iteration

ess osc
BcnR(xo)

u ≤ ηn ess osc
BR(xo)

u = cn logc η ess osc
BR(xo)

u

=

(
cnR

R

)logc η

ess osc
BR(xo)

u.

Set α := logc η and consider ϱ ≈ cnR.
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Reduction of oscillation

Assume that |u| ≤ 1 in B1 = B1(0). De Giorgi showed that

|{u+ = 0} ∩B1| ≥ 1
2 |B1| ⇒ ∃ k : sup

B 1
2

u+ ≤ 1− 2−(k+1)

and analogously

|{u− = 0} ∩B1| ≥ 1
2 |B1| ⇒ ∃ k : sup

B 1
2

u− ≤ 1− 2−(k+1)

Measure theoretical alternatives on the left-hand side ⇒ Reduction
of oscillation in any case
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Parabolic PDEs
▶ De Giorgi’s scheme could be extended to parabolic PDEs

∂tu− div(A ·Du) = 0 in ET

by Ladyzhenskaja and Ural’ceva (1964), mainly because the
equation is homogeneous (i.e. u is solution ⇒ λu with λ ∈ R
is solution)

▶ Oscillation decay estimate with balls replaced by standard
parabolic cylinders Kϱ × (−ϱ2, 0]

x1

x2

t

ϱ
ϱ

ϱ2

t

Rn

(xo, to)
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Intrinsic scaling

▶ The porous medium type equation is not homogeneous
(unless q = 1)

▶ De Giorgi’s scheme cannot be extended with standard
parabolic cylinders Kϱ × (−ϱ2, 0]

▶ Use intrinsic scaling (introduced by DiBenedetto):

Qϱ(ω
q−1) = Kϱ × (−ωq−1ϱ2, 0],

where
osc

Qϱ(ωq−1)
u ≤ ω
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Comparison with the obstacle and boundary values I

Alternative 1: The oscillation of u is controlled by the oscillation of
the obstacle function or the boundary values
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Comparison with the obstacle and boundary values II

Alternative 2: For a suitable level k, max{u, k} (min{u, k}) is a
local sub-solution (super-solution) to the obstacle free PME in Q
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Thank you for your attention!
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