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What do we mean by small-scale behaviour?

Basic ideas: For example (case when the mass (L1-norm) of u ≥ 0
is conserved) most of the mass is concentrated on a small ball
B(ε) of radius ε.

More involved: for p ≥ 1 the Lp norms behave as ε−c(p,N).

Indeed, if
∫
B(ε) u ≥ C , then by Hölder’s inequality,

(∫
B(ε)

up

)1/p

≥ C |B(ε)|−(p−1)/p = Cε−N(1−1/p).

For a reverse inequality, we would need for example an upper
estimate for |u|∞.
If we have weaker concentration in the limit ε → 0 (on a surface of
dimension k rather than a point), we obtain a different exponent
for ε (equal to −(N − k)(1 − 1/p)).
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What do we mean by small-scale behaviour? (2)

Oscillations beyond concentration: we study the small-scale
behaviour of the Sobolev semi-norms

|u|m,p :=
(∫

Rn

∣∣∣∂mu

∂xm

∣∣∣p dx
)1/p

.

In the language of hydrodynamics/turbulence theory (Kolmogorov,
Kraichnan, Frisch...): typical small-scale quantities used to detect
oscillations:

-û(s) for large |s|.
-u(x + r) − u(x) for small r.

Small-scale quantities are related to Sobolev norms:

-Hm = Wm,2 Sobolev norms defined through spectrum.

-Hölder, Sobolev-Slobodeckij... defined through increments;
then Sobolev injections.
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What do we NOT mean by small-scale behaviour?

In this talk, we only consider space scales, not time scales.
However, our lower estimates almost always involve time averaging
due to the energy/moments method we use.

We also do not touch semiclassical, stationary phase... type
phenomena which also involve PDEs with a small parameter.
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What type of results?

Small-scale behaviour of solutions is studied for PDEs from:

• Hydrodynamics: Navier-Stokes, Burgers, Korteweg-De Vries,

• Quantum physics: nonlinear Schrödinger,

• Biology: aggregation-diffusion: Keller-Segel,

• Astrophysics: Burgers; aggregation-diffusion...

For Sobolev norms, estimates have been found for
2D Navier-Stokes, non-linear Schrödinger, Korteweg-de Vries...
with and without random forcing (typically on the torus).
See Kuksin ’97-’98, the book of Kuksin-Shirikyan (’12) and the
book of B.-Kuksin (’21).

However, these estimates are not sharp for ε → 0 (different powers
of ε for upper/lower bounds). Possible with simpler models? Yes!
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1D Periodic Generalised Burgers Equation

vt + (f (v))x = εvxx , t ≥ 0, x ∈ S1 = R/Z. (1DB)

We assume that f is smooth, strongly convex (f (v) = v2/2: usual
Burgers).
So we never use the Cole-Hopf transformation.

”Pressureless turbulence” considered by many physicists, for
instance Polyakov ’95 (and Zeldovich in the multi-d case ’89).

We assume that ε > 0, ε ≪ 1. Again, only ε varies.

For simplicity, we assume that the integral
∫
S1 v(t, ·) vanishes for

t = 0, and therefore for all t.
We may study the unforced problem or add random (smooth in
space) forcing.
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Typical Profile of a Burgers Solution
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Amplitude of solution ∼ 1. Cliffs (quasi-shocks): number of cliffs
∼ 1, jump ∼ −1, width ∼ ε (scaling argument).
Burgers turbulence or ”Burgulence”: see [Bec-Khanin 2007].
Ramp-cliff structure ⇒ intermittency.

8 / 22



Intro Burgers equation Aggregation-diffusion equation (ADE) Small-scale behaviour for radial (ADE)

Estimates for the Sobolev Norms of the Solution

In [B. ’14], I obtain sharp estimates for the (averaged) (1DB)
solution.

{|v |m,p}
m,p∼ ε−γ , ∀m ≥ 1, 1 < p ≤ ∞.

Here γ(m, p) = m − 1/p, and {. . . } stands for averaging over a

v0-dependent time period [T1,T2].

Upper and lower estimates the same up to a ε-independent
constant, and necessarily depend on v0.
These results can be adapted for a subcritical fractional damping
−ε(∂xx)αu, 1/2 < α < 1 with a different scaling argument.
For more details, especially in a random setting, see the book
[B.-Kuksin].
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Estimates for the Sobolev Norms of the Solution:
Ideas of Proofs

Precise upper estimates are obtained by using Oleinik’s estimate
ux ≤ t−1.

Precise lower estimates follow from the energy balance:

d

dt
|u|22 = −2ε|u|21,2.

combined with the ’inviscid energy dissipation’.

Propagation to higher order Sobolev norms follows from the
Gagliardo-Nirenberg inequality and higher-order energy estimates.
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Upper Bounds: Oleinik’s Estimate

Consider unforced (1DB) on S = (t, x) ∈ [0,T ] × S1:

ut + uux = εuxx .

Consider v = tux . The function v can only reach a str. positive
maximum for t > 0. Then we would have:

vt︸︷︷︸
≥ 0

+u vx︸︷︷︸
0

+t−1(−v + v2) = εvxx︸︷︷︸
≤ 0

.

Thus v ≤ 1 on S . In other words, ux ≤ t−1 ⇒ ”damping”.
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Obtaining lower bounds
We have:

d

dt

∫
S1

u2 = −2

∫
S1

uf ′(u)ux︸ ︷︷ ︸
0

+2ε

∫
S1

uuxx = −2ε

∫
S1

u2x .

Integrating in time, we get:

|u(T )|22 − |u(0)|22 = −2εT{|u|21,2}.

Using the upper estimates, for T ≥ 1 we have that:

|u(T )|22 ≤ (max
x

ux(0, x))2 ≤ CT−2.

Consequently, for T large enough:

{|u|21,2} ≥ CT−1ε−1.
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Chemotaxis to (ADE)

Chemotaxis=aggregation of bacteria, pollen, spermatozoids...
through chemical signals.
Parabolic-parabolic Keller-Segel model:

ut − ε∆u + ∇ · (u∇c) = 0;

δct − ∆c + αc = u.

The quantities u, c ≥ 0 stand for cell density and concentration of
a chemical signal, respectively.
In the limit δ → 0 (instantaneously propagating information) we
get the parabolic-elliptic aggregation-diffusion equation:

ut − ε∆u + ∇ · (u∇K ∗ u) = 0, (ADE )

with K the kernel of the elliptic operator −∆ + αId .
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Our setting: pointy potentials

ut − ε∆u + ∇ · (u∇K ∗ u) = 0.

Radial kernel K = k(| · |) satisfying k ′ ∈ L∞ ∩ C 0([0,∞))
(like 1D chemiotaxis).

Properties: Preservation of positivity; conservation of mass
M =

∫
u; global well-posedness (in L1 ∩ Lp, p < ∞, L1 ∩Wm,1).

We assume that k ′(0) ̸= 0; therefore there is a mild singularity
(pointy potential).

Typical examples K (x) = −|x |; e−|x |.
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Inviscid explosion (I)

For ε = 0, i.e. for the aggregation equation

ut + ∇ · (u∇K ∗ u) = 0,

short-time well-posedness and long-time explosion if the kernel is
attractive. This is proved by the (generalised) characteristics
method or using gradient flow tools:
Bertozzi, Laurent, Rosado; Carrillo, James, Lagoutière, Vauchelet...
Carrillo, DiFrancesco, Figalli, Laurent, Slepčev...
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Inviscid explosion (II)

Explosion in the radial attractive case: the quantity

D(u(t)) := u(0, t) if N = 1,

∫
Rn

u(x , t)

|x |
dx if N ≥ 2

explodes in finite time (Biler-Karch-Laurençot ’09).

More precisely, my collaborators argue by contradiction, obtaining
D(u(T )) < 0 for some T (u0).
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Small-scale behaviour

[Biler-B.-Karch-Laurençot 1] Assume that u0 is radially symmetric,
concentrated near 0 and K is attractive near 0. Then the solution
u of (ADE) satisfies∫ T∗

0

∫
B(λ∗ε)

u(x , t) dx dt ≥ C∗ ⇒ (Hölder)

∫ T∗

0

(∫
B(λ∗ε)

u(x , t)p dx

)1/p

≥ C (p)ε−N(1− 1
p
)
, 1 ≤ p < ∞,

for all ε ∈ (0, ε∗). The constants with the ∗ only depend on u0,K
through a finite number of parameters.

These Lp estimates are sharp; the corresponding upper estimates
hold on the whole space Rn and without time averaging.
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Proof of small-scale concentration

The upper estimates hold under very general conditions: radial
symmetry is not needed. We use an energy method.

To prove lower estimates, we consider again the quantity:

D(u(t)) := u(0, t) if N = 1,

∫
Rn

u(x , t)

|x |
dx if N ≥ 2

If ε > 0, no explosion. However, integrating by parts and using a
symmetrization trick we obtain that for some T∗ > 0:∫ T∗

0
D(u(t)) ≥ Cε−1.

Combining this lower estimate with the upper ones in Lebesgue
spaces (and in H1 if N = 1) and using Hölder’s inequality, we
obtain the lower bounds for Lp norms.
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Sobolev norms

In [Biler-B.-Karch-Laurençot 2], we obtain ε-optimal Sobolev
norms for u localised on a small ball as above.

Lower estimates: They follow from lower estimates for Lp norms
and the GN (Gagliardo-Nirenberg) inequality.
For example, since (after averaging in time) we have (by
conservation of the mass M):

Cε−N/2 ≤ |u|2 ≤ CM2/(N+2)|u|N/(N+2)
1,2 ,

we obtain that
|u|1,2 ≥ CM−2/Nε−(N/2+1).

Upper estimates: Energy method. Inequalities of Hölder, GN and
HLS (Hardy-Littlewood-Sobolev), taking derivatives of K
(convolution with |x |−k for k < N).
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Analogy between Burgers and (ADE)

Formally, if v solves Burgers, −vx satisfies (ADE) with
K (x) = −|x |. However:

1. Periodic setting so −vx = u ≥ 0 is impossible.

2. This is a purely 1D analogy.

However, this suggests |u|p ∼ ε−(1−1/p).

And this is indeed true only in 1D.

So dependence on N for (ADE). The explanation is that when
ε → 0, for Burgers (resp. (ADE)) we concentrate to a singularity
of codimension 1 (resp. dimension 0).
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Concluding Remarks

Our results give precise and rigorously proved small-scale estimates
for a broad class of (deterministic and random) models.

Until recently, such results were only available for Burgers-type
equations, relying heavily on versions of Oleinik’s estimate
ux ≤ t−1.

Many perspectives on aggregation-diffusion equations (which do
not have inviscid upper estimates like Oleinik’s, but have obvious
inviscid lower ones since solutions are positive!)

Natural question: what if the initial condition is not radially
symmetric?

21 / 22



Intro Burgers equation Aggregation-diffusion equation (ADE) Small-scale behaviour for radial (ADE)

Bibliography
[BBKL1]: P. Biler, AB, G. Karch, P. Laurençot, Concentration
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